Analysis of longitudinal imaging data

Bryan Guillaume

GSK / University of Liège / University of Warwick

FP7 Neurophysics WORKSHOP 23-24 Jan 2012: Pharmacological fMRI

Supervisors: Thomas Nichols (Warwick University) and Christophe Phillips (Liège University)

Outline

- Introduction
- The Sandwich Estimator method
- 3 An adjusted Sandwich Estimator method

Example of longitudinal studies in neuroimaging

Effect of drugs (morphine and alcohol) versus placebo over time on Resting State Networks in the brain (Khalili-Mahani et al, 2011)

- 12 subjects
- 21 scans/subject!!!
- Balanced design

Study design:

Example of longitudinal studies in neuroimaging

fMRI study of longitudinal changes in a population of adolescents at risk for alcohol abuse

- 86 subjects
- 2 groups
- 1, 2, 3 or 4 scans/subjects (missing data)
- Total of 224 scans
- Very unbalanced design (no common time points for scans)

- Gold standard: Linear Mixed Effects (LME) model
 - Iterative method → generally slow and may fail to converge
 - E.g., 12 subjects, 8 visits, Toeplitz, LME with unstructured intra-visit correlation fails to converge 95 % of the time.
 - E.g., 12 subjects, 8 visits, CS, LME with random int. and random slope fails to converge 2 % of the time.
- LME model with a random intercept per subject
 - May be slow (iterative method) and only valid with Compound Symmetric (CS) intra-visit correlation structure
- Naive-OLS (N-OLS) model which include subject indicator variables as covariates
 - Fast, but only valid with CS intra-visit correlation structure

- Gold standard: Linear Mixed Effects (LME) model
 - ullet Iterative method o generally slow and may fail to converge
 - E.g., 12 subjects, 8 visits, Toeplitz, LME with unstructured intra-visit correlation fails to converge 95 % of the time.
 - E.g., 12 subjects, 8 visits, CS, LME with random int. and random slope fails to converge 2 % of the time.
- LME model with a random intercept per subject
 - May be slow (iterative method) and only valid with Compound Symmetric (CS) intra-visit correlation structure
- Naive-OLS (N-OLS) model which include subject indicator variables as covariates
 - Fast, but only valid with CS intra-visit correlation structure

- Gold standard: Linear Mixed Effects (LME) model
 - ullet Iterative method o generally slow and may fail to converge
 - E.g., 12 subjects, 8 visits, Toeplitz, LME with unstructured intra-visit correlation fails to converge 95 % of the time.
 - E.g., 12 subjects, 8 visits, CS, LME with random int. and random slope fails to converge 2 % of the time.
- LME model with a random intercept per subject
 - May be slow (iterative method) and only valid with Compound Symmetric (CS) intra-visit correlation structure
- Naive-OLS (N-OLS) model which include subject indicator variables as covariates
 - Fast, but only valid with CS intra-visit correlation structure

- Gold standard: Linear Mixed Effects (LME) model
 - ullet Iterative method o generally slow and may fail to converge
 - E.g., 12 subjects, 8 visits, Toeplitz, LME with unstructured intra-visit correlation fails to converge 95 % of the time.
 - E.g., 12 subjects, 8 visits, CS, LME with random int. and random slope fails to converge 2 % of the time.
- LME model with a random intercept per subject
 - May be slow (iterative method) and only valid with Compound Symmetric (CS) intra-visit correlation structure
- Naive-OLS (N-OLS) model which include subject indicator variables as covariates
 - Fast, but only valid with CS intra-visit correlation structure

Outline

- Introduction
- The Sandwich Estimator method
- 3 An adjusted Sandwich Estimator method

The Sandwich Estimator (SwE) method

- Use of a simple OLS model (without subject indicator variables)
- The fixed effects parameters β are estimated by

$$\hat{\beta}_{OLS} = \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \sum_{i=1}^{M} X_i' y_i$$

• The fixed effects parameters covariance $\mathrm{var}(\hat{\beta}_{OLS})$ are estimated by

$$SwE = \underbrace{\left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}}_{Bread} \underbrace{\left(\sum_{i=1}^{M} X_i' \hat{V}_i X_i\right)}_{Meat} \underbrace{\left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}}_{Bread}$$

Property of the Sandwich Estimator (SwE)

$$\mathsf{SwE} = \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \left(\sum_{i=1}^{M} X_i' \hat{V}_i X_i\right) \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}$$

If V_i are consistently estimated, the SwE tends **asymptotically** (Large samples assumption) towards the true variance $var(\hat{\beta}_{OLS})$. (Eicker, 1963; Eicker, 1967; Huber, 1967; White, 1980)

The Heterogeneous HC0 SwE

In practice, V_i is generally estimated from the residuals $r_i = y_i - X_i \hat{\beta}$ by

$$\hat{V}_i = r_i r_i'$$

and the SwE becomes

Het. HC0 SwE =
$$\left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \left(\sum_{i=1}^{M} X_i' r_i r_i' X_i\right) \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}$$

Simulations: setup

- Monte Carlo Gaussian null simulation (10,000 realizations)
- For each realization,
 - Generation of longitudinal Gaussian null data (no effect) with a CS or a Toeplitz intra-visit correlation structure:

Compound Symmetric

1 0.8 0.8 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 0.8 1

Toeplitz

1	1	8.0	0.6	0.4	0.2	١
	8.0	1	8.0	0.6	0.4	
	0.6	8.0	1	8.0	0.6	
	0.4	0.6	8.0	1	8.0	
	0.2	0.4	0.6	8.0	1	,

- 2 Statistical test (F-test at α) on the parameters of interest using each different methods (N-OLS, LME and SWE) and recording if the method detects a (False Positive) effect
- For each method, rel. FPR= $\frac{\text{Number of False Positive}}{10,000\alpha}$

Simulations: LME vs N-OLS vs Het. HC0 SwE

Outline

- Introduction
- The Sandwich Estimator method
- 3 An adjusted Sandwich Estimator method

Bias adjustments: the Het. HC2 SWe

In an OLS model, we have

$$(I-H)$$
var $(y)(I-H)$ = var (r)

where
$$H = X(X'X)^{-1}X'$$

Under independent homoscedastic errors,

$$(I - H)\sigma^{2} = \text{var}(r)$$

$$(1 - h_{ik})\sigma^{2} = \text{var}(r_{ik})$$

$$\sigma^{2} = \text{var}\left(\frac{r_{ik}}{\sqrt{1 - h_{ik}}}\right)$$

This suggests to estimate V_i by

$$\hat{V}_i = r_i^* r_i^{*'}$$
 where $r_{ik}^* = \frac{r_{ik}}{\sqrt{1 - h_{ik}}}$

Bias adjustments: the Het. HC2 SWe

Using in the SwE

$$\hat{V}_i = r_i^* r_i^{*'}$$
 where $r_{ik}^* = \frac{r_{ik}}{\sqrt{1 - h_{ik}}}$

We obtain

Het. HC2 SwE =
$$\left(\sum_{i=1}^{M} X_i' X_i\right)^{-1} \left(\sum_{i=1}^{M} X_i' r_i^* r_i^{*'} X_i\right) \left(\sum_{i=1}^{M} X_i' X_i\right)^{-1}$$

Homogeneous SwE

In the standard SwE, each V_i is normally estimated from only the residuals of subject i. It is reasonable to assume a common covariance matrix V_0 for all the subjects and then, we have

$$\hat{V}_{0kk'} = \frac{1}{N_{kk'}} \sum_{i=1}^{N_{kk'}} r_{ik} r_{ik'}$$

 $\hat{V}_{0kk'}$: element of \hat{V}_0 corresponding to the visits k and k' $N_{kk'}$: number of subjects with both visits k and k' r_{ik} : residual corresponding to subject i and visit k $r_{ik'}$: residual corresponding to subject i and visit k'

$$\hat{V}_i = f(\hat{V}_0)$$

Null distribution of the test statistics with the SwE

- $H_0: L\hat{\beta} = 0, H_1: L\hat{\beta} \neq 0$ L: contrast matrix of rank q
- Using multivariate statistics theory, we can derive the test statistic

$$\frac{\mathit{M}-\mathit{p}_{\mathit{B}}-\mathit{q}+1}{(\mathit{M}-\mathit{p}_{\mathit{B}})\mathit{q}}(\mathit{L}\hat{\beta})'(\mathit{L}\mathsf{SwE}\mathit{L}')^{-1}(\mathit{L}\hat{\beta})\sim\mathit{F}(\mathit{q},\mathit{M}-\mathit{p}_{\mathit{B}}-\mathit{q}+1)$$

q=1, the test becomes

$$(L\hat{\beta})'(L\mathsf{SwE}L')^{-1}(L\hat{\beta}) \sim F(1, M - p_B) \neq F(1, N - p)$$

Simulations: LME vs N-OLS vs unadjusted SwE

Simulations: unadjusted SwE vs adjusted SwE

Simulation with real design Example 2

fMRI study of longitudinal changes in a population of adolescents at risk for alcohol abuse

- 86 subjects
- 2 groups
- 1, 2, 3 or 4 scans/subjects (missing data)
- Total of 224 scans
- Very unbalanced design (no common time points for scans)

Simulation with real design Example 2

Simulation with real design Example 2

Real design

Real design

Future works

- Assessment of the SwE method within the context of multiple testing (Does the RFT work with the SwE method?)
 - Probably need to use a spatial regularization
 - Will be checked with the plug-in for SPM (currently in progress)
- Assessment of the SwE method with real images
 - Will be done with the plug-in for SPM (currently in progress)

Summary

- Longitudinal standard methods are not really appropriate to Neuroimaging, particularly when Compound Symmetry does not hold
- The SwE method
 - Accurate in a large range of settings
 - Easy to specify
 - No iteration needed
 - Quite fast
 - No convergence issues
 - But, adjustments essential in small samples
 - But, assessment needed within the context of multiple testing

Introduction
The Sandwich Estimator method
An adjusted Sandwich Estimator method

Thanks for your attention!

