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Notations

Cadre analytique :

N N={0,1,2,...}
7 Z={...-2,-1,0,1,2,...}
R Ensemble des réels

Constantes :
J Vecteur unité de ’axe imaginaire j = y/—1
kg Constante de BOLTZMANN = 1,38 x 10723 JOULE / degré KELVIN

Variables et fonctions :

t Variable de temps continue

f Variable fréquence

w Variable de pulsation w = 27 f

T Période d’un signal

T Période fondamentale d’un signal

Az Pas d’échantillonnage en x

Ay Pas d’échantillonnage en y

x(t) Fonction a valeurs continues, définie pour tout temps ¢
h(t) Réponse impulsionnelle d’un systéme
H(f) Transmittance d’un systéme linéaire

fln] Fonction échantillonnée, fonction discréte

Variables et fonctions de modulation :

m(t) Signal modulant, normalisé a 1 : |m(t)| < 1
s(t) Signal modulé

k. Taux de modulation

I} Indice de modulation

E, Energie par bit

D Débit binaire [b/s]

R Rapidité de modulation [baud|
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Notations fonctionnelles :

|al Valeur absolue

a Vecteur

|||l Norme de a

E}.—l; Produit scalaire de @ et ?

a ? Produit vectoriel de @ et ?

v.ad Divergence de @

Vxd Rotationnel de @

Vip Laplacien de ¢

Vo Gradient de ¢

X* Complexe conjugué de X

Re (a) Partie réelle de a

Im (a) Partie imaginaire de a

X(f) Transformée de FOURIER du signal x(t)
= Correspondance entre un signal et sa transformée
® Convolution

S OU exclusif ou addition modulo-2
Singx) =sinc () Sinus cardinal de x

o(.) Fonction delta de DIRAC

In () Fonction de BESSEL d’ordre n

erfe(.) Fonction erreur complémentaire

Fonctions stochastiques :

p(A) Probabilité de A

a Valeur moyenne de a

X Espérance mathématique du signal X

o3 Variance de X

Cxx (1) Fonction d’autocorrélation du processus aléatoire stationnaire X ()
vx(f) Densité spectrale de puissance de X ()

Ny Densité spectrale de puissance de bruit
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Introduction

Ces notes abordent plusieurs questions avancées des systémes de télécommunications; elles
comportent trois parties consacrées aux thémes suivants :

1. les aspects de modélisation en vue de I'exploitation par simulations numériques.
2. les aspects de systéme.
3. les aspects avancés relatifs a la couche physique du modéle 0ST.

Dans la partie relative a la modélisation, il s’agit d’analyser les points clés intervenant lors de
I'utilisation et lors de la conception de logiciels de télécommunications. Nous parcourons les
themes de 'estimation spectrale, de la représentation des signaux modulés en termes de passe-
bas équivalent et de la maniére de considérer un bruit dans un modéle. Cette méme partie
approfondit la caractérisation des signaux numeériques modulés ainsi que les considérations de
transmission de signaux numeériques dans un canal.

Les ressources étant limitées, il convient de les partager au mieux. Dans la partie consacrée
aux aspects systéme, nous étudions les différents moyens usuels de partager les ressources (par
répartition de fréquence ou répartition temporelle) ainsi que le procédé plus récent de partager
par étalement de spectre au moyen de codes. L’étude du partage des ressources est doublé d'une
étude du trafic débouchant sur des régles de dimensionnement applicable au trafic téléphonique.

La derniére partie est consacrée a I’étude d’éléments de la couche physique. Nous analyserons
les détails de la transmission sur lignes & paires torsadées en présence de diaphonie ainsi que la
maniére de traiter les phénomeénes d’évanouissement et les bilans de puissance dans le contexte
de transmissions mobiles.
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Premiére partie

Modélisation des systémes de
télécommunications en vue de
I’exploitation par simulations numériques






Chapitre 1

Théorie de 'estimation et estimation
spectrale

1.1 Introduction

Si par le passé les développements théoriques primaient, I’extraordinaire puissance des ordina-
teurs fait qu’une série de problémes insolubles analytiquement trouvent une solution sous forme
de simulations. On peut songer en particulier a tous les phénoménes non-linéaires pour lesquels
on procédait par linéarisation pour obtenir des solutions pratiques. Aujourd’hui, les simulations
permettent d’aborder toute une série de problémes nouveaux.

1.1.1 Théorie de 'estimation

La difficulté majeure d’une approche par simulation réside moins dans la puissance nécessaire
que dans l'approche de modélisation. Un élément-clef de cette phase de modélisation est la
caractérisation des phénoménes stochastiques, soit de séquences aléatoires s’il s’agit de signaux
échantillonnés.

Une description possible des séquences aléatoires consiste a en déterminer les différents mo-
ments. Parfois méme, les moments des deux premiers ordres suffisent pour la modélisation '.

Dans ce chapitre, nous abordons la question de I'estimation de certains paramétres d’une sé-
quence aléatoire. Il s’agit principalement d’estimer la moyenne, la fonction d’autocorrélation,
la fonction d’intercorrélation ou leur éventuel équivalent dans le domaine fréquentiel. Les tech-
niques d’évaluation de ces grandeurs cadrent dans le domaine de la théorie de I'estimation [1].

1.1.2 Rappels de quelques grandeurs associées aux processus stochas-
tiques

Soit un processus stochastiques X (¢,w). On distingue les grandeurs suivantes :

1. Dans le cas de processus aléatoires gaussiens stationnaires, les moments des deux premiers ordres suffisent
a définir complétement la densité de probabilité conjointe et, par conséquent, le processus [7].
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— Moyenne temporelle

1 (T

T)=— x(t)dt 1.1

nx(D) = 57 [ at (1)
Il s’agit en fait d’'une moyenne temporelle d’une réalisation.

— Moyenne statistique

nx(t) = E{X(t)} (1.2)

Cette moyenne est la moyenne statistique de la variable aléatoire au temps . Bien entendu,
elle ne peut s’obtenir que par modélisation puisqu’elle fait intervenir les valeurs de toutes les
réalisations possibles au temps t.

— Autocorrélation

Ixx (t1,12) = E{X(t1)X (t2)} (1.3)

Dans la mesure ol le processus est stationnaire au sens large, on a

pux(t) = px = constante
Fxx(tl,tg) = Fxx(tgftl):]:‘xx(T) (15)

On définit encore la densité spectrale (de puissance) comme la transformée de FOURIER de la
fonction d’autocorrélation

+o0
vx(f) = / Txx (1) e 2™ dr (1.6)

o

La puissance d’un processus stationnaire et ergodique F {X?(¢)} vaut alors I'xx (0).

1.1.3 Estimation spectrale

[’analyse des systémes de télécommunications comporte souvent 1’étude de ’occupation spec-
trale; ¢’est un critére de comparaison important. On sait par exemple que le passage de ’ana-
logique au numérique entraine généralement un accroissement de la bande passante ; en contre-
partie, le signal numérique offre une meilleure résistance au bruit.

Dans le cas d'un signal déterministe placé a 'entrée d’un systéme linéaire invariant en temps,
la détermination de la bande occupée par le signal est relativement aisée. La question est
plus délicate quand il s’agit d’étudier les signaux numériques. En effet, on est souvent amené
a émettre des hypothéses sur le fonctionnement du systéme de télécommunications (type de
bruit, transmittance du canal, ...) pour arriver a une formulation analytique. Dans certains
cas, il n’est pas possible de choisir préalablement un jeu d’hypothéses. On procéde alors par
modélisation, mesure, validation et interprétation du résultat. C’est 1a tout I’enjeu de la théorie
de I'estimation.

Quant il s’agit d’estimer la densité spectrale de puissance ou la transformée de FOURIER a
laquelle elle se raméne sous certaines hypothéses, on parle d’estimation spectrale.

[’estimation spectrale est un domaine important de traitement numérique des signaux et de
nombreux ouvrages abordent la question [1, 5, 11]. Il s’agit en fait de déterminer la densité
spectrale de puissance, vu I'importance physique qu’elle représente. Le contexte de ’estimation
spectrale tient principalement a trois observations
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— le processus a analyser est de nature aléatoire. Son observation résulte en une séquence
aléatoire qui correspond & une trajectoire parmi toutes les trajectoires possibles. Il convient
donc de compléter I'observation d’'une série d’hypothéses, typiquement la stationnarité au sens
strict ou au sens large et I'ergodisme, pour établir une correspondance entre la trajectoire
observée et le processus sous-jacent ;

— D'observation du processus est limitée dans le temps. Dés lors, I'intégration temporelle qu’ef-
fectue la transformée de FOURIER se limite & un intervalle de temps. Cette limitation entraine
un effet bien connu de fenétrage, ce qui affecte ’allure des résultats. Plus fondamentalement,
on est en droit de s’interroger sur la validité d’une estimation effectuée sur base d’un inter-
valle temporel plus ou moins long dans la mesure ou les processus physiques considérés ne
sont pas réellement stationnaires.

— l'observation s’effectue par échantillonnage temporel. On doit donc tenir compte des effets
induits par I’échantillonnage tant au niveau du repli de spectre qu’au niveau de la réalisation
de I'implémentation (ajout de valeurs nulles dans la séquence pour augmenter la résolution,
etc).

Par la suite, nous allons principalement nous concentrer sur l'estimation de paramétres d'une

séquence échantillonnée.

1.2 Définitions

1.2.1 Séquence stochastique

On part d’un processus stochastique X (¢) préalablement échantillonné. La séquence d’échan-
tillons ainsi obtenus est notée X[n]. L’observation d’une trajectoire possible parmi toutes les
trajectoires possibles fournit un signal z[n]; on parle d’une réalisation du processus.

Le processus X|[n] est entiérement décrit si, quel que soit le choix des indices ny, na, ..., Ny,
on connait la fonction de densité de probabilité conjointe de X[n,], X[no|, ..., X[n,]. Ce n’est
généralement pas le cas.

On étend sans peine les notions valables pour les processus continus & des séquences. Ainsi, on
dira d'une séquence qu’elle est stationnaire au sens large si

E{X[n]} = u (1.7)
et
Pxx[n,n+ k] = E{X*[n|X[n+k|} = xxlk] (1.8)

Dés lors que la séquence est stationnaire au sens strict large, sa moyenne est une constante
et sa fonction d’autocorrélation dépend uniquement de I’écart temporel entre les variables
échantillonnées.

Exemple. Porteuse modulée par une phase aléatoire ©.

Soit la séquence aléatoire suivante,

X[n] = A.cos(2m fon + O) (1.9)

ou A, et f. sont des constantes et © est une variable aléatoire uniformément répartie sur [0, 27|.
Par calcul,
E{Xn|} =0 (1.10)

7
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et

Ixx[n,n+k] = E{X*[n]X[n+k]} (1.11)
= A?zcos(%rfck) (1.12)

ce qui signifie qu’il s’agit bien d’un processus stationnaire au sens large.

1.2.2 Transformée de FOURIER discréte
Spectre d’une séquence déterministe

Prenons une séquence déterministe x[n7s| non périodique et échantillonnée avec une période
T,.

Définition 1 [Transformée de FOURIER a temps discret] La transformée de FOURIER
a temps discret (dtFT) de cette séquence est définie par

“+o00

X(f)= Z x[nT,])e 2™/ (1.13)

n=—oo
Il ne s’agit ni plus ni moins que de la transformée de FOURIER du signal échantillonné. En effet,
la fonction échantillonnée z4(t) est liée au signal sous-jacent par la relation

+oo

zs(t) = Z x[nTs)0(t — nTy) (1.14)

n=—oo

La transformée de FOURIER de ce signal vaut

+oo0 +o0
Xs(f) = / Z z[nT,)6(t — nT)e 2™ tdt (1.15)
o0 B 400 _
= Y anT)] / 5(t — nT,)e ™ gt (1.16)
+o0o
= Z z[nT,]e 2™ (1.17)

On remarquera que cette fonction est continue et périodique de période f, = % ; la connaissance
de cette fonction sur l'intervalle [0, f;| suffit donc. En effet,

+00 +oo
X(f+f)= D alnD]e?THIT = 3 s MEen = () (L18)

Ce phénomeéne est bien connu : I’échantillonnage dans le domaine temporel entraine I'apparition
de copies de la transformée au droit des fréquences multiples de f,. Il est d'usage de définir une
fréquence normalisée ou fréquence réduite [’ par

F= f (1.19)

fs
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de sorte que F' parcourt I'intervalle [0, 1] ou [—%, %[ Si en plus de 'utilisation de la fréquence

normalisée, on adopte I'écriture z[n| en lieu et place de xz[nT}], la transformée de FOURIER &
temps discret s’exprime sous la forme normalisée suivante.

Définition 2 [Transformée de FOURIER a temps discret normaliséef

+oo
X(F) = Z z[n]e 2™ En (1.20)
On déduit la formule inverse )
zln| = ’ X (F)e*™trqp (1.21)
1
ou )
x[n] = / X (F)e*mitndp (1.22)
0
Convergence

On montre |4, page 45| que si la séquence z[n| est de module sommable, c¢’est-a-dire si

Y llelll < +oo (1.23)

n=-—oo
la transformée converge uniformément vers une fonction continue de F'.

Si, par contre, z[n] est de carré sommable, & savoir

> =)l < +oo (1.24)

n=—oo

sans étre de module sommable, alors la série converge en moyenne quadratique. Il peut ne pas
y avoir convergence uniforme. La fonction || X'(f)||” est désignée par le terme de spectre. Dans
la littérature, ce terme est aussi associé a la fonction ||X(f)||. Les deux expressions deviennent
équivalentes si I’on utilise 1’échelle logarithmique des décibels.

Exemple. Transformée de FOURIER d’un signal rectangulaire.

Considérons une fonction rectangulaire recty[n] valant 1 pour n € {—N, ..., N} et 0 ailleurs.
On calcule alors

N
X(F) = Z z[n)e”2mEm (1.25)
n=—N
= 2FN(] 4 | 4 ¢ 2mFEN+D) (1.26)
(1 — em2mIF N )

. 27erN(
o, —— (1.27)
_ sin((2N + 1)7F) (1.28)
- sin(m F) .

Ce signal est purement réel; il est représenté a la figure 1.1 pour deux valeurs de V.
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N=2

N=5

") ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 1.1 — Transformées de FOURIER d’un signal rectangulaire (N = 2 et N = 5).

10
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La transformée inverse a pour expression
1 .
x[n] = / X (F)e*mtrdp (1.29)
0
La fonction complexe X'(F') peut aussi s’exprimer sous la forme
X(F) = ||x(F)|| " (1.30)
dont le terme d’amplitude est appelé spectre d’amplitude de z[n].

Exemple. Impulsion de DIRAC discréte décalée.

Considérons le signal

z[n] = { (1) Z ; i = 6[n —1] (1.31)
X(F) = ™t (1.32)

Energie

Tout comme dans le cas d'une fonction continue, ’énergie du signal est conservée par rapport
a sa transformée de FOURIER.

Définition 3 L’énergie totale du signal vaut

+oo
E= Y |anl? (1.33)

n=—oo

Proposition 4 [ ’égalité de PARSEVAL s’exprime sous la forme

> HfL‘[n]HQ—/O 1X(F)|* dF (1.34)

n=—oo

Séquence périodique

Le cas des séquences périodiques est particulier car cette périodicité résulte généralement d’'une
opération d’échantillonnage ; il s’agit alors d’une périodicité fictive.

Définition 5 Une séquence est périodique s’il existe une valeur entiere N telle que
z[n] = z[n + N] (1.35)
pour toute valeur n.

11
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1.2.3 Transformée de FOURIER discréte

Le calcul de la transformée en temps discret a partir des échantillons de la séquence aboutit a
une fonction continue peu commode pour des traitements numériques. Dés lors, on procéde a
I’échantillonnage de la transformée. Son intérét réside dans le fait que son calcul se limite & un
nombre fini d’échantillons tant dans le domaine temporel que dans le domaine transformé.

Définition 6 [Transformée de FOURIER discréte (DFT)]

k
X(F) :Zx e~ 2mifkn Fy=~ ke{0,....N—-1} (1.36)

L’échantillonnage de la fonction dans le domaine spectral introduit une reproduction de la
séquence échantillonnée dans le domaine temporel ; la période fondamentale est N. Ce choix
est commun mais il n’est pas obligatoire : on aurait pu choisir une période d’échantillonnage
différente & N pour échantillonner la transformée de FOURIER. L’analyse des propriétés de la
DFT montre des similitudes avec celles de la dtF'T, & une exception preés : les calculs se font
modulo N.

Proposition 7 [Egalité de PARSEVAL]

?

k
Zru AP =5 S IXENP, Fo= (1.37)
0

i

Comme le signal périodique a une énergie infinie, on utilisera plutét la notion de puissance
moyenne de la séquence définie par

1 N-1
= =3 lalnll? (1.38)
n=0
soit encore
1 — 9 k
P == X (F} F=— 1.39
w2 2 X Fi= (1.39)

1.2.4 Observation spectrale

L’estimation spectrale s’articule sur la notion de transformée de FOURIER. Dés lors, la com-
préhension de ses propriétés est essentielle. Pour toute transformée de FOURIER, on distingue
les deux critéres de qualité suivants : précision sur la position des raies et résolution.

Précision

Pour illustrer 'utilisation de la transformée de FOURIER discréte dans ’observation de spectres
de signaux, considérons la suite z[n] obtenue par échantillonnage de 1’exponentielle complexe
e?mifot 3 1a cadence F, = 1/T, (cet exemple est tiré de [1]). En posant fy, = Fy/F, < 1, on
a x[n] = e¥™fon Le fait de réduire la durée d’observation a un intervalle N fait apparaitre

12
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35 T T T T T T T T T

30

251

20

15

10

0 | | | \ | | | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

FIGURE 1.2 — Transformée de FOURIER a temps discret de ’exponentielle complexe f; = 312
avec N = 32.
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des ondulations dans la transformée de FOURIER a temps discret du signal. Ce phénoméne est
illustré a la figure 1.2 pour N =32 et fy = 3—72

Comme la transformée de FOURIER discréte correspond a I’échantillonnage a la transformée a
temps discret aux points de fréquence k/N, elle est en général constituée de valeurs différentes
de 0, sauf si f; est exactement un multiple de 1/N. Ces deux situations sont représentées
respectivement a la figure 1.3 et 1.4.

35 T T T T T T T T T

30+ : -

20 n

10 .

0 | ! ! | & | ! ! \
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 1.3 — Transformée de FOURIER discréte de ’exponentielle complexe f; = 31

5 avec
N = 32.

Comme on peut le voir & la figure 1.4, une exponentielle dont la fréquence n’est pas un multiple
de % apparait sous la forme de plusieurs raies parmi lesquelles la plus proche est celle dont
I’amplitude est maximale.

Résolution en fréquence

La précision ne doit pas étre confondue avec la résolution qui est le pouvoir de distinguer deux
fréquences voisines dans un signal. Il est commode de définir la résolution par I’écart minimum
en fréquence qu’il faut mettre entre deux sinusoides d’amplitudes différentes pour observer sur
le spectre de leur somme un creux de plus de 3 [dB] entre les deux maxima.

Comme on I’a vu, le fait d’avoir limité le nombre de valeurs traitées a /N conduit a I’apparition
de lobes dans le spectre d’une sinusoide. Le lobe principal a une largeur égale a 2/N. 1l s’ensuit
que, si xz[n] contient deux sinusoides dont les fréquences sont séparées de moins de 1/N, les
lobes principaux de chacune d’elles seront si proches qu’il sera difficile de les distinguer avec
certitude. Et ceci est d’autant plus vrai que les deux amplitudes sont trés différentes. Ainsi,

14
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FIGURE 1.4 — Transformée de FOURIER discréte de ’exponentielle complexe f, = % avec

N = 32.

3 dB

FIGURE 1.5 — Résolution en fréquence.
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si fs = 1/T, désigne la fréquence d’échantillonnage, la résolution R exprimée en [Hz] est de
lordre de grandeur de f,/N qui est précisément l'inverse du temps total d’analyse, & savoir
T = NT;.

Proposition 8 La résolution en fréquence est de l’ordre de grandeur de l’inverse du temps total
d’analyse.

Le produit R x T joue en quelque sorte le role de facteur de mérite dans l'utilisation de la
transformée de FOURIER a temps discret pour la recherche de fréquences. Typiquement, si on
choisit R et T tels que le produit R x T" > 3, les fréquences seront faciles & séparer.

Spectre a court terme

Comme I’analyse en fréquence classique est une opération qui couvre la totalité de ’axe des
fréquences, cette opération effectue une moyenne sur ’axe des temps. Cet effet moyenneur
peut aller jusqu’a occulter les phénoménes & observer. Cela ne signifie pas que 'information
soit détruite. La transformée de FOURIER est en effet bijective sous les conditions d’existence
énoncées précédemment.

Prenons l'exemple d’une onde continue x(f) constituée de deux portions successives de fré-
quences fi et fo (cf. figure 1.6).

1

0.5 1

-1 \ \ \ \ \ \ \ \ \
0 20 40 60 80 100 120 140 160 180 200

50

40

20

10

0 ! ! ! ) \ \
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

FIGURE 1.6 — Deux portions de sinusoides et le spectre correspondant (d’aprés [1]).

Sa transformée de FOURIER contient I'information concernant 1’ordre dans lequel apparaissent
les sinusoides. Toutefois cette information n’est pas explicite, méme si elle se trouve dans 'infor-
mation de phase. Par conséquent, ’observation du seul module nous fait échapper 'apparition
de f; avant fs.

16
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Par contre, si on découpe le segment de données en V,; sous-intervalles consécutifs pour lesquels
on calcule la transformée de FOURIER, le spectre montre que temporellement la fréquence 0, 1
apparait avant la fréquence 0,2. La figure 1.7 montre les transformées des sous-intervalles
successifs.

35—
30 —
25 —
20 —
15 —

10 —

FIGURE 1.7 — Deux portions de sinusoides et le spectre correspondant dans une fenétre d’analyse
glissante (d’apres [1]).

En posant N; le nombre de points dans un intervalle, on peut faire les remarques suivantes :

— la transformée de FOURIER effectue une moyenne sur N; valeurs : prendre une grande va-
leur provoque un fort lissage des fluctuations temporelles du signal. Cela implique que les
transitions sont moins bien localisées. L’aptitude a séparer deux événements temporels est
de l'ordre de N;;

— par contre, dans les mémes conditions, comme chaque transformée de FOURIER discréte
dispose de plus de points de calcul, la largeur des lobes (de I'ordre de 1/N;) diminue et les
pics de fréquence apparaissent plus nettement.

On peut résumer ces remarques en formulant que, lors de I'utilisation de la transformée de Fou-

RIER discréte a court terme, ’amélioration de la résolution temporelle détériore la résolution

fréquentielle.

1.2.5 Spectre d’une séquence aléatoire

L’analyse d'un signal déterministe a permis d’introduire les expressions de transformée de
FOURIER a temps discret et de transformée de FOURIER discréte.

L’analyse de signaux aléatoires s’en inspire. Les trajectoires d’un processus aléatoire (cf. fi-
gure 1.8), bien qu’étant toutes imprévisibles, possédent des caractéristiques communes. La

17
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moyenne et la fonction d’autocovariance sont deux moyens de caractériser ce comportement.

5 30
20
O 4
10
-5 0
0 20 40 60 80 100 0 0.2 0.4 0.6 0.8 1
5 30
0 WWA/WWWWWW
-5 . . . . . . . .
0 20 40 60 80 100 0 0.2 0.4 0.6 0.8 1
5 30
0 WMV\A/\W\/\{WW
-5 . . . .
0 20 40 60 80 100
5
0 AMWWMM
-5 . . . . . . . .
0 20 40 60 80 100 0 0.2 04 0.6 0.8 1

FIGURE 1.8 — Une série de trajectoires et leur transformée de FOURIER & temps discret.

La condition de module sommable (cf. relation 1.23) n’est pas respectée pour une séquence
stationnaire au sens large. En effet, I’énergie d’une telle séquence est infinie. Par contre, sa
puissance est finie, tout comme dans le cas de signaux périodiques, ce qui va nous amener a
déterminer sa densité spectrale de puissance.

1.3 Enoncé du probléme de ’estimation

Soit une série de N échantillons {z[0], z[1], ..., [N — 1]} obtenus par échantillonnage d’un
processus stochastique. Nous supposons que cette séquence est stationnaire et ergodique. Il
faut estimer déterminer certains paramétres relatifs a cette séquence telle que la moyenne 1y,
la covariance C'xx (k) ou la densité spectrale de puissance vx (). Ces paramétres, moyennes
d’ensemble, sont des paramétres déterministes. Si I'on disposait d’un réalisation s’étendant
sur tout 1’axe temporel, il serait aisé de les calculer en vertu de I'hypothése d’ergodisme. En
pratique, la durée d’observation est finie; on dispose par exemple de {z[0], z[1], ..., [N —1]}.
C’est la durée d’observation qui pose probléme, 'absence d’ergodisme ne garantit plus ’égalité
entre la moyenne ensembliste et la moyenne temporelle.

1.3.1 Estimateur

Soit a estimer le paramétre «; cette quantité est non aléatoire.

18
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A partir des échantillons {z[0], z[1], ..., z[N — 1]}, on calcule une certaine estimation notée .
Cette estimation est donc une fonction A des échantillons

a = A(z[0], z[1], ..., [N — 1]) (1.40)

La fonction A est appelée estimateur de «; & est 'estimation.

Contrairement & «, I’estimation & est une variable aléatoire puisqu’elle fait intervenir les échan-
tillons d’une séquence aléatoire. A ce titre, elle posséde une certaine densité de probabilité, une
moyenne, une variance, etc.

Ce probléme est différent des problémes rencontrés en statistique car il s’agit d’estimer une
fonction et non une série de paramétres.

1.3.2 Propriétés d’un bon estimateur

L’estimation idéale aurait une densité de probabilité f;z = 0(a—a). L’estimateur réel s’en écarte
et il y a donc du sens a parler de moyenne et de variance de ’estimateur. En pratique, on lui
associe les parameétres de qualité suivants :

— le biais. Le biais est défini par
b = g — @ (1.41)

Un estimateur de biais nul est dit non biaisé.
— la variance de ’estimateur, qui est celle de la variable &, soit

72— B{(@- pa)?) (142
— DPerreur quadratique moyenne (Mean Square Error). Il s’agit de la quantité
MSE; = E{(@—a)®} (1.43)
On montre aisément que

MSE; = b3 + o3 (1.44)

S’il est souhaitable que I’estimateur soit non biaisé, les moments d’ordre 2 jouent un role capital
quand il s’agit d’examiner la convergence des estimateurs. En effet, il ne servirait a rien d’avoir
un estimateur non biaisé mais avec un écart type élevé. Comme il faut que biais et écart type
soient tous deux petits, la meilleure mesure reste ’erreur quadratique moyenne.

On parle d’estimateur consistant si son erreur quadratique moyenne tend vers 0 lorsque la durée
d’observation tend vers I'infini, soit

lim MSEs; =0 (1.45)

N—+o0

Cette condition, & mettre en paralléle avec ’ergodisme, est essentielle quand il s’agit d’exploiter
les données d’échantillons prélevés sur une longue période.
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1.3.3 Estimateur & maximum de vraisemblance

Une classe importante d’estimateurs est celle des estimateurs de vraisemblance maximale. Pré-
cisons d’emblée que cette technique ne s’applique que pour estimer des parameétres d'une densité
de probabilité de forme analytique connue, mais dépendant de ces paramétres. Elle est sans
intérét si cette forme analytique n’est pas connue.

Soient { X'[0], X[1], ..., X[N —1]} les variables aléatoires dont on pourra faire une observation.
La densité de probabilité jointe de ces variables peut dépendre de p paramétres {ovy, as, ..., a,}
f(XI[0], X[1], ..., X[N —1]; ou, ag, ..., ap) (1.46)

Elle est appelée fonction de vraisemblance de ces paramétres lorsqu’on y insére les valeurs
observées {z[0], z[1], ..., z[N — 1]}.

L’estimateur & maximum de vraisemblance des paramétres {ay, o, ..., a,} consiste & calculer
les valeurs {ay, Q. ..., @), } qui maximisent la fonction de vraisemblance. On obtient donc les
estimations en cherchant la solution du systéme de p équations a p inconnues

0
a; = = / =0 pour i=1,2,p (1.47)
8%

sous réserve de dérivabilité et d’unicité du maximum.

Intervalles de confiance

Cette notion est liée a la technique de ’estimation a maximum de vraisemblance. Cette tech-
nique conduit a une formule analytique bien déterminée, du type

a = S([0], z[1], ..., =[N —1]) (1.48)

Supposons un instant que la densité de probabilité de la variable aléatoire & soit connue. Alors,
étant donné un nombre € (0 < € < 1), il est possible de calculer le plus petit intervalle [ay, as]
tel que

plag<a—a<a)=1—c¢ (1.49)
que I’on peut encore écrire

pl@—am<a<a—a)=1—c¢ (1.50)

Bien que ce soit v qui est la variable aléatoire et que « soit une variable certaine, mais inconnue,
on a tendance a interpréter cette relation comme la probabilité que o appartienne a ’'intervalle
[& — O, & — Oél].

Aprés observation, on aura obtenu une certaine valeur (réalisation) ay, de @. Le plus petit
intervalle [Qg — ag, Qg — 1] tel que

p(&o—a2<a<&0—a1):1—e (].5].)
ce qui revient a -
ap—a
/ Fa@)da=1— e (1.52)
Qp—a

est appelé intervalle de confiance. Cet intervalle est interprété comme celui dans lequel on risque
de trouver la valeur vraie & avec une probabilité 1 —e¢; cependant, une telle interprétation n’étant
pas correcte, on utilise le vocable confiance pour la quantité 1 — e. On parle ainsi d’intervalle
de confiance a 90% ou a 99%.
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1.3.4 Un exemple : estimation de la moyenne
Supposons que, a propos d’'une séquence aléatoire z[n], on ne sache rien d’autre qu’elle est

stationnaire et ergodique. On dispose d’un enregistrement {x[0], z[1], ..., [N — 1]} de durée
N, et 'on voudrait estimer la moyenne .. La moyenne arithmétique des échantillons

.= — 1.53
o= ) ] (1.53)
semble étre un estimateur raisonnable.

Biais de /1, ?

En prenant I'espérance mathématique des deux membres de cette équation, on a

E{ii} = 1 (1.54)

et I’on voit que cet estimateur est non biaisé.

Variance de [, ?

Essayons a présent d’en déterminer la variance. Soustrayant membre a membre les deux équa-
tions précédentes, il vient

N—-1
_ _ 1
fo = Bz} = 5 ) _(aln] — pa) (1.55)
n=0
et ensuite
1 N—-1N-1
o = 13 E{(z[n] — pz)(2[n] — pa) } (1.56)
n=0 n/=0
1 N—-1N-1
_ Chaln — /] (1.57)
N2 n=0 n/=0
1 —1
= > (N = il)Cusli] (1.58)
i=—(N-1)

Cette derniére expression s’obtient en observant que, dans la double somme 1.57, la différence
n —n' prend N fois la valeur 0, N — 1 fois les valeurs +1, etc.

Cette expression met en évidence un probléme courant dans le domaine de I’estimation. Alors
qu’on tente ici d’estimer un moment du premier ordre, il faudrait connaitre les moments du
deuxiéme ordre pour déterminer la précision de ’estimateur : plus généralement, la précision
de l'estimateur des moments d’un ordre déterminé dépend des moments d’un ordre supérieur.
Ceux-ci sont logiquement inconnus, et il faudra les estimer eux-mémes pour avoir une idée de
la précision de I’estimateur.

Revenons au cas présent. La double somme 1.57 comprend N? termes et, d'une maniére gé-
nérale, il se pourrait que la variance de l'estimateur ne décroisse pas lorsque la durée N de

21



Prof. Marc Van Droogenbroeck, tous droits réservés

’enregistrement augmente. Cependant, si la fonction de covariance C,,[i] décroit avec i et, plus
précisément, si lim; ., C,.[i] = 0, la simple somme apparaissant dans ’équation 1.58 croit
proportionnellement a N lorsque N — +oo. Dans ce cas, la variance de 'estimateur de fi,
décroit comme % et 'estimateur est consistant. Ainsi, si I’on savait que z[n| est un bruit blanc

2
Dg LA <2 g 2 _ 0x
d’intensité oy, on aurait o7 = 3.

On pourrait croire, a tort, que la moyenne arithmétique est le seul estimateur de la moyenne.
En fait, dans les cas ot I’on ne dispose que d’un faible nombre d’échantillons, il est intéressant
de recourir a la médiane. Si pour certaines distributions aléatoires, par exemple la gaussienne,
meédiane et moyenne sont confondues, il n’empéche qu’en pratique la médiane est parfois préférée
a la moyenne arithmétique.

1.4 Estimation spectrale

1.4.1 Introduction

Dans le cas d’une séquence aléatoire, I’estimation spectrale consiste a estimer la densité spectrale
de puissance. Cette estimation ne pourra s’appuyer que sur les valeurs observées qui résultent de
la réalisation de la séquence aléatoire. On peut montrer que, moyennant certaines hypothéses,
I’estimation spectrale s’apparente a ’estimation de la transformée de FOURIER de la séquence
observée.

Pour le démontrer, nous partons d’un signal x(¢) déterministe, & énergie finie, c’est-a-dire tel
que

+00
/ lz(t)]” dt < +o0 (1.59)

o0

Cette hypothése est légitime en pratique car les signaux observés proviennent de processus
physiques réels et limités dans le temps. On définit alors une pseudo fonction d’autocorrélation
par

Lo (1) = /_+00 x(t)x(t + 7)dt (1.60)

o
dont I’expression est calquée sur I’expression correspondante pour un processus stochastique.

A supposer que le signal ait des caractéristiques stationnaires, on définit également une densité
spectrale de puissance par

+oo
" (f) = / [y (1) €27 dr (1.61)

o0

Si 'on considére la transformée de FOURIER du signal x(t)

X(f) = /_ - x(t)e 2™t (1.62)

o0
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on peut réécrire ’expression de la densité spectrale en introduisant X'(f)

“+00

Y(f) = /_ Tue (1) ™2™ 7dr (1.63)

o0

= /_:o (/_:O x(t)z(t + T)dt) e 2T dr (1.64)
= /:o z(t) (/:o z(t + T)e—%ﬂ'ﬁd7> dt (1.65)

- /m z(t) (X(f)e*™7) dt (1.66)

+o00
_ (f) / 2“mdt (1.67)

(f)x*( (1.68)
= HX(J”)H2 (1.69)

Ainsi donc, une estimation simple de la densité spectrale de puissance sur base de I'observation
—ce qui présuppose stationnarité et ergodisme- équivaut a ’estimation de la transformée de
FOURIER au carré de I'observation. Ce n’est pas la seule facon de faire car on peut tout aussi
bien estimer la fonction d’autocorrélation et en prendre la transformée de FOURIER.

Le développement précédent a montré le lien existant entre une densité spectrale et la trans-
formée de FOURIER (au carré) d’un signal. Il a néanmoins complétement occulté la question
de I'estimation car il y a plus qu'une marge entre le traitement d’un signal continu et le trai-
tement d’une séquence. En fait, les difficultés de ’estimation résultent en grande partie des
échantillonnages et d'une limitation de la durée d’observation. La raison pour laquelle la lit-
térature propose de nombreuses méthodes d’estimation provient des choix qui sont faits pour
obtenir une estimation ayant certaines propriétés. C’est donc plus une question de choix qu’une
question de rigueur ou de fiabilité.

Dans les paragraphes suivants, nous présentons un estimateur de la fonction d’autocorrélation
et, ensuite, divers estimateurs de la densité spectrale de puissance. En tout état de cause,
nous considérons une séquence z[n| aléatoire stationnaire et ergodique que, pour la simpli-
cité, nous supposons centrée. Les estimations sont a déduire d'un enregistrement expérimental
{z[0], z[1], ..., [N — 1]} de longueur N.

1.4.2 Estimateur biaisé de la séquence d’autocorrélation

[’estimateur biaisé de la séquence d’autocorrélation est défini par

N—[k|-1
~ 1
Cxx[k] = Z x[n]x*[n + |k|] pour [k] < N —1 (1.70)
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Cette expression nous permet de calculer une estimée de la densité spectrale par transformée
de FOURIER

N-1
W(F) = > Txx[kle>™™ (1.71)
k=—(N-1)
1 N—-1 N—|k|-1
= z[n)z*[n + |k|]e 2™k (1.72)

1.4.3 Estimateur simple de la densité spectrale de puissance : le pé-
riodigramme

Par calcul, on montre aisément que

2

x(F) = % (1.73)

N-1
Z x[n)e 2™ Fn
n=0

qui n’est rien d’autre que la transformée de FOURIER au carré de ’enregistrement, prolongé
par des zéros.

Cet estimateur est appelé périodigramme. Il est malheureusement biaisé et

E{x(F)} = i { - %} Txx[k]e > (1.74)

k=—(N—1)

Le périodigramme est un estimateur asymptotiquement sans biais de la densité spectrale de
puissance : pour une durée d’observation N suffisamment grande, 7x(F') fluctue autour de la
vraie valeur de vx(F'). Par contre, 'amplitude des fluctuations, qui est donné par la variance
de 7x(F'), ne tend pas vers 0 lorsque N tend vers I'infini. Plus précisément, on montre que cette
variance est de 'ordre de grandeur de la valeur & estimer. La figure 1.9 montre quatre périodi-
grammes et une certaine densité spectrale théorique. On observe que, malgré ’allongement de
la durée d’observation, 'amplitude des fluctuations ne diminue pas.

En pratique, on applique la transformée discréte. Dés lors,

2

N-1
1 )
:}/\X(Fk) = N Z fL'['fL]eiQﬂ'jkn/N (175)
n=0
1.4.4 Effet de fenétrage
On peut aussi s’intéresser a la forme de la fonction fenétre que 'on applique. En effet,
1|z 2
x(F) = = Z x[n)e 2™ En (1.76)
1| <= P
= Z z[n)wg[n]e ™" (1.77)
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FIGURE 1.9 — Fluctuations du périodigramme en fonction de la période totale d’observation V.

ol wg[n| est une fonction de fenétrage de forme rectangulaire définie par

|1, ne{0,1,...,N-1}
aild) = { 0, ailleurs

L’effet de la fenétre n’est pas négligeable car il affecte le spectre du signal observé. Aussi,
différentes méthodes d’estimation spectrale tentent-elles d’établir un compromis entre précision
spectrale et effet de fenétrage.

(1.78)

La question de I’estimation spectrale est trop vaste pour que nous I’abordions autrement que par
une sensibilisation a la difficulté intrinséque a estimer un spectre. Pour une étude approfondie,
nous renvoyons le lecteur intéressé a des ouvrages spécialisés [4, 5, 14].
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Chapitre 2

Représentation des signaux et des
systémes passe-bande

2.1 Introduction

La numérisation des signaux s’opére en plusieurs étapes successives. Dans un premier temps, le
signal original est filtré ; il en découle un signal & spectre limité'. Le signal est alors prét pour
une phase de numérisation qui débute par un échantillonnage a une fréquence supérieure a la
fréquence de NYQUIST. Ainsi, la transmission d’un signal de parole filtré a 4 [k H z| et numérisé
nécessite tout au plus quelques dizaines de kb/s.

Sur une ligne téléphonique, la transmission s’effectue en bande de base. Aprés tout, la ligne
étant physiquement dédiée a un utilisateur, il n’y a aucune raison particuliére de partager le
canal en modulant le signal. De plus, on a tout intérét a conserver un signal en bande de base
puisque 'atténuation y est la plus faible.

La situation est tout autre dans I’espace. La ressource étant partagée, chaque utilisateur se voit
allouer une bande de fréquences spécifique. Pour 'occuper, un mélangeur transpose le signal de
la bande de base vers la bande de fréquences dédiée. Aprés transmission, on rameéne le signal
en bande de base et on procéde a la démodulation.

On voit donc apparaitre deux types de considérations fréquentielles :

— la bande de base. C’est la bande occupée par le signal original.

— la bande utile, bande dans laquelle on vient placer le signal initialement en bande de base.
On parle alors de systéme passe-bande puisque, du point de vue de 'utilisateur, le systéme
agit par transparence dans la bande utile mais il annulle les composantes hors bande.

Cette notion de passe-bande est formalisée par la définition suivante.

Définition 9 [Passe-bande]| Un signal déterministe g(t) est de type passe-bande s’il existe
deux valeurs W et fy, pour lesquelles W < fq, et telles que

w
=

Vi & [fo— g fot 5, 1G(D] = 0 (2.1)

1. En toute rigueur, un signal & spectre limité est & durée infinie. Mais comme les signaux réels sont & durée
finie, il y a une contradiction & définir un signal & spectre limité. On utilise néanmoins cette modélisation.
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La figure 2.1 représente un signal passe-bande. Il est a remarquer que le spectre d’un signal
réel ne doit nullement étre symétrique par rapport a la fréquence fy. Ainsi, si la modulation
d’amplitude conduit & un spectre symétrique autour de la fréquence porteuse, la modulation
d’amplitude & bande résiduelle produit un spectre non symétrique.

el

—f | - f

FIGURE 2.1 — Spectre d'un signal passe-bande.

La modélisation d’un signal passe-bande peut paraitre plus complexe puisque le signal fluctue
a une cadence rythmée par la plus haute fréquence contenue dans le signal. Fort heureusement,
on peut tirer profit du fait que le signal de départ se situe en bande de base.

N’oublions pas que, comme il s’agit de reconstituer ce signal en bande de base —le signal modulé
n’est pas une fin en soi—, on peut s’interroger sur la possibilité de modéliser les signaux et les
systémes a des fréquences nettement inférieures a la fréquence porteuse.

La démodulation d’un signal AM & porteuse par détecteur de créte utilise ce principe. En effet,
un choix judicieux des constantes de temps permet de récupérer 1’enveloppe du signal. Hormis
I’obligation de choisir les constantes de temps en fonction de la borne maximale de la bande de
base et en fonction de la fréquence porteuse lors de la synthése d’un détecteur, il apparait que
le circuit de démodulation travaille dans une plage de fréquences telle que définie par la bande
de base; il n’y a pas de composante haute-fréquence.

Avant d’aborder plus en détail la phase de modélisation, examinons la question de I’échantillon-
nage des signaux passe-bande.

2.1.1 Echantillonnage des signaux passe-bande

Prenons un signal passe-bande ¢(¢). On montre le théoréme d’échantillonnage uniforme suivant
pour les signaux passe-bande.

Théoréme 10 Une fonction g(t) a énergie finie et a spectre limité, ¢’est-a-dire dont la trans-
formée de FOURIER G(f) est de largeur W, et qui admet une borne supérieure f,, est entiére-
ment déterminée par ses échantillons g[nTy], n € {—o0, +00} si la fréquence d’échantillonnage
fs vaut 2£“, tel que k est le plus grand entier strictement inférieur a fW

1l est a noter que toutes les fréquences d’échantillonnage ne conviennent pas sauf si elles sont

strictement supérieures a 2f,.

Démonstration

On sait que le spectre d’un signal échantillonné g,(¢) est périodique centré sur les multiples i f; :

gs(t) = fs Z g(f o Zfs) (22)

1=—00
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Dans notre cas, le signal est de type passe-bande. [.’échantillonnage pourrait amener un chevau-

chement des copies des spectres si 'on n’y prend garde. Prenons une fréquence d’échantillonnage
fs définie par %T; Pour éviter tout repli de spectre, il faut impérativement que f, > 2. Dés

lors, on obtient i’“ > 2W, ce qui implique k < fW [ ]

Exemple. Considérons un signal W = 20 [kHz] et f, = 105 [kHz|. Par application du théo-
réme, k < 5,25. Autrement dit, la fréquence d’échantillonnage f; = 42[kHz| convient. La

figure 2.2 représente le signal échantillonné dans le domaine spectral. On est évidemment loin
de la fréquence de NYQUIST qui aurait prévalu s’il ne s’agissait d’un signal passe-bande.

1Gs(f)

OSSN

fu

FIGURE 2.2 — Signal passe-bande et signal aprés échantillonnage.

Plusieurs remarques s’imposent :

— S’il est vrai que le théoréme garantit que soit préservée la bande de fréquence utile, il ne
dit rien quant a la position des copies du spectre. On sait tout au plus que le spectre doit
étre symétrique puisque le signal échantillonné est réel. Il serait pourtant fort agréable de
n’avoir que la partie située a droite ou a gauche de l'origine et de la centrer sur 'origine.
On pourrait alors utiliser cette copie pour des opérations de type passe-bas, nettement plus
faciles a réaliser. Précisons toutefois que la partie qui aboutirait prés de 1’origine n’est pas
nécessairement symétrique; le filtrage de la composante a basse fréquence fournira donc un
signal complexe.

— Le théoréme ne fait nullement intervenir le concept de fréquence porteuse méme si la majorité
des signaux de type passe-bande sont le résultat d’une phase de modulation.

2.2 Représentation des signaux passe-bande déterministes

Le modéle développé ci-aprés aboutit a définir des signaux passe-bande complexes et une fré-
quence de référence pour permettre la mise en correspondance entre un signal passe-bande
original et le signal passe-bas de synthése.

Définition 11 [Passe-bas équivalent]| Considérons un signal passe-bande déterministe g(t).
Le signal g(t) peut s’écrire sous la forme de

g(t) = Re (g(t)ezﬂjf‘)”j“’o) (2.3)

telle que f, est une fréquence de référence contenue dans la bande utile du signal®. Dans cette
égalité, g(t) porte le nom de passe-bas équivalent.

2. g est souvent choisi nul par commodité. Cela ne nuit en rien & la généralité des propos.
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Dans un souci de rigueur, il conviendrait plutot de parler de famille de passe-bas équivalents.
A Dévidence, toute fonction g(t) = (g(t) + jz(t))e 2™/ 0t=3%0 respecte I'égalité 2.3.

La détermination d’un type de passe-bas équivalent revient donc & choisir une fonction parti-
culiére pour z(¢). Comme on pourra s’en apercevoir le choix n’est pas unique. Pour compliquer
affaire, certains auteurs [23] définissent le passe-bas équivalent en introduisant un facteur de
normalisation v/2 dans expression 2.3 afin d’éviter Papparition d’un facteur 2 lors de 1’analyse
de systémes linéaires; on trouve les deux définitions dans la littérature.

2.2.1 Signaux modulés

La modulation est un procédé qui, en toute généralité, convertit une paire de signaux modulants
mq(t), mo(t) définis en bande de base, en un signal modulé s(t) de la forme

s(t) = Re ((mq(t) + jma(t))e>™ /et +ive) (2.4)

Par comparaison avec la définition d’un passe-bas équivalent (relation 2.3), le choix suivant
s’impose
5(t) = ma(t) + jma(t) (2.5)

La fréquence porteuse joue alors le role de fréquence de référence . Ce passe-bas équivalent n’a
pas de réelle signification physique puisqu’il est de nature complexe. C’est néanmoins un signal
de synthése fort commode, comme nous le verrons, pour traiter les signaux passant dans un
systéme linéaire.

Les signaux m (%) et my(t) sont appelés respectivement composante en phase et composante
en quadrature de s(t), car

s(t) = my(t) cos(2m fot + o) — mao(t) sin(2m fot + ©.) (2.6)

Dans le cas d’une modulation numérique linéaire, les signaux m(t) et ms(t) représentent une
séquence d’impulsions mises en forme. On peut aisément trouver les équivalents passe-bas des
principales modulations numériques.

Modulation numérique d’amplitude a 2" états

Un signal numérique & 2" états modulé en amplitude (2"-ASK) est de la forme

+oo

s(t) = Z ApRector(t — KT') cos(27 fet) (2.7)

k=—00

ou A, est une variable aléatoire pouvant prendre 2" valeurs différentes. Le passe-bas équivalent
est tout simplement

+oo

s5(t) = ) AxRectyor(t — kT) (2.8)

k=—o00

3. Ce choix convient dans bon nombre de cas mais il arrive qu’un autre choix soit plus judicieux; c’est la
facilité de formulation résultante qui guidera le choix final.
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Modulation numérique de phase a 2" états

De méme, sachant qu’un signal numérique a 2" états modulé en phase (2"-PSK) est de la forme

“+oo

s(t) = Z Rectjo,r)(t — kT) cos(2m ft + 04) (2.9)

k=—o0

ou 0 est une variable aléatoire pouvant prendre 2" valeurs différentes dans l'intervalle [0, 27].
Le passe-bas équivalent est,

+oo
5(t) = Y _ Rectyory(t — kT)e% (2.10)

k=—o0

En effet, en prenant ¢, = 0,

+00 +oo
s(t) = Re ( Z Rectyo,m(t — k‘T)ejg"‘ez“jfct> = Z Rect,r)(t — kT) cos(2m fot + 0;) (2.11)

k=—o00 k=—o00

2.2.2 Signal analytique

Jusqu’a présent, nous avons étudié les signaux modulés. Néanmoins, le principe de ramener
) ’

le signal en bande de base s’applique a tous les signaux de type passe-bande. Cela nécessite

pourtant quelques précautions si I’on veut éviter des recouvrements de spectre a 1’origine.

Prenons un signal ¢(¢) réel et déterministe. Le principe de base consiste a effacer une partie du
spectre avant de procéder a un déplacement fréquentiel. L’opération est sans perte d’information
si I'on se rappelle que le spectre d’un signal réel est tel que

Re(G(=f)) = Re(4(f)) (2.12)
Im(G(—f)) = —Im(G(f)) (2.13)

L’exploitation de la symétrie permet de ne considérer que les fréquences positives durant les
calculs, a condition bien siir de reconstituer les fréquences négatives pour rétablir la nature du
signal réel en fin de calculs.

Soit donc le filtre H(f) supprimant les fréquences négatives; par la méme occasion, il amplifie
les fréquences positives d'un facteur 2 de maniére & conserver le méme niveau d’énergie. Ce
filtre se caractérise par la transmittance

_J 0 st f<O
qui peut également se mettre sous la forme
H(f) =1+ sgn(f) (2.15)

Etant donné que la transformée de FOURIER de la fonction sgn est donnée par

sgn(t) = s (2.16)
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on peut utiliser la propriété de dualité de la transformée de FOURIER pour déduire que
J
— =3 2.17
I = son(s 217
On arrive alors a I'expression de la réponse impulsionnelle du filtre
J
h(t) =4(t) + — 2.18
() = 6(t) + (218)

Définition 12 [Signal analytique] La réponse d’un tel filtre a un signal d’entrée g(t) est
appelée signal analytique. Elle est notée g,(t) et vaut

Gult) = mw®(aw+i) (2.19)

t
_ 1
= g9() +79(t) ® — (2.20)
t
On définit ensuite la transformée de HILBERT d’un signal.

Définition 13 [Transformée de HILBERT] Soit un signal g(t). Sa transformée de HIL-
BERT, notée ¢(t), vaut

1
g(t) =g(t — 2.21
i) = o) @ (2.21)
Par cette définition,
9a(t) = g(t) + jg(t) (2.22)

Le signal analytique est donc composé d’une partie réelle, qui n’est autre que le signal original,
et d’une partie imaginaire qui en est la transformée de HILBERT. L’apparition d’une composante
imaginaire ne doit pas nous étonner car elle résulte de la rupture de symétrie dans le spectre.
La norme du signal analytique est appelée enveloppe du signal.

Le signal ¢(¢) porte aussi le nom de signal en quadrature du signal d’entrée. Cette appellation
provient des caractéristiques du filtre % En effet, la transmittance de ce filtre vaut —jsgn(f).
Deés lors,

G(f) = —jsan(f)G(f) (2.23)

Autrement dit, les fréquences positives et négatives subissent toutes un déphasage de —7. Par
la méme occasion, on remarque que la transformée de HILBERT occupe la méme bande de
fréquence que le signal original.

Propriétés de la transformée de HILBERT

Propriété 14 L’énergie (ou la puissance) d’un signal et celle de sa transformée de HILBERT
sont égales.

Démonstration

L’énergie de la transformée de HILBERT d’un signal vaut

[ = e

o0

i (2.24)
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Or

[Sn|” = 1-dsonr) I NG CHIP (2.25)
= 19(nI° (2.26)
|

Propriété 15 [75, page 96] Un signal est orthogonal a sa transformée de HILBERT. Pour un
signal d’énergie,

/_Jroo g(t)g(t)dt =0 (2.27)

o0
et pour un signal de puissance

1 +T

A o » g(t)g(t)dt =0 (2.28)

Transformée de HILBERT d’un signal modulé

Calculons tout d’abord la transformée de HILBERT d’un cosinus. Soit g(t) = cos(27f.t). Le
spectre de signal vaut

G(f) : (229
d’ou, par application de la relation 2.23,
- —J0(f — )+ 3o + 1.
of—f)—0 .
23
qui n’est autre que le transformée de FOURIER d’un sinus. Ainsi,
cos(2m ft) = sin(27 f.t) (2.32)

Ce résultat ne doit pas nous étonner car il découle d’'un déphasage du cosinus par ajout d’une
phase —7. Le méme raisonnement conduit aisément au résultat suivant.

Propriété 16 [Transformée de HILBERT d’un signal modulé] Soit un signal g(t) en
bande de base,

—_—~—

g(t) cos(2m f.t) = g(t) sin(27 f.t) (2.33)
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Représentation passe-bas a partir du signal analytique

Le signal analytique peut étre utilisé pour construire un signal passe-bas équivalent. En effet,
il suffit de ramener le signal analytique prés de ’origine par une translation de son spectre. Un
moyen commode consiste a prendre la fréquence de référence f; du signal passe-bande pour
effectuer le déplacement. Mais ce choix n’est nullement obligatoire.

Définition 17 [Enveloppe complexe du signal] Le signal obtenu par décalage du signal
analytique le long de 'axe fréquentiel porte le nom d’enveloppe complexe du signal original. Elle
sera notée ey(t).

Par définition, I’enveloppe complexe et son spectre sont respectivement liés a leur équivalent
analytique par les relations

eg(t) = ga(t)e 270" (2.34)
E(f) = Gu(f + fo) (2.35)

La démarche adoptée a permis de construire I’enveloppe complexe a partir du signal de départ.
Pour se convaincre de 1'utilité de I’enveloppe complexe comme passe-bas équivalent, déterminons
le lien inverse. Un calcul simple montre que

g9(t) = Re(ga(t)) (2.36)
= Re (ey(t)e*™ ) (2.37)

Il s’agit donc bien d’une forme valide de passe-bas équivalent tel que définie par la relation 2.3.

Décomposition de RICE

Il nous reste maintenant a déterminer des moyens pratiques pour calculer ’enveloppe complexe
d’un signal. Pour ce faire, on décompose ’enveloppe complexe en sa partie réelle et sa partie
imaginaire

eg(t) = g1(t) + jgq(t) (2.38)

Nous avons pris le soin de faire référence au signal g pour des raisons qui apparaitront bientot.
g1(t) s’obtient comme suit

a(t) = Re(et) (2.39)
= Re (g,(t)e ™) (2.40)
= g(t) cos(27 fot) + g(t) sin(27 fot) (2.41)
De méme,
go(t) = Im(ey(t)) (2.42)
= (g 27ij0t) (243)
(t) sm(27r fot) + g(t) cos(2 fot) (2.44)

Les signaux g;(t) et go () sont appelés composantes de RICE ou composantes en quadrature. Sur
le plan théorique, on peut les calculer trés simplement & partir du schéma décrit a la figure 2.3.
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/ "\
g9(t) X)

cos (2 f.t)

HILBERT G— g1(t)

+
S
+

sin (27 f.t)
%
&)

FIGURE 2.3 — Schéma de calcul de la composante en phase de RICE.

L’intérét des composantes de RICE est clair lorsqu’on détermine le signal de départ a partir de
I’enveloppe complexe. En effet,

g(t) = (94(1))

(2.45)
(eg(t)e>™0%) (2.46)
= Re ((9:(t) + jgo(t))e*™/") (2.47)
= g1(t) cos(27 fot) — go(t) sin(27 fot) (2.48)

Re
Re

Cette derniére expression traduit un résultat important : tout signal passe-bande peut s’ex-
primer comme la somme de deux signaux confinés a l'intérieur de l'intervalle de fréquences

[—% ] et modulés en quadrature.

La figure 2.4 montre comment reconstituer le signal original & partir de ses composantes de
RICE.

t AN
g1(t) X)

cos (27 f.t)

@9

+
B

sin (27 f.t)
go(t) X)

FIGURE 2.4 — Schéma de reconstitution d’un signal & partir de ses composantes de RICE.

L’enveloppe complexe peut aussi s’écrire sous la forme d’une amplitude instantanée et d'une
phase instantanée

eg(t) = ag(t)ej¢ff(t) (2.49)
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On a alors les trois relations

ag(t) = 4/97(t) + g5(t) (2.50)
o) 9 ‘

Gg(t) = t o) (2.51)

g(t) = ag(t)cos(2m fot + ¢4(t)) (2.52)

Dés lors, on trouve un second résultat important : tout signal passe-bande peut s’exprimer sous
la forme d’un signal modulé en phase et en amplitude. Le passage de g(¢) dans un détecteur
de créte produit a,(t). D’autre part, moyennant la suppression de la modulation résiduelle, un
détecteur de phase ou un discriminateur de fréquences sera en mesure de déterminer 1’allure de
la modulation angulaire.

En pratique

Les expressions 2.41 et 2.44 de calcul des composantes de RICE, pour rigoureuses qu’elles
soient, ne sont guére pratiques car elles exigent la détermination préalable de la transformée de
HILBERT. Un moyen trés facile consiste & procéder a I'instar d’'un démodulateur d’amplitude :
on multiplie le signal original par 2 cos(2 fot) (ou 2sin(27 fot)) et on applique un filtre passe-
bas, comme illustré par le schéma 2.5.

En effet,
g(t) x 2cos(2mfot) = 2[gs(t) cos(27rf0 ) — go(t) sin(27 fot)] cos(27 fot) (2.53)
= [g; t) cos®(2m fot) — 9o (t) sin(27 fot) cos(27rf0t)} (2.54)
= g1(t) + g1(t) cos(4m fot) — go(t) sin(4mw fot) (2.55)

Un filtrage passe-bas fournit donc bien ¢;(t).

/_\ /X_/

O =
L 2cos (27 fot)

g(t) —

+
2sin (27 fot)

(5) -

X) % L o —gq(t)

FIGURE 2.5 — Schéma de calcul pratique des composantes de RICE.

Les composantes de RICE occupent une bande de fréquences qui n’est pas fondamentalement
plus large que celle de I’enveloppe complexe. Pour le montrer, calculons le spectre de g;(1).

Comme g;(t) = 3 (e4(t) + eZ(t)),

Gi(f) == (&) +E(-1)) (2.56)

DO =
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Dés lors, si la transformée E(f) est nulle Vf : [f| > fs,,, le spectre de la composante en phase
est confiné dans l'intervalle de fréquences [— fqup, + fsupl-

2.3 Systémes linéaires, invariants en translation et passe-
bande

Tout comme pour les signaux passe-bande, la réponse impulsionnelle d'un systéme linéaire,
invariant en translation et passe-bande peut s’exprimer au départ de I'enveloppe complexe de
la réponse impulsionnelle

h(t) = Re (ex(t)e™/o") (2.57)

Filtrer un signal réel g(¢) par un filtre de réponse impulsionnelle h(t) peut se faire au choix :

— par convolution g(t) ® h(t);

— en filtrant le signal analytique g, (%) par un systéme ayant h,(¢) pour réponse impulsionnelle ;
ou encore

— en filtrant 1’enveloppe complexe e (t) par e, (t).

Détaillons cette derniére méthode. Le signal filtré vaut

y(t) = g(t) @h(t) (2.58)
+o00
= / h(N)g(t — X)dA (2.59)
Comme on peut écrire
1 . .
g(t) = > (eg(t)e>™ 70! + X (t)e > /ot (2.60)
et ]
h(t) = > (en(t)e™ 70! + e (t)e > /o) (2.61)
Deés lors,
1 27j fot e
y(t) = 7€ I / en(A)eg(t — X)dA (2.62)
1 . oo
+16_27Uf0t/ en(A)ey(t — A)dA (2.63)
1 Y i,
+Ze*2ﬂf0t / en(N)es(t — N)e* ™o d) (2.64)
Ly [ ;
+Ze2ﬂﬂf0t / er(N)eg(t — N)e 4™ forg ) (2.65)

Les troisiéme et quatriéme termes tendent vers 0 lorsque la fréquence de référence f; est large-
ment supérieure aux fréquences utilisées dans la bande de base. Dans ce cas en effet, le signal
ey (N)eg(t — A) fluctue peu pendant une période de I'exponentielle et, moyennant I’hypothése
raisonnable que ce signal est constant sur toute la durée d’'une période, I'intégrale se compense
demi-cycle par demi-cycle, pour s’annuler. Il reste alors les deux premiers termes

y(t) = %Re ((en(t) @ e4(t)) e?mifot) (2.66)
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D’ou I'on conclut que
1
ey(t) = 2 en(t) ® e4(t) (2.67)

A Dexception du facteur %, le filtrage de I’enveloppe complexe du signal par celle de la réponse
impulsionnelle fournit I’enveloppe complexe du signal y(t). Le facteur % corrige le facteur 2
qui est introduit dans le signal analytique de la transmittance. En effet, si la normalisation de
I’énergie du signal analytique a un sens pour des signaux pris séparément, elle aboutit a une
augmentation d’énergie lors des multiplications de ce type de signaux. Pour s’en convaincre, il
suffit de prendre une transmittance passe-bande idéale, pour réaliser que la sortie du filtre sera

multipliée par 2 par rapport au signal d’entrée.

On devine tout l'intérét de ce dernier résultat car il signifie que tout signal passe-bande traité
par un systéme passe-bande peut se calculer a partir d’enveloppes complexes dont les fréquences
sont faibles par rapport a la fréquence de référence. Il convient de relever que tous les calculs
précédents présupposent que la fréquence de référence soit la méme pour toutes les enveloppes
complexes.

2.4 Représentation des signaux passe-bande aléatoires

Nous allons voir qu’il est possible, comme pour les signaux déterministes du type passe-bande,
de caractériser un processus aléatoire stationnaire du type passe-bande en introduisant les
notions de signal analytique et d’enveloppe complexe. Soit donc un processus aléatoire X (1),
stationnaire et de type passe-bande, c’est-a-dire dont la densité spectrale de puissance vx(f)
est nulle en dehors d’une certaine bande de fréquences.

2.4.1 Signal analytique d’un processus stochastique

Par analogie avec les signaux déterministes, on définit le signal analytique en filtrant le processus
stochastique X () par un filtre H(f) qui élimine les fréquences négatives

H(f):{g : ;;8 (2.68)

Ce filtre va étre appliqué la densité spectrale de puissance vx (f) !. Par le théoréme de WIENER-
KINTCHINE, la densité spectrale de puissance du signal analytique est donnée par

. (f) = HH(f)H%X(f) (2.69)
_ {4%6<f> A (2.70)

Observons que la densité spectrale de puissance du signal analytique peut encore s’écrire sous
la forme vx, (f) = 2H(f) vx(f). Comme la réponse impulsionnelle du filtre H(f) est égale a

h(t) = 8(t) + - (2.71)

Tt

4. Remarquons qu’il n’y a pas de sens & appliquer le filtre & la transformé de FOURIER du signal stochastique
X (t). En effet, on appliquerait le filtre & la transformée de FOURIER d’une réalisation et non au signal lui-méme.
Dés lors, la caractérisation serait propre a une réalisation et non au signal stochastique sous-jacent.

38



Prof. Marc Van Droogenbroeck, tous droits réservés

il est facile de calculer la fonction d’autocorrélation du signal analytique par transformée de
FOURIER inverse

Tx.x, () = 2(Txx (7) + jTxx(7)) (2.72)

o I'x, v, (1), Dxx (7) et Dxx(7) sont respectivement la fonction d’autocorrélation du signal
analytique, la fonction d’autocorrélation du processus stochastique X (¢) et la transformée de
HILBERT de I'xx (7).

2.4.2 Enveloppe complexe d’un processus stochastique

Par analogie avec le cas déterministe, on définit la fonction d’autocorrélation de 1’enveloppe
complexe comme suit

FeXeX (T) - FXaXa (T) 6_27ij07- (273)

Les densités spectrales de puissance de ’enveloppe complexe et du signal analytique sont alors
liées par

Yex (f) = vx.(f + fo) (2.74)

On peut encore montrer que 'on peut retrouver la fonction d’autocorrélation du processus
stochastique X (¢) a partir de celle de ’enveloppe complexe

Tyx (1) = %Re(FXaXa () (2.75)
= LR (T () 277 279

Il est finalement possible d’exprimer la densité spectrale de puissance de X () en fonction de
celle de I’enveloppe complexe. Il suffit de remarquer que la fonction d’autocorrélation de X (¢)
peut s’écrire sous la forme

1

Ixx (T) = Z [FBXGX (T) e?rifor + Texex (7—)* 6_27ij07] (2-77)

et de calculer la transformée de FOURIER de cette derniére expression

_ Yex (f — fo) + 75 (=f — fo)
4

vx(f) (2.78)

Néanmoins, il est intéressant d’étudier ’enveloppe complexe, non plus en terme de fonction
d’autocorrélation, mais directement via son expression temporelle.

2.4.3 Lien entre un processus stochastique et son enveloppe complexe

Par analogie avec le cas déterministe, on peut exprimer I’enveloppe complexe directement sous
la forme

X(t) = Re (ex(t) e (2.79)

X(t) étant un processus stochastique, 1’enveloppe complexe ex(t) est également un processus
stochastique. Ecrit tel quel, le processus stochastique X (¢) n’est pas stationnaire car sa moyenne
dépend du temps, que ’enveloppe complexe soit, stationnaire ou non. Comme pour le cas des
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signaux déterministes, il est nécessaire de stationnariser le signal en introduisant une phase
aléatoire © uniformément répartie sur [0, 27[. Ainsi, on écrit

X (t) = Re (ex(t) e/mot+O)) (2.80)
A partir de cette expression, il est possible de retrouver la fonction d’autocorrélation de X ().
Il suffit de remarquer que
X(t) == [€X (t) I 2nfot+0) 4 o (t) efj(%rfow(—))} (2.81)
Il vient

Fxx(t,t—T) = E{X(t) X*(t—T)} (282)
= E{X()X(-71)}

ou nous avons utilisé le fait que X (¢) est réel. En remplacant X (¢) par sa valeur, il vient aprés
calcul des espérances

Ixx(t,t—7) = ZE {ex (t) ex* (t —7) ™7 fex™ (t) ex (t — 1) e >/07}  (2.84)

_ iE {2 Re (BX (t) eX* (t - 7_) 627rjfo7')} (285)
= R (B {ex (1) ex (t = 7) #907)) (2:86)
= % Re (Deyey (t, t —T) ¥™07) (2.87)

Dés lors, si le processus stochastique X (¢) est stationnaire, son enveloppe complexe Iest égale-
ment et on peut écrire

1 :
Ixx (1) = QRe (Texex (1) €2™707) (2.88)

2.4.4 Décomposition de RICE d’un processus stochastique

Comme pour ’enveloppe complexe, on peut définir les composantes en phase et en quadrature
d’un processus stochastique

ex(t) = X;(t) + j Xolt) (2.89)
La décomposition de RICE du processus stochastique X (¢) est alors donnée par

X(t) = Re(ex(t) ™) (2.90)

= Re ((X:(t) +j Xq(t)) ei7) (2.91)

= X/(t) cos(2m fot) — Xo(t) sin(27 fot) (2.92)

Il est important de remarquer que X;(¢) et X(¢) sont également des processus stochastiques.
Dés lors, on conclut que tout processus stochastique dont la densité spectrale est & bande
étroite peut étre caractérisé par une paire de signaux modulants X;(t), X(t), eux aussi a
bande étroite®, qui modulent respectivement un cosinus et un sinus, quelle que soit ’allure de

X(t)!

5. Pour se convaincre que X (t), X¢(t) sont & bande étroite, il suffit de revenir & la maniére dont on calcule
ces signaux, par exemple comme indiqué a la figure 2.5.
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Chapitre 3

Calcul du bruit dans les systémes de
télécommunications

3.1 Introduction

La présence du bruit joue un role essentiel dans la conception des systémes de télécommunica-
tions. On distingue principalement deux classes de sources de bruit :

— les sources externes au systéme : bruit atmosphérique, bruit solaire, bruit cosmique, etc,

— les sources internes au systéme.

Ce ne sont pas tant les sources de bruit et leur nature physique qui nous intéressent mais la
maniére dont le bruit affecte les signaux utiles.

3.2 Sources physiques de bruit

Le bruit peut avoir différentes origines. Il serait fastidieux de tenter de les décrire tous en détail.
Ici, nous nous contenterons d’étudier le bruit thermique jusqu’a formuler une expression utile
pour les calculs.

3.2.1 Bruit thermique

Du fait de I'agitation thermique des électrons, une résistance 2 portée a une température abso-
lue T (c’est-a-dire exprimée en degré KELVIN [K]) produit & ses bornes une force électromotrice
E(t) qui est une fonction aléatoire. Cet effet, appelé effet JOHNSON, fut entre autres étudié par
NYQUIST.

L’effort, de modélisation consiste a
— décrire le phénomeéne aléatoire pour une résistance simple,
— analyser I'effet du bruit dans des configurations électriques complexes.

Formules de NYQUIST

Une résistance R portée a une température absolue 7' [K] posséde le schéma équivalent de
THEVENIN de la figure 3.1, comprenant une résistance R dépourvue de bruit et une force
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électromotrice de bruit thermique E(¢) qui est une fonction aléatoire, stationnaire, centrée,
gaussienne et qui est en premiére approximation un bruit blanc de densité spectrale de puissance

ve(f) = 2ksTR (3.1)
ot kg = 1,38 x 1072 [J/K] est la constante de BOLTZMANN.

R

E®) () HOERY: G=1/R

FIGURE 3.1 — Equivalents de THEVENIN (a) et de NORTON (b) correspondant au bruit ther-
mique dans une résistance.

L’équivalent de NORTON fournit quant a lui

v1(f) = 2ksTG (3.2)

Dépendance fréquentielle

[’étude plus détaillée du phénoméne de bruit thermique fait apparaitre une dépendance fré-
quentielle par le biais d’'un facteur p(f)

Ve(f) = 2ksTRp(f) (3.3)

ol
hf 1

S e (3.4)

p(f)

est le facteur de PLANCK [35]. Dans la gamme de fréquences considérées, il est raisonnable de
supposer que la densité spectrale de puissance est constante.

Généralisation a un dipéle d’impédance complexe

Considérons a présent le cas d’un dipole d’impédance interne complexe Z,. La densité spectrale
de puissance prend alors la forme

Ve(f) = 2kgT Re (Z,(f)) (3.5)

Dés lors, la valeur quadratique moyenne de la force électromotrice de bruit thermique dans un
intervalle [—f — df, —f] U[f, f + df] vaut

dE? = 4kpT R df (3.6)
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3.3 Caractérisation d’un dipole

Pour caractériser le bruit d’un dipole, considérons le schéma tel qu’illustré a la figure 3.2. Par

hypothése, il s’agit d'un circuit localisé* tel que

est I'impédance de source et Z,(f) I'impédance de charge.

Zs

e Z

FIGURE 3.2 — Une charge connectée & une source.

(3.7)

De plus, en toute généralité, 'impédance est une fonction de la fréquence. Par la suite, ce ne

sera plus indiqué explicitement mais cette condition n’en demeure pas moins vraie.

3.3.1 Puissance disponible

La puissance disponible aux bornes d’un dipole est un élément essentiel de conception d’'un
circuit. En effet, on sait que le transfert maximum de puissance a lieu a ’adaptation conjuguée
de I'impédance de source. C’est bien évidemment sous ce régime que 1’on sera souvent amené

A travailler.

Cas des signaux sinusoidaux

Considérons le cas de signaux sinusoidaux. La puissance de source fournie par le dipole P

vaut

I Lo e,
Py = ?/0 v(B)i(t)dt = 5 Re (w)

Dans une charge 7,

~

-~ EZ
V=_“L
Zs+ 7y,

et

~

~ E
= ———
Zs+ 7y,

On a donc une puissance
E2Re (Zyp)

Py=——"02"
T 2112, + Z,P

1. On pourrait néanmoins étendre sans peine le développement & des lignes de transmission.
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On sait que la puissance fournie par le dipdle est maximale & ’adaptation conjuguée. Cette
puissance, notée P,,;, est appelée puissance disponible du dipéle; elle vaut
B2
Pyg=—— 3.12
* ™ 8Re (Z,) (312)

La puissance disponible dépend de la valeur de créte de la force électromotrice et de la partie
réelle du dipole. C’est donc un invariant pour la famille des impédances dont la partie résistive
est identique.

Cas des processus stochastiques
Dans le cas de processus stochastiques, les relations restent valables a condition de les formuler
entre densités spectrales de puissance. Examinons la question pour un bruit aléatoire quelconque

T—+oo T’

be = lim l/TV(t)](t)dt (313)

En considérant le cadre usuel de signaux stationnaires au sens large, il est possible d’établir une
fonction qui lie la densité spectrale de la force électromotrice a la densité spectrale de puissance
du signal observé dans la charge. En effet, la relation 3.12 exprime un lien entre des puissances.
Dans cette expression, on peut voir le facteur ﬁ(z) comme le gain en puissance entre une
entrée et la sortie, le gain en puissance étant le carré de la transmittance. Par application du
théoréme de WIENER-KINTCHINE,

1u(f)

Yoa(f) = 1Re (Zy) (3.14)

Remarquons que cette formulation est aussi bien valable pour les signaux utiles délivrés par
la source que pour le bruit parasite introduit par cette méme source. Au dénominateur, on
retrouve un facteur 4 et non 8 comme dans ’expression 3.12. Cela s’explique simplement par
le fait que la définition de la puissance disponible P,; s’appuie sur ’expression de la puissance
fournie Py, qui elle fait intervenir les valeurs de créte et donc un facteur % supplémentaire.

Exemple. Dans le cas particulier du bruit thermique

’}/E(f) 2kBTRe (ZS) kBT
Yoa(f) = = =
4Re (Zs) ARe (Zy) 2
La densité spectrale de bruit disponible dépend donc de la température mais pas de la fréquence ;

c’est donc un bruit blanc de densité spectrale uniforme "BTT

(3.15)

Résumé

Le tableau 3.1 reprend les principaux résultats énoncés dans cette section.

3.3.2 Température de bruit d’un dipéle linéaire

La relation 3.15 est commode & bien des égards; en effet, la densité spectrale est uniforme et
exprimée comme le produit de constantes par la température absolue. Cette relation a donc été
généralisée pour traiter le bruit en général.
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‘ ‘ Charge quelconque ‘ Adaptation conjuguée
Signaux sinusoidaux P,s = 3 Re (\7?*) - % P,y = %(ZZ)
Signaux stochastiques | Py = limy_, oo = fOT V (t)I(t)dt Yoa(f) = 4;/5((?)
Bruit thermique Yoa(f) = %

TABLE 3.1 — Caractérisation des puissances d’un dipodle.

Température de bruit ponctuelle

Définition 18 La température de bruit ponctuelle, ou a une fréquence donnée, est la tempéra-
ture absolue a laquelle doit étre portée une impédance pour produire, par bruit thermique, a cette
fréquence, la méme densité spectrale de la puissance de bruit disponible que le dipdle considéré.

On a donc, par définition,

ksT'(f)
Yoa(f) = 9

de sorte que toutes les formules établies pour le bruit thermique sont valables a condition

d’utiliser 7'(f). La définition n’implique cependant pas que le bruit en étude soit d’origine

thermique.

(3.16)

On peut comprendre I'idée de l'introduction de la température de bruit ponctuelle en reve-
nant un instant a la nature stochastique des phénoménes. En effet, considérons deux signaux
stochastiques de bruit N(¢) et N'(¢). En prenant I’hypothése réaliste de bruits statistiquement
indépendants, la densité spectrale de la somme N(¢) + N'(t) est la somme des densités spec-
trales : Y (f) + v (f). Or, ces densités spectrales peuvent elles-mémes s’écrire sous la forme
%k:BT et %k:BT’, ce qui fournit la somme %k:B(T +71") = %k:BT”. C’est 1a tout le principe du
recours a une température de bruit ponctuelle du type de 7.

Température de bruit

Si I'on a affaire & un dipéle dont la densité spectrale est concentrée autour d’une position
fréquentielle centrale, on peut définir la bande passante de bruit . La valeur maximale de
T(f), notée T, est appelée température de bruit du dipole et la puissance de bruit disponible
sur tout l'axe des fréquences est donné par

Pbd(f) = kgTW (3-17)

3.3.3 Rapport signal & bruit d’un dipole générateur

Le signal aléatoire délivré par le dipole se compose du signal utile auquel se superpose un bruit.
Dans la mesure ot les deux signaux s’additionnent et qu’ils sont statistiquement indépendants,
la densité spectrale de la somme est la somme des densités spectrales. Dans I’analyse, on peut
donc traiter les signaux séparément.

Définition 19 Le rapport signal a bruit (S/N) du dipdle est défini comme le rapport de la
puissance disponible du signal a celle du bruit

S Py
= 3.18
N "B, (3.18)
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Lorsque le signal est modulé, on utilise, par convention, pour la définition de la puissance du

signal :

— en modulation d’amplitude ou en modulation angulaire, la puissance de la porteuse non
modulée 2,

— en modulation d’amplitude & porteuse supprimée, la puissance moyenne du signal, et

— en modulation d’impulsions, la puissance de créte.

3.4 Caractérisation d’un quadripole

L’étude du bruit dans un quadripdle est complexe en raison de la diversité des fonctions de
transfert qu’il permet de réaliser. Pour la simplicité, nous nous limitons au cas du quadripole
linéaire tel que représenté a la figure 3.3.

1 42
Zs
quadripole
B entrée linéaire sortie
v
1 2

FIGURE 3.3 — Schéma d’un quadripole.

Ce quadripole peut étre un amplificateur ou un atténuateur. Il peut étre purement résistif ou
non.

3.4.1 Notion de gain

Par définition, le gain d’un quadripole est le rapport de la densité spectrale de sortie a la densité
spectrale d’entrée; il dépend de la fréquence considérée. Le cas du mélangeur est atypique car
toutes les composantes ne travaillent pas a la méme fréquence. Aussi faudrait-il définir plusieurs
types de gain. Dans la suite, le cas du mélangeur sera éludé.

3.4.2 Facteur de bruit d’un quadripéle
Introduction
Pour décrire convenablement un quadripole en sortie, il faut impérativement tenir compte de

Ientrée. Ainsi, si ’entrée est un circuit ouvert ou si elle est court-circuitée, la sortie ne sera
généralement pas la méme.

2. La puissance de la porteuse est souvent notée C'. Dés lors, le rapport signal & bruit est plutét un rapport
porteuse & bruit ; on le note %
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Lors de la caractérisation du bruit du quadripole, c’est le bruit interne, produit par le quadripole,
qui nous intéresse. Cette caractérisation nécessite néanmoins que 1’on précise le type de circuit
placé a 'entrée. Alors, plutot que de considérer un circuit ouvert ou un court-circuit, on préfére
prendre une source de référence proche de la réalité, & savoir une source de bruit thermique de
température ambiante de référence. Ce choix conduit & la définition du facteur de bruit. Nous
verrons ensuite comment traiter une source différente de la source de référence.

Définition 20 [Facteur de bruit] L’impédance interne du quadripdle générateur étant don-
née, le facteur de bruit du quadripdle a la fréquence d’entrée f, noté Fy(f), est le rapport de (1)
la densité spectrale de bruit disponible a la sortie du quadripdle, a la fréquence correspondante,
lorsque la température de bruit du dipole générateur est Ty = 290 [K] a (2) la partie de cette
densité spectrale due au bruit du dipdle générateur a la fréquence f.

Dans cette définition, on peut remplacer le terme “disponible” par “fournie par”.

En raison de l'indépendance statistique des bruits, la densité spectrale de bruit disponible,
a une certaine fréquence, a la sortie du quadripodle est la somme de la densité spectrale de
bruit disponible du générateur multipliée par le gain, a cette méme fréquence, et des densités
spectrales de bruit propres au quadripole. Considérons pour I'étude analytique le dessin de la
figure 3.4.

X o 2
R, o
R., = R, Quadripole
] linéaire
4kBTRsW<> —= a2(f) = G(F)ar (f) + Yoao(f)
y 2

Yoar (f) = sksTo

FIGURE 3.4 — Schéma d’un quadripoéle bruité.

Si 'on considére un dipole générateur porté a la température 7y en entrée, on peut écrire la
densité spectrale disponible a la sortie sous la forme

%dQ(f) = %d1(f) ‘T:To G(f) + %dq(f) = %kBTOG(f) + ’Vbdq(f) (3-19)

ou G(f) représente le gain en puissance a la fréquence f. Dés lors,

Voa2(f) 14 Vodq (f)
Yoar (f) |7=1 G(f) %kBTOG(f)

Fo(f) = (3-20)

Le facteur de bruit est évidemment supérieur ou égal a I'unité. Il fait 'objet de mesure et
caractérise le quadripole.
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Interprétation de la notion de facteur de bruit

Soient iy, (f) et Yout(f) les densités spectrales du signal utile respectivement a I’entrée et a la
sortie du quadripole. Le rapport du signal a bruit a I'entrée vaut donc

Pareillement, a la sortie du quadripole,
N/ out Yoaz(f)

(%)in _ ’Vin( ) Yeaz(f)
(Mout  Mar(f) Yout(f)

Mais, comme le signal est amplifié par un gain G(f), c’est-a-dire que vt (f) = G(f)rin(f)
ce rapport devient

Deés lors,

(3.23)

(%)in _ Va2 (f)

(Mous  Wwar(HG()
En d’autres termes, le facteur de bruit n’est jamais que le quotient du rapport signal & bruit
en entrée par le rapport signal & bruit en sortie. Il représente donc la dégradation du rapport
signal a bruit, aprés passage dans un quadripole.

= Fo(f) (3.24)

Circuits équivalents

A partir du facteur de bruit, on peut aussi calculer la puissance de bruit disponible en sortie

Yoaz(f) = oar (f) |r=1, G(f)Fo(f) (3-25)

Cette formulation permet d’exprimer le bruit injecté par le quadripole par un bruit équivalent
qui serait placé a I'entrée. Le dessin de la figure 3.5 montre les deux circuits équivalents.

Facteur de bruit moyen

Le facteur de bruit traduit la dégradation du rapport signal a bruit en sortie du quadripole.
Comme il dépend de la fréquence, on lui préfére parfois le facteur de bruit moyen.

Définition 21 Le facteur de bruit moyen est le rapport de (1) la puissance de bruit disponible
a la sortie du quadripdle a (2) la partie de cette puissance due au dipdle générateur supposé a
la température de bruit Ty = 290 [K].

Par définition du facteur de bruit ponctuel, la puissance de bruit disponible a la sortie du
quadripole posséde une densité spectrale

1
Waz(f) = 5kToG () Fo(f) (3.26)
on a alors 'expression du facteur de bruit moyen

S22 3ke TGN RN [23 G E(S)df
J73 $keToG(f)df J23 G(f)df

Fom = (3.27)
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'Vbdq(f)
Vody (f) @ g Yods (f) = G(f)Voay (f) + Vodq (f)
I
(Fo(f) = D)vea, (f) —]
Vody (f) +) @ Yoar (f) = G(f) Fo(f ) Voar (f)

FIGURE 3.5 — Un quadripole bruité et son schéma équivalent.

Facteur de mérite

Il s’agit d’une grandeur qui n’est pas normalisée, contrairement au facteur de bruit.

Si la température de bruit du dipole était T # Ty, on pourrait définir un facteur de bruit F'(f),
en reprenant point par point le raisonnement précédent. En égalant la densité spectrale de bruit
propre au quadripodle

1
Yodq(f) = (Fo(f) — 1)§kBTOG(f) (3.28)
1
= (F(f) - 1)§kBTsG(f) (3.29)
Comme le gain n’est a priori pas fonction de la température, pour toute fréquence f,
(F—1)Ts = (Fy— 1)1y (3.30)
d’otut
Ty

et une relation identique entre Fy,, et F),. F', appelé facteur de mérite, exprime la dégradation
du rapport signal a bruit lorsque la température du dipole générateur est 7.

3.4.3 Température de bruit effective du quadripdle

Pour des quadripoles a faible bruit, le facteur de bruit est proche de 1. Il est donc malaisé
de comparer des quadripoles a faible bruit. On utilisera alors plutot la notion de température
effective issue du développement suivant

1

Yoaz(f) = §kBTOG(f) + Yodq(f) (3.32)
= SkslTo + (Fy — DTIG() (3.33)
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et la densité spectrale de la puissance de bruit disponible a la sortie du quadripole est équivalente
a celle que 'on aurait si, le quadripole n’étant pas bruyant, la température de bruit du dipole

était augmentée de
T. = (Fo — )T (3.34)

Cette quantité est appelée température de bruit effective du quadripole a la fréquence considé-
rée. On définit de méme la température effective moyenne

Tom = (Fom — )Ty (3.35)

3.4.4 Lien entre facteur de bruit et température effective

L’équation 3.34 fournit une relation immédiate entre le facteur de bruit et la température

effective. Cette relation vaut
TO + Te Te
Fy = —14 =8
Ty Ty

(3.36)

3.4.5 Cas particulier : quadripdle atténuateur résistif

Considérons un circuit résistif atténuateur, caractérisé par un facteur d’atténuation L entre les
puissances disponibles d’entrée et de sortie. Ce facteur d’atténuation définit une sorte de gain
en puissance inverse G = 1/L.

Imaginons un instant que l’on porte le quadripole atténuateur résistif a la température 7.
Comme l'atténuateur est purement résistif, la puissance de bruit au droit de la borne de sortie
vaut donc, expérimentalement, a adaptation conjuguée en sortie,

() = T (3.37)

Notons qu’on a la méme puissance de bruit a I’entrée (si I'on réalise une adaptation en entrée
également).

Pour obtenir le facteur de bruit, on exprime la puissance de bruit disponible en présupposant
une température d’entrée normalisée a Tj. Si on caractérise ’atténuateur par sa température
effective T, et en combinant les expressions 3.33 et 3.34,

1 1
Yoa2(f) = §kB(TO + Te)z (3.38)
En égalant les deux derniéres expressions, on obtient
T.=(L—-1)T, (3.39)
Deés lors,
L —1)T
F=1+ (L= VT (3.40)
T
soit encore P
FO:1+( “ V% _ (3.41)
To

pour un atténuateur a température ambiante 7y. Autrement dit, la facteur de mérite est égal
au facteur d’atténuation.
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Remarquons qu’il n’est pas anormal d’avoir un facteur de bruit qui ne fasse pas intervenir la
température physique du quadripole. Le facteur de bruit représente la dégradation du rapport
signal & bruit au passage d’'un quadripole; ce n’est pas ’expression du seul bruit interne du
quadripole mais bien de la somme du bruit normalisé aprés passage dans le quadripole et du
bruit intrinséque de I’atténuateur.

3.5 Cascade de quadripdles

Pour analyser le bruit dans une cascade de quadripoles, on fait I'hypothése d’une adaptation
entre les quadripoles et on utilise une méme température de référence (choisie ici égale a Tj)) pour
la définition des facteurs de bruit —autrement dit, une référence de bruit identique a I'entrée.
L’utilisation des schémas équivalents aboutit a la représentation graphique des quadripoles en
cascade de la figure 3.6, ou 'on a simplifié la notation en ignorant la dépendance fréquentielle
des facteurs de bruit et des gains. De plus, on considére que a1 (f) |r=7, est la référence de

Fpo — 1 L
(Fo1 N 1)’7bdl(f) Fyy ( 02 )’Vbd (f) Fi
Yods (f) D——(G)) (G
UG/ G Forvoas (f) NG

FIGURE 3.6 — Mise en cascade de quadripoles.

bruit commune.

En sortie du premier quadripole,

%d(f) = ’Vbdl(f) ‘T:To G1Fn (3-42)

Ce bruit passe a travers le second quadripole. A la sortie de ce dernier, on a une densité spectrale
de bruit qui est la somme du bruit d’entrée multiplié par le gain et le bruit propre

Yoa(f) = Yoar (f) lr=1y G1G2Fo1 + Yea1 (f) |r=1, G2(Fo2 — 1) (3.43)
s lors C1GaFo1 + Ga(Fog — 1) Fop — 1
2(Fo2 02
= = Fy + 3.44
0 G1Gs 0t Gy ( )

Plus généralement, pour un quadripole a n étages,

Fypo — 1 Fog—l Fyp —1
Fy, = F = F E 3.45
0 01 T G + Gng o1+ Z IG ( )
De méme,
T.o T3
T. =T =T E 3.46
G Gle 1+ Z 1 _ C; ( )

On voit donc qu’il est préférable de placer 'amplificateur de gain important et de facteur de
bruit faible en téte de chaine.
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Chapitre 4

Modulations numériques

4.1 Introduction

A Tinstar de la modulation analogique, la modulation numérique est une opération qui trans-
pose le spectre d’un signal numérique pour I’amener autour d’une fréquence porteuse.

Il existe de nombreux critéres guidant le choix d’un type de modulation. Il va de soi que
I'importance relative d’un critére dépend de ’application envisagée.

Les critéres de comparaison sont classés en trois catégories principales (d’apres [2])

1. la résistance aux distorsions et aux interférences; cette classe comporte les critéres de
(a) la résistance au bruit en terme de probabilité d’erreur, celle-ci étant généralement
une fonction du rapport énergie a bruit £, /Ny,
(b) la sensibilité aux interférences dues a des multitrajets,

(c) la sensibilité aux imperfections des filtres qui produit de l'interférence entre les sym-
boles numériques,

(d) la sensibilité aux non-linéarités,
2. I'occupation spectrale caractérisée par

(a) Defficacité spectrale exprimée en (bit/seconde) par HERTZ [b/s/H z|, qui représente
le débit binaire que ’on peut transmettre dans un canal large de 1 [H z| pour un type
de modulation,

(b) le comportement asymptotique de la densité spectrale de puissance, c’est-a-dire la
rapidité de décroissance de la courbe de densité spectrale de puissance en fonction
de la fréquence,

3. la simplicité d’implémentation.

Dans un premier temps, nous aborderons les modulations numériques au moyen d’un forma-
lisme général. Nous traiterons ensuite quelques exemples communs de modulations numériques
linéaires comme la modulation de phase & deux états BPSK, la modulation de phase en quadra-
ture QPSK ou la modulation MSK.
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4.2 Définition des modulations numériques

4.2.1 Formulation générale

Soit m (#) un signal en bande de base préalablement mis en forme; il s’agit par exemple d’un
signal NRZ. Un modulateur numérique transforme le signal modulant m(t) en fournissant le
signal modulé s(t) suivant

s(t) = Re (¢ [m(t)] ej(2“f6t+90c)) (4.1)

ou f, est la fréquence porteuse du signal modulé et . une phase constante. ¢ [m(t)] est une
fonction du signal m(t) et constitue I’enveloppe complexe e4(¢) du signal modulé. Etant donnée
la forme de I’équation (4.1), le signal s(t) est réel et passe-bande autour de la fréquence f..

4.2.2 Typologie des modulations

La fonction complexe 9(.) = ¢7(.) + j ¢g(.) définit le type de modulation. On distingue géné-
ralement deux types de modulations :

— les modulations linéaires pour lesquelles ¢ [m(t)] est une fonction linéaire de m(t).

— les modulations angulaires pour lesquelles i) [m(t)] a la forme

Y [mt)] = e7#tm) (4.2)

ou @ [m(t)] est une fonction linéaire de m(t).
Le signal modulé peut également s’exprimer par les relations

s(t) = ¥y [m(t)] cos (2mfet + we) — g [m(t)] sin (27 fot + ) (4.3)

qui met en évidence la composante en phase ¢y [m(t)] et en quadrature g [m(t)] du signal
modulé, et

s(t) = |l [m(@)]| cos 27 fet + ¢c + argy [m(t)]) (4.4)
qui, cette fois, met en évidence I’enveloppe et la phase du signal modulé.

Par la suite, nous nous concentrerons essentiellement sur les modulations numériques linéaires
qui s’expriment par

+o00
s(t) = Re <€j(27rfct+99c) Z di(t) ej(ek—Qﬂfck‘T)> (4.5)

k=—oc0

ou les signaux dj(t) contiennent I'information a transmettre et ¢, est une phase constante. Deux

types de modulation linéaire seront détaillées :
— les modulations “classiques”, pour lesquelles 6, = 27 f.kT, et
— les modulations a décalage (ou offset), pour lesquelles 0, = 27 f.kT + k7.

4.3 Modulations linéaires “classiques”

4.3.1 Description
Les modulations linéaires classiques sont telles que ¢, = 27 f.kT. Dés lors, le signal modulé
prend la forme

s(t) = Re (es(?) ej(z’Tf‘H‘p‘f)) (4.6)
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ou I’enveloppe complexe s’exprime par

e(t) = > dilt (47

k=—o0

Y Degt—kT) (48)

k=—o00

Le signal ¢x(t) est un signal de mise en forme réel (non complexe). Pour la simplicité, nous
choisirons une onde de mise en forme unique g;(t) = ¢(t), Vk. Dy est une variable aléatoire
complexe qui contient I'information numérique & transmettre. Elle prendra généralement la
forme D, = Ay + jB;. ou A et By, sont deux variables aléatoires réelles.

L’enveloppe complexe s’exprime également par es(t) = s;(t) + jsq(t) ou les signaux réels s;(¢)
et sQ(t) représentent respectivement la composante en phase et en quadrature

) = Y Auglt—AT) (19)

k=—00

s(t) = Y Brg(t—kT) (4.10)

k=—o0
ce qui conduit & I’expression suivante du signal modulé
s(t) = sp(t) cos (27 fot + @c) — sg(t) sin (27 fet + @) (4.11)

soit encore, en remplacant s; et s par leur valeur,

+o0
s(t) = [ Z A g(t — kT) sin (27 fot + @) (4.12)

k=—o00

+o0o
cos (27 fot + ) — [ Z By g(t — kT)

k=—00

En toute généralité donc, le signal modulé peut étre vu comme la modulation en quadrature
de deux signaux numériques en bande de base (de type NRZ).

4.3.2 Calcul de la densité spectrale de puissance

Le calcul de la densité spectrale de puissance d’un processus stochastique n’a véritablement de
sens que si ce processus est stationnaire au sens large. Pour rappel un processus aléatoire X (7)
est stationnaire au sens large si les deux conditions suivantes sont remplies

— sa moyenne ux est indépendante du temps ¢,

— sa fonction d’autocorrélation I'xx (t, t — 7) = E{X(t)X*(t — 7)} ne dépend que de la dif-
férence de temps 7 entre les instants d’observation. La fonction d’autocorrélation est alors
notée I'xx (7).

La densité spectrale de puissance d’un processus stochastique stationnaire au sens large s’obtient

en calculant la transformée de FOURIER de sa fonction d’autocorrélation.
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Densité spectrale du puissance du signal modulé

Le signal numérique modulé est un processus stochastique S(¢) que I'on peut écrire, en prenant
arbitrairement ¢. = 0, sous la forme

S(t) = Re (M(t) &™) (4.13)

ou M (t) est un processus stochastique complexe. Remarquons tout d’abord que le processus
stochastique S() n’est pas stationnaire au sens large vu car sa moyenne dépend du temps. I
est donc nécessaire de stationnariser le signal. Pour cela, nous ajoutons une phase aléatoire ©
uniformément répartie sur [0, 27|

S(t) = Re (M (t) & ®rit+9)) (4.14)

Comme le processus stochastique M () et la variable aléatoire © sont non-corrélés, il est aisé
de montrer que la moyenne du processus stochastique S(¢) est nulle et donc indépendante du
temps.

Fonction d’autocorrélation. En toute généralité, 'expression de la fonction d’autocorréla-
tion d’un signal stochastique complexe Z(t) vaut F {Z(t) Z*(t — 7)}. Comme le signal modulé
est réel, sa fonction d’autocorrélation devient

Tgs (t,t — 1) = BE{S(t) S(t — 7)} (4.15)

Dés lors, en prenant la forme alternative suivante pour S(t)

1 ) .
S(t) = 5 [M(t) /OO 4 M (1) e EnIt+O)] (4.16)

et, en remplagant S(t) par sa valeur, le calcul des espérances fournit !

1 . _
Tss(t,t—7) = +F {M(@t) M*(t — 7)™ + M*(t) M(t — 1) e ™7} (4.17)

= iE {2 Re (M(t) M*(t — 7) &7*™T) } (4.18)
= L Re (B {M(t)M*(t ) ) (4.19)
= %RB (FM]\] (t, t— T) szﬂ—ch) (420)

Densité spectrale de puissance. Dés lors, il vient que, si I'enveloppe complexe M (t)
est un processus stochastique stationnaire au sens large, le signal modulé S(t) est également
stationnaire au sens large. Il est alors possible de calculer sa densité spectrale de puissance en
prenant la transformée de FOURIER de sa fonction d’autocorrélation. Etant donné que

I'ss (1) = i [Carae (1) €727e™ + Ty (1) €772717] (4.21)
il vient finalement
Vs(f) _ M (f - fc) + Y (*f - fc) (4‘22)

4
ou Y (f) est la densité spectrale de puissance de ’enveloppe complexe M ().

1. En fait, 'espérance des deux termes faisant intervenir la variable aléatoire © est nulle.
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Densité spectrale de ’enveloppe complexe

L’enveloppe complexe du signal modulé est un processus stochastique complexe exprimé par

00

M(t)= Y Dpg(t—kT) (4.23)
k=—o00

La séquence de variables aléatoires D), est caractérisée par

— sa moyenne : up = E{D}

— sa variance : 0% = E{(Dy, — up) (D — up)*}

— sa fonction d’autocorrélation : I'y4 (k,k — 1) = E{DyDy_,"}

— sa fonction d’autocovariance : Cya(k,k — 1) = E{(Dy, — up) (Dx—i — pp)"}

Aprés stationnarisation de la séquence de variables aléatoires Dy, on montre (voir cours de “Prin-

cipes des télécommunications analogiques et numériques”) que la densité spectrale de puissance

de M(t) est donnée par

() = o P 2 YD (420
p(fT) = io Tpp (1) e (4.25)

Si on ajoute I’hypothése de variables aléatoires D, non-corrélées? (Cpp(k, k — 1) = 0), on
montre que

u(f) = o2 i S 2o (7 - 12) (4.26)

T T

m=—00

La densité spectrale de puissance de ’enveloppe complexe M () est donc réelle et symétrique.

La densité spectrale en conclusion

En conséquence des relations 4.22 et 4.26, la densité spectrale de puissance du signal modulé est
fournie par (remarquons que, dans le cas présent, 'expression de 7,,(f) est purement réelle) :

La seule connaissance de 1’enveloppe complexe et de la fréquence porteuse permet donc de
déterminer la densité spectrale d’un signal numérique classique.

(4.27)

4.3.3 Modulation d’amplitude numérique (Amplitude Shift Keying)
Description

La modulation d’amplitude numérique (ASK) est une version simple des modulations numé-
riques linéaires classiques. Elle est caractérisée par une variable aléatoire D purement réelle
(B = 0). L’enveloppe complexe d’un signal modulé ASK, qui vaut

es(t) = > Axg(t —kT) (4.28)

k=—00

2. La non-corrélation des symboles successifs garantit un transfert d’information maximum. Mais en contre-
partie de ’absence de redondance, I'information est trés sensible & des effets de bruit.
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est donc purement réelle.

Il est courant de choisir comme signal de mise en forme une impulsion rectangulaire de durée

T
g(t) = rect[oﬂ (t) (429)

Pour arriver & interpréter le signal modulé, on détermine I’enveloppe a(t) et la phase ¢(¢) du
signal modulé. Ces deux signaux s’obtiennent aisément a partir de I’enveloppe complexe par la
relation

es(t) = a(t) 2V (4.30)
Etant donné que la variable aléatoire Aj peut s’écrire A, = ||A| e =29"(4%)27 nous pouvons
déduire
+oo
a(t) = > |l rectior (t — kT) (4.31)
k=—o0
+00 -
o(t) = Z 5 (1 — sgn (Ay)) rectyr (t — kT) (4.32)
k=—o00

[l apparait que I'enveloppe du signal varie par paliers, ce qui est un inconvénient si le signal passe
au travers d’un canal affectant I’amplitude ou d’un systéme non-linéaire, comme par exemple
un amplificateur travaillant & saturation. Quant & la phase, elle marque des discontinuités par
sauts de m. Ces sauts de phase sont également critiques car il nécessite des filtres de réception
a large bande passante sous peine de détériorer le signal modulé.

Cas particulier : modulation d’amplitude numérique a deux états (ASK-2)

Dans le cas de la modulation ASK-2, la variable aléatoire A, peut prendre deux valeurs : +A
ou —A. Pour cette modulation, on voit que I’enveloppe du signal est constante. Par contre, la
phase subit toujours des sauts de 7 radians toutes les 7" secondes.

Il est courant de représenter une modulation par un diagramme de constellations ou diagramme
des états de phase, qui n’est rien d’autre que le plan complexe de la variable aléatoire complexe
Dy, dans lequel on représente toutes les valeurs que peut prendre Dy. On attribue le signal
g(t) cos (2 fot + @.), correspondant a Ay, a I'axe réel pour faire référence a la composante en
phase et —g(t) sin (27 f.t + ¢.), correspondant & By, a ’axe imaginaire pour faire référence a la
composante en quadrature.

La présence de ¢(t) signifie que le diagramme de constellations est indépendant du signal de
mise en forme. La figure 4.1 montre le diagramme de constellations pour la modulation ASK-2.

Densité spectrale de puissance de ’ASK-2

Déterminons & présent la densité spectrale de puissance du signal modulé ASK-2. Commencons
par déterminer la densité spectrale de puissance de I’enveloppe complexe. Nous ferons I'hypo-
thése que les deux amplitudes +A sont équiprobables. L.a moyenne 114 de la variable aléatoire
Ay, est donc nulle. Sa variance est donnée par 03 = F {A7} = A?. Le signal de mise en forme
étant la fonction recty 7 (¢), sa transformée de FOURIER vaut

G(f) = e 22T sinc(fT) (4.33)
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—g(t) sin (27 ft + c)
(—A,0) (A,0)

g(t) cos (2m fet + )

FIGURE 4.1 — Diagramme des états de phase de la modulation ASK-2 ou BPSK.

Il en résulte une densité spectrale de puissance pour I’enveloppe complexe donnée par
Ye.(f) = AT sinc® (fT) (4.34)

et finalement une densité spectrale de puissance du signal modulé valant

2

31u(P) = 2L (sin? (£ — £) 71+ sin? (£ + £)T1) (4.35)

Comme la variable aléatoire A, ne peut prendre que deux valeurs dans le cas de la modulation
ASK-2, le signal modulé ne transmet qu’un seul bit d’information pendant la durée 7'. Il vient
donc que la densité spectrale de puissance d’'un signal ASK-2 est donnée par la relation 4.35
pour T'= T, ou R, = 1/T, est le débit binaire, encore appelé fréquence bit, exprimé en [b/s].

4.3.4 Modulation de phase numérique (Phase Shift Keying)
Description
Bien que la modulation PSK soit une modulation de phase, nous allons montrer que ce type de

modulation fait partie intégrante des modulations linéaires classiques. Typiquement, un signal
modulé PSK a la forme

+o0o
s(t)=A Z rectio. 7 (t — KT') cos (27 fet + e + Yy) (4.36)

k=—o0

ol v est une variable aléatoire constante sur l'intervalle de temps [k, (k+ 1)T[, pouvant
prendre N valeurs possibles D

¢k€{¢‘¢_<ﬁo+i2§,i—0, ...,N—l} (4.37)

Le signal modulé a donc une enveloppe constante et subit un saut de phase toutes les 7" secondes.
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Cherchons a présent a faire le lien avec les modulations linéaires classiques. Pour cela, nous
réécrivons s(t) sous la forme

+o00
s(t) = A Z recto.r] (t — kT') [cos (27 fot + c) cos ¢y, — sin (27 fet + @) sin ¢y
k=—o00
400
= Z A cos i recti ) (t — KT') | cos (2mfot + @) (4.38)
k=—o00
+oo
- [ Z A siny rect ) (t — KT') | sin (27 fot + @) (4.39)
k=—o0
L’enveloppe complexe du signal s’en déduit donc
es(t) = si(t) +7sq(t) (4.40)
+o00
= A Z rectio.r] (t — KT') (cos vy + jsinfy) (4.41)
k=—0c0

Nous retrouvons donc bien I'expression générale de I'enveloppe complexe d’un signal numérique
linéaire classique pour lequel

Dy = A& (4.42)
g(t) I'eCt[07T] (t) (443)

Il est alors aisé de déterminer I’enveloppe et la phase du signal modulé :

+oo
a(t) = A rectyq (t — kT) (4.44)
k=—o00
+oo
p(t) = > rrectpq (t — kT) (4.45)
k=—o00

Nous retrouvons bien évidemment que I’enveloppe du signal modulé est constante et que la
phase varie par paliers de maniére discontinue.

Cas particulier : modulation PSK-2 ou BPSK

La modulation BPSK est une modulation a 2 états correspondant a i, € {0, 7}. La variable
aléatoire Dy peut donc prendre les valeurs { A e’®, Ae/™}, ce qui correspond & {(A,0), (—A,0)}.
La modulation BPSK correspond ainsi exactement & la modulation ASK-2. Son plan de constel-
lations est donc également celui de la figure 4.1.

Densité spectrale de puissance. Les modulations ASK-2 et BPSK étant identiques, elles
ont méme densité spectrale de puissance (7" = T}). Elle est exprimée par

AT,
!

’ys(f) {SinCQ [(f - fc) Tb] + Sinc2 [(f + fc) Tb]} (446)
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4.3.5 Modulation en quadrature de phase (Quadrature Phase Shift
Keying)

Description

La modulation en quadrature de phase (QPSK) correspond & une modulation PSK-4,
c’est donc une modulation a 4 états (M = 4). La phase 1), peut prendre les valeurs
{=37n/4,—m /4,47 /4, +37/4}. Autrement dit, la variable aléatoire Dj prend une des va-
leurs suivantes?

Dy € {Ae*j%, Ae 75 Al Aej%w} (4.47)

Le diagramme de constellations est représenté a la figure 4.2.

—g(t)sin (27 fot + @.)

FIGURE 4.2 — Diagramme de constellations pour la modulation QPSK.

Considérons une source binaire fournissant le train d’impulsions suivant

= > Lt —kTy) (4.48)
k=—o00
ou I, = +1 correspond a l'information binaire 1 et I, = —1 correspond a l'information binaire

0. Le débit binaire est égal & R, = 1/7T;. A partir de la séquence I(t), nous formons les deux
séquences

si(t) = Z Lo g(t — kT) Z Ay g(t — kT) (4.49)
k* e8] k=—o00
A i
selt) = Z L1 g(t—kT) = > Big(t—kT) (4.50)
k=—o00 k=—o00

ou T'= 2T}, g(t) est une impulsion de mise en forme de durée 7', Ay = ng% et By, = IQHI%.
Ces deux séquences correspondent respectivement aux bits pairs et impairs de la séquence de
départ et constituent les composantes en phase s;(¢) et en quadrature sq(f) du signal modulé

3. On utilise parfois I’ensemble de ces valeurs décalées de 7, ce qui conduit & ’ensemble des phases possibles
suivant : {fA, Ae 1% A, Aeﬁ}.
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QPSK. La figure 4.3 illustre la formation de ces séquences pour un signal de mise en forme égal
a
g(t) = rectjo 1) (t) = rect on,) (t) (4.51)

qui correspond a la modulation QPSK classique.

- =
o [f G m nh owm

T TR A T TR [ t

) Oy0 .+ 0. L
TF — T
~
I I A
s1(t) 1 1 1 B
' !
0 0 ' 0 0 .
e
A
SQ(t)T I I R
¢
‘ 0 0 L
5
T 3 T 3 3 T 3
o(t) — 7 1 -I| 7 1 e e

FIGURE 4.3 — Formation des composantes en phase et en quadrature pour la modulation QPSK
(avec mise en forme par un signal rectangulaire).

Nous allons a présent déterminer 1’enveloppe et la phase instantanée pour une impulsion de
mise en forme rectangulaire. I.’enveloppe complexe est donnée par

es(t) = si(t) +7jsq(t) (4.52)
+o00
= D (Ax+JBy) rectpr (t — kT) (4.53)
k=—o00
A +oo
= % Z (IQk; + ] IQk-i-l) rect[oj] (t — k?T) (454)
k=—o00
Il vient alors
a(t) = y/s1(t) +s5(t) (4.55)
A +o00
= 7 Z I+ 13, rectior) (t — kT) (4.56)
k=—00
+o00
— A Z rect[O,T} (t — k}T) (457)
k=—00
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et

+o0
I
o(t) = Z recto,7) (t—kT) tan~* (%) (4.58)

) 2%

Avant d’analyser ces résultats, il est important de remarquer que nous avons fait sortir les
termes ) rectjo ) (t — K71') de la racine carrée et de I'arctangente. Cela s’explique par le fait
qu'il faut voir a(t) et p(t) comme des fonctions temporelles. Or, ces fonctions temporelles sont
construites de maniére a n’avoir, en chaque moment, qu’un seul terme contribuant de la somme
pour s;(t) et pour sg(t). De plus, les termes contribuants sont ceux obtenus pour des valeurs de
k identiques. On peut donc réaliser, a tout instant, une réduction a deux termes et reconstituer
la totalité du signal temporel en placant bout a bout toutes les composantes temporelles.

Revenons a présent a l'interprétation des signaux. Nous voyons donc que ’enveloppe du signal
modulé est constante et égale a A. Le rapport Iox.1/l5. peut prendre les valeurs 41, ce qui
correspondrait a 2 états seulement. Cependant, la fonction tan~! est définie & 7 radians prés.
En fait, pour déterminer la phase, il faut se référer au plan de constellations (figure 4.2).

La phase varie donc par paliers de maniére discontinue. La figure 4.3 montre la valeur instanta-
née de p(t) pour une séquence binaire donnée. On peut remarquer que la phase peut subir des
sauts de £5 ou de &7 toutes les 7" secondes. Ces différentes transitions sont représentées en
pointillés sur la figure 4.2. Lors des transitions +7, on voit que ’enveloppe instantanée du signal
peut s’annuler pendant le temps de la transition (passage par zéro dans le plan des constel-
lations). En effet, des transitions instantanées sont irréalisables physiquement. Si le signal est
filtré, il peut perdre sa propriété d’enveloppe constante, ce qui est génant lorsque qu’il passe
dans un systéme présentant des distorsions d’amplitude. Enfin, des sauts brusques de phase im-
pliquent également une bande passante plus importante. La figure 4.4 montre un signal modulé
QPSK pour une séquence binaire donnée.

Modulateur QPSK

La figure 4.5 montre le modulateur QPSK. Les différents signaux apparaissant sur cette figure
sont également présents a la figure 4.4.

Démodulateur QPSK

Le signal modulé QPSK correspond a la modulation en quadrature de deux signaux numé-
riques en bande de base. La premiére phase de la démodulation consiste donc a retrouver les
composantes en phase et en quadrature du signal modulé. Les deux signaux numériques en
bande de base obtenus sont ensuite démodulés grace au filtre adapté (un pour chaque signal)
et recombinés pour former la séquence binaire de départ. Le schéma du démodulateur QPSK
est repris a la figure 4.6.

Densité spectrale de puissance

L’enveloppe complexe du signal modulé est donnée par

“+oo

es(t)= > Dyg(t—kT) (4.59)

k=—o0
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Modulation QPSK

@
b o kb
T

0 2 4 6 8 10 12
1 i w
-1k | | | -
0 2 4 6 8 10 12
T I

()
b o kb

1 T T
s of :
-1k ! | | .
0 2 4 6 8 10 12

(e)
A o b

0 2 4 6 8 10 12
T T T T T
l r -
£ 0
-1t ! ! | h ! ]
0 2 4 6 8 10 12

FIGURE 4.4 — Illustration de la modulation QPSK : (a) séquence binaire I(t), (b) signal s;(¢),
(c) signal sq(t), (d) sr(t) cos (27 fet), (e) sq(t) sin (27 f.t) et (f) signal modulé s(t).

sy (t) sy(t) cos (2w f.t)
&9
cos (27 f.)t
série v N
I(t) (+Hr— @)
paralléle —Z -
sin (27 f.)t
A
solt) & so(t)sin (27 f.t)

FIGURE 4.5 — Modulateur QPSK.
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1
~X_|251(t)
® A~ Filtre adapté et décision
cos (2w f.)t
U paralléle
s(t) o 5I(t)
-z série
sin (27 f.)t
® % % o) Filtre adapté et décision

FIGURE 4.6 — Démodulateur QPSK.

ou le signal de mise en forme ¢(¢) et la variable aléatoire D; valent respectivement

g(t) = rectpon, (t) (4.60)

D, = (i%, i%) (4.61)

Nous faisons & nouveau ’hypothése que les quatre valeurs possibles pour D), sont équiprobables.
La moyenne 1ip est donc nulle et la variance est égale a 07, = £ {HDkH2} = A?. Tl vient, apreés
calcul de la transformée de FOURIER du signal de mise en forme,

Ve, (f) = 2A%Ty sinc® (2fTy) (4.62)

La densité spectrale de puissance d’un signal modulé en QPSK s’exprime finalement par

_ AT,

Ys(f) {sinc® [(f — f.) 2T3) + sinc® [(f + fe) 2T3) } (4.63)

et est identique a celle de la modulation BPSK pour un débit binaire double.

4.4 Modulations linéaires a décalage (Offset)

4.4.1 Description

Les modulations linéaires & décalage présentent la particularité que la variable aléatoire Dy, est
purement réelle (D, = Aj) et que la phase 0, de I'expression (4.5) est égale & 2m f.kT + k7.
L’expression de I’enveloppe complexe du signal modulé se simplifie donc en

+o0o
es(t)= > Apg(t—kT)e*s (4.64)
k=—o00

Bien que la variable aléatoire Ay soit réelle, ’enveloppe complexe e4() est bel et bien un signal
a valeurs complexes.
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Mettons-nous & présent dans le vas ou T" = Ty, la durée de I'impulsion de mise en forme ¢(t)
n’étant pas encore fixée. Le signal modulé prend la forme

400
s(t) = k:zoo Ay, g(t — kT}) cos <27rfct + . + k%) (4.65)
400
— L:ZOO Ay g(t — kT}) cos <kg> cos (27 fet + ©¢) (4.66)
—+00
_ LZ_OO Ay g(t — kTy) sin (kg)] sin (27 f.t + @) (4.67)

En tenant compte du fait que cos (k7/2) = 0 pour k impair et que sin (k7/2) = 0 pour k pair,
les composantes en phase et en quadrature peuvent s’exprimer par

si(t) = kf Ay gt — kT}) cos <kg> (4.68)
= io Ao (—1)" g (¢ — 2kT}) (4.69)
) i
sot) = ;f Ag g(t — kTy) sin <kg) (4.70)
= f Agerr (D) gt — (2k+1)Th) (4.71)

On voit que, par rapport aux modulations linéaires classiques, les séquences s;() et sq(t) sont
décalées entre elles de la durée d’un bit 7}, d’ott le nom de modulation & décalage.

4.4.2 Calcul de la densité spectrale de puissance

Dans le cas des modulations linéaires a décalage, 'expression (4.64) de 'enveloppe complexe
ne permet pas un calcul direct de sa densité spectrale de puissance, en raison de la présence
du facteur e/*> (en effet, il faut que 1’expression fasse intervenir une onde de mise en forme de
type ¢(t — kT alors qu’elle vaut g(t — kT') e/*2). L’idée consiste & modifier I'expression de la
72

t
o 0 — 12T < o o o
mise en forme en ajoutant un terme e T, . de sorte a obtenir une onde de mise en forme qui

vaudra : ' o, '
g(t — kT) %2 e 7°"5 = g(t — kT) e 975 (-+T) (4.72)

Afin de contrebalancer I'ajout d’une phase dans I’expression du signal modulant, nous allons
introduire un terme de compensation au niveau de la fréquence porteuse, pour aboutir a une
nouvelle fréquence porteuse f.. Le signal modulé vaut précisément :

s(t) = Re (es(t)eCricttee)) (4.73)
= Re (es(t) e i, ej<27r(fc+4%b)t+%)> (4.74)

= Re <U(t) ej(%fé”‘pc)) (4.75)
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oll nous avons posé

t

v(t) = e e (t) (4.76)
;o 1
feo = fetqp (4.77)

Si nous connaissons la densité spectrale de puissance du signal complexe v(t), il est possible de
calculer la densité spectrale de puissance du signal modulé par le biais de la formule

SRR AT L AR ) o (= = o= %) @78)

que nous avons démontrée précédemment. Nous allons a présent montrer que v(t) peut se
mettre sous la forme (4.23) pour laquelle nous sommes & méme de calculer la densité spectrale
de puissance. En fait,

“+o00
o(t) = Y Awglt — kTy) &FF e mam (4.79)
k=—o00
+oo .
= > Apg(t—kTy)e T (4.80)
k=—00
+oo

= Z A h(t — kT}) (4.81)

k=—o00
oll nous avons posé
- Tt
h(t) =g(t)e 2% (4.82)

Le signal h(t) correspond & un nouveau signal de mise en forme dont la transformée de FOURIER
se déduit du signal g(t)

%U?=Q<f+?%) (4.83)

La densité spectrale de puissance du signal v(t) s’obtient alors en adaptant la formule (4.26)

H()|? =1
) =50 v S 7(7- %) (484

Nous avons a présent a notre disposition tous les outils nécessaires au calcul de la densité
spectrale de puissance de signaux numériques linéaires a décalage.

4.4.3 Modulation en quadrature de phase & décalage (Offset Quadra-
ture Phase Shift Keying)

Description
La modulation OQPSK est une version “a décalage” de la modulation QPSK. C’est donc une
modulation PSK-4 et le diagramme de constellations (figure 4.2) reste d’application. La diffé-

rence essentielle réside dans la formation des composantes en phase et en quadrature du signal
modulé.
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Considérons une source binaire fournissant le train d’impulsions suivant

+o0
= > L(t—kT) (4.85)
k=—00
ou [, = +1 représente I'information binaire 1 et [, = —1 correspond a I'information binaire 0.

Le débit binaire est égal & R, = 1/7T,,. A partir de la séquence I(t), les composantes en phase
s1(t) et en quadrature sg(t) sont formées de la maniére suivante

A <=
si(t) = Z Lig(t—2kTy) = Y Ay (—1)" g(t — 2kT) (4.86)
k:* [%9) k=—00
A I
so(t) = 7 > Lpngt-(Qk+1)T) = Z Agerr (=17 g (¢t — (2k + 1) T;)(4.87)
k=—o00 k=—o00

ol g(t) est une impulsion de mise en forme de durée 7' = 27}, Ay, = (—1)" ]2;9% et Aggyr =

(—l)k Iopiq \’/45, VEk. Ces deux séquences correspondent respectivement aux bits pairs et impairs
de la séquence de départ. La composante en phase s;(t) est la méme pour la modulation OQPSK
et la modulation QPSK. Par contre, la composante en quadrature Sg () est décalée de T), par
rapport & la modulation QPSK. La figure 4.7 illustre la formation de ces séquences pour un
signal de mise en forme égal a

g(t) = rectjo ] (t) = rectigon,) (t) (4.88)

qui correspond a modulation OQPSK classique.

Il est maintenant nettement moins évident de calculer I’enveloppe et la phase instantanée du
signal modulé, cela a cause du “chevauchement” entre les impulsions de s;(t) et sq(t). En toute
généralité, nous pouvons écrire

a(t) = 4/s3(t) + sp(t) (4.89)
pour ’enveloppe instantanée et
©(t) = arctan lSQ(t)] (4.90)
s1(t)

pour la phase instantanée. En observant la figure 4.7, nous pouvons déduire que 1’enveloppe
du signal modulé est constante, sauf peut-étre aux transitions des signaux s;(t) et sg(t), c’est-
a-dire toutes les T; secondes. La phase, quant & elle, varie toujours par paliers; pour s’en
convaincre, il suffit & nouveau de se référer au plan de constellations de la figure 4.2. Deux
différences essentielles sont cependant a remarquer. Tout d’abord, la phase ne change plus de
valeur toutes les T = 27}, secondes comme dans la modulation QPSK mais bien toutes les 7
secondes. De plus, il n’y a plus, a chaque transition de la phase, qu'un saut de +7. Le fait de
décaler la séquence s;(t) a fait disparaitre les transitions de +7. En effet, dans la modulation
QPSK, les transitions de £ étaient dues aux transitions simultanées des signaux s;(t) et
sg(t). Dans la modulation OQPSK, ces deux signaux ne varient jamais en méme temps. Les
transitions possibles sont représentées en pointillés sur la figure 4.8. Celles-ci ne se faisant plus
qu’horizontalement ou verticalement, I’enveloppe du signal modulé ne peut donc plus s’annuler,
ce qui est un gros avantage de la modulation OQPSK par rapport a la modulation QPSK.

La figure 4.9 montre un signal modulé OQPSK pour une séquence binaire donnée.
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T = 2T,
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s1(t) 1 1 1 +7s
0 0 ' 0 0o !
V2
T
-
sq(t) 101 RE Tt
0 0 )
V2
A il et et Bt 8 K i A e

FIGURE 4.7 — Formation des composantes en phase et en quadrature pour la modulation

OQPSK (avec une mise en forme par un signal rectangulaire).

—g(t)sin (27 ft + ©c)
A A PR NN A A
(_EHFE)/‘_’_ ___________________ > _‘(+ﬁv+ﬁ)
ol 11,
l\ ! g(t) cos (2 fot + @.)
oo | 1057
A AN S p A A
(_ﬁa_ﬁ) \\\___,,// (+ﬁ7_ﬁ)

FIGURE 4.8 — Diagramme de constellations pour la modulation OQPSK.
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Modulation OQPSK
1F T T T T T =
4 o ] A ]
1 2 3 4 5 6 7 8 9 10 11 12
1 T T T T T T T —\
_l = | L i | | i | 1 |
11 2 3 4 5 6 7 8 9 10 11 12
~ T T T T T T T =
g 0 I / \ f \ |
| A
5 9
T T

FIGURE 4.9 — Tllustration de la modulation OQPSK : (a) séquence binaire I(t), (b) s;(¢),
(c) sq(t), (d) s;(t) cos (2w f.t), (e) sq(t) sin (2w f.t) et (f) signal modulé s(t).

Modulateur et démodulateur OQPSK

Les circuits de modulation et de démodulation pour 'OQPSK sont tout & fait semblables a
ceux utilisés pour le QPSK, mis a part un délai de 7}, qu’il faut introduire dans la branche en
quadrature des circuits.

Densité spectrale de puissance

L’enveloppe complexe du signal modulé est donnée par

“+oo

es(t) = > Apglt—kT}) %2 (4.91)

k=—o0

ou le signal de mise en forme ¢(t) et la variable aléatoire A, valent respectivement

g(t) = rect[ogm (t) (492)

A A
Ay € (+—,——= 4.93
' { V2 ﬂ} -
Nous faisons a nouveau ’hypothése que les deux valeurs possibles pour A sont équiprobables.

La moyenne pi4 est donc nulle et la variance est égale a 04 = E{A7} = A;. Il vient apres calcul

de la transformée de FOURIER du signal de mise en forme H(f) =G <f + ﬁ ,

Yo (f) = 24T, sinc® Kf + 4%)) 2Tb} (4.94)
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Conformément a la relation (4.78), la densité spectrale de puissance d’un signal modulé en
OQPSK s’exprime donc finalement par

2
Ws(f) - Gl

et est exactement identique a celle d’un signal modulé QPSK.

{sinc® [(f — ) 2T3] + sinc® [(f + f.) 2T3]} (4.95)

4.4.4 Modulation a saut de phase minimum (Minimum Shift Keying)

Bien que plus avantageuse que la modulation QPSK, la modulation OQPSK présente encore
un inconvénient : des discontinuités de phase qui entrainent une bande passante importante.
La modulation & saut de phase minimum (MSK) permet de supprimer ces discontinuités de
phase. Celle-ci présente les mémes particularités que la modulation OQPSK sauf que les sauts
de phase se font de maniére continue pendant la durée d’un bit 7}, de telle sorte que la phase
instantanée du signal modulé est une fonction continue du temps.

Description

La caractéristique qui différencie la modulation MSK de la modulation OQPSK est le signal de
mise en forme qui devient

g(t) = rect o) (t) sin ( ! ) (4.96)

2T,
Pour établir I’expression des composantes de 1’enveloppe complexe, on reprend I’expression de
I’enveloppe d’une QPSK, a savoir,

“+oo

es(t) = > Apglt—kT}) "2 (4.97)

k=—o0

La relation 4.96 évaluée en t — k'T}, devient
g(t — kTy) = rectpor,) (t — KT}) sin (%(t = ka)) (4.98)
b

d’ou 'expression de I'enveloppe complexe de la MSK suivante :

“+oo
es(t) = Z Ap, g(t — k‘Tb) k3 — A rect(o o1, (t — k‘Tb) sin (QLT(,(t — ka)) e (4.99)

k=—00

Pour passer a s;(t) et so(t), on prend respectivement les parties réelle et imaginaire de cette
enveloppe complexe. Pour s;(t), on obtient

400
. Tt T T
si(t) = Z Aprectigor,) (t — kT}) sin (Q—Tb — k§) cos(k‘g) (4.100)
k=—o0

Comme sin A cos B = 1 sin(A — B) + $sin(A + B), cela équivaut a

+o0o
1 . 7t 1 . 7t
si(t) = Z Ap rectygony) (t — kT3) (5 sin (2—Tb> + 5 sin (2—Tb — kw)) (4.101)

k=—o0
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Si k£ est impair, les deux termes entre parenthéses sont opposés et ils se compensent. Pour £
pair, les termes s’additionnent, si bien qu’au final, on a

+oo
. 7t
é[(t) = kz_oo Agk rect[OQTb] (t — Qka) S1n (2—7_})> (4102)
Enfin, comme sin(Z’r—jfb) =cos(3 — %) = Cos(;—tb —5),ona
T\ e
s7(t) = cos (Q—Tb — 5) k:z:m Agy rectip or,) (8 — 2KT}) (4.103)

Le signal s;(t) peut étre vu comme un signal du type NRZ multiplié par une cosinusoide. Un
développement similaire donne pour la composante en quadrature de phase

Tt ™

+00
so(t) = sin (Q—Tb — 5) k_z Agpeyr rectyo ony) (t — 2kT5) (4.104)

Ces deux expressions vont nous permettre de déterminer ’enveloppe instantanée et la variation
de phase instantanée du signal modulé. L’enveloppe est donnée par

a(t) = y/s7(t)+sp(t) (4.105)
mt T e T

— JA2cos2 (L A? sin? [ — — = 4.106

\/ Cos <2Tb 2) + A? sin (2Tb 2) ( )

= A (4.107)

L’enveloppe du signal modulé est donc constante et égale a A. La phase instantanée peut
s’exprimer par

o(t) = tan™! {Zi)((tt))} (4.108)

e | (W_t _ I) S Asppirectpon (t— (2k + 1)Th)
S Agyrectyony (t — 2KT3)

4.109
2T, 2 (0

Si maintenant, on observe 1’évolution de la phase pendant un intervalle de temps 7}, d’un bit,
la fraction dans ’argument de la fonction tan~! vaut £1 et la variation de la phase vaut
7t

Agp(t) = tor (4.110)

La phase varie donc linéairement de Z sur la durée de 7} secondes. Contrairement aux mo-
2

dulations vues jusqu’ici, la modulation MSK présente des sauts de phase qui se réalisent en
“douceur”. Par exemple, pour passer de 7 a 37”, la phase prend 7}, secondes, tandis que I'en-
veloppe reste constante au cours du temps. La figure 4.10 montre en pointillés les transitions

possibles pour la modulation MSK.

On peut également représenter I’évolution de la phase par ce que I'on appelle le treillis de phase.
Il représente toutes les variations possibles de (). La figure 4.11 montre le treillis de phase
pour la modulation MSK. La phase est maintenant une fonction continue du temps. On peut
espérer avoir une bande passante moins importante que pour la modulation QPSK ou OQPSK.
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—g(t) sin (27 ft + c)

01 11 -

g(t) cos (2m fet + )

00 10

FIGURE 4.10 — Diagramme de constellation pour la modulation MSK.

Ap(t)
| Tb'
3r/2T <~
N
/2T : |
1 ! ‘
—m/2 T
__
—3r/2 T

FIGURE 4.11 — Treillis de phase pour la modulation MSK.
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La figure 4.12 montre un signal modulé MSK pour une séquence binaire donnée. En observant
le signal modulé, on peut également I'interpréter comme une modulation de fréquence. En effet,
en écrivant

s(t) = a(t) cos 27 fot + ()] (4.111)
et considérant une période 7}, nous obtenons

mt

s(t) = Acos|2nft+ — (4.112)
2T,
1

= A 2 .t — 4.11
cos { T (f 4Tb> t} (4.113)

qui représente bien une modulation de fréquence dont ’excursion est égale a Af = .

Modulation MSK

FIGURE 4.12 — Illustration de la modulation MSK : (a) séquence binaire I(¢), (b) s;(t), (¢) so(t),
(d) sr(t) cos (2mfet), (e) sg(t) sin (27w f.t) et (f) signal modulé s(t).

Densité spectrale de puissance

L’enveloppe complexe du signal modulé est a nouveau donnée par

“+oo

es(t)= > Apglt—kT}) "2 (4.114)

k=—o00

ou le signal de mise en forme g(¢) et la variable aléatoire A, valent respectivement

t
g(t) = rectipar, (t) sin S (4.115)
’ 2T,

A, € {+A4,—A} (4.116)
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Nous faisons a nouveau I’hypothése que les deux valeurs possibles pour A, sont équiprobables.
La moyenne 14 est donc nulle et la variance est égale a 0% = F {A7} = A?. 1l vient aprés calcul

de la transformée de FOURIER du signal de mise en forme H(f) =G <f + 4—%)),
2

~ 16 A2T; | cos [27‘(‘ <f + 4—;b> Tb]

2 2
d 1-16(f+ ) 77

Yo(f) (4.117)

La densité spectrale de puissance d’un signal modulé en MSK s’exprime donc finalement par

¥s(f)

_axn ( 2r(f ~ £) m)z . ( 2r(f + /) T ) @.118)

T 1_16(f_f0)2TbQ 1_16(f+f0>2TbQ

Contrairement a la densité spectrale de puissance de la modulation OQPSK qui décroit en
1/f?, la densité spectrale de la modulation MSK décroit en 1/f%, ce qui fournit donc un gain
en bande passante. La figure 4.13 permet de comparer les densités spectrales de puissance des
modulation BPSK, OQPSK (= QPSK) et MSK pour R, = 1/7, = 1[b/s]. Nous voyons que
la décroissance en 1/f* est accompagnée d’un élargissement du lobe principal par rapport a la
modulation OQPSK.

BPSK - OQPSK(=QPSK) — MSK

OQPSK | | VN

_60 -

_ | l I | ll | I I Il I l
55 2 15 1 05 0 0.5 1 15 2 25 s [ — /e
FIGURE 4.13 — Comparaison des densités spectrales de puissance.
La modulation utilisée pour la transmission GSM est une variante de la MSK ; il s’agit d’une

technique appelée Gaussian Minimum Shift Keying (GMSK) pour laquelle 'onde de mise en
forme est une gaussienne.
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Chapitre 5

Modélisation du canal pour transmissions
numériques et interférence inter-symboles

Dans un canal de communication, une source importante d’erreurs est la présence de bruit
sur le canal de transmission ; cette question a déja été largement abordée précédemment. Nous
allons a présent nous intéresser & une autre source de distorsion, appelée interférence inter-
symboles qui apparait, pour des communications numériques, lorsque le canal de transmission
est dispersif (effet de la bande passante finie du canal).

Prenons le cas d'une transmission par mise en forme NRZ. On sait que la densité spectrale du
signal NRZ occupe tout le spectre, malgré que la décroissance de la norme en fonction de la
fréquence soit significative. Or, il est rare qu'un systéme soit & bande passante infinie ou que le
canal ait une transmission de canal idéal sur la largeur de bande considérée. En conséquence,
le signal NRZ subit des distorsions subséquentes au passage dans le canal. Ces distorsions se
traduisent inéluctablement par un recouvrement entre symboles successifs.

Pour la facilité des développements, nous nous limitons & une transmission binaire en bande de
base.

5.1 Définition de l’'interférence inter-symboles

Considérons un systéme de modulation d’impulsions PAM (Pulse Amplitude Modulation) en
bande de base dont le schéma général est représenté a la figure 5.1. I’information a transmettre
est la séquence binaire {b;} dont chaque symbole (1 ou 0) est de durée T},. Le modulateur va
mettre en forme la séquence {b;}, grace a 'impulsion de mise en forme gg(¢), et fournir le signal

+oo

s(t) = Z Ap gu(t — kTp) (5.1)

k=—o00

ou les amplitudes A, (représentant I'information binaire transmise a l'instant ¢ = kT}) sont
lides a la séquence {b;} par la relation

A’f{ —1 siby=0 (5:2)
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Signal d’entrée binaire {0y}

Horloge ——»

Modulation PAM

| {Ar}

Filtre de mise en
forme gg(t)

5@

Canal de

transmission h(t

Bruit blane
gaussien w(t)

Filtre recepteur
gr(t)

i y(t)

Echantlllonnage C/

en t; =11}

l yi(t)

seuil A\  ———»

Organe de
décision

N

Lsiy(t;)) >AN 0siy(t) <

Emetteur

Canal

Récepteur

FIGURE 5.1 — Schéma général de la transmission en bande de base
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Le signal transmis au travers du canal est donc s(t). Celui-ci va étre modifié par convolution
avec la réponse impulsionnelle 4(¢) du canal de transmission. De plus, un bruit (supposé blanc
et gaussien) vient s’ajouter au signal dans le canal. Le signal requ, noté z(¢), est ensuite filtré
par un filtre de réception, de réponse impulsionnelle gr(t). La sortie de ce filtre, notée y(t), est
échantillonnée au rythme de 1’émetteur, c’est-a-dire toutes les 7, secondes et est synchronisé
avec celui-ci (les instants d’échantillonnage sont déterminés par une horloge qui est extraite du
signal y(t)). Finalement la séquence d’échantillons ainsi obtenue est utilisée pour reconstruire
la séquence originale {b;} au moyen d’un organe de décision. L’amplitude de chaque échantillon
est comparée a un seuil \.

La sortie du filtre de réception peut s’écrire sous la forme

y(t) = f Apd(t = kTp) @ gu(t) @ h(t) ® gr(t) + w(t) ® gr(t) (5.3)

k=—00

ou le symbole ® est une convolution. En prenant les notations suivantes

ppt) = ge(t) ®h(t) ® gr(t) (5.4)
n(t) = w(t)® gr(t)

ou g est un facteur d’échelle constant et up(t) est le résultat du passage du signal de mise en
forme gp(t) au travers des deux filtres h(t) et ggr(t) caractérisant respectivement le canal et le
filtre de réception. Le terme n(t) est le résidu du bruit additif w(t) ajouté par le canal, filtré
par le filtre de réception. Il représente donc toujours un bruit blanc gaussien car il est passé au
travers d’un filtre linéaire. En général, w(t) est modélisé comme un bruit blanc additif gaussien
de moyenne nulle. On obtient finalement

+oo

y(t) =p > Ap(t — kTy) +n(t) (5.6)

k=—o00

Cette formule montre que le train d’impulsions n’est plus rectangulaire. Le facteur d’échelle u
est choisi de telle sorte que le signal p(t) soit normalisé, ¢’est-a-dire

p(0) =1 (5.7)

Cette relation justifie I'utilisation de p comme facteur d’échelle pour tenir compte des change-
ments de 'amplitude du signal lors de son passage a travers le systéme. De plus, cette relation
représente une contrainte mathématique et n’a aucune signification physique. Avant de pour-
suivre, il est important de remarquer que, pour étre rigoureux, il faudrait introduire un délai ¢,
dans 'argument de p(t — kT}) afin de représenter 'effet du délai de la transmission au travers
du systéme. Cependant, pour simplifier 'exposé, nous choisissons de prendre ce délai égal a
zéro, et cela sans perdre en généralité.

Vu qu'une convolution dans le domaine temporel équivaut & un produit dans le domaine fré-
quentiel, nous déduisons de la relation 5.4 que

WP(f) = Gu(N)H()Gr(S) (5.8)
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Le signal y(t) a la sortie du filtre de réception est échantillonné aux instants ¢; = i7} (il est
intéressant de rappeler que I’échantillonnage se fait a la fin de la période, ceci résultant de la
théorie de du filtre adapté), ce qui fournit les échantillons

+oo
y(t) = p Y Ap((i — k)Tp) + n(t;) (5.9)
k=—o00
= pAt Y Awl(i - KT +n(t) (5.10)
k= —0o0

ki

Le premier terme pA; représente la contribution du ¢-éme bit transmis et donc le symbole
d’intérét. Le second terme représente l'effet résiduel de tous les autres bits transmis sur le
i-éme bit, qu’ils aient été transmis avant ou apres le i-éme bit. Cet effet résiduel est appelé
interférence inter-symboles. L’importance de cet effet dépend de I’étalement de p(t). On peut
déja remarquer que pour minimiser le terme d’interférence inter-symboles, il faudra choisir une
forme adéquate pour la fonction p(¢) de maniére a éliminer ce second terme. Le dernier terme
de n(t;) est le bruit n(¢) échantillonné a 'instant ¢;.

En I'absence d’interférence inter-symboles et de bruit, I’équation 5.10 se réduit a

y(t:) = pA; (5.11)

ce qui montre bien que, sous ces conditions idéales, le i-éme bit transmis est décodé correcte-
ment. La présence inévitable d’interférence inter-symboles et de bruit dans le systéme introduit
des erreurs au niveau de l’organe de décision. Dés lors, lors la conception du filtre de mise
en forme et du filtre de réception, I'objectif est de minimiser les effets de I'interférence inter-
symboles et du bruit, aboutissant ainsi a un taux d’erreurs aussi faible que possible.

Il existe deux types de transmission :

— la transmission ou le bruit est prépondérant, c’est le cas des communications satellite par
exemple, pour lequel on privilégie le bon fonctionnement du filtre adapté,

— la transmission ou le rapport signal sur bruit est important, comme pour le cas du réseau
téléphonique par exemple, et dés lors le fonctionnement du systéme est essentiellement limité
par 'interférence inter-symboles, et non par le bruit.

Dans I’étude qui suit, nous nous placerons dans le second cas et nous négligeons ainsi le terme

n(t) et nous nous focalisons sur la question de la réduction, voire de I’élimination de I'interfé-

rence inter-symboles.

5.2 Critére de NYQUIST

Le but poursuivi est, comme mentionné précédemment, de choisir la forme de p(¢) de maniére
a minimiser, voire éliminer, le terme d’interférence. Or, nous avons vu que p(t) est liée & gp(1),
h(t) et gr(t). Cependant, en général, la fonction de transfert du canal de transmission h(t)
est fixée et il est donc impossible de la modifier pour minimiser 'interférence inter-symboles.
Il reste cependant deux degrés de liberté : 'impulsion de mise en forme gp(t) et la réponse
impulsionnelle du filtre de réception gr(t). Le terme d’interférence étant exprimé en fonction
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de I'impulsion p(t), nous allons simplement déterminer une forme pour p(t) telle que I'interfé-
rence s’annulle complétement. Les fonctions gp(t) et gr(t) pourront ensuite étre obtenues en
exploitant I’équation 5.8.

Le décodeur extrait la séquence de coefficients Aj en échantillonnant la sortie du filtre y(¢) toutes
les T}, secondes. Pour le i-éme bit, le décodage a interférence inter-symboles nulle survient si les
contributions Ap(iTy, — kT,) sont nulles pour k # i. Dés lors, il faut que 'impulsion p() vérifie

la condition
. 1 sit=k

ou p(0) = 1 par normalisation. Si p(t) vérifie cette condition, il n’y pas d’interférence inter-
symboles et la réception est parfaite en ’absence de bruit. On constate déja, intuitivement,
qu’une fonction sinus cardinal permettrait de remplir cette condition.

Du point de vue de la synthése du systéme, il est intéressant de reprendre la condition 5.12
dans le domaine fréquentiel. Comme la propriété que doit vérifier p(¢) est donnée en des points
bien précis (au droit des échantillons), considérons la version échantillonnée de p(t) représentée
par la séquence d’échantillons {p(mT})} pour m = 0, +1, £2, ... Le signal

+o0
ps(t) = Y p(mTy)s(t —mTy) (5.13)

m=—0oQ

représente alors une version échantillonnée du signal p(t). Par le théoréme d’échantillonnage, il
est facile de calculer la transformée de FOURIER du signal p(t)

Pf) =1 S P(f—mfy) (5.14)

m=—00

ou f, = 1/T}, est le débit binaire (ou rythme) exprimé en [b/s]. On remarque dés lors une
répétition du spectre autour de tous les multiples entiers de la fréquence d’échantillonnage. La
fonction Pg(f) peut encore s’écrire sous la forme

+oo T+

Pu(f) = /_ S [pnT)o(t — mTy)] e 25t dt (5.15)

® m=—c0

mais vu que la somme se réduit au terme correspondant a m = 0, on peut encore écrire

P = [ " p0)3(t)e2m dy (5.16)

(o]
=1 (5.17)
Il nous reste maintenant a combiner les équations et pour obtenir

Y P(f-mh)=T (5.18)

m=—0oQ

Nous pouvons a présent, énoncer le critére de NYQUIST pour une transmission en bande de base
idéale en I’absence de bruit.
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Proposition 22 [Critéere de NYQUIST] La transformée de FOURIER P(f) de l'impulsion
p(t) élimine totalement linterférence inter-symboles pour des échantillons pris toutes les T),
secondes si elle vérifie la condition

Y P(f-mf)=T (5.19)

m=—0oQ

Rappelons que la transformée P(f) dépend du systéme dans son ensemble; cela inclut le filtre
de mise en forme, la transmittance du canal et le filtre de réception.

5.2.1 Canal idéal de NYQUIST

La facon la plus simple de satisfaire I’équation 5.19 consiste a choisir pour P(f) une impulsion
de forme rectangulaire

e W< f<W

_ 2W

P(f) = { 0 > W (5.20)
1
= WTGCtPW#W] (f) (5.21)
ou la bande de base du systéme 1V est définie par
Jo 1

=== 22
w 2 2T, (522)

La condition est donc bien satisfaite. Cette équation permet de dire qu’aucune fréquence né-
cessaire ne dépasse la moitié du débit binaire. On en déduit qu'une fonction p(t) qui satisferait
le critére de NYQUIST est, comme il avait été signalé précédemment, le sinus cardinal :

sin(2rWt)

p(t) = o sinc(2Wt) (5.23)
Une telle fonction p(t) (ou P(f)) caractérise le canal idéal de NYQUIST. Les figures 5.2.(a)
et .5.2.(b) montre les fonctions p(t) et P(f). p(t) peut dés lors étre vue comme la réponse

impulsionnelle d’un filtre passe bas idéal de fréquence de coupure correspondant a .

A la figure 5.2.(b), on voit également les différents instants d’échantillonage. II est clair que, si
le signal recu y(t) est échantillonné aux instants ¢t = 0, £7}, 2275, ..., les impulsions up(t —iT})
(1 =0,=£1,+2, ...) n’interférent pas entre elles. Cette condition est illustrée a la figure 5.3 pour
la séquence binaire 1011010. On constate dés lors qu’aux instants d’échantillonnage, tous les
sinus cardinal relatif aux symboles perturbateurs sont nuls.

Il existe cependant des raisons pour lesquelles I'impulsion en sinus cardinal ne peut étre utilisée
en pratique :

1. elle nécessite que P(f) soit constante sur l'intervalle de fréquence [—W,+W] et nulle
partout ailleurs. Cela est pratiquement irréalisable en raison des transitions abruptes en
+I (un filtre passe-bas idéal n’est pas réalisable),

2. la fonction p(t) décroit en 1/|t| pour |t| élevé; elle décroit donc trés lentement, les sinus
cardinal se répercuteront donc sur des échantillons lointains. Il y a dés lors trés peu de
marge d’erreur acceptable sur les instants d’échantillonnage car si on n’échantillonne pas
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2w P(f)h
1.0

p(t) 1.0

Instants d’échantillonnage

R~
\/"_’_/

intervalles du signal

(b)

FIGURE 5.2 — Canal idéal de Nyquist.
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Séquence binaire

Amplitude

FIGURE 5.3 — Une série d’'impulsions correspondant a la séquence 1011010.
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tout a fait au bon moment, tous les sinus cardinaux sont non nuls, ce qui donne une erreur
cumulée importante.

Pour évaluer cet effet d’erreur d’échantillonnage, considérons que 1’on échantillonne le
signal y(t) en t = t; + At, ou At est le décalage temporel. Pour la clarté, on suppose que
t; = 0. En I’absence de bruit, nous avons donc

+o0
y(At) = p Y App(At —KTy) (5.24)

k=—o00

B sin[2nW (At — kTy)]
- Z 2rW (At — kTy) (5:25)
Sachant que
sin2rW (At — kTy,)] = sin(2nWAt) cos(2nWkT;) (5.26)
— cos(2nW At) sin(2n W kTy) (5.27)
= (=1)*sin(2rWAY) (5.28)
Comme 2W'T}, = 1 par définition, nous pouvons réécrire
_ psin(2rWAt) <3 (—1)*
At) = uA 2W At Ap——~ 2
y(At) = pAg sinc(2WAL) + - Z k(QWAt—k‘) (5.29)
k= —o0
k#0

Le premier terme correspond au symbole désiré, tandis que la série représente 'interférence
inter-symboles dues a 'erreur At. Il est malheureusement possible que cette série diverge,
provoquant des décisions erronées au récepteur.

5.2.2 Impulsion en cosinus surélevé

Nous pouvons trouver une parade aux difficultés rencontrées avec le canal idéal de NYQUIST
en augmentant le bande passante d’une valeur ajustable entre W et 211/. Nous allons spécifier
la fonction P(f), en considérant trois termes de la condition 5.18, et restreindre 'intervalle de
fréquence étudié a [V, +WW]. On obtient donc une forme approchée du critére de NYQUIST :

P(f)+P(f —2W)+ P(f +2W) = -W<f<w (5.30)

oW’
Il est possible de déterminer un ensemble de fonctions P( f) qui vérifient cette derniére condition.
Une forme spéciale de la fonction P(f) souvent utilisée en pratique est I'impulsion en cosinus
surélevé dont le spectre est donné par

ﬁ 0<|fl < fu
P(f) =S a {1-sin[3H5R]} A<in<aw -5 (5.31)
0 |fl =2W - fi
La constante f; et la bande de base W sont liées par
fi
=1-= 5.32
a=1-2 (532
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oll «v est un paramétre, appelé facteur de rolloff, qui indique I'excés en bande passante nécessaire
par rapport au canal idéal de NYQUIST. La bande passante du systéme B est maintenant égale
a

Br =2W — fi =W(1+a) (5.33)

Les fonctions P(f) et p(t) sont respectivement représentées aux figures 5.4.(a) et 5.4.(b) pour
a=0,a=0,5et 1. Pour a = 0, I'impulsion correspond au canal idéal de NYQUIST.

A

2WP(f)

— e
-2 -1.5 2

» t

_3 T,
(b)
FIGURE 5.4 — Impulsion en cosinus surélevé.
L’impulsion p(t) est simplement la transformée de FOURIER inverse de P(f)
_ cos(2raW't)
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La fonction p(t) est formée par le produit de deux facteurs : le facteur sinc(2Wt) qui correspond
au canal idéal et une fonction qui décroit en 1/[t|? lorsque |t| est grand. Le premier facteur
assure que la fonction p(t) passe par zéro aux instants d’échantillonnage t; = iAt tandis que
le second facteur réduit ’extension temporelle de I'impulsion de telle sorte que l'erreur At
est considérablement réduite. Pour o = 1, I'extension temporelle de I'impulsion est minimale.
L’erreur At diminue donc lorsque o augmente. Cependant, la bande passante est d’autant plus
grande que « est grand, pour atteindre sa valeur maximale 211 —soit le double de la bande
passante nécessaire pour le canal idéal de NYQUIST—, lorsque o = 1. Un compromis existe donc
entre la bande passante est la diminution de l'interférence inter-symboles. Typiquement, une
valeur de o = 0.3 convient.

La synthése d'un systéme de télécommunications numérique est rendue difficile par le fait que
c’est la fonction p(¢) qui doit posséder une réponse impulsionnelle en forme de cosinus surélevé.
Or, p(t) résulte de la mise en cascade de trois systémes (ggr(t), h(t) et gr(t)). La synthése de
ces systéemes doit donc étre telle que I'ensemble doit étre caractérisé par un cosinus surélevé.
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Chapitre 6

Etalement de spectre

6.1 Introduction

L’occupation spectrale est un souci récurrent pour la mise au point de techniques de modulation.
Lors d’une transmission en bande de base, on cherche & donner une forme adéquate a la densité
spectrale en fonction de I'application visée. Pour des communications en espace libre, on tente
de trouver le compromis entre ’occupation spectrale et la résistance au bruit.

Un systéme a étalement de spectre se caractérise par le fait que la bande passante B est
largement supérieure au débit d’information R, exprimé en [b/s]. Cet accroissement de bande
s’accompagne, comme nous le verrons par la suite, d’'une meilleure résistance au bruit.

Historiquement, ce sont les militaires qui ont développé en premier les techniques d’étalement de
spectre. Il existe néanmoins aujourd’hui des systémes de transmission numérique commerciaux
qui en utilisent le principe. Le tableau 6.1 fournit une comparaison des différentes fonctions de
I’étalement de spectre.

‘ Objectifs ‘ Domaine militaire ‘ Application commerciale ‘

Lutte contre le brouillage

Accés multiple

Détection difficile

Protection des données

Appel sélectif

Identification

Navigation

Protection contre les multi-trajets
Faible densité de flux émis

<SS S =
U

TABLE 6.1 — Applications de systémes & étalement de spectre (d’aprés [21]).

6.1.1 Techniques d’étalement
Il existe essentiellement deux techniques d’étalement du spectre

— l’étalement par sauts de fréquence ou Frequency Hoping. Le spectre d'une porteuse modulée
est étalé en changeant la fréquence de la porteuse pseudo-aléatoirement au cours du temps,
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ce qui permet de faire varier 7, pseudo-aléatoirement au cours du temps. La technique du
saut de fréquence (non-aléatoire) est utilisée en GSM (cf. [11] pour plus de détails).

— Dlétalement direct ou Direct Spreading (DS). Cette technique porte aussi le nom Code-
Division Multiplexing (CDM) car elle consiste a étaler le spectre en multipliant le signal
utile par un signal numérique dont la cadence bit est nettement supérieure appelé code.

Dans tout systéme de transmission, qu’il soit partagé ou non, il est nécessaire de créer le signal

a transmettre mais aussi de définir des moyens et conventions pour interpréter correctement le

signal & la réception. Il faut donc détailler un moyen d’accéder au message utile aprés étalement.

Ces techniques sont reprises généralement sous le vocable de Code-Division Multiple Access

(CDMA), qui est souvent utilisé pour désigner la technique d’étalement direct elle-méme.

Dans la suite, nous analysons la technique de I’étalement ; la question de I'accés au signal n’est
pas abordée dans ce chapitre.

6.2 Etalement direct

6.2.1 Principes de base de I’étalement direct

Pour aborder les développements mathématiques, prenons un exemple simple permettant
d’illustrer le principe de I'étalement. Dans un systéme a étalement de spectre, on considére
deux types de signaux :

1. le signal contenant les données & transmettre, de période 7Ty,

2. le signal permettant d’effectuer I’étalement, de période 7. (on parle de “chip”), nettement
plus petite que Tj,.

Par la suite, nous choisissons que 7}, est un multiple entier de période T :

T, = NT., (6.1)

Ce choix permet, entre autres, d’assurer une cohérence entre la synchronisation des informations
portées par les deux signaux.

Considérons la figure 6.1. Le premier signal représente le signal de données binaires & trans-
mettre (ici, deux bits) ainsi que 'occupation spectrale associée (idéalisée). Le deuxiéme signal
représente un exemple de séquence d’étalement. On constate que son occupation spectrale est
dilatée par .

Dans un systéme a étalement direct, le taux de transmission de symboles (1/7}) d’un signal
bipolaire binaire est modifié en multipliant cette onde par un code bipolaire binaire pseudo-
aléatoire périodique dont la durée 7. est nettement plus courte que celle de départ ; on obtient
alors un signal tel que celui représenté a la troisiéme ligne de la figure 6.1. Son spectre est
approximativement aussi large que celui de la séquence d’étalement.

La figure 6.2 donne une représentation plus fidéle des densités spectrales de puissance du signal
de données et de la séquence d’étalement. Elle met aussi en lumiére le théoréme de conservation
de la puissance (conservation de l'aire sous la courbe).

Un raisonnement simple, par I’absurde, permet de se convaincre de la conservation de puissance.
En effet, le signal étalé résulte de la multiplication de la séquence initiale par le code d’étalement.
Remarquons qu'une deuxiéme multiplication du signal étalé par le code d’étalement fournit le
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Signal binaire (données) A
A |
|
| F
+ - -
-~ [ —— : !
(un bit) , i v oW - f
U |
|
Séquence d’étalement | E \
A E |
|_ |_ ‘ 1 ; | |~ f
J J J _NW 0 NW
|
= :
T |
Signal étalé | E A
A | |
| |
] ] | ’ | |
: - @ -— = f
| ] | ~NW 0 NW
| |
| |
| |

FIGURE 6.1 — Exemple d’étalement d’un signal de données binaires.

A
T
Période d’un symbole
}47 Ty —
+1
Symbole de F
données -
1 — L — i = f
7P 7P
" A
| |
| |
+1
Te
Symbole : : <—>]:
étalé | | /
-1 | I > f
| |
I I ¢

'ﬂ|»—t
H|>~

-

Période du chip
T.

DOMAINE TEMPOREL DOMAINE FREQUENTIEL
DENSITE SPECTRALE DE PUISSANCE

FIGURE 6.2 — Effet de la multiplication par une séquence sur le spectre.
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signal de départ. Dés lors, s’il y avait perte ou gain de puissance durant I'étalement, I’application
successive de deux phases d’étalement ne fournirait pas le signal de départ.

Les séquences d’étalement ont pour but de faire apparaitre, pour I'utilisateur courant, les autres
utilisateurs comme du bruit. Ces séquences doivent dés lors avoir les caractéristiques les plus
proches possible de celles d’un bruit blanc. Néanmoins, pour que le récepteur puisse retrouver
le signal utile, il doit aussi étre capable de régénérer la séquence ayant servi a ’étalement. Il ne
peut donc s’agir d’une véritable séquence aléatoire mais bien d’une séquence déterministe ayant
des propriétés aussi proches que possibles de celles d’une séquence aléatoire ; on parle donc de
séquences pseudo-aléatoires. De plus, pour des raisons pratiques de réalisation, les séquences
sont périodiques.

Pour construire des générateurs de séquences pseudo-aléatoires, on peut partir de I’étude des
propriétés des séquences aléatoires et imposer algébriquement des propriétés similaires aux
générateurs. C’est la démarche que nous suivrons ici. Une remarque s’impose néanmoins : il
est possible de construire plusieurs types de générateurs de séquences aléatoires. L’étude menée
dans ce document ne se veut donc pas exhaustive. Le lecteur est invité a consulter des ouvrages
spécialisés pour une typologie des générateurs de séquences pseudo-aléatoires.

6.2.2 Génération des séquences pseudo-aléatoires

Une séquence pseudo-aléatoire est une séquence binaire périodique dont I'onde ressemble, mis
a part le caractére périodique, & une séquence binaire totalement aléatoire proche d’un bruit.
Ce type de séquences est par exemple généré a ’aide d’un registre a décalage a contre-réaction,
dont le schéma général est montré a la figure 6.3.

Circuit logique

A

Flip-flop
- 1 - 2 —» —» m}—»
Séquence
A A A de sortie

Horloge

FIGURE 6.3 — Registre a décalage a contre-réaction.

Ce registre est constitué de m flip-flops (éléments mémoire) et d’un circuit logique qui sont
interconnectés pour former un circuit a contre-réaction. Les flip-flops sont régulés par une seule
horloge. A chaque coup d’horloge, le contenu de chaque flip-flop est décalé d’une place vers la
droite. De méme, a chaque coup d’horloge, le circuit logique calcule une fonction booléenne du
contenu des m flip-flops et le résultat est réinjecté a ’entrée du registre. La séquence pseudo-
aléatoire est ainsi déterminée par le nombre m de flip-flops, I’état initial du registre et la fonction
booléenne implémentée.

Avec un nombre m de flip-flops, le registre peut avoir 2™ états possibles. Ainsi, la séquence
pseudo-aléatoire, issue de la sortie du dernier flip-flop, peut avoir au maximum une période de
2™, Lorsque le circuit logique est constitué uniquement d’additionneurs modulo-2, le registre
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est dit linéaire et ’état 0 (zéro dans chaque flip-flop) n’est pas permis sinon la séquence pseudo-
aléatoire reste indéfiniment nulle. Dés lors, une séquence pseudo-aléatoire générée par un registre
a décalage linéaire ne peut avoir qu’une période maximale de 27" — 1. On parle alors de séquence
de longueur maximale.

Tout I'art de la conception du circuit consiste a synthétiser une fonction booléenne génératrice
d’une séquence se rapprochant au mieux d’une séquence aléatoire.

Exemple. Considérons le registre a décalage linéaire de la figure 6.4.

Additionneur
modulo-2

dhW
N

A

Flip-flop

So S1 S9 S3 Séquence
A de sortie

Y
—_
\i
(\N)

\i
w

Horloge

FIGURE 6.4 — Exemple de registre a décalage linéaire.

L’état initial du registre est supposé étre 100 (lorsqu’on lit le contenu des flip-flops de la gauche
vers la droite). Les états successifs du registre sont 100, 110, 111, 011, 101, 010, 001, 100, ... La
séquence de sortie est alors égale a 0011101..., qui se répéte; cette séquence a une période de
23 — 1 = 7 bits. Il est & noter que ’état initial est arbitraire mais non nul.

Propriétés d’une séquence de longueur maximale

Considérons des symboles 0 et 1 respectivement représentés par les niveaux —1 et +1. Les
séquences de longueur maximale ont des propriétés proches de celles des séquences binaires
purement aléatoires', & savoir une moyenne nulle et une fonction d’auto-corrélation en forme
de delta de DIRAC.

Etablissons ces propriétés. La période d’une séquence de longueur maximale est définie par

N=2"-1 (6.2)
Appelons ¢(t) 'onde résultant de la séquence de longueur maximale, comme illustré a la fi-
gure 6.5(a) pour N = 7.

La période de 'onde ¢(t) est égale a
) (6.3)

ou 7, appelée période chip, est la durée d'un bit de la séquence de longueur maximale.

Deux propriétés des séquences pseudo-aléatoires sont immeédiates :

1. L’utilisation d’une séquence réellement aléatoire ne permettrait pas de restituer le signal utile au récepteur
précisément en raison de I’aspect aléatoire!
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1. [Espérance] Pour une séquence a longueur maximale, tous les états internes des registres
sont possibles & I'exception de ’état nul (il y a 7 états internes possibles dans notre
exemple). Si 'on retire I’état avec tous les bits mis a 1, pour tout état interne il y a un
dual (les 0 sont a 1 et réciproquement). Un état et son dual fournissent en sortie des bits
de signe opposé et donc ces derniers se compensent. Pour le calcul de I’espérance, 11 ne
reste alors qu’a considérer I’état avec tous les bits a 1, qui lui fournit 1 en sortie. Dés lors,
I’espérance vaut

E{e(t)} = (6.4

Contrairement a une séquence aléatoire, I’espérance n’est pas nulle mais elle diminue avec
la taille du code d’étalement.

2. [Périodicité de la fonction d’auto-corrélation| La fonction d’autocorrélation d’une
séquence de longueur maximale est périodique.

Par I’établissement de la fonction d’autocorrélation, nous partons de la définition de la fonction
d’autocorrélation d’un signal périodique ¢(t) de période T, qui est donnée par

1 +Tb/2
oo (7) = —/ c(t)e(t + T)dr (6.5)
Ty J 1,2

ou 7 appartient a lintervalle [—7,/2,+7,/2]. En appliquant cette formule & la séquence de
longueur maximale ¢(t), on obtient

1- 7|, 7| < T.

= {17

—v ailleurs

(6.6)

Ce résultat est montré a la figure 6.5(b) pour m =3 et N = 7.

Etant donné qu’une périodicité dans le domaine temporel correspond & un échantillonnage
uniforme dans le domaine fréquentiel, et la forme de la fonction d’autocorrélation de ¢(t), on
peut déterminer la densité spectrale de puissance de ¢(t)

+o0 . n 2
) = i)+ o S () (r- ) (6.7
n=—00,n#0 N ¢

qui est représentée a la figure 6.5(c) pour m = 3 et N = 7. Au vu de ces résultats, il est

maintenant possible de comparer une séquence de longueur maximale et une séquence réellement

aléatoire :

— sur une période de la séquence de longueur maximale, la fonction d’autocorrélation de ¢(t)
est similaire & celle de la séquence aléatoire. En effet, la fonction d’autocorrélation d’une
séquence aléatoire vaut

{ 11— r <.
0 |7| > T,

Il apparait donc que les densités spectrales des deux séquences ont une méme enveloppe, a
savoir sinc*(fT).
— la différence fondamentale réside dans le fait que le spectre de la séquence aléatoire est continu
tandis que celui de la séquence de longueur maximale est composé de raies espacées de 1/NT..
Lorsque I'on augmente la valeur de NV, c’est-a-dire le longueur de la séquence de longueur maxi-
male, la séquence pseudo-aléatoire se rapproche plus d’une séquence aléatoire pure. Cependant,
le prix & payer avec une grande valeur de N, est une augmentation de la bande passante néces-
saire. Un compromis doit dés lors étre établi.

(6.8)
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FIGURE 6.5 — Propriétés d’une séquence de longueur maximale.

97



Prof. Marc Van Droogenbroeck, tous droits réservés

Choix d’une séquence de longueur maximale

La question qui se pose a présent consiste & savoir comment choisir la fonction logique du
registre & décalage pour obtenir une période désirée N. La littérature fournit des tables avec
les connections a réaliser entre les éléments du circuit pour différentes valeurs de m. Une telle
table est montrée a la figure 6.6.

Registre a décalage Configurations possibles pour la rétroaction
de longueur m
2 2.1
3 31
4 41
5 5.9, [5,4,3,2], [5,4,2,1]
6 6.1] 6.5.2.1] [6.5.3.2
7 71| 7.3, 17,3,2.11, [7,4,3,2], [7,6,4,2], [7,6,3,1],
7.6,5,2], 7,6,5.4.2,1], [7,5,4,3,2,1]
8 8.4.3.2] [8.6.5.3], [8,6,5.2], [8,5,3,1], [8,6,5,1],
8.7.6.1]. [8.7.6.5,2,1], [8.6,4,3.2,1]

FIGURE 6.6 — Table permettant de construire le registre a décalage adéquat |15, page 584].

Plus m augmente, plus il y a de possibilités de circuits.

Exemple. Considérons une séquence de longueur maximale nécessitant 1'utilisation d’'un re-
gistre de longueur m = 5. Pour cette valeur de m, nous choisissons dans la table une boucle a
rétroaction du type [5, 2]. La configuration correspondante est montrée a la figure 6.7(a). En
supposant un état initial 10000, la figure 6.2 montre I’évolution du registre pour une période
de la séquence de longueur maximale. On remarque qu’en fin de période, le registre est revenu
a son état initial. On aurait également pu choisir la configuration [5, 4, 2, 1] comme le montre
la figure 6.7(b) et on aurait une autre séquence pseudo-aléatoire de méme longueur.

6.2.3 Principe de la transmission en bande de base

Soit la séquence binaire {0} représentant 'information a transmettre. Cette séquence conduit a
définir une onde continue b(¢) par un codage de type NRZ bipolaire +1. De méme, on constitue
un signal temporel ¢(t) a partir des éléments {c;} d’une séquence pseudo-aléatoire.

[’étalement, du spectre de b(f) se réalise au moyen d’une modulation? qui n’est autre que la
multiplication de c(t) et b(t), comme le montre la figure 6.8(a).

Or, une multiplication dans le domaine temporel revient a faire une convolution dans le domaine
fréquentiel. Dés lors, si le signal b(t) est a bande étroite et que ¢(t) est a large bande, le spectre

du signal résultant
m(t) = c(t)b(t) (6.9)

sera pratiquement aussi large que celui de ¢(t). En effet,

2. Conformément & l'usage repris dans la littérature scienfitique, le terme modulation est utilisé tantot pour
décrire I’étalement, tantdt pour désigner 'opération qui fait intervenir une porteuse Ac cos(27 fet).
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Additionneur
modulo-2

-

.

\

|

J -
l

Flip-flop
- 1 - 2 - 3 - = 5 -

Séquence

A A A A de sortie

Horloge
(b)
(M (TN, AR
NP P
Flip-flop
- 1 - 2 = 3 - - 5 >

Séquence

A A A de sortie

Horloge
FIGURE 6.7 — Deux schémas possibles pour m = 5 [15, page 584].
b) mt)  mi) r(t)
{b.} —| NRZ —r"— —
c(t)
. NRZ
== it
(a) (b)
— ™ fo désision 0siv<0

(c)

FIGURE 6.8 — Modéle d’une transmission a spectre étalé en bande de base.
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Registres

1
1

1
1

0
1

0
1

1

1

1

1

07010

07010

010

010

1

1

1

1

0

0(010

170[01]0

1

11010

1

1101]0

0

0(010

0(010/0

110{0]07]0

Bit de rétroaction | 1 ‘ 0 ‘ 0 ‘ 0 ‘ 0 | Bit de sortie

TABLE 6.2 — Evolution du registre de la figure 6.7(a) au cours d’'une période de la séquence |

page 585].

)
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M(F)

+oo

= C(m)B(f —7)dr

—00

B(f) ©C(f)

(6.10)
(6.11)

Or, on effectue le produit des deux courbes et on intégre sur toutes les valeurs différentes de
zéro. On obtient dés lors un signal large bande. De plus, la figure 6.9 montre trés clairement

que la période du signal étalé est de 7. et donc la bande de base du signal étalé vaut

qui représente un signal large bande.

1

ﬁ’ ce

On dit que la séquence c(t) joue le role de code d’étalement. La formation du signal m(t) est

montrée a la figure 6.9.

Signal de données b(?)
A

+1
0

1

|j———— T} —»‘
, (a)
Code d’étalement c(t)

A
+1 -

0

-1

| |1

-~ NT, ————

Signal étalé m(t)
A

+1
0

\j

\j

1

(c)

FIGURE 6.9 — Formation du signal m(¢) par étalement du spectre de b(t).

Pour une transmission en bande de base (sans utilisation d’une porteuse), on transmet le signal

étalé m(t) sur le canal.

Le récepteur recoit le signal étalé m(¢) bruité par des interférences caractérisées par le signal
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i(t) (cf. figure 6.8(b))

r(t) = m(t

Le signal d’interférence se compose de signaux émis par d’autres utilisateurs dans la méme
bande de fréquences ainsi que du bruit.

Pour recouvrer le signal original et la séquence binaire sous-jacente, le signal regu 7 () est ap-
pliqué a I’entrée d’'un démodulateur qui consiste en une multiplication suivi d’un intégrateur et
d’un organe de décision, comme l'illustre la figure 6.8(¢). Au niveau du mélangeur, le signal regu
r(t) est multiplié par une réplique exacte de la séquence pseudo-aléatoire utilisée au récepteur.

Nous faisons I’hypothése que le récepteur travaille en synchronisme parfait avec I'émetteur. La
sortie de 1’étage de multiplication est alors donnée par

2(t) = c(t)r(t) (6.14)
= A(t)b(t) + c(t)i(t) (6.15)

Cette derniére équation montre que le signal b(¢) est multiplié deux fois par la séquence pseudo-
aléatoire c(t), tandis que le signal i(¢) n’est multiplié qu'une seule fois. Vu que ¢(¢) vaut +1 ou
—1, le signal c?() est égal a 1 pour tout instant ¢. Donc, le signal z(t) se réduit a

2(t) = b(t) + c(¥)i(t) (6.16)

Nous voyons donc que le signal b(t), qui contient I'information utile, se retrouve a la sortie
de I'étage de multiplication. Si le terme additif ¢(¢)i(¢) semble génant, il faut bien voir que
la multiplication de i(t) par le code d’étalement c(¢) a pour effet d’étaler le spectre de i(t).
Dés lors, le signal ¢(t)i(t) est a large bande tandis que le signal b(t) est & bande étroite. Ce
signal large bande contient notamment les signaux étalés des autres utilisateurs, ceux-ci étant
considérés comme du bruit.

En appliquant le signal z(¢) a 'entrée d’un filtre passe-bas, en I'occurrence l'intégrateur, la
majeure partie de ’énergie de c(t)i(t) est filtrée. L’effet de l'interférence i(¢) est donc fortement
réduit a la sortie du récepteur. En réalité, a partir du signal z(¢), tout se passe comme pour
la démodulation d’un signal numérique par le filtre adapté suivi de I'organe de décision. Le
signal b(t) est le signal numérique a démoduler et ¢(t)i(t) peut étre vu comme l’approximation
d’un bruit blanc additif gaussien. Plus la séquence pseudo-aléatoire est longue, plus cette ap-
proximation est vérifiée. Cependant, le prix a payer pour cette augmentation de la protection
contre les interférences est une augmentation de la bande passante requise, de la complexité du
systéme, ainsi que des délais.

En résumé, 'utilisation d’un code d’étalement dans I’émetteur produit un signal large bande
transmis sur le canal. Celui-ci apparait comme du bruit pour un récepteur qui n’a pas connais-
sance du code d’étalement initial.

6.2.4 Etalement direct par modulation BPSK

Nous allons a présent voir comment on peut intégrer la notion d’étalement direct de spectre

dans un systéme de modulation. Le type de modulation choisie est une modulation de phase
binaire cohérente (BPSK).
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La figure 6.10(a) montre le schéma d’un tel modulateur. Le modulateur transforme tout d’abord
la séquence {b;} en signal NRZ bipolaire pour obtenir le signal b(¢). Il y a ensuite deux étages
de modulation : le premier étage multiplie le signal b(¢) par la séquence pseudo-aléatoire c(t)
tandis que le deuxiéme étage est un modulateur BPSK. Le message transmis z(¢) est alors un
signal modulé en DS/BPSK (Direct-Sequence spread Binary Phase Shift-Keying). La phase
0(t) du signal modulé x(t) vaut 0 ou 7 selon que les signaux b(t) et ¢(t) sont de méme polarité
ou non a l'instant ¢. Un saut de phase est ainsi observé tous les 7..

Séquence de
données binaires

b Encodeur b(?) m(t) Modulateur ®)
{x} . NRZ ’<> ™ BPSKk [ ="

c(t)

Générateur
de code PN Porteuse
(a)
Détecteur cohérent
. 7. |
Signal requ | - | .
y(t) .| Modulateur Filtre | 7 ol Organe de —»1siv >0
. roduit ™| passe-bas —™1Jo > bsisi
P P : désision | (164 <0
e |
Générateur

Porteuse locale local de codé

(b)

FIGURE 6.10 — Schéma-bloc de la modulation DS/BPSK.

La figure 6.11 illustre la formation du signal modulé BPSK. La figure 6.11.(c) représente donc
le signal qui sera envoyé sur le canal pour la transmission d’un bit.

Le récepteur, illustré a la figure 6.10(b) est composé de deux étages. Au niveau du premier
étage, le signal recu y(t) est appliqué a l’entrée d’'un démodulateur cohérent BPSK, constitué
d’un mélangeur alimenté par une porteuse générée localement, suivi d’un filtre passe-bas dont
la bande passante est limitée a celle de m(t¢). Le deuxiéme étage de démodulation effectue le
“désétalement” du spectre en multipliant la sortie du filtre passe-bas par la copie exacte de la
séquence pseudo-aléatoire utilisée a ’émetteur. Le reste de la démodulation est identique a celle
utilisée pour la transmission en bande de base (filtre adapté et organe de décision).

Bruit

Remarquons que le canal de transmission contient une série de bruits, typiques pour ce genre
d’applications :

103



Prof. Marc Van Droogenbroeck, tous droits réservés

\
X

T
(a)

Porteuse
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(b)

(c)

FIGURE 6.11 — Modulation BPSK du signal.
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— un bruit blanc additif gaussien, qui modélise la présence d’une somme de bruits indépendant
entre eux.

— des interférences a bande étroite, qui viennent se “loger” dans certaines bandes de fréquence.
C’est précisément au moment de contrer ces bruits (ou signaux) parasites a bande étroite
que I'étalement direct, voire par sauts de fréquence, montre tout son intérét.

— les signaux BPSK/CDMA des autres utilisateurs. Si M représente le nombre d’utilisateurs
dans la méme bande de fréquence, on considére généralement une puissance de bruit égale a
M — 1 fois la puissance nominale d’un utilisateur.

Analyse

La figure 6.10 représente un modulateur ou I’étalement de spectre se fait avant la modula-
tion de phase numérique. Pour une analyse plus détaillée, il est intéressant d’intervertir —
conceptuellement— ces deux étapes de modulation comme le montre le schéma de la figure 6.12.
Cette permutation est licite car les opérations d’étalement de spectre et de modulation BPSK
sont des multiplications, et donc commutatives. Il en va de méme pour les opérations de démo-
dulation. Le fait de permuter les deux opérations permet de modifier la réponse impulsionnelle
du filtre adapté qui, pour rappel, est donnée par

h(t) = g(Ty — t) (6.17)

Combinant les deux opérations, ¢(t) devient cos(27f.t). La réponse impulsionnelle du filtre
adapté sera donc un cosinus retourné.

Emetteur , Canal | Récepteur

Signa} de Estimation
données b(t) Modulation Détecteur de b(t)
_ EEEE—

binaire PSK cohérent

Porteuse Porteuse locale
Générateur Générateur
de code PN local de
code PN

FIGURE 6.12 — Permutation entre étalement et modulation de phase

Les interférences sont modélisées par le signal j(¢) qui est de type passe-bande. La sortie du
canal y(t) s’exprime donc par

y(t) = (t)+4(0) (6.18)
= c(t)s(t) +j(t) (6.19)

ou s(t) est le résultat de la modulation BPSK du signal b(¢).
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Au récepteur, le signal requ y(t) est tout d’abord multiplié par la séquence pseudo-aléatoire
c(t), ce qui donne le signal

u(t) = e(ty(t) (6.20)
= 2W)s(t) +c(t)j(0) (6.21)
= s(t) + c(1)j(0) (6.22)

Cette derniére équation montre que le signal a I'entrée du démodulateur cohérent BPSK est
un signal modulé en BPSK augmenté de I'interférence ¢(¢);j(¢). La démodulation peut alors se
faire, comme pour le cas de la transmission en bande de base, en utilisant un filtre adapté suivi
d’un organe de décision, le terme d’interférence étant considéré comme un bruit blanc additif
gaussien.

6.3 Etude des performances

6.3.1 Gain d’étalement

Un calcul complet et détaillé (voir [15, page 596]) débouche sur une relation liant le rapport
signal sur bruit a la sortie et celui a ’entrée; en voici I’expression

&5 o T
ouT IN c

Le terme de 3[dB] provient du gain obtenu sur le rapport signal sur bruit en utilisant la
détection cohérente.

Définition 23 On définit le gain d’étalement (en [dB]) comme

T
GE = 10log (—b) (6.24)
T
Ce gain mesure 'impact sur le rapport signal sur bruit obtenu par usage de la technique d’éta-
lement. On constate que le gain d’étalement égale le facteur d’étalement N. Plus la séquence
d’étalement est longue, plus le gain d’étalement est important.

6.3.2 Probabilité d’erreur

Par un calcul semblable a ce qui a été fait pour la modulation BPSK (voir cours de “Principes
des téléecommunications analogiques et numériques”), il est possible de déterminer la probabilité
d’erreur pour la modulation DS/BPSK; elle vaut (cf. [15, page 597])

1 E
P, = zerfe ( [—Tb> (6.25)

ou Ej est I’énergie par bit du message b(t), T.. la durée d’un chip et I la puissance moyenne du
signal d’interférence

1 [T
=7/,

En fait, si on compare cette probabilité d’erreur a celle obtenue pour la démodulation BPSK,
tout se passe comme si le signal BPSK était plongé dans un bruit blanc gaussien de densité
spectrale de puissance égale a IT,.

I G2(t) dt (6.26)
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6.3.3 Marge d’interférence

Pour pouvoir exprimer analytiquement 'intérét de I’étalement de spectre, définissons certains

parameétres

— S[W] le niveau de puissance du signal utile, égal au produit de I’énergie par bit et de la
fréquence d’émission des bits,

— B[H~z| la largeur du canal spectral disponible,

- Ry = T%, [H z| le débit utile ou la fréquence bit du message a transmettre,

Ey[J =W X s] I’énergie par bit,

I'[WW] le niveau de puissance des signaux d’interférence (celui-ci inclus tous les types d’inter-

férences), et

— Ny [W/H?z| la densité spectrale de bruit.

On peut interpréter le rapport suivant comme un rapport du niveau d’interférence a signal utile

NoB BT, _ BJR,

I
S EJT, Ey/Ny Ey/N,

(6.27)

L

N 9 2 . N . . 2
Dés lors qu’on se fixe un rapport énergie a bruit requis au récepteur < N

) pour que le systéme
req

fonctionne correctement, on dispose d’'une marge qui, en [dB], s’exprime par

é[dB] = }% [dB] — (%)q [dB] (6.28)

Le rapport é est appelé marge d’interférence tandis que le rapport R% est le gain d’étalement.
En effet, )

B T,
= — 6.29
RCT (6.29)

Ly

No) est tout simplement égale au

Pour un gain d’étalement unitaire, la valeur du rapport <
rapport signal S & interférence /.

Exemple. Soit a transmettre un signal vocal numérique a une cadence bit de 9600 [H z]. Prenons
ensuite une largeur de canal de B = 1,2288 [M H z| telle qu’utilisée dans le systéme américain a
étalement de spectre IS-95. Pour un rapport énergie a bruit requis de 6 [dB], ce qui correspond
a une certaine probabilité d’erreur, on calcule une marge de

1,2288 x 10°
10log| ——————— ) —6=15,1[dB 6.30
&= aB] (6.30)
En conclusion, les bits d’information & la sortie du récepteur peuvent étre détectés de ma-
niére fiable méme lorsque le bruit ou les interférences a I'entrée du récepteur sont majorés de
15,1 [dB]. Cette marge disponible va donc permettre de rajouter des utilisateurs sans hypothé-
quer la qualité de la communication.

L’étalement a toutefois ses limites car il faut bien borner la valeur de /N. Pour accroitre davan-
tage encore le nombre d’utilisateurs, il est nécessaire de recourir a une technique d’étalement
de spectre avec saut de fréquence.
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6.3.4 Capacité d’un systéme & étalement de spectre

C’est une régle générale que 'utilisation d’une bande de fréquence plus large accroit la résistance
au bruit. Dés lors qu’un utilisateur est seul & utiliser un large canal, il bénéficiera d’un qualité
de transmission idéale. Une telle situation est néanmoins rare car elle entraine un gaspillage de
ressources qui ne se justifie pas. En pratique donc, un utilisateur partage le canal avec d’autres
utilisateurs. Le nombre d’utilisateurs simultanés dans une méme bande de fréquence est appelée
capacité. La proposition suivante établit un résultat important pour le calcul de la capacité des
techniques d’étalement de spectre.

Proposition 24 La capacité d’un systéme a étalement de spectre est proportionnelle au gain
d’étalement.

Pour I’établir, supposons qu’un utilisateur soit le seul & occuper la bande de fréquences. La
puissance de porteuse est alors C' = S = E,/T, = R, E,. De la méme maniére, la puissance de
bruit a ’entrée de la station de base vaut

I = BN, (6.31)

Deés lors, le rapport de la puissance de porteuse d’'un mobile a I'entrée de la station de base

vaut
C B Ry E, B Eb/NO

1 BN, B/R,

(6.32)

Soit M le nombre de mobiles traités par la cellule. En supposant que tous les émetteurs tra-
vaillent & méme niveau de puissance et en négligeant le bruit thermique, les autres mobiles
produisent une puissance d’interférence

I=C(M-1) (6.33)
ce qui conduit a

c_ 1
I M-1

(6.34)

En combinant les deux expressions de % on en déduit

WM L el (6.35)
Rb Eb/NO o Rb Eb/NO ’

On voit donc que la capacité de la cellule est bien proportionnelle au gain d’étalement -

M est donc approximativement égal & la marge d’interférence. Dans ’exemple du paragraphe
précédent, on observe un nombre d’utilisateurs égal & M = 10'°! ~ 32. On voit dés lors que,
plus on veut mettre des utilisateurs sur la méme bande de fréquences pour une méme probabilité
d’erreur, plus le gain d’étalement doit étre important et donc plus B doit étre élevé par rapport
a Ry, et donc, plus T, doit étre petit par rapport a 7. Une interprétation intéressante est
montrée a la figure 6.13; la puissance de 'utilisateur ramenée dans une bande large de W [H z]
dépasse largement la puissance d’interférence des autres utilisateurs.

Mais on peut encore faire d’autres gains permettant d’augmenter le nombre d’utilisateurs sur
une cellule. En effet, lors d’une conversation, les temps morts occupent une partie non négli-
geable du temps total. Des études ont montré que le temps de conversation est de 'ordre de
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Densité spectrale de puissance
i | Puissance = C
marge N
Puissance = C' 2 .
T (M — 1)utilisateurs
[
| - |
I w I
| |
B

FIGURE 6.13 — Interprétation de I'étalement de spectre.

35% du temps total de la communication. Comme, en pratique, on ne coupe pas instantanément
le message dés détection d’un silence, on considére plutot un facteur d’occupation o de 50%,
ce qui statistiquement méne a un nombre d’utilisateurs simultanés

B 1 1
_Rb Eb/Noa

(6.36)

A ce dernier calcul s’ajoute une autre considération relative a la directivité des antennes. Pour
une méme cellule, on place généralement plusieurs antennes (typiquement trois), chacune ayant
une directivité telle qu’elle est responsable de la couverture d’une portion de la cellule, ce qui
divise la zone de rayonnement de la cellule en plusieurs secteurs. Ceci permettrait d’augmenter
le nombre d’utilisateurs dans une méme cellule par un facteur trois, mais pour éviter un trou
de couverture, on assure un certain recouvrement (par exemple 15%). Le tout améne un gain
GG supplémentaire, égal a 3 x 0,85, conduisant a une valeur de M de

B 1 1

M~ — —
Rb Eb/NO «

(6.37)

Enfin, considérant trois cellules trisectorielles, la technique de CDM implique 'utilisation des
mémes fréquences pour toutes les cellules (on utilise toute la bande passante), ce qui implique
un certain recouvrement qui se traduit par un facteur de réutilisation de fréquence F inférieur
a 'unité.

Surface utile

e = - 6.38
Surface géographique totale (6.38)
Ce qui donne 'estimation suivante pour le nombre d’utilisateurs par cellule
B 1 1
(6.39)

By — — GF,
Rb Eb/NO «

Pour le GSM, F, ~ 1.
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Chapitre 7

Multiplexage et accés au multiplex

7.1 Introduction

La paire torsadée qui relie un abonné au central téléphonique est habituellement dédiée & un
utilisateur unique !. Cet utilisateur peut dés lors, & sa guise et & toute heure, utiliser la totalité
du spectre fréquentiel ; par ailleurs, la technologie ADSL en tire profit. Cette souplesse a un prix
car, la ligne restant inactive pendant une tres longue période, I'utilisation moyenne de quelques
dizaines de minutes par jour doit suffire & rentabiliser I’investissement consenti par I’opérateur.

7.1.1 Multiplexage

Dans I’air ou sur un réseau de télédistribution, le partage du spectre et le partage temporel
des ressources font partie intégrante du dimensionnement du réseau. Ces partages résultent de
procédés de multiplexage qui consistent a combiner plusieurs signaux pour les transmettre
sur un meéme support.

Historiquement, on en distingue principalement deux :

— le multiplexage en fréquences (Frequency Division Multiplexing - FDM). Cette technique de
multiplexage alloue une bande de fréquences spécifique a chaque signal.

— le multiplexage temporel (Time Division Multiplexing - TDM). Il consiste & réguler les moments
d’occupation du canal pour chaque signal.

La technique plus récente du multiplexage par étalement de spectre a ouvert de nouvelles voies

pour le partage de ressources. Cette technique réalise a la fois un partage fréquentiel et temporel.

Pour étre complet, signalons qu’il existe des techniques de multiplexage propres a certains
supports. Ainsi, dans le domaine de la transmission par fibre optique, on a développé des
techniques de multiplexage par longueurs d’onde (Wave Division Multiplexing - WDM) avec
quelques variantes particuliérement adaptées a la transmission a trés haut débit (Dense Wave
Division Multiplexing - DWDM) .

7.1.2 Accés multiple

Dés lors qu’il y a multiplexage et donc partage des ressources, il convient de définir

1. Dans de trés rares cas, il existe des concentrateurs de lignes qui combinent des signaux entre les abonnés
et le central téléphonique.
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— des moyens techniques pour accéder a ces ressources individuelles. On parle de méthodes
d’accés telles que le FDMA (la lettre A désignant Access), TDMA, CDMA, . ..

— des stratégies pour disposer du canal. C’est par le biais de stratégies qu’on espére atteindre
au haut de performance (haut débit, faible délai, faible taux de congestion, . ..). La question
des stratégies ne sera pas abordée ici.

7.2 Multiplexage par répartition en fréquences

7.2.1 Principe

L’utilisation de certains supports de transmission exige un partage adéquat des ressources fré-
quentielles. La technique de multiplexage par répartition en fréquences consiste a former un
signal composite par translation fréquentielle de certains signaux. La figure 7.1 en illustre le
principe. On dispose d’une série de signaux X;(f) en bande de base a transmettre simulta-

Xi(f)
o Ay
f i A
Xo(f)
o LI &
P - A

Xs(f)
~@_/\ [N —
f i — /s £ 4

Signal multiplexé

FALIAIALLZN
—fs ~hh-h H £ £ 7

FIGURE 7.1 — Principe du multiplexage en fréquence.

nément. Au moyen de mélangeurs accordés a des fréquences spécifiques, le spectre de chaque
signal est déplacé le long de I'axe des fréquences et ajouté au signal multiplex de maniére a
couvrir une certaine plage fréquentielle, tout en évitant un chevauchement en ménageant des
bandes de garde entre les signaux.

Le signal multiplexé est transmis au récepteur qui doit extraire un a un tous les signaux au
moyen de mélangeurs accordés aux mémes fréquences qu’a I’émission. Le principe est identique
a celui d’'une démodulation cohérente (voir figure 7.2).
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Signal multiplexé

i f2
X
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(¢

&
4
e EIa

FIGURE 7.2 — Principe du démultiplexage en fréquence.
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7.2.2 Bande passante

La bande totale du signal est la somme des bandes des signaux augmentée de bandes de garde
destinée a protéger le multiplex ainsi constitué des signaux voisins.

La borne inférieure de la bande passante est fournie par la somme des bandes des messages
constituants. Ainsi, soit 1/ la bande totale et 1W; les bandes individuelles,

W=y W, (7.1)

7.2.3 Accés au multiplex

La question de I'accés (FDMA) est relativement simple car c’est la fréquence porteuse du signal
W; dans le multiplex qui permet de sélectionner un signal. Cette allocation est généralement
statique. Le partage fréquentiel des ressources est illustré a la figure 7.3.

Fréquence

[] Utilisateur 1
[ ] Utilisateur 2
Canal physique —}= B (1 Non occupé

A,B,C : porteuses

Temps

FIGURE 7.3 — Partage des ressources par multiplexage en fréquence : le FDMA (Frequency
Division Multiple Access).

7.2.4 Exemple : multiplex de téléphonie analogique entre centraux

En téléphonie, avant 'introduction du numérique, le moyen le plus économique de transmettre
des signaux analogiques sur de longues distances a consisté & assembler des signaux modulés
en amplitude & bande latérale unique par multiplexage fréquentiel. Le CCITT ? a ainsi défini
des normes pour l'assemblage de 12 jusqu’a pas moins de 10.000 canaux vocaux. Dans ces
schémas, on réserve un canal large de 4 [k H z] pour un signal vocal occupant une bande de 300
a 3400 [H z]. Ce schéma est illustré a la figure 7.4.

Le groupe de base est constitué suivant la régle
fe=60+4n[kHz], ne{l,... 12} (7.2)

ou chaque signal est modulé par une modulation a bande latérale résiduelle. Les groupes sont
ensuite rassemblés pour former des super-groupes et ainsi de suite. Le second échelon de la
hiérarchie est représenté a la figure 7.5.

2. Le CCITT est ’ancien nom de I'ITU section T.
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Fréquence porteuse Fréquence porteuse
des voix (en kHz) des groupes (en kHz)
\\\ 108 kHz \\\
108— 12 6125 22 k3t

104— 1T 564 4 456

100— 10 516 3 408

9%6— 9 468 [ 2 360

92— 8 420 T 1379
88— 7
84— 6
80— 5

76— 4 Supergroupe

4 kHz 72— 3 de 5 groupes
) 68— 2
0 64— 1T

T 60
1 voix

Groupe basique
de 12 voix

FIGURE 7.4 — Les étapes de constitution d’un groupe de base et d’un super-groupe.

groupes basiques fréquences porteuses

> 612A

I
564 A
1
I
468 A
I
I
4204
6 108 411.9
groupe No%/ ‘ 3 4 ‘
1 1 1 1
408 456 552

516 A
|
|
‘ 5
1
504

T LAY

9
312 360 kHz

FIGURE 7.5 — Constitution de super-groupes |17, page 122].
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7.3 Multiplexage par répartition temporelle

7.3.1 Principe

Le multiplexage par répartition temporelle (TDM, Time Division Multiplexing) est une technique
de traitement de données par mélange temporel ayant pour but de permettre I’acheminement
sur un méme canal (appelé voie haute vitesse HV), un ensemble d’informations provenant
de différents canaux a faibles débits (appelés voies basses vitesses BV) lorsque celles-ci doivent
communiquer simultanément d’un méme point de départ & un méme point d’arrivée. Le principe
est illustré a la figure 7.6.

1 | / 1
M M
2 | U U 2
ko | Voie HV| &
Voies BV I I
P P
L L

FIGURE 7.6 — Schéma de multiplexage temporel.

A Dautre bout de I'acheminement, un démultiplexeur opére a l'inverse. Ce multiplexage est
dit temporel dans la mesure ou les données correspondant & chaque voie sont intercalés dans
le temps. Ainsi circulent séquentiellement et cycliquement sur la voie HV des informations
appartenant a différentes sources (cf. figure 7.7).

lére information des 2éme information des
/ voies 1 a N \ / voies 1 a N \
[TIZ3 AN [T Z][3 ][]

"mots" contenant
I'information de chaque voie

FIGURE 7.7 — Structure temporelle de multiplexage par répartition temporelle des ressources.

Le multiplexage peut étre effectué soit aprés l'opération d’échantillonnage de chaque voie et
avant le codage, soit aprés celui-ci.

Lors du démultiplexage des voies, c’est-a-dire de la ré-affectation des données en fonction de
leur source d’origine, il faut que ’on puisse distinguer les différents échantillons. Pour cela,
on intercale dans la succession de données un mot de repére, dont 'occurrence est égale a la
période d’échantillonnage (figure 7.8).

[’ensemble constitué du mot de repére et de I'information de méme rang pour toutes les voies
est appelé trame. Sa durée est égale a 7.

7.3.2 Bande passante

Le multiplexage par répartition temporelle s’analyse le plus facilement en considérant la fi-
gure 7.9(a). On suppose que toutes les sources d’information sont échantillonnées a la fréquence
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mots de repére

— T~

| et 3p N JJU[f2]f3[{N|

T,
FIGURE 7.8 — Mot de repére.

de NYQUIST ou a une fréquence supérieure. Un commutateur entrelace les données suivant un
ordre préétabli. Le méme ordre permet de désentrelacer les données.

source 1 synchronisation utilisateur 1
2T T T T T AN
7 N
7 N
N

N

7
source 2 { .—éo \ canal '—) utilisateur 2

source N / signal en bande de base \ utilisateur N

52
S1 SN

@51
SN S1

I I ..... ﬂ ..... T -

FIGURE 7.9 — Schéma de multiplexage temporel.

Si tous les signaux sont échantillonnés a une méme fréquence, le commutateur passe réguliére-
ment d’un signal a 'autre. Dans le cas de signaux échantillonnés a des fréquences différentes,
les signaux les plus larges en bande de base prennent une partie plus significative du multiplex.

La bande de base minimale pour un systéme TDM se détermine aisément. Supposons que 1’on
travaille a la fréquence de NYQUIST pour tous les signaux. Pendant l'intervalle de temps 7', le
signal 7 fournit 21/;T" échantillons. Le total pour tous les signaux vaut donc

ne =Y 2W,T (7.3)

Si le signal final est en bande de base et que cette bande vaut W, il faut impérativement 211/
échantillons au moins pour le caractériser. Pour I'intervalle 7', on a donc

ne =2WT =Y 2W,T (7.4)

Deés lors,

w=> W (7.5)
ce qui est rigoureusement identique au cas du multiplexage FDM.
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7.3.3 Accés au multiplex

Tout comme pour le FDM, I’accés est généralement statique. Néanmoins, le TDM offre un
moyen aisé de transmettre des informations individuelles & des débits différents. Le schéma
d’acces doit alors étre convenu entre 'extrémité émettrice et 'extrémité réceptrice. Le schéma
de partage par répartition temporelle est illustré a la figure 7.10.

Canal physique

¢ [ Utilisateur 1
[] Utilisateur 2
[ ] Non occupé
1,2,3,4 : timeslots

Fréquence

Temps

FIGURE 7.10 — Partage des ressources par multiplexage en temps : le TDMA (Time Division
Multiple Access).

7.3.4 Exemple de multiplexage temporel : systéme téléphonique nu-
mérique PCM 30 voies européen

Caractéristiques

Il permet de transmettre simultanément sur un méme support 30 voies téléphoniques classiques :

— B = bande passante du signal & coder = 300 — 3400 [H 2] et f. = 8[kH z].

— numérisation PCM avec loi A (=87,6) de compression 13 segments sur 8 bits, Dy, = débit
basse vitesse = 64 [kb/s].

— multiplexage temporel a 32 intervalles de temps (IT) comprenant un IT de verrouillage de
trame (VT) et un IT de signalisation (SI).

Structure de la trame

Elle est découpée en 32 I'T, chacun composé d’un octet (8 bits), numérotés de 0 a 31 (figure 7.11).

(0 [ T [ 2 [ o] 16 [ o] 30 [ 31|

FIGURE 7.11 — Structure de la trame.

La période d’échantillonnage T, = 1/ f. = 125 [us], correspond a la durée de la trame. Chaque
IT posséde une durée égale a t; = 13225 = 3,9 [us|. Chaque bit dure T, = ‘%9 = 488 [ns]. Ces
valeurs sont représentées a la figure 7.12.

Le débit de la voie HV composée de 30 voies est donc D = 32 x 8 x 8 = 2048 [kb/s| =
2,048 [Mb/s]. On parle de trame & 2 [Mb/s]
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0 [ 1 | 2 [... | 16 | ... | 30 | 31 |

(TT2[ 3145 [617[s) 3,99

488[ns]

FIGURE 7.12 — Structure de la trame au niveau bit.

Role des IT

— LesIT de 1 a 15 et 17 & 31 sont affectés aux voies de parole téléphonique ou a la transmission
numérique (données, fax, ...). Ils ont chacun un débit de 64 [kb/s].

— L’ITO contient le mot de repére évoqué précédemment, appelé mot de verrouillage de trame,
et noté VT. Il ne joue pas le méme role selon qu’il se situe dans une trame paire ou impaire.
Le verrouillage de trame permet de synchroniser les équipements de réception sur le cycle des
données émises a la mise en marche du systéme, puis d’'une maniére périodique afin de vérifier
le synchronisme du fonctionnement général. Dans ce cas précis, on parle de verrouillage
regroupé, c’est-a-dire dont les informations sont groupées dans un méme IT en téte de trame.
Il existe un autre type de verrouillage dit réparti si le mot posséde des informations localisées
dans plusieurs I'T différents, ou bien sur plusieurs trames différentes.

— L'IT16 est réservé a la signalisation des 30 voies. Celle-ci a pour but de transmettre les
informations relatives ou pas aux données (maintenance des systémes, tests, commandes,
gestion du réseau...), pour la commande des opérations de commutation. Elle est ici de
type “hors octet regroupé”, c’est-a-dire regroupé dans I'I'T 16. Chaque IT16 a pour role la
signalisation simultanée de deux voies. Il faut donc 15 IT16, soit 15 trames, pour signaliser
toutes les voies de données. [L’ensemble de ces 15 trames, auxquelles on ajoute une 16-iéme
trame appelée trame 0, constitue une multitrame. Cette trame 0 comprend dans I'TT16 un
mot de repére, appelé mot de verrouillage multitrame (VMT) nécessaire lors du multiplexage
a la synchronisation des trames. Il occupe les quatre premiers bits de cet IT (figure 7.13).

7.4 Multiplexage par répartition de codes

Le principe de base est celui de ’étalement de spectre. Le multiplexage par répartition de codes
ne nécessite ni une allocation fixe des fréquences comme en FDM, ni un séquencement strict
comme en TDM, comme le montre la figure 7.14.

Le facteur limitatif le plus important est celui des intercorrélations entre utilisateurs deés lors
que les utilisateurs recourent a des codes distincts. Considérons, pour I'analyse, la situation de
la figure 7.15.

On prend le cas le plus défavorable de deux utilisateurs i et j parfaitement en phase et travaillant
a la méme fréquence. On cherche & déterminer l'effet d’interférence diu a l'utilisateur 7 a la
sortie du récepteur j. Soit b;(t) la séquence (en forme bipolaire —1, +1) de 'utilisateur 7. Soit
un décalage 7 entre les horloges de référence des deux utilisateurs. On montre aisément que
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125]us]

MULTITRAME

T0|T1|T2(T3|T4

TH5\T6|T7|T8|TI[10[I'11{IM2[M113['14[I'15

125[us]
[T T UT | T [T
112 16 31
73, 90us]
171415

[ XoJoJ1[1]o[1[1} [O[0]OJO[X O[ XX [ P[1]2[3]4]5[6]7]
Mot alterné - Mot VMT 30 voies téléphoniques
1 trame sur 2 IT16 trame T'1
|X]1|(I>|X]X]X|X|X] |a|b|c|d|a’|b’|c’|d’| X : bits libres

= P Signalisation Signalisation

Voie 1 Voie 16 d : bits d’alarmes

488[ns]

/

Fréquence

IT16 trame T2
La[b]c|d]a]b] ] d]
Signalisation . Signalisation

Voie 2 Voie 17

IT16 trame 1715
lalblc]d]alb]]d]

Signalisation Signalisation

Voie 15 Voie 30

FIGURE 7.13 — Multitrame (d’aprés [9]).

Code

| Canal physique

[ ] Utilisateur 1
[] Utilisateur 2
[ 1Non occupé

\
Temps

AN

FIGURE 7.14 — Multiplexage de ressources par répartition de code (Code Division Multiple

Access).
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utilisateur 5 utilisateur;

bi(t — ) =
i(t—T) c;(t)
Transmetteur du Transmetteur du
i éme utilisateur j éme utilisateur
cos (27 fet)  cos (2w fot)
== 5
\
/
y
P
cos (2w fet)  cos (27 fet)
ci(t—1) c;(t)
] Récepteur du
Uj

Récepteur du o
' ' j éme utilisateur

1 éme utilisateur
organe oo . organe
g, " l<—seuil 4 0 seuil & 0— | g )
décision décision
soit 1 si  soit 0 si

soit 1 si  soit 0 si

v; >0 v; <0 v; >0  v; <0

FIGURE 7.15 — Schéma d’analyse pour l'intercorrélation des séquences étalées
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I'interférence de 7 a I’entrée de ’organe de décision de j vaut
T,
Uj(T)ij (t):O = / bi (t — T)Cj(t)cz' (t — T)dt (76)
0

— i/Tb cj(t)ei(t — 7)dt (7.7)

On peut choisir de réécrire cette équation sous la forme
Uj(T)ij(t):() = ZIZTijz‘(T) (7.8)

ou
1

Lji(r) = T

T,
/ cj(t)ei(t — T)dt (7.9)
0
Cette moyenne temporelle est appelée fonction d’intercorrélation partielle. Pour avoir une in-
terférence nulle, il faudrait que cette fonction soit nulle pour toute valeur 7. En général, les sé-
quences a longueur maximale n’ont pas de bonnes propriétés d’intercorrélation partielle comme
le montre la figure 7.16; la fonction d’intercorrélation est loin d’étre nulle pour toute valeur de
UTa

20

15+ 4

10—+ 4

-10 1 -+

15+ -+

-20 LU I I I I I I
-60 -40 -20 0 20 40 60

Delai 7

FIGURE 7.16 — Fonction d’intercorrélation de deux séquences pseudo-aléatoires de période N =
63 ([6, 1] et [6, 5, 2, 1]) (d’aprés [15, page 608]).

7.4.1 Séquences de GOLD

En pratique, les séquences a longueur maximale sont de piétres candidats pour une utilisation
partagée. On utilise plutot une classe de codes particuliére appelée séquences de GoOLD. 1l
est, possible de montrer qu’un choix précis des séquences a longueur maximale conduit a des
séquences de GOLD dont la fonction d’intercorrélation n’a que trois valeurs distinctes.
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Le bon sens impose que chaque utilisateur ait son propre code. On peut néanmoins montrer |16,
page 128] qu’a la condition d’avoir des émetteurs dont les phases sont non corrélées, la trans-
mission est possible en présence d’utilisateurs recourant tous a un code unique.

7.5 Discussion

7.5.1 Combinaison de techniques de multiplexage

Les techniques de multiplexage ne sont pas nécessairement utilisées isolément. En effet, dans le
cas pratique du GSM, 'opérateur alloue une série de canaux fréquentiels. Ces canaux sont ensuite
partagés entre utilisateurs par multiplexage a répartition temporelle. On parle de technique
FD/TDMA. Un tel schéma est illustré a la figure 7.17. De plus, il y a séparation des bandes
de fréquence suivant que le signal va de la station de base vers I'utilisateur ou I'inverse. Cette
technique est parfois appelée FDD/TDD (le second D signifiant Duplex).

Fréquence

e [] Utilisateur 1
[] Utilisateur 2
B (1 Non occupé
1,2,3,4 : timeslots
1121314112134 A A,B,C : porteuses

Temps

FIGURE 7.17 — Partage de ressources par multiplexage en temps et en fréquence, combinaison
du TDMA et du FDMA.

Dans le cas du standard américain 1S-95, le multiplexage temporel est remplacé par un multi-
plexage par spectre étalé; il s’agit alors de FD/CDMA.

7.5.2 Comparaison de normes de mobilophonie

Le tableau 7.1 compare les principaux standards de communications pour mobiles.
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Systéme ‘

GSM

DCS-1800

[5-54

15-95 (DS)

Mode d’accés

[ TDMA/FDMA | TDMA /FDMA | TDMA/FDMA | CDMA /FDMA

Bande de fréquence

Montée (Mhz) 935-960 1710-1785 869-894 869-894

Descente (Mhz) 890-915 1805-1880 824-849 824-849
(Europe) (Europe) (USA) (USA)

Espacement des canaux

Descente (kHz) 200 200 30 1250

Montée (kHz) 200 200 30 1250

Modulation GMSK GMSK 7/4 DQPSK BPSK/QPSK

Puissance du mobile

Max./Moyenne 1W/125mW IW/125mW | 600mW /200mW 600mW

Codage de voix RPE-LTP RPE-LTP VSELP QCELP

Débit voix (kb/s) 13 13 7,95 8 (var.)

Débit binaire canal

Montée (kb/s) 270,833 270,833 18,6

Descente (kb/s) 270,833 270,833 48,6

Trame (ms) 4,615 4,615 40 20

TABLE 7.1 — Comparaison de standards de communication pour mobiles.
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Chapitre 8

Etude du trafic

8.1 Introduction

La difficulté majeure de I’exploitation d’un réseau consiste en son dimensionnement. En effet,
tout est question de compromis entre le risque de blocage dii & une occupation de toutes les
ressources et le coiit qu’entraine un sur-dimensionnement d’un réseau.

Le réseau téléphonique est critique du point de vue de la gestion du trafic, en raison de sa
structure de réseau commuté (cf. illustration a la figure 8.1). En effet, une communication
occupe une voie de bout en bout pour la totalité de la durée d’'un appel. Il faut donc éviter
qu'un commutateur n’ait plus aucun circuit disponible lors de I’établissement d’un nouvel appel.

Commutateur
Commutateur local intermédiaire Commutateur local
e o —e oI— —e oI
® @ — 'l e o—— —l e o——
—1 e o—— —l e o—— —1 o o——
e e e e — e oI—

— Te $1- e $1- e SI— —
[\ oo oo — - r o8 [\
— e eI —e eo1— — e eoI—

Téléphone e o o o —T° o1 14
b o o o o “Te eol— Téléphone
e o e o —re &1
e e e e —1 e o——
fils de cuivre fibre optique lien aérien fils de cuivre

FIGURE 8.1 — Structure d’un réseau commuté

La question ne pourra se résoudre qu’en termes statistiques. Il semble en effet impensable de
fournir une ligne & chaque utilisateur. En général, on met en place /V lignes, dont le nombre est
nettement inférieur au nombre d’utilisateurs, que les différents utilisateurs doivent se partager.
Il arrive alors qu’un utilisateur, voulant accéder au réseau, trouve toutes les lignes occupées.
Ce phénomeéne s’appelle congestion du réseau. Toute la problématique du dimensionnement du
réseau est donc de déterminer le nombre de lignes /N & installer pour que la probabilité de
congestion du réseau soit inférieure & une certaine probabilité (par exemple 0,01 ou 0,02). Pour
cela, on devra tenir compte de la maniére dont les utilisateurs utilisent le réseau, par exemple,
en prenant en compte le nombre moyen d’appels observés pendant un certain laps de temps et
la durée moyenne des appels.
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Ce chapitre traite principalement le cas d’un faisceau entre deux commutateurs. Le dimension-
nement d’un réseau de commutateurs interconnectés reléve d’'une analyse approfondie du trafic
et d’une réelle optimisation des ressources.

8.1.1 Caractérisation du trafic

Une classification simple des techniques d’analyse du trafic différencie les systémes a perte
et les systémes a délai. Dans un systéme a perte, une tentative d’appel survenant lors d’une
congestion est ignorée. Un systéme a délai mémorise les appels excédentaires dans une queue
jusqu’a la libération d’une ressource.

Une communication téléphonique nécessite ’établissement d’un circuit. Un circuit est un che-
min de commutation fixe pour la totalité de la durée de la communication. Il doit étre établi,
maintenu et relaché en fin de communication. [’établissement et le relachement de la commu-
nication s’effectuent au moyen de signaux de signalisation. La gestion du trafic téléphonique se
fait généralement par un systéme a perte!.

Contrairement a4 une communication téléphonique, les données (Internet, ...) sont envoyées
par un mécanisme de transmission par paquets. Les routeurs, centres de commutation pour les
paquets d’information Internet, gérent une mémoire limitée, organisée en plusieurs queues. La
gestion de ces queues est complexe et elle introduit un délai aléatoire de transmission. Il arrive
également qu'un routeur supprime certains paquets en raison d’un manque de ressources.

Intensité, trafic et charge : quelles mesures ?

Un réseau téléphonique est constitué de deux types de lignes :

— les lignes ou vont transiter les communications ou les données,

— les lignes ou va transiter la signalisation nécessaire a I’établissement de la liaison entre deux
terminaux.

Pour le dimensionnement, on ne considére que les lignes transportant 'information des utilisa-

teurs (& 'exclusion des lignes utilisées par exemple pour la gestion du réseau ou la signalisation).

On supposera disposer d’un faisceau & N canaux entre deux commutateurs (cf. figure 8.2). Le

dimensionnement consiste a trouver une relation entre la charge du réseau et la probabilité de

congestion.

La nature aléatoire du trafic s’exprime par le biais de deux processus stochastiques : les ten-
tatives d’appel et le temps de communication. On suppose habituellement qu’une tentative
d’appel d’'un utilisateur est indépendante de toute tentative d’'un autre utilisateur. Dés lors, le
nombre de tentatives d’appel pendant tout intervalle de temps est indéterminé. Dans la ma-
jorité des cas, le temps de communication est également aléatoire. Aussi, la charge de trafic
d’un réseau est fonction de la fréquence des appels et du temps moyen de communication. La
figure 8.3 montre le profil d’activité d’un faisceau composé de 5 lignes.

Pour mesurer la capacité du faisceau, on pourrait prendre le volume de trafic écoulé pendant la
période d’observation ; il s’agirait dans ce cas de I'intégrale du nombre de communications ins-
tantanées, tel que représenté a la figure 8.3. En pratique, on préfére utiliser la notion d’intensité
de trafic.

1. Sauf pour les appels prioritaires pour lesquels le systéme libére les circuits nécessaires.
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FIGURE 8.2 — Faisceau entre deux commutateurs.

Profil d’utilisation des lignes
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FIGURE 8.3 — Profil d’activité d’un faisceau composé de 5 lignes.
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Définition 25 [Intensité du trafic écoulé] L’intensité du trafic écoulé I est le rapport entre
le volume du trafic observé et la période d’observation T

En fait, I'intensité telle que définie ci-avant est un estimateur du trafic écoulé ; en toute rigueur,
il faudrait augmenter indéfiniment la période 7" pour éliminer tout “effet de bord”. Soit T, la
période d’observation?. La fonction indicatrice 1;(¢) du circuit i vaut 1 si le circuit est utilisé
au temps t; elle vaut 0 sinon. Pour un faisceau de N circuits, l'intensité vaut alors

_ L X uwdt B fy L
B T B T
L’intensité de trafic représente donc I’occupation moyenne du lien durant une certaine période.
Bien que l'intensité soit adimensionnelle, comme ’expression d’un rapport entre deux temps,
on parle d’ERLANG, noté [E], du nom du théoricien Danois, pére de la théorie. Remarquons
que la capacité maximale d’un circuit est de 1 ERLANG. Dans un systéme a perte, la capacité
n’excéde jamais le nombre de circuits.

I (8.1)

En pratique, on utilise deux parameétres importants pour caractériser le trafic :
1. le taux moyen d’appels entrants )., mesuré en |[appels/s],

2. la durée moyenne d’un appel ¢,,, en [s/appel|. Si #7 représente le nombre d’appels effec-
tués pendant l'intervalle de temps 7°, alors la durée moyenne vaut

Zz’]\il foT 1i(t)dt

0 (8.2)

e, =

Charge. Ces deux paramétres permettent de définir la charge.

Définition 26 [Charge de trafic écoulé] On définit la charge écoulée d’un faisceau, expri-
mée en ERLANG, comme le produit du tauz d’appels entrants par la durée moyenne d’appel. On
la note A,.

Ae = et (8.3)

Il est important de remarquer que 1’on exclut, dans la charge, la charge due a la signalisation.
D’autre part, la charge, qui est une combinaison de deux paramétres moyens, ne fournit aucune
information quant & une corrélation éventuelle entre le taux d’appel et la durée.

Exemple : ’analyse des appels d'une société révele un taux d’appel de 40 appels par heure et
une durée moyenne par appel de 5 minutes. La charge vaut donc

40 200
o X5 = o5 =3.3[E] (8.4)

ce qui signifie qu’il y a en moyenne 3,3 lignes occupées si la distribution est uniforme.

Charge de référence. La charge maximale disponible sur un faisceau a /N liens vaut théo-
riquement /N. Elle correspond & une occupation permanente des canaux. En pratique, comme
les appels ont lieu de maniére aléatoire, il arrive que le faisceau soit congestionné, c’est-a-dire
que les N liens soient occupés. La charge pratique est donc inférieure a N.

Lors de I’étude du trafic, il faut distinguer deux types de charge :

2. 1l s’agit typiquement d’une période de 15 minutes.
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1. la charge offerte, c’est la charge qui serait transportée par le réseau s’il pouvait honorer
toutes les demandes de connexion.

2. la charge écoulée; la charge réellement mesurée dans le réseau.
La charge offerte est utilisée dans la définition de la charge A.

Définition 27 La charge offerte A vaut
A= M, (8.5)

ot A est le taur moyen de tentatives d’appels.

Par construction, la charge écoulée est inférieure & N. La charge offerte est théoriquement sans
limite. La probabilité de rejet, notée B, s’écrira comme le quotient du nombre d’appels rejetés
au nombre de tentatives n (n. est le nombre d’appels acceptés) dans tout intervalle de temps,
par exemple la durée moyenne de communications. Ainsi,

—’fLe_A—Ae
n A

Le nombre de canaux nécessaire pour assurer une borne maximale a la probabilité de rejet d'un
appel en raison d’une congestion momentanée est principalement une fonction de la charge
maximale souhaitée par 'opérateur du réseau. Comme cette charge fluctue au cours du temps,
il est d’usage de choisir une charge de référence pour une heure de pointe, représentant la
charge a allouer par utilisateur. Par exemple, on considére que le probabilité qu’'un utilisateur
occupe une ligne en heure de pointe est de 'ordre de 0,02 a 0, 1. Cela revient & admettre que le
réseau doit réserver une capacité Ay de 0,02 a 0, 1 [E] par utilisateur. Dés lors, le nombre total
d’utilisateurs ayant accés au réseau en heure de pointe, pour une probabilité de blocage fixée,
vaut

n
B =

(8.6)

A

M = i (8.7)
Une derniére remarque s’impose. Lors du dimensionnement d’un réseau d’entreprise, il importe
de tenir compte de plusieurs types de trafic. A défaut de renseignement statistique sur le trafic
téléphonique d’une entreprise, on formule I’hypothése suivante (valeurs statistiques admises par
la profession, d’aprés [29, page 27|) : le trafic d’un poste, & I'heure de pointe, est en moyenne
considéré comme étant égal a 0, 12 [E] se répartissant comme suit, :
— 0,04 [E] en trafic sortant,
— 0,04 [E] en trafic entrant,
— 0,04 [E] en trafic interne a l’entreprise.

8.2 Analyse statistique des appels

Un réseau peut étre dimensionné de plusieurs facons. Dans un certain cas, il faut pouvoir
accepter un accés simultané pour tous les utilisateurs. Ce systéme, pour performant qu’il soit,
est extrémement cotiteux. Une approche plus réaliste consiste & dimensionner un réseau sur
base d’une capacité commercialement souhaitable en période de pointe. Comme préalable se
pose alors la question de déterminer les paramétres de dimensionnement.

Pour rappel, pour calculer la capacité d’un réseau téléphonique, il faut tenir compte de deux
parametres :
1. le nombre de tentatives d’appels durant une période déterminée et

2. la durée des appels.
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8.2.1 Processus de dénombrement

Pour la modélisation de la distribution des appels, nous allons partir d'un processus aléatoire de
dénombrement ou de comptage D(¢) qui détermine pour tout temps ¢ le nombre d’appels initiés
aprés t = 0. Autrement dit, D(¢) compte le nombre d’appels effectués pendant I'intervalle |0, ¢].
Il s’agit bien évidemment d’un processus a valeurs entiéres dont les réalisations se représentent
sous la forme d’une fonction en escaliers. A la figure 8.4, on constate qu’au temps t = SAT,
cing appels ont été initiés.

D(t) Ds

I -/

— NN W o Ot
|
|

= =
AT

FIGURE 8.4 — Réalisations d’un processus de comptage.

Plutot que cette courbe, ¢’est le nombre d’occurrences pendant tout intervalle [, ¢5] qui nous in-
téresse ; aprés tout, on devra bien se choisir une durée typique pour I’analyse. Imaginons que ’'on
puisse découper I’axe temporel en intervalles de largeur AT tellement étroits qu’ils contiennent
tout au plus une occurrence. Chacun de ces intervalles, référencés par |nAT, (n + 1)AT], est
le lieu d’une variable aléatoire binaire D,,. Dés lors, D,, = 1 implique qu’une tentative d’appel
a été menée pendant l'intervalle de temps |[nAT, (n + 1)AT], D,, = 0 mentionne qu’aucune
tentative d’appel n’a été menée pendant cet intervalle. A supposer que ces variables aléatoires
soient indépendantes, la résultante n’est autre qu'une loi binomiale.

Par généralisation, pour toute constante positive A > 0, il est possible de choisir une valeur pour
AT telle que AAT < 1 (pour pouvoir définir une probabilité). Si AAT représente la probabilité
de réussite * de chacune des variables Dy, D>, ..., considérant un intervalle de temps 7' = mAT,
on obtient les probabilités suivantes :

1. probabilité d’avoir n tentatives d’appels pendant la durée 7" et donc sur les m intervalles
de temps AT (n réussites pour la loi binomiale) :

(AAT)" = (E) (8.8)

m

2. probabilité d’avoir m — n intervalles de temps AT sans tentative d’appel (m — n échecs)

(1= AAT)™" — (1 - £>m_n (8.9)

m

3. Et donc (1 — MAT) représente I’absence de tentative.
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Le nombre d’occurrences D,,, obtenues pendant un intervalle de temps 1" = m/AT obéit dés lors
a la fonction de densité de probabilité suivante (loi binomiale)

C”(A—T)n(l—A—T)mfn n=0,1,...,m

= Dm = = m m m ) ? ) 810
Fouln) =p(On =) = { ¢ (R (A1)
ou O], = n,(#ln), La variable aléatoire D,,, représentant le nombre de tentatives d’appel

pendant I'intervalle de temps 7', est une variable aléatoire binomiale de moyenne m(%) = AT
Le paramétre A représente donc le nombre moyen de tentatives d’appels par unité de temps
tandis que AT représente le nombre moyen de tentatives d’appels sur l'intervalle de temps 7.

8.2.2 Variable aléatoire de POISSON : définition et propriétés

Le développement précédent présuppose une durée particuliére AT'. Il est intéressant d’examiner
le comportement lorsque m — +o00, c¢’est-a-dire lorsque AT — 0.

La densité de probabilité du dénombrement (relation 8.10) peut s’écrire sous la forme suivante,
pour n =20, 1, ..., m,

fo.(n) = Cp <£>n (1 - A—T> o (8.11)

m m

- T (%T) (1 - %T)m 12

_ m(m-1). .T.L!(m —n+1) (AmY;)" (1 ~ %T) . (8.13)
_ m(ml).%r.ﬂgmn+1) (/\Z;)n (1)‘%) ) (8.14)

Le premier facteur de ce produit contient n termes au numérateur et également n termes au

dénominateur. De plus, a mesure que m — +o0o, chaque rapport de type % tend vers 1.
Deés lors,
—1)...(m-— 1
i M=l montl) (8.15)
m—+00 e

Le second facteur ne dépend pas de m. Quant au troisiéme terme, il vaut

(1 - A_T)m_n _E=2 (8.16)

m (1-20)"
et donc ( /\T)m
:  m 1 . /\_T " AT
ml_l)filoo W = ml_l)filoo (1 m ) =€ (817)
Deés lors,

n!

1
0 n#0,1,...,m (8.18)

lim fp, (n)=
m—r+00

{ AD" o—NT = 0,1,....m

qui n’est autre que la variable aléatoire de POISSON de paramétre a = A\7. Etant donné que
I’on & fait tendre m vers l'infini, 'indice de la variable aléatoire D,, n’a plus de raison d’étre;
nous écrirons donc D.
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Définition 28 [Variable aléatoire de POI1SSON] On appelle variable aléatoire de POISSON
une variable aléatoire D discrete dont la densité de probabilité est

{MBAT n=20,1, ...

n!

foln) =1 o n#0,1, ...

(8.19)

Elle représente donc ici la probabilité d’avoir n tentatives d’appels pendant la durée 7.

La loi de PoIssON fait intervenir un taux moyen d’occurrences A et un intervalle de temps
d’observation T'; ces dénominations sont justifiées par le théoréme suivant (on définit « = \T)) :

Théoréme 29 [7/, page 63] Soit a effectuer n tirages. Pour chaque tirage, la probabilité de
’événement pertinent est définie égale a =, ot o > 0 est une constante et n > «. Soit une
variable aléatoire S, qui dénombre les occurrences d’événements pertinents pour n tirages ef-
fectués. Lorsque n — 400, la densité de probabilité de S, converge vers une loi de POISSON de

parameétre c.

Démonstration.

Elle découle des développements précédents. ]

Théoréme 30 L’espérance et la variance d’une variable aléatoire de POISSON walent toutes
deur o

Up = « (8.20)
0h = « 8.21)
Démonstration.
Démontrons la relation 8.20.
+00 Foo i
pp = ;UCD(Z) = ;'Li—!e . (8.22)

Le terme ¢ = 0 de la sommation vaut 0. Aprés le changement de variable i = j + 1,

“+oo j+1 “+oo

o ol
Up = j+1)— e =« —e ‘=« 8.23
—_——

1

Le fait que la somme soit égale & 1 découle du fait que la fonction de répartition de la loi
de POISSON vaut 1 a Dinfini (la somme des probabilités définies par la variable aléatoire de
POISSON vaut 1). La relation 8.21 se démontre d’'une maniére identique.

Ainsi donc, o = AT est égal a la valeur moyenne de la loi de POI1SSON, d’ou le fait que A =
est la valeur moyenne du nombre d’occurrences par unité de temps; on parle parfois d’intensit
pour \.

~le

2

@D
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Question 31 Soit un taur moyen d’appels de 4 par minute. Quelle est la probabilité P-;
d’avoir 5 appels ou plus pendant une minute ?

Réponse
Par la variable de POISSON,

Pos = ZfD(i) = 1l = pr(i) (8.24)

Comme a = \NT'=4 x 1 =4,

Pos=1—

A ZICHY - B 4
(1+i+§+§+ﬂ)e =0,37 (825)

8.2.3 Processus de P0OISSoON

Prenons un intervalle de temps |t¢, #1]. Le nombre d’occurrences pendant cet intervalle de temps
est fourni par la loi de POISSON avec T" = t; — 3. Ce résultat s’appuie sur le fait que les tirages
que représente la loi binomiale sont indépendants entre eux. Dés lors, les occurrences relevées
sur des intervalles de temps sans recouvrement sont indépendants. A la limite, lorsque 7" — 0,
le dénombrement résulte d’une succession d’observations indépendantes, toutes décrites par une
loi de POI1ssON. 1l s’agit dans ce cas d’un processus de POISSON.

Définition 32 [Processus de POISSON] Un processus de dénombrement D(t) est un pro-
cessus de POISSON d’intensité \ s’il respecte la double condition suivante

(1) le nombre d’occurrences durant tout intervalle de temps |to, t1], D(t1) — D(to), est une va-
riable aléatoire de POISSON d’espérance \(t; — ty), et

(2) pour toute paire d’intervalle |to, t1], |t2, t3], le nombre d’occurrences durant ces intervalles,
D(t1) — D(to) et D(t3) — D(t2), sont des variables aléatoires indépendantes.

8.2.4 Temps entre occurrences

Le processus de POISSON est sans mémoire puisqu’il garantit I'indépendance entre intervalles
successifs. Cette propriété permet de calculer le temps entre occurrences. En effet, si on appelle
X, la variable aléatoire de temps entre les occurrences n et n — 1, si de plus X; est définie a
partir d’'un temps supposé étre le lieu d’une occurrence, on établit le théoréme suivant (voir
figure 8.5 pour l'illustration des variables X,,).

Théoréme 33 Les variables aléatoires X1, Xo, ... représentant les temps entre occurrences
d’un processus aléatoire de POISSON d’intensité A sont indépendantes et elles ont pour densité
de probabilité

Ae ™™ >0
fxa () = { 0 520 (8.26)
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D(t)

occurrence 4

T occurrence 1

— N W e Ot
|
I

X1 Xo Xz X4 X

FIGURE 8.5 — Processus de POISSON : définition des variables aléatoires X,,.

Démonstration.

Soient, z; les réalisations des variables aléatoires X;. [.’occurrence n — 1 se produit a I'instant
tn—l =T +...+ Tn—1 (827)

Pour toute valeur = > 0, X,, > x si et seulement s’il n’y a aucune occurrence durant l'inter-
valle de temps |t,,_1, t,_1 + x]. Par définition du processus de POISSON, la valeur des variables
Xi, ..., X,,_1 n’intervient pas dans la détermination de la probabilité au-dela de ¢, ; (hypo-
thése d’un processus de POISSON sans mémoire). Dés lors

p(Xn > l"Xl = g caag Xn—l = xn—l) = p(D(tn—l + l’) — D(tn—l) = 0) (828)

Or, cette probabilité représente la probabilité de réalisation d’une variable aléatoire de POISSON
dont le paramétre n est nul, donc la probabilité de ne pas avoir de tentative d’appel pendant
intervalle de temps |t,, 1, t,_1 + z|. Dés lors,

p(D(tp_1+2) — D(ty_1) =0) = e (8.29)

X, est donc bien indépendante des autres X; et sa fonction de répartition vaut

l—e™ £>0
Fx,(2)=p(X,<2)=1-p(X, >z) = { 0 r <0 (8.30)
dont la dérivée correspond a la densité de probabilité fournie par la relation 8.26. ]

La variable aléatoire X,, est une variable aléatoire exponentielle dont ’espérance F {X} = %
En fait, le nombre d’occurrences moyen par unité de temps du processus de dénombrement
est inversement proportionnel & la durée moyenne séparant deux occurrences. Aussi, le temps
moyen a attendre est donc inversement proportionnel au nombre moyen d’occurrences.

Cette formule permet de constater que la probabilité de ne pas avoir d’appel pendant une

période 1" diminue exponentiellement au cours du temps, résultat repris comme ci-apres.

Corollaire 34 La probabilité Py de ne pas avoir d’occurrences pendant 'intervalle de temps t
vaut

Py(At) = e~ (8.31)
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Question 35 Soit un central téléphonique desservant 10.000 utilisateurs. Supposons que
chaque utilisateur génére une tentative d’appel par heure. Déterminez la cadence (en nombre
de fois par seconde) a laquelle deux appels arrivent a moins de 0,1 [s] entre eut.

Réponse
Le taux moyen d’appels vaut

10.000
3600
Selon I’équation 8.31, la probabilité de ne pas avoir de tentative pendant 100 [ms| vaut

Py(0,278) = ¢ %2™ = 0, 757

A:

= 2,78 [appel /s]

Ce qui revient & dire que 24,3% des tentatives d’appel sont écartées de moins de 100 [ms]. La
cadence s’obtient alors par

A (1= Py(0,278)) = 0,67 [fois/s] (8.32)

8.2.5 Temps de communication

Examinons a présent le temps de communication, aussi appelé temps de service. Le processus
de service peut étre d’'une complexité extréme, mais on se contente le plus souvent de supposer
que la durée d’un appel est indépendante de celle des autres et que toutes les durées obéissent
a la méme loi. Deux hypothéses pratiques sont examinées.

Hypothése 1 : temps de communication constant

Bien que le temps de communication ¢,, ne soit pas constant pour une communication télépho-
nique, le modéle convient pour certains types de transmission de données.

On détermine aisément le nombre de lignes occupées a tout moment. En effet, en supposant
I’absence de congestion, la probabilité d’avoir n circuits occupés est déterminée par la proba-
bilité d’avoir n occurrences pendant 'intervalle t,, précédant I'analyse. Comme le nombre de
circuits actifs n’est autre que la charge A. = A\.t,,, la probabilité d’avoir n circuits occupés
s’obtient par la loi de POISSON. Cette probabilité vaut

fo(n) = —%e™" (8.33)

Hypothése 2 : temps de communication a décroissance exponentielle

L’hypothése d'un temps de communication a décroissance exponentielle est plus vraisemblable
pour des communications téléphoniques. La probabilité que la conversation dure plus longtemps
de ¢ vaut alors .

P(>t)=¢"tm (8.34)
ou t,, est le temps de communication moyen.

La loi exponentielle jouit d'une propriété remarquable : quelle que soit la durée de la communi-
cation, la probabilité n’est fonction que du temps & venir. Ainsi, si une communication a duré
5[s], 1a probabilité de durer 3 nouvelles secondes vaut P(> 3) = e~3/t»_ Pour une durée totale
de 8[s], la probabilité vaut P(> 8) = P(> 5) x P(> 3) = e %/tm x e73/tm = ¢=8/tm,
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8.3 Lois d’analyse du trafic

Dans un modéle traditionnel de réseau commuté téléphonique, on considére qu’un faisceau
offre N canaux a un nombre d’utilisateurs largement supérieur a N et on suppose que chaque
utilisateur effectue des appels de courte durée. Cette vision traditionnelle n’est plus tout a fait
adaptée au trafic actuel du réseau téléphonique; en effet, le réseau téléphonique transporte un
pourcentage non négligeable de connections & Internet. Or, la durée moyenne d’une connexion
a Internet est largement supérieure a la durée d’un appel téléphonique vocal. Nous adopterons
néanmoins ’hypothése traditionnelle dans nos développements.

8.3.1 Modéle d’un systéme avec perte (sans mémoire) : statistique
d’ERLANG B

La statistique ERLANG B va nous permettre de déterminer la probabilité de tentative d’appels
lors d’une congestion du réseau (probabilité que les N lignes du réseau soient occupées) en
fonction de la charge et du nombre de lignes caractérisant le troncon considéré.

Pour analyser la charge d’un réseau, il faut prendre en compte le nombre de tentatives d’appel,
le nombre de connexions en cours et le nombre d’arréts d’appel.

Nombre de tentatives d’appel

Le nombre de tentatives d’appel peut étre vu comme un processus de dénombrement. Pendant
'intervalle de temps At (intervalle de temps d’observation), le nombre de tentatives d’appel
N4 est donc une variable aléatoire de POISSON telle que

AAE)"
p(Ng=n) = %B_AA#/, n=0,1,... (8.35)

ol A représente le nombre moyen de tentatives par unité de temps.

Nombre d’arréts d’appel (relachements de ligne)

De méme, le nombre d’arréts N pour un nombre d’arrét moyen 7 par unité de temps vaut

nAt)"
p(Np =n) = ue_”m, n=20,1,... (8.36)
n!

Charge

A tout moment, des tentatives d’appel et des arréts peuvent avoir lieu sur la ligne ; la charge
fluctue donc entre 0 et N appels en cours. Pour un intervalle de temps trés court dt, la probabilité
d’avoir exactement une tentative d’appel (n = 1) vaut Adte ¥ ~ \dt alors que la probabilité
d’avoir un appel qui se termine vaut ndte "% ~ ndt.

Dés lors, a supposer que k lignes sur un total de N lignes soient occupées a l'instant ¢, on
calcule respectivement trois probabilités sur un intervalle de temps dt
— P, la probabilité d’une tentative d’appel,
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— P, la probabilité d'un arrét et
— P53 la probabilité d'un statu quo en matiére d’occupation de lignes.
Elles valent respectivement
P = \dt (8.37)

Py = Ct(ndt) (1 — ndt)*™! ~ kndt (8.38)

car on tient compte du fait que n’importe quelle ligne parmi les k lignes peut se libérer pendant
I'intervalle de temps dt. Finalement, I’événement de statu quo se produit quand il n’y a pas
de tentative d’appel et qu’aucune des £ lignes occupées n’est sujet a un relachement. Ainsi, la
probabilité P; est donnée par

Py = (1= X\dt)(1 — kndt) (8.39)
— 1= Adt — kndt + kM(dt)? (8.40)
~ 1— \dt — kndt (8.41)

Définissons alors p(k; ¢+ dt) comme la probabilité qu’il y ait & lignes occupées a U'instant ¢ + dt.
Il est alors possible de déterminer p(k;t + dt) en utilisant les probabilités Py, P, et Ps

p(k;t+dt) = Pyp(k;t) + Pip(k —15t) + Pap(k + 15¢) (8.42)
~ (1= \dt — kndt) p(k;t) + Mdtp(k — 1;t) + (k + )ndt p(k + 1;¢)

Le premier terme correspond au fait qu’il y avait déja k£ lignes occupées a l'instant ¢ mais
qu’aucune tentative d’appel ni d’arrét n’ait eu lieu. Le deuxiéme terme correspond au fait qu’il
y avait k£ — 1 lignes occupées a l'instant ¢ mais qu’une tentative d’appel (dés lors réussie) ait
eu lieu. Enfin, le dernier terme correspond au fait qu’il y avait k£ + 1 lignes occupées a 'instant
t et qu'une ligne se soit libérée pendant I'intervalle de temps dt. Il existe cependant deux cas
particuliers correspondant a k =0 et &k = N

p(0;t + dt) = (1 — Adt) p(0;t) + ndt p(1;t) (8.43)

représentant le cas ot aucune ligne n’est occupée (il n'y a donc pas de possibilité de relachement
d’une ligne) et

p(N;t+dt) = (1 — Mdt — Nndt) p(N;t) + Adt p(N — 1;¢) (8.44)
pour le cas ot toutes les lignes sont occupées (une nouvelle tentative d’appel ne peut donc étre
générée).

En régime, on peut faire I’hypothése que les probabilités ne sont pas fonction du temps et écrire

p(k;t+ dt) = p(k;t) = Py, k=0,1,2 .., N (8.45)

[’équation de transition peut alors s’écrire

Pk = (1 — A\dt — k”l?dt) Pk; + Adt Pk—l + (l{? + 1)77dt Pk:—H (846)
= 0=[(—AN—kn) P+ APry+ (k+1)nPyiq] dt (8.47)
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De méme, les deux cas particuliers deviennent

APy=nP, k=0 (8.49)
(A+Nn)Py=APy_1, k=N (8.50)
De plus, les probabilités P, doivent respecter la condition suivante
Ph+P+..+Py=1 (8.51)
On peut montrer [21] que 'expression de P, vérifiant toutes ces conditions est donnée par
/m*
/Bl = W (8.52)

Cette formule représente ainsi la probabilité d’avoir & lignes occupées. Elle est valable V& €
[0, N].

Formule d’ERLANG B. L’état qui résulte d'une occupation de toutes les lignes est appelé
congestion. Si un appel est rejeté en raison d’une occupation des NV lignes, la probabilité de cet
événement de blocage est celle de Py (k= N)

/N

— _ N!
B=Fy= TN O/ (8.33)

=0 4!

Cette expression de la probabilité de blocage est la formule dite I’ERLANG B.

Proposition 36 [Espérance de la loi la distribution d’ERLANG B] L’espérance des pro-
babilités P, fournit le nombre moyen de lignes occupées, c’est-a-dire la charge du trafic écoulé.
Cette espérance vaut

E{k} = A(1 - B) (8.54)

Démonstration. En effet,

i\’: (A\/m)* \ Nz—:l A/m)* A

=DV el =SV e
ou A est la charge offerte du faisceau et A(1 — B) la charge réelle. Dans la mesure ou la
probabilité de blocage est petite, I’'occupation moyenne des N lignes est égale a % [ ]

La probabilité de blocage s’exprime donc par I’expression

AN
T A
k=0 kI /

Interprétation. La probabilité de blocage augmente avec la charge A et décroit avec NV,
comme le montre graphiquement la figure 8.6. Pour une probabilité de blocage fixée, le rapport
A/N (charge offerte a chaque utilisateur) est proportionnel au nombre de lignes N. Dés lors,
la charge A, pour une probabilité de blocage fixée, augmente plus que proportionnellement
en fonction du nombre de lignes N. Pour s’en convaincre, il suffit de regarder le tableau 8.1.
Doubler la valeur de N de 10 & 20 entraine la multiplication de A par 12/4,5 = 2,67. Pour
B = 1%, on observe un gain important en efficacité lorsque I'on passe de 10 & 20 lignes tandis
que ce gain est nettement moins important lorsque I'on doit, pour une méme probabilité de
blocage, ajouter des lignes a un faisceau contenant déja 50 a 60 lignes.
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10°

N = 10,20, 30, 40, 50

L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A/N

FIGURE 8.6 — Loi de probabilité ERLANG B (d’aprés [21, page 271]).

N 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Al 45 [12,0]203[29,0]37,9]469[56,1]654]74,7]84]1
0,45 | 0,60 | 0,68 | 0,73 0,76 | 0,78 | 0,80 [ 0,82 | 0,83 | 0,84

A
N

TABLE 8.1 — Illustration des proportions pour B = 0,01

Dimensionnement. Le dimensionnement d’un faisceau téléphonique est réalisé en recher-
chant la charge maximale A (en ERLANG) qui peut étre fournie lorsque désire maintenir la pro-
babilité de blocage B en-dessous d'un certain seuil, par exemple B = 0,01 ou 0,02, qui est une
valeur typique pour le dimensionnement d’un faisceau dans un réseau. La formule I’ERLANG B
est souvent utilisée dans ce but parce qu’elle est tabulée et facilement interprétable, bien qu’elle
fournisse une valeur plus faible pour B que certaines formules établies & partir d’hypothéses
autres quant au trafic. En effet, la formule d’ERLANG B ne tient pas compte du fait qu'une
tentative d’appel ayant échoué peut étre reconduite jusqu’a acceptation par le réseau.

Insistons sur le fait que la charge maximale ne représente pas la charge moyenne offerte a chaque
utilisateur, mais une charge globale maximale.

Table. Une table de la loi ’ERLANG B est donnée a la page 140. Soit, par exemple, N = 20
et B = 0,01. A partir de la table, nous obtenons A = 12,0 [E]. Si une charge Ay = 0,03 [£]
doit étre offerte a chaque utilisateur en moyenne, le nombre d’utilisateurs doit étre limité a
M = A/Ay = 400.

Tentatives et essais reconduits. L’effet d'une tentative d’appel ayant échoué mais recon-
duite jusqu’a obtention d’une ligne peut étre modélisé assez facilement. Appelons A’ la charge
réelle qui tient compte de la reconduite des tentatives échouées. On a

A=A+ AB+ (AB)B+ (AB>)B+..= —— (8.57)
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La table de la figure 8.2 peut étre utilisée pour trouver A’. Il est important de noter qu’en
principe le réseau doit étre dimensionné pour cette charge A’ et non pour la charge A. Alors
A peut étre obtenue par A = (1 — B)A’. Par exemple, pour B = 0,02 et N = 30, la table
donne A = 21,9 qui doit étre vu comme la valeur de A’. La valeur de A est alors égale a
(1—0,02) x 21,9 = 21, 5. Si on désire offrir & chaque utilisateur une charge moyenne A, = 0, 03,
on doit limiter le nombre d’utilisateurs & M = A/A, = 715, contre 730 lorsque qu’aucune
tentative ayant échoué n’est reconduite.

B B
N | 0,01 0,005 0,003 0,001 N |0,01]0,005 0,003 | 0,001
1 [ 0,01 ][0,005]0,003]0,00131][21,2] 19,9 [ 190 | 174
2 10,153 [ 0,105 | 0,081 | 0,046 || 32 | 22,0 | 20,7 | 19,8 [ 18,2
31046035 [ 029 [019 [|33]229] 21,5 [ 20,6 | 19,0
41087 ] 07 [ 06 [ 044 [|34]238] 223 | 21,4 [ 19,7
5] 14 | 1,1 | 10 | 08 [[35]246] 232 | 22,2 [ 20,5
6] 1,9 | 16 | 14 | 1,1 [[36]255] 240 | 231 | 21,3
7] 25 | 22 ] 1,9 | 16 [[37]264] 248 | 239 | 22,1
8] 31 [ 27 [ 25 [ 21 [[38]273] 25,7 | 247 [ 22,9
9 38 [ 33 [ 31 ] 26 ||39]281] 265 | 255 | 23,7
10 45 [ 40 | 36 | 3,1 [[40[290] 274 | 26,3 | 244
11] 52 | 46 | 43 | 3,7 [[41]29,9] 282 | 27,2 | 25,2
12 59 [ 53 | 49 | 42 [[42[30,8] 29,1 | 28,0 | 26,0
13 66 | 60 | 56 | 48 [[43][31,7] 29,9 | 288 | 268
14 74 [ 67 | 62 | 54 [[44][325] 308 [ 29,7 | 276
15 81 [ 74 | 69 | 6,1 [[45][334] 31,7 [ 305 | 284
16| 89 | 81 | 76 | 6,7 | 46]343] 325 | 31,4 | 293
17 97 | 88 | 83 | 74 [47[352] 334 [ 322 | 30,1
18 104 [ 96 | 90 | 80 | 48]36,1] 342 | 33,1 | 30,9
19 112 [ 103 | 98 | 87 [[49[370[ 351 | 33,9 | 317
20| 12,0 [ 11,1 [ 105 | 94 [ 50|37,9] 36,0 | 348 [ 32,5
21| 12,8 [ 11,9 [ 11,2 [ 10,1 || 51388 36,9 | 35,6 | 333
22| 13,7 | 12,6 [ 12,0 [ 10,8 || 52| 39,7 | 37,7 | 36,5 | 34,2
23| 145 | 134 [ 12,7 [ 115 || 53| 40,6 | 38,6 | 37,3 | 35,0
24| 153 | 142 | 135 | 12,2 || 54 [ 41,5 | 39,5 | 38,2 | 3538
25| 16,1 | 15,0 | 14,3 | 13,0 || 55 | 42,4 | 40,4 | 39,0 | 36,6
26 | 17,0 | 158 [ 151 [ 13,7 || 56 | 43,3 | 41,2 [ 39,9 | 375
27| 178 | 16,6 | 15,8 | 144 || 57 44,2 ] 42,1 | 40,8 | 383
28 | 18,6 | 174 [ 16,6 | 15,2 || 58 | 45,1 | 43,0 | 41,6 | 39,1
29| 195 | 182 | 174 [ 159 || 59 | 46,0 | 439 | 42,5 | 40,0
30| 20,3 | 19,0 [ 18,2 [ 16,7 || 60 | 47,0 | 44,8 | 43,4 | 40,8

TABLE 8.2 — Tables de la loi ’ERLANG B.

8.3.2 Autres modéles

Pour terminer, le tableau 8.3 et la figure 8.7 dressent une comparaison des probabilités de
blocage obtenues pour différents modéles.
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‘ Type d’analyse ‘ Traitement des appels perdus ‘ Formule de blocage

Formules pour un grand nombre (infini) de sources de trafic
ERLANG B pas de reconduite 8 = % avec P, = Ak—f
k=0"k .
Reconduite des | appels échoués reconduits si B est la probabilité d’erreur
appels échoués | tant qu’ils échouent A'=A/(1- B)
ErLANG C appels échoués placés dans B = [1_5#1)]
une file d’attente infinie
MOLINA idem que ERLANG C B=1—-e4YV P =32 P
Formules pour un nombre fini de sources, M
. M ,
ENGEST pas de reconduite By(p) = <B~—, pr. = ( > o
> k=0Pk k
~ __Mp
et A(p) = TBG)
M -
BERNOULLI appels perdus retenus B = Z;iu:zv ( I ) (A—A[)k (1 — A—A[)M i

TABLE 8.3 — Résumé de différentes formules de blocage (d’apres [21]).

On voit que, de maniére générale, la loi I’ERLANG B sous-estime la probabilité de blocage par
rapport a d’autres modéles. De plus, si la probabilité d’erreur est de I’ordre de 1072, on constate
sur le graphique 8.7 qu’il y a peu de fluctuations entre les différentes formules. En pratique, on
se contente bien souvent de la loi d’ERLANG B.

10°

10 “|

Reconduite des
tentatives d’appel

MOLINA

ERLANG B

I
30

I
35 40 45 50

A [ERLANG]

FIGURE 8.7 — Comparaison des probabilités de blocage (d’aprés |21, page 332]).
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Troisiéme partie

Eléments de la couche physique
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Chapitre 9

Transmission sur ligne a paires
symétriques et réseau téléphonique

9.1 Introduction

La transmission peut se réaliser sur différents supports (cable coaxial, paire torsadée, fibre
optique, ...) ou dans air. Si les lois de MAXWELL régissent 1’ensemble des phénomeénes de
propagation électromagnétiques, les propriétés des matériaux influencent considérablement les
performances, rendant les supports non interchangeables a bien des égards.

La figure 9.1 fournit les ordres de grandeur des performances distance/débit que l'on peut
obtenir pour différents supports de transmission physiques. Trés clairement, c’est 1'utilisation
de la fibre monomode qui représente le meilleur choix actuel.

Distance maximale [km]

1000
Fibre monomode
//
® L L *—@
100+ Cable
*—@ \
10 X; Fibre a gradient d’indice
Paire torsadée

! i | | |

| 10 100 1000 10000

Débit [Mb/s]
FIGURE 9.1 — Comparaison de divers supports de transmission (d’apres [33]).

9.1.1 Limitations

Plusieurs phénoménes affectent la transmission d’un signal numérique par une onde électroma-
gnétique. Citons en quelques-uns :
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Atténuation L’atténuation est un phénoméne équivalent a4 une perte d’énergie du signal se
propageant. On I'exprime généralement en [dB] par kilométre.

Distorsion Un canal qui fournit en sortie la version du signal original ainsi que des versions
atténuées décalées dans le temps, introduit un effet de distorsion d’amplitude (Pamplitude
de la transmittance du canal n’est pas constante en fonction de la fréquence) et de phase
(la phase n’est pas linéaire en fonction de la fréquence).

Dispersion La dispersion est le phénoméne & 'origine d’un étalement de ’onde, ce qui dans
le cas de communications numériques, se répercute par une confusion entre symboles
successifs (le canal posséde une bande passante finie).

Bruit Il est totalement impossible d’éviter un bruit dans un systéme de communications. En
fait, les équipements générent eux-mémes un bruit. A cela vient se rajouter le bruit du
canal. Aujourd’hui, on préfére utiliser des techniques de transmission numériques pour
lutter contre les effets d’un bruit additif de canal. On peut ainsi espérer un taux d’erreur
de l'ordre de 107! pour une transmission sur fibre optique et 10~7 sur une ligne & paire
de cuivre.

9.1.2 Probabilité d’erreur par paquet

En pratique, le taux d’erreur par bit P, n’est pas le seul parameétre significatif pour une transmis-
sion numérique. En effet, les bits d’information sont rarement isolés; ils sont plutdt regroupés
par paquets. Or, une erreur sur 1 bit du paquet revient a considérer le paquet comme fautif
dans sa totalité, ce qui implique quelquefois une retransmission du paquet.

Soit N la taille des paquets a transmettre. La probabilité d’erreur par paquet vaut le complé-
mentaire de la probabilité qu’aucun des /N bits ne soit erroné. Deés lors,

Pp=1-(1-PR)N (9.1)

En négligeant les termes du second ordre, on obtient

Pp~NxP,si NxP, <1 (9.2)

Exemple. Une taille de paquet de N = 10° bits et un taux d’erreur par bit P, = 10~7 conduisent
a Pp~ 1072

9.2 Transmission par ligne

En raison de leur cotit modeste, on utilise depuis longtemps les supports de cuivre pour trans-
mettre des signaux : des lignes a paires symétriques en téléphonie ou dans certains réseaux
locaux, un cable coaxial pour la distribution de signaux de télévision ou des lignes micro-
rubans en hyperfréquence. C’est dire I'importance que revét ce type de support en pratique.
Nous abordons son étude par ’analyse des propriétés.

9.2.1 Définitions

Définition 37 On appelle ligne tout support physique de transmission constitué d’un milieu
matériel fini.
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Les deux formes de lignes les plus courantes sont la paire torsadée constituée de deux conduc-
teurs arrangés en hélice et la paire coaxiale formée de deux conducteurs concentriques séparés
par un isolant.

Définition 38 On appelle cable de transmission, tout support physique constitué d’un en-
semble de lignes.

9.2.2 Propriétés électriques du cuivre

En régime statique, les lignes constituées de cuivre possédent des propriétés électriques qui, au
niveau macroscopique, s’expriment principalement par une résistance, un effet capacitif et un
effet inductif.

Résistance

Un fil de cuivre de section S présente une résistance au courant de valeur
R== (9.3)

ou p et [ désignent respectivement la résistivité du conducteur et la longueur du fil (cf. fi-
gure 9.2). Ce paramétre, différent pour tout fil, a une influence directe sur I'atténuation de
I’onde transportée et donc affecte majoritairement 'amplitude de 'onde transportée.

r

FIGURE 9.2 — Résistance d’un conducteur.

Mais ce n’est pas le seul paramétre important car il faut également tenir compte des effets
capacitifs et inductifs d’une paire de fils.

Capacitance

On peut montrer que, pour les structures de la figure 9.3, les capacitances par unité de longueur

valent respectivement,
2me

C= oot (9.4)

(9.5)
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+O {* i
%

s
—1_ [ |
g N
r
T
Coaxe Paire de fils Fil au-dessus d’un plan

FIGURE 9.3 — Section de différentes lignes.

Inductance

Quant a la valeur de I'inductance, elle s’obtient en tirant profit de la propriété générale suivante

LC =e (9.6)

Dans ce qui suit, la ligne est considérée comme idéale, c’est-a-dire comme ayant les mémes
propriétés électriques sur toute sa longueur.

9.2.3 Propagation

La propagation d’un onde électromagnétique le long d’une ligne de transmission prend la forme
d’une onde électromagnétique transverse (TEM, Transverse Electromagnetic Mode). L’onde
se propage principalement dans le diélectrique qui sépare les deux conducteurs d’une ligne de
transmission. La figure 9.4 montre les formes des champs dans une série de structures électriques
a deux conducteurs.

coaxe 2 plans
bifilaire

fffff Lignes de champ magnétique

—— Lignes de champ électrique

FIGURE 9.4 — Configuration du champ électromagnétique en mode TEM pour quelques types
de lignes.

9.2.4 Modéle électrique

Aprés avoir déterminé les caractéristiques électriques principales d’une paire de conducteurs,
on peut modéliser le fonctionnement électrique d’une ligne en imaginant le systéme comme une
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succession de bouts de lignes infinitésimaux ; la figure 9.5 montre un bout de ligne infinitésimal.

Ldz Rd>

Gdz — Cdz

e

FIGURE 9.5 — Segment de ligne infinitésimal.

Parameétres primaires

R, L, C et G sont appelés paramétres primaires de la ligne avec

— R = résistance linéique élémentaire, représentant la résistance de la ligne par unité de lon-
gueur [2/m]. Elle dépend en particulier de la section et de la nature du conducteur,

— L = inductance linéique [H/m|, modélisant la présence d’un flux variable autour et entre les
structures conductrices,

— C = capacité linéique [F'/m], caractérisant la capacité du diélectrique constituant la ligne,

~ (G = admittance linéique [Q2~!/m], représentant les pertes diélectriques et les défauts d’isola-
tion de la ligne. Elle dépend de la nature des isolants.

Equations des télégraphistes

En mettant bout a bout des segments de ligne infinitésimaux et sur base du schéma de la

figure 9.6, on obtient aisément le systéme d’équations suivantes, dites équations des télégra-
phistes,

oV ol
9 —_ RI-IZ
0z i ot (9.7)
ol ov
I(z) Ldz Rd= I(z+dz)=1(z) —dl

Générateur A Charge
FIGURE 9.6 — Modéle d'une ligne de transmission électrique.

La solution du systéme s’obtient en dérivant ’équation 9.7 par rapport a z et en tenant compte
de 9.8. On obtient une équation aux dérivées partielles du second ordre

0PV oV ov?
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Cas particulier 1 : ligne sans perte

Dans le cas d’une ligne sans perte (R = G = 0),

0?V ov?

— =LC— 9.10

0z ot? (9.10)
ce qui correspond & une équation d’ondes bien connue dont la solution est une combinaison
linéaire de signaux sinusoidaux

V(z,t) = (Acoskz + Bsinkz)(C cos 2 ft + D sin 2 ft) (9.11)

ou A, B, C et D sont des constantes dont les valeurs dépendent des conditions initiales.

Cas particulier 2 : régime permanent

En régime permanent, V(z,1) = V(2)e/“!. La solution est de la forme

a4
022

= (R+ jLw)(G + jCw)V(2) = ¥*V(2) (9.12)

En prenant une constante de propagation v = a + j3, on obtient

V(z) =Vie " +V,.e”* (9.13)

L’onde est donc constituée d’une onde incidente (V;e™7%) et d’une onde réflechie (V,.e7*). De
plus, on constate que les deux ondes subissent une atténuation e~** liée au facteur a. On voit
tout de suite que 'atténuation croit avec la longueur de la ligne.

La présence d’une atténuation ne signifie pas que toute transmission soit impossible mais bien
que le signal est atténué des qu'’il y a des pertes dans le conducteur, impliquant une longueur
maximale de la ligne. L’analyse en détail de la question montre que I'atténuation dépend de
la fréquence. En fait, elle augmente avec la fréquence. Il est dés lors plus intéressant d’utiliser
les basses fréquences pour la transmission. Néanmoins, rien n’empéche d’utiliser les zones d’at-
ténuation plus importantes. C’est le mode de fonctionnement des modems a haut débit ADSL
dont le spectre d’utilisation est montré a la figure 9.7.

Teléphone : 0 — 4kH 2 en descente : 100kHz — 1M Hz

\
&
\

\ f
en remontée : 25 — 100k H 2

FIGURE 9.7 — Spectre d’un signal ADSL.
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Paramétres secondaires

Les paramétres primaires ne modélisent la ligne que d’une maniére microscopique. On leur
préfére souvent les paramétres dits secondaires suivants pour déterminer les propriétés macro-
scopiques du support :
— impédance caractéristique Z,.
C’est une donnée complexe qui représente la valeur de 'impédance a connecter en bout de
ligne de maniére & obtenir une impédance d’entrée de la ligne égale a cette impédance; on
la nomme Z.. En pratique, on doit absolument tenir compte de la valeur de I'impédance
lors du raccordement de lignes ou d’équipements a un réseau. En effet, si deux lignes n’ont
pas la méme impédance, le droit du raccord est le lieu de réflexions parasites qui diminuent
considérablement les performances de la transmission. En effet, le coefficient de réflexion est
donné par
ZL - Zc

E 9.14
7 17, (9.14)

ou Zy, est I'impédance de charge. On voit donc que le coefficient de réflexion s’annulle lorsque
I'impédance de charge d’une ligne (égale a 'impédance d’entrée de la ligne raccordée a cette
ligne) est égal a son impédance caractéristique. Il convient de remarquer que l’adaptation de
ligne n’est pas équivalente a ’adaptation conjuguée; la premiére conduit & une absence de
réflexion, la seconde a un transfert maximum de puissance dans la charge. Ces deux types
d’adaptation sont néanmoins compatibles lorsque la charge est purement réelle.
— coefficient de propagation 7 (cf. supra)
Par définition : v = a + j3 ou
— « = affaiblissement linéique en Néper/métre [Np/m]’
— [ = déphasage linéique (en [rad/m))
Le facteur d’atténuation o représente les pertes subies par le signal électrique lors de la propa-
gation le long de la ligne. Il se mesure en injectant un signal a 1'une des extrémités de la ligne
et en mesurant le signal recu a 'autre extrémité. [ est lié a la longueur d’onde A et a la vitesse
de propagation v de I'onde électromagnétique dans le support par

g=2r _w_2f (9.15)

A ) )

Relations entre les paramétres primaires et secondaires

Les paramétres primaires et secondaires sont liés par les relations suivantes

R+ jwL
Ze = (|5 H 9.16
G+ jwC ( )

7 = V(R+jwL)(G + jwC) (9.17)

Ces équations sont générales et valables sur tout type de ligne. Toutefois, certaines simplifica-
tions sont possibles en considérant un caractére plutot inductif ou pas de ligne, une fréquence
d’utilisation élevée ou non. D’autre part, on peut raisonnablement admettre que l'admittance
linéique est négligeable, autrement dit G = 0, en présence d'un isolant entre les conducteurs.

1. Le Néper est lié au décibel par la relation suivante : 1 [Np] = 8,68 [dB].
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Et donc,
R+ jwL
. =~ — 9.18
o0 (9.18)
7 ~ V(R+ jwLl)jwC (9.19)

9.2.5 Etude fréquentielle des paramétres

Il est intéressant de mener ’étude fréquentielle des paramétres de ligne en haute fréquence
(wL > R). Exploitant I’hypothése de haute fréquence, on obtient

v ~ v/(R+ jwL)jwC (9.20)

~ +/jwC+/jwL “1+— (9.21)

~ \/jwC+/jwL (1 + ﬁ) (9.22)
Lp /S 4 juvic (9.23)

12

Pour les développements, on considérera qu’a haute fréquence, C' et L sont indépendants de la
fréquence. De plus, en raison de 'effet de peau du conducteur (densité de courant non-uniforme
dans toute la section du conducteur), on admet que R est proportionnel a \/f :

R=Ro\/f (9.24)
Dés lors, I'affaiblissement linéique évolue donc comme suit
a=k\/fL, (9.25)

ou L, désigne la longueur de la ligne.

Exprimons a présent 'atténuation en décibels

20 In [e*k\/ﬁ“]
In 10

A[dB] = 201og [e*Wﬁo] - (9.26)

ce qui nous ameéne a la relation suivante

= Ao/ L, (9.27)

Dés lors, passer de L, a 2L, double les pertes. Cette équation est importante pour ’étude du
transfert de puissance entre paires voisines.

9.3 Exemples de lignes

9.3.1 Lignes & paires symétriques

Elles sont constituées de deux paires identiques (lignes aériennes) ou vrillés (paires torsadées).
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Comportement des cébles téléphoniques a basses fréquences

Pour un nombre élevé de communications téléphoniques, les lignes sont regroupées en quartes
étoiles en fils de cuivre de 0,4 &4 0,8 [mm] de diamétre. Le cable enterré ainsi congu peut contenir
plusieurs centaines de paires isolées par du polyéthyléne. Aux fréquences vocales (wL < R), on
peut montrer que

0= fn @:ﬁ (9.28)
et
R 1

Exemple. Ordre de grandeur des paramétres primaires pour une paire de diamétre 0,4 [mm] :
R =290 [Q/km], C =50 [nF/km], « =0,2[Np/km] a 800 [H z].

Ces lignes sont utilisées pour des liaisons a faible distance, par exemple entre abonnés et cen-

traux téléphoniques.

Comportement des cables téléphoniques 4 hautes fréquences

L’utilisation de cables a hautes fréquences s’est développée par I’emploi de multiplexage fré-
quentiel & courants porteurs, permettant de transmettre sur un seul support symétrique un
nombre élevé de voies téléphoniques. Ceci nécessite un affaiblissement aussi faible que possible.

Exemple. Ordre de grandeur des paramétres primaires et secondaires pour un diamétre de
0,9 [mm] avec isolation papier et C' = 31,5 [nF/km] :

| Fréquence | R[Q/km] | L{pH/km] | |Z]. [Q] | a[mNp/km] |
10[kHz | 523 766 188 151
120[kH=] | 98,7 67,5 156 363

TABLE 9.1 — Ordres de grandeur des paramétres d’une ligne téléphonique.

Lignes pour transmissions numériques

Elles sont constituées de deux conducteurs métalliques torsadés présentant des caractéristiques
identiques. Les conducteurs sont isolés par une couche de polyéthyléne. Elles peuvent étre
utilisées pour le transport de signaux numériques et constituent un des supports les plus utilisés
en tant que cable universel pour la téléphonie ou le transfert de données ou d’images a haut
débit. Leur principal avantage est un faible coiit et une grande facilité de mise en ceuvre. Afin
d’éviter une trop grande diaphonie entre lignes, les pas de torsade sont tous différents, évitant
ainsi toute imbrication d’une ligne dans l'autre (on évite qu’'une ligne soit constamment a coté
d’une autre ligne, ce qui impliquerait un couplage capacitif).

Ces lignes sont assez limitées par rapport a la distance maximale sur laquelle elles peuvent
transmettre I'information numérique sans régénération du signal qui est d’environ 100 [m].
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Dans un réseau local, les cables peuvent étre constitués de paires non blindées (UTP, Unshielded
Twisted Pair), écrantées (FTP, Foiled Twisted Pair) ou écrantées paire par paire (STP, Shielded
Twisted Pair). Leur impédance caractéristique est de 100, 120 ou 150 [2]. Les cables sont classés
par catégorie en fonction de leur bande passante (cf. tableau 9.2).

‘ Catégorie ‘ Bande passante ‘ Exemples d’utilisation ‘

1,2 Distribution téléphonique (voix)
3 16 [M HZ] Voix numérique, réseaux locaux Ethernet 10 [Mb/s] et
Any Lan
4 20 [M HZ| Réseaux Token Ring
5 100 [M Hz] Réseaux locaux Ethernet 10 et 100 [M/b/s], Token Ring
et Any Lan

TABLE 9.2 — Catégories de cables [29].

9.3.2 Lignes a paires coaxiales
Constitution

Elles sont constituées de deux conducteurs cylindriques concentriques séparés par un isolant
(air ou diélectrique) et enveloppés dans une protection extérieure.

[’ame centrale peut étre composée d’un ou de plusieurs fils de cuivre ou d’acier. L’isolant sert
a séparer I’ame du conducteur extérieur. Les propriétés du cable sont principalement liées a
la nature de cet isolant. Le conducteur extérieur est réalisé a partir de tresses, d'un tube ou
d’une feuille de cuivre ou d’aluminium. La gaine extérieure, généralement en PVC, téflon ou
polyéthyléne (PE), sert de protection mécanique et chimique. Elle peut elle-méme étre incluse
dans une enveloppe supplémentaire (en plomb, fibre de verre ou métallique) pour des conditions
extrémes d’utilisation.

Propriétés
La figure représente une vue de face d’un cable coaxial.

gaine

diélectrique

(€r)

FIGURE 9.8 — Vue de face d’un cable coaxial.

Le rapport D/d des diamétres des conducteurs est directement lié a atténuation «. Certaines
études ont montré qu’une atténuation minimale par unité de longueur est obtenue pour D/d =
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3,6. Ainsi, la plupart des cables commercialisés respectent ce rapport. Pour des conducteurs en

cuivre :
0,692 x 10736, f [1 + 4]

log(D/d)

a[Np/km| =

avec d et D en [mm], f en [Hz].

Le tableau 9.3 donne deux exemples des propriétés de différents cables coaxiaux normalisés par
I'ITU (cf. [12, page 66]).

| Type | d [mm] | D [mm] | Z.[Q] | «[dB/100m] & 200 [M H?=] | a[dB/100m] & 3[GH?] |
RG58W 0,9 4,95 50 24 140
RG35BU | 265 | 17.27 | 75 47 o

TABLE 9.3 — Caractéristiques de deux cables coaxiaux.

Les deux grandes familles de coaxiaux utilisés ont une impédance caractéristique égale a 50 [€2]
ou 75[Q2]. Généralement, les coaxiaux 50 [(2] sont utilisés pour des transmissions en bande de
base, ceux de 75 [€)] en large bande. Leurs applications principales concernent les transmissions
numériques a haut débit (500 [Mb/s]), anciennement les transmissions téléphoniques sur des
grandes distances ou la télévision par cable (300 [M H z]).

9.4 Reéseau téléphonique

Le réseau téléphonique historique est constitué d’une série de paires de cuivre reliant chaque
abonné au central. Notons qu’une paire est toujours dédiée a chaque utilisateur. La transmission
s’effectue en général de maniére analogique jusqu’au central téléphonique. A I'entrée du central,
le signal analogique est converti sous forme numérique et acheminé tel quel jusqu’au dernier
central téléphonique. Le signal numérique est ensuite interpolé et transmis sur la paire de
I’abonné destinataire. Ce schéma est illustré a la figure 9.9.

Analogique Analogique

T o000 7\

-~

Réseau numérique

FIGURE 9.9 — Ligne analogique.

A chaque passage dans un central, le signal numérique est commuté, c’est-a-dire qu’il passe
systématiquement d’une entrée spécifique a une sortie spécifique. La commutation est rapide
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car le chemin de passage est établi lors de ’appel, pour toute la durée de "appel. On parle de
circuit ou de mode connecté 2.

En ce qui concerne la bande passante, 'opérateur garantit la délivrance d’un canal transparent
pour les fréquences comprises dans I'intervalle [300 H z, 3400 H z|; on parle de la bande vocale.
C’est donc dans cette bande qu’a lieu le transfert du signal vocal ainsi que des informations
numériques transmises au moyen d’un modem.

Analogique Analogique
| |
-Il o ul -.
| I — e
Modem Modem

-~

Réseau numérique

FIGURE 9.10 — Transmission par modem dans la bande [300 H z, 3400 H z|.

Fort heureusement, la transmission par le biais de modems dans la bande vocale n’est pas le
seul moyen de transmettre des informations numériques. Il est par exemple possible de recourir
au Réseau Numérique a Intégration de Services (RNIS). Il s’agit d'un prolongement de I'accés
numérique jusqu’a I’abonné.

Comme représenté a la figure 9.11, I'accés au RNIS se présente sous la forme d’un bus offrant
plusieurs canaux en paralléle. Pour un accés de base, ’abonné dispose de 2 canaux a 64 [kb/s].
Ces canaux sont compatibles avec les canaux 64 [kb/s] utilisés entre centraux. Dés lors, il est tout
a fait possible d’avoir une communication numérique a I’origine et une terminaison analogique.

Numérique Numérique Analogique

i 7=

N — NT1

~—

Réseau numérique

FIGURE 9.11 — RNIS.

L’usage d’une bande de fréquences limitée a la bande [300 H z, 3400 Hz] n’a de sens que s’il
s’agit d’établir une communication entre deux points distants. Bien entendu, rien n’interdit

2. A Pinverse, la commutation d’informations suivant le protocole IP se fait par paquets. Il n’y a pas de
chemin préétabli pour toute la durée de 1’échange.
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d’utiliser une bande plus large entre un abonné et le central téléphonique car le support est
spécifique & un abonné. Le RNIS utilise cette astuce pour transmettre des signaux numériques
dans une bande de fréquences, excédant la bande vocale, entre ’abonné et le central.

La transmission numérique a haut débit dans le réseau téléphonique par ADSL pousse le principe
plus loin : la transmission de I'information numérique se fait hors bande vocale de maniére a
garantir la coexistence avec le signal vocal analogique usuel. Cette coexistence n’est effective
que sur la paire dédiée car au franchissement du central téléphonique, les signaux sont séparés
par filtrage et injectés dans des réseaux de transmission spécifiques. Cette séparation, effectuée
au niveau du central téléphonique par un splitter, est illustrée a la figure 9.12.

Modem

X
el
-

Réseau numérique

1
)
u]

FIGURE 9.12 — Configuration d’une connexion ADSL.

Du coté de I’abonné, on place un filtre qui sépare les bandes de fréquences; ce filtre n’est
en principe pas indispensable puisque les signaux vocaux et de données occupent des bandes
distinctes. Ce filtre ainsi que sa courbe de gain® (tension de sortie sur tension d’entrée, exprimé
en [dB]) sont présentés a la figure 9.13.

N
o

=
o
T

=l

== : I
- = i
"

S
-"l'-?:..
g

o

Gain [dB]
g b o
o o o
T T

|
IS
o
T

k)

|
a1
o
T

|
[o2]
o
T

: € i

- 1

100 1000 10000 10000
Fréquence [Hz]

|
=
o

=
o

FIGURE 9.13 — Filtre de séparation pour les signaux d’une ligne convertie & I’ADSL et sa courbe
de gain.

3. Le résultat des mesures a été fourni par Valéry BROUN.
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9.5 Fonctions de transfert de puissance diaphoniques et
transmission a haut débit

9.5.1 Principe

Lorsque deux lignes sont spatialement proches, il peut exister une influence parasite entre
les signaux d’information qui sont véhiculés sur chaque voie. Cette perturbation est appelée
diaphonie. [’origine physique de la diaphonie est I’existence d’un couplage capacitif et inductif
entre les lignes considérées. Ce couplage est d’autant plus fort que les lignes sont proches.
Ainsi, au sein d’'un méme faisceau (appelé quarte), les couplages sont particuliérement forts.
C’est notamment le cas entre les paires 1 et 2 représentées a la figure 9.14.

Pairel / —~c--N-~------------—--------------~

Paire 2

_____________________________

Paire 3

___________________________

FIGURE 9.14 — La diaphonie provient de la proximité des paires de cuivre.

Selon que la ligne perturbatrice provoque un parasite vers I'une ou 'autre des extrémités de la
ligne parasitée, on parle de paradiaphonie ou de télédiaphonie (figure 9.15).

Z Z

{1 {1
Ligne —_ A —_ Z
perturbatrice

Puissance

Ligne 7 Puis.sance 7 7 du signal 7
utile du signal

Paradiaphonie Télédiaphonie

FIGURE 9.15 — Paradiaphonie et télédiaphonie.

L’affaiblissement paradiaphonique est en particulier une grandeur importante dans la pratique
pour caractériser un cable de transmission : il permet d’évaluer, a I’entrée d’une ligne perturbée,
la perte de signal provoquée par la ligne perturbatrice voisine. Il dépend de la distance entre
les lignes d’un méme cable, des combinaisons des pas de torsades (pour les paires torsadées) et
de la technique de construction du cable.
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9.5.2 Diaphonie dans le réseau téléphonique

La diaphonie est bien présente dans le réseau téléphonique. En effet, les lignes sortent du
central téléphonique dans des cables pouvant atteindre plusieurs centaines, voire milliers de
paires. Cette proximité entraine des effets diaphoniques importants entre les paires.

La figure 9.16 montre la situation du réseau téléphonique. Le NEXT (Near-End Crosstalk) et le
FEXT (Far-End Crosstalk) représentent respectivement la para et la télédiaphonie.

Cable multi-paires

Paire perturbée

Paire perturbatrice

Commutateur
de données

FIGURE 9.16 — Diaphonie dans le réseau téléphonique.

En raison de la structure du réseau, les caractéristiques locales ne sont pas invariantes dans tout
le réseau. L’approche analytique consiste a simplifier la situation pour aboutir a des conclusions
de principe. On cherchera donc & établir une fonction de transfert de puissance entre lignes de
référence.

On distingue deux types de modéle pour expliquer les phénoménes de diaphonie :

— le modéle des capacités non équilibrées et
— le modéle des inductances non équilibrées.

Nous allons étudier ces deux modéles.

Modéle des capacités non équilibrées

Ce modéle considére deux paires voisines, placées au dessus d’'un écran. Comme le montre la
figure 9.17, les quatre fils sont caractérisés par une impédance propre, une admittance avec les
autres conducteurs et une capacité a une masse commune. On supposera raisonnablement que
la conductance entre fils est nulle parce que les conducteurs sont enrobés d’un isolant.

Notions de circuit. Pour un systéme constitué de N + 1 conducteurs, on peut définir N
tensions et /N courants; ces valeurs correspondent & /N circuits. L’utilisation usuelle d’un cable
a N conducteurs revient & considérer N/2 paires, elles-mémes organisées en quarte. Ces paires
servent a transmettre un signal en mode différentiel, ¢’est-a-dire de type V; — V;, 1. Pour arriver
a N circuits au total, il reste un solde théorique de N/2 circuits. Mais ces derniers sont délaissés
en pratique en raison des effets diaphoniques inacceptables qu’ils induisent.
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——— Z1Ax I —
Vi) < Ii(z) YiaAdl Ii(z + AzD V(e 4 Az)
=7 L | |[Mbz =T
Va(x) < () Yoo A7 Lo+ MD Va(z + Atx)
——= Z,Azx | —=
YisAz||YiaAx|| YosAx|| Yoy Az
— 1 Z3Ax I —
Vi (2) < L(=) Y3cAx B+ MD Vi(z + Az)
7 i — Ys, Az S
Va(x) < Li(z) YicAxq il +Ax> (z + Ax)
—— VAV | —_—=

FIGURE 9.17 — Modéle capacitif de deux paires.

Calcul des relations entre courants et tensions. Pour la facilité, on écrit les capacitances
comme des admittances : Y = jwC' (on admet que G = 0). Pour les calculs, nous utiliserons
des tensions référencées par rapport a la masse.

[’application de la loi des mailles donne les équations suivantes

Vilz + Azx) = Vi(z) — L(x)Z1Ax (9.30)
Vol + Ax) = Vo(z) — L(x)ZyAx (9.31)
Va(z + Ax) = Vi(x) — I3(x)ZsAx (9.32)
Vilz + Ax) = Vi(z) — Ii(x)Z4Ax (9.33)

et 'application de la loi des noeuds fournit les équations suivantes

L(x+ Az) = L(z)—Vi(z+ Ax)Yiglzx — [Vi(z + Ax) — Vo(x + Az)]Yi.Ax
—Vi(x + Az) — V3(z + Ax)]YisDx — [Vi(x + Az) — Vi(z + Ax) Y Dx
2(x) — Va(x + Ax)YoeAx — [Va(z + Ax) — Vi(x + Ax)| YAz
[

]

Va(

L(z+ Az) = ]
—[Va(x + Az) — V3(z + Ax)]YosAx — [Va(x + Az) — Vi(z + Ax)]YouAx

]

Va(

]

Va(

~

&

L(x+ Az) = I3(z) — Va(x + Ax)YselAx — [Va(z + Ax) — Vi(x + Ax)|YisAx
—[Va(x + Az) — Vo(z + Ax)]YosAx — [Va(x + Az) — Vi(z + Ax)] Y Ax
Li(x+ Az) = L(z) — Vi(x + Ax)Yielx — [Vi(z + Ax) — Vi(x + Az)|Yi3Ax

—[Va(z + Ax) — Va(z + Az)[Yau Az — [Va(z + Az) — Va(x + Ax)]Yau Az

Dans toutes ces équations, on peut passer a la limite Az — 0 aprés avoir divisé tous les membres
par Ax. Se rappelant que la dérivée est définie par la formule suivante

dx " Azs0 Ax

(9.34)
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Les 8 équations s’expriment alors sous la forme matricielle suivante

Vi 0o 0 0 0 —-% 0 0 0 Vi
Vs 0 0 0 0 0 —Z 0 0 Va
Vs 0o 0 0 0 0 0 —Z3 0 Vs
d | Vi o 0 0 0 0 0 0 —Z||W
a _ iy |
drv | L A Yo Yiz Yiuo 0 0 0 0 A _? (9.35)
I, Yio Ay Yos Yo 0 0 0 0 Iy
I3 Yis Yoz Az Ya O 0 0 0 I3
i Iy ] i Yia You Yau Ay 0 0 0 0 1L 1y ]
ou
Ay ~(Yie + Y12 + Y13 + Y1a) (9.36)
Ay = —(Yag + Yis + Yoz + Yay) (9.37)
A = —(Ysg +Yig+ Yoz + Ya4) (9.38)
Ay = —(Yag +Yia+ You + Yay) (9.39)

Les tensions utiles s’exprimant comme une différence de tensions, on procéde aux changements
de variables suivants

ViMm = Vi—VW, (9.40)

Vo = Va—Vy (9.41)
Vi + Vi

Vi, = 1; 2 (9.42)
Vs+V,

Var, = % (9.43)
L —1I

Ly = 12 & (9.44)
Ii—1I

Loy = % (9.45)

IlL = [1+[2 (946)

Ly = L+1, (9.47)

Ces équations peuvent également étre regroupées sous forme matricielle

Vim
Vi
Vam

?:T Var
— | Lim

L
IZM
IQL

I
~
“l

(9.48)
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ot T" est une matrice permettant d’effectuer le changement de variables

110 0 0 0 0 0
-1 0 00 0 0 0
00 2 1 0 0 0 0
oo -1 00 0 0
L=19 0 0 0 1 10 0 (9.49)
00 0 0-121 0 0
o0 0 0 0 0 1 3
| 0 0 0 0 0 0 -1 3
Deés lors,
_>
S =18 (9.50)
[’ensemble s’écrit finalement
d g
2% - A% 9.51
dx - ( )
d
Sprg - 1148 (9.52)
dx
d —
&G = TATS (9.53)

La conséquence du changement de variables est le découplage des équations, c¢’est-a-dire qu’il est
possible d’exprimer les courants uniquement en fonction des tensions. Dés lors, en remplacant
Y par jwC, on obtient

Iy aix G2 a13 Qa4 Vim
i v _ _j_w Q21 Q22 Q23 A24 Vie (9.54)

dr | lam 4 | a3 aspx azgz as Vour

Irr, A41 Q42 (43 (44 Var

ol

apn = Cig+ Coug+4C1 +Ci3+ Ciy + Cr3 + Cyy (9.55)
as1 = a1p = 201 — 205 + 2C13 + 2C14 — 203 — 20y (9.56)
az1 = a3 = —Ci3+ Ciy+ Co3 — Coy (9.57)
ag1 = ay = —2C13 —2C14 + 2053 + 2C3y (9.58)
agy = 4C1q +4Cyq +4C 13+ 4C14 + 4C93 + 4Coy4 (9.59)
a3 = asz = —2C13+ 2C14 — 2053 + 2Cy (9.60)
aoqs = Qup = —4C13 —4C14 — 4Ce5 — 4Co, (9.61)
asz = Csg+ Cig + Ciz + Cia + Coz + Cos +4Cs54 (9.62)
asy = aq3 = 2056 — 2C¢ + 2C13 — 2C14 + 203 — 20y (9.63)
agg = 4C30+4Cyg +4C13 +4C14 +4CH3 + 4Coy (9.64)
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Le paramétre ag; de ces équations détermine le couplage entre la tension sur une paire et le
courant induit dans 'autre paire. Ce terme serait nul si toutes les capacitances étaient égales par
couple. C’est ce déséquilibre de capacités qui est a I’origine d'un effet diaphonique ; il s’exprime
par

d W
TIQM = _]ICJWMWQ‘/UW (9.65)

ou Chyyaest égal a as; (ou ags). Cette équation détermine donc le courant Iévolution du
courant perturbateur dans la paire perturbatrice dii & une tension dans la paire perturbatrice.
Les termes a5 et a9 sont eux liés au mode commun.

Modéle des inductances non équilibrées

Le modeéles des inductances non équilibrées est similaire au précédent. Les circuits sont repré-
sentés par une série d’effets inductifs tels que repris a la figure 9.18.

Z. AR

]lm

‘/1m ZC

LYV
AIMQ C A:ch
— Z.
I2m
Az My
‘/2m ZC
SRER

FIGURE 9.18 — Modéle inductif de deux paires.

L’analyse détaillée de la question montre que la diaphonie se traduit également par ’apparition
d’un courant induit dans une paire di & une différence de tension appliquée a l'autre paire.
Plus précisément,

Vin (9.66)

ou M vaut M1 +M2+M3+M4

4. I’équation 9.65 néglige le terme de diaphonie di a la tension V3, de mode commun car, lors de l'installation
des lignes, 'opérateur s’arrange pour avoir un rapport de mode différentiel & mode commun de 35 & 55 [dB].
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Conclusion

Il apparait donc que les effets des deux modéles fournissent un courant perturbateur tel que

d jw M W
%[21»1 = (‘7473 = jZCMlM2> Vim (9.67)

que l'on écrira plus généralement

d

%]mw = ijMlMQV1M (9-68)

ot @, 0, tient compte des effets capacitifs et inductifs.

9.5.3 Calcul du NEXT

Les formules précédentes liaient les valeurs locales des courants et des tensions. Pour obtenir
des résultats macroscopiques, il suffit d’intégrer les expressions locales en tenant compte de la
dimension stochastique des phénoménes observés.

Le schéma de principe est illustré a la figure 9.19. Prenons une paire perturbatrice a I’entrée de
laquelle on applique une tension V. Ce signal de tension parcourt la ligne jusqu’au point ;.

Cable multi-paires

GwQns s, Vo(f)e 2D 5wQ g, ar, Vo(f)e™ 7o

; . .
E . Commutateur
Modem Vo(f) Vo(f)e e de données
FIGURE 9.19 — Paradiaphonie au droit de z;.
Au droit de x1, la tension sur la paire perturbatrice vaut
Vo(f)erm (9.69)

Le courant diaphonique induit sur la paire perturbée s’obtient en exploitant la relation 9.68

d

@Iz(f, 1'1) = jWQMlMQVi(f, 1'1) = jWQMlMQVEJ(f)@ﬂ(f)m (9-70)

Pour que ce signal perturbe la seconde paire, il faut qu’il parvienne a son extrémité. A ’origine,
le courant induit vaut

d

d ) _ 7
%IQ(fv 0) = %]2(1‘1%1)6_%]0)“ = jwQa s, Vo(f)e D= (9.71)
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Pour obtenir la totalité du signal perturbateur sur la seconde paire, il suffit d’intégrer sur
I’ensemble des positions 1, c’est-a-dire sur toute la longueur de la zone d’interférence L. Dés
lors,

L
I(f) = / Qg @Vol e de (9.72)

Cette expression représente donc le courant généré dans la paire perturbée dii a une tension
dans la paire perturbatrice, ramenée & l'entrée du cable. En terme de puissance, le signal
perturbateur s’exprime par

By(f) = Va(N)I3 = Zula(f)15(f) (9.73)

ou Zj, est I'impédance de la charge qui termine la ligne. La résolution de I'intégrale sous forme
analytique n’est malheureusement pas possible car la quantité )y, n’est pas connue; on
peut donc la traiter comme une variable aléatoire et dés lors rechercher I'expression d’'une
puissance moyenne. En supposant que la charge 7, est adaptée a I'impédance de ligne 7., il y
a donc uniquement un transit de puissance active. Ainsi, la puissance moyenne est donnée par
I’expression suivante

L Ih i
E{R(f)} = E{RLVoZ(f) / JwQaany(@)e P dy / Q@) <f>ydy}
0 ; ; 0
_ RLw2v02<f>E{ / / @MIMQ<x>@7m<y>e-2w<f>$e-2w*<f>ydxdy} (9.74)
0 0

L L
— RV [ E{Qunin@ @ @)} e Wdzdy (0.7
0 0

Une hypothése réaliste consiste a considérer que Qaz,ar,(7) et Qi 1, (y) sont deux variables
non corrélées, ce qui implique que la variable aléatoire Qa,az, (7)Q3y, 11, (y) n'aura une valeur
non nulle que si x = y d’ou

E {QJ\JIMZ (@Q%MQ (Z/)} = kd(z —y) (9.76)

Cette hypotheése est un artifice de calcul commode mais son interprétation physique est malaisée.
Notons néanmoins que @)y, 17, () peut prendre des valeurs négatives; l'espérance peut donc
s’annuler.

Grace a cette hypothése,

BAG) = R [

L
/ ko (x )€*2W(f)re*2“/*(f)ydxdy
0
L
e

V2
0
= Rw’VE(f)k / ety D2 dy (9.77)
0
= RpW*VE(f)k / e~ 4Nz gy (9.78)
0
6—404 (fz
= Rpw?V}? (fk[ - } (9.79)
RLOJ2V2(
T (e - 1) (9.80)
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Pour des lignes suffisamment longues,

- RLWZV()z(f)k

E{P(f)} = () (9.81)

A haute fréquence (ce qui est le cas pour ’ADSL), on sait que « est proportionnel a /f. D’oit

2 ' g2
Hypxr(f) = Zz;c(dff = ozk;éf = Knpxrf? (9.82)

Cette expression représente la fonction de transfert en puissance de la paradiaphonie (NEXT),
qui permet de calculer la densité spectrale de puissance sur la ligne perturbée due a une densité
spectrale de puissance sur la ligne perturbatrice. Cette fonction de transfert est donc propor-
tionnelle a la fréquence. De plus, I'interférence de diaphonie ne dépend pas de la longueur. Ce
résultat, assez inattendu, provient du fait que les effets de diaphonie & proximité de I’extrémité
supplantent les contributions diaphoniques des troncons éloignés, les effets a courte distance
dominent donc.

9.5.4 Calcul du FEXT

Tout comme dans le cas du NEXT, on peut calculer la puissance du FEXT a partir de la relation
locale 9.68. Pour aboutir au résultat final, on procéde par intégration sur base du schéma de la
figure 9.20.

Cable multi-paires

JwQ iy My Vo(f)e—v(f):z:l §wQ My V[](f)e—'y(f)L

== u]

________

[eoeee i i
1 Commutateur
Modem Vo(f) Vo(f)e (o de données
FIGURE 9.20 — Télédiaphonie au droit de .
Les calculs ménent a une fonction de transfert en puissance d’expression
Hrpxr(f) = krpxrfie *VEL (9.83)

ou L est la longueur du troncon sur lequel agit le FEXT.

Contrairement au NEXT, le FEXT dépend de la longueur de la zone d’interférence ; il augmente
également avec la fréquence.
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9.5.5 Rapport signal sur bruit

Les fonctions de transfert du NEXT et du FEXT permettent de dériver un rapport signal sur
bruit du canal constitué par la paire perturbée.

Dans le cas du FEXT, la densité spectrale de puissance a la sortie de la paire est la somme de
la densité spectrale de puissance du signal utile et de celle du FEXT. Suivant les conventions
de la figure 9.21 et par application du théoréme de WIENER-KINTCHINE, on obtient

YR(f) = 1(F) IHe(HI* +7p(f) Hrpxr(f) (9.84)

ot vu(f) ||[H(f)||” représente la densité spectrale de puissance du signal utile a la sortie de la
paire et vp(f) Hrpxr(f), la densité spectrale de puissance due au FEXT a I’entrée du récepteur.

paire perturbée

FEXT

paire perturbatrice

Pg Pr

Pp

FIGURE 9.21 — Calcul de la densité spectrale de puissance en sortie de la paire en présence de
FEXT.

On en déduit 'expression du rapport signal sur bruit

S () IHLDI
NG = 3000 Hrexr () (9:85)
VP(f)szkFEXT HHc(f)HZ
1
B Lf?krexT S
k/
= 1P (9.88)

Une formule identique peut étre dérivée dans le cas du NEXT, ce qui donne deux expressions
du rapport signal sur bruit. On peut constater que I’expression du canal n’intervient pas dans
ces formules.

9.5.6 Influence du nombre de perturbateurs

Supposons le cable constitué de N lignes perturbatrices. Une idée simple consiste & sommer
leffet individuel des N lignes. Dés lors, la densité spectrale de puissance en sortie est donnée
par

N
Your(f) = Z Yin: (f) Hrext/NEXT(f) (9.89)
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Si, en plus, on fait I’hypothése que tous les signaux perturbateurs ont la méme densité spectrale
de puissance,

Yout (f) = NYin(f) Hrext/NEXT(f) (9-90)

Cette formule surévalue la puissance perturbatrice car les paires trés éloignées de la paire
perturbée influencent peu cette derniére. Le facteur a considérer est deés lors inférieur a N. Il
est donc nécessaire de mener une étude statistique. UNGER a proposé la formule empirique
suivante

Yout () = N®®y;(f) Hrexr/next(f) (9.91)

9.6 Estimation de la capacité de canal

De maniére a établir une formule permettant d’estimer la capacité de canal, c’est-a-dire le
nombre maximum de bit par seconde qu’il est possible de transmettre sur un canal bruité (une
paire téléphonique dans notre cas), il est nécessaire de rappeler les principaux résultats de la
théorie de I'information.

9.6.1 Information, incertitude et entropie
Notion d’information

Considérons une source pouvant émettre deux symboles sq et s; avec les probabilités respectives
po et py. Celle-ci peut dés lors étre vue comme une variable aléatoire discréte. Nous considérons
la source sans mémoire, c’est-a-dire que le symbole émis a un certain temps est indépendant
des symboles émis précédemment.

Supposons que la source émette un symbole. Si une des deux probabilités est unitaire, il n’y a
pas de surprise a la sortie et donc aucune information (on connait le symbole qui va étre émis).
Dans le cas on I’émission des symboles est équiprobable (py = p; = 0,5), une grande incertitude
subsiste sur le symbole émis et la réception du symbole émis apporte beaucoup d’information.
On peut ainsi caractériser I'information par la probabilité d’émission des symboles.

Définition 39 [Information d’un symbole] Dés lors, le gain en information apporté par
l’observation de I’événement S = sy, de probabilité p est donné par l'information de symbole
telle que définie par

, 1
i(sk) = log, (—) = —log, px (9.92)
Pk

L’information est nulle quand p, vaut 1 —ce que 'on peut interpréter comme le fait que la
réalisation d’un événement certain n’apporte aucune information— et elle augmente & mesure
que pi diminue. Cette grandeur s’exprime en bit d’information. Il convient de ne pas confondre
le bit et le bit d’information qui représentent respectivement les mesures du débit et du débit
d’information. Ainsi, il est tout a fait possible d’avoir un nombre de bits d’information qui ne
soit pas un nombre entier. En pratique, on ne retrouve guére cette nuance puisque le terme bit
est utilisé pour les deux notions. Il faudra donc recourir au contexte pour rétablir la distinction.
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Notion d’entropie

Soit une source S comprenant K symboles. On cherche & caractériser 'information moyenne
fournie par chaque symbole émis.

Définition 40 Cette grandeur est appelée entropie de la source et notée H(S). Des lors,

H(S) = I];l il (i> (9.93)

Pk

Dans le cas d’une source binaire, on peut considérer deux cas particuliers :

1. le cas ou tous les symboles sont équiprobables. On montre alors que H(S) = 1, ce qui
implique que I'information apportée lors de 'observation du symbole vaut un bit.

2. le cas ou une probabilité p, vaut 1. Alors H(S) = 0; l'information apportée lors de
I’observation du symbole est nulle car on sait a priori quel symbole va étre émis par la
source.

9.6.2 Canal discret sans mémoire

Dans le cas ou le canal n’est pas bruité, lorsque ’on injecte un symbole dans le canal, on
peut prédire la valeur du symbole de sortie avec certitude. En présence de bruit, une certaine
incertitude subsiste a la réception du symbole. Cette incertitude est liée au fait qu’il existe une
certaine probabilité d’erreur, le canal n’étant plus parfait. Par ailleurs, il se peut fort bien qu’un
alphabet de sortie différe sensiblement en taille de ’alphabet d’entrée.

Modéle de canal

Considérons un canal discret (les alphabets d’entrée et de sortie sont de taille finie) et sans mé-
moire. [’absence de mémoire signifie que le symbole de sortie courant ne dépend que du symbole
d’entrée courant. Le schéma du systéme est alors celui fourni a la figure 9.22. Les probabilités
p(yk|x;) représentent les probabilités de transition d’'un symbole de 'alphabet d’entrée vers
un symboles de ’alphabet de sortie. Elles peuvent étre regroupées dans une matrice, appelée
matrice de canal.

X Y
Lo Yo
1 Y1

o Canal : p(yx|z;) F——
LJj-1 YKk—1

FIGURE 9.22 — Modéle du canal discret sans mémoire.

Idéalement, p(y;|xz;) = 0 si k # j en I'absence de bruit ou de tout pré-codage. En pratique, on
doit toujours tenir compte des probabilités croisées.
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9.6.3 Information mutuelle

Pour un canal bruité, la question posée est de savoir quelle incertitude subsiste sur I’entrée X
aprés avoir observé la sortie Y = y,. Pour répondre a cette question, définissons I'entropie de
X conditionnellement & Y, sachant que Y = y; de la maniére suivante

HXY =) = 3 (1) log, (ﬁ) (9.94)

= zi|yr)

Cette formule nous donne dés lors I'incertitude subsistant sur la valeur de I’entrée connaissant
la valeur y; de la sortie. Il serait intéressant d’avoir une moyenne de cette information pour

toutes les valeurs de Y et donc pour toutes les sorties possibles, c’est 1’entropie conditionnelle
H(X]Y), donnée par

K-1
HX|Y) = H(X|Y = yi)p(ys) (9.95)
Py 1
= 2.2 p(z;yr)p(yr) log, (m) (9.96)
K—1J-1 )
= jop(xj’yk) tog: (M) (9.97)

On définit alors I'information mutuelle moyenne /(X;Y’) comme la quantité d’information, et
donc d’entropie, que 1’on retrouve en sortie du canal (et donc qui n’a pas été affecté par le
bruit). Dés lors,

I(X;Y)=H(X) - HX|Y) (9.98)

On peut illustrer cette définition dans deux cas particuliers :

1. le cas d’un canal sans bruit. Alors, H(X|Y) = 0 car connaissant le symbole de sortie, il
est possible de déterminer avec certitude le symbole d’entrée. Aussi [(X;Y) = H(X) : le
canal arrive donc bien & véhiculer I'information jusqu’au récepteur.

2. le cas d’un canal fortement bruité au point que tous les symboles soient équiprobables.
Alors H(X|Y) = H(X), car 'analyse de la sortie ne permet pas d’obtenir la moindre
information sur I'entrée. Ainsi donc, I(X;Y") est nulle; le canal ne transmet aucune in-
formation.

On peut montrer que I'information mutuelle moyenne posséde notamment la propriété d’étre
symétrique, dés lors I(X;Y) = I(Y; X), on en déduit que
I(X;Y) = HX) -
I(V;X) = H(Y) -

(X]Y) (9.99)
(Y]X) (9.100)
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9.6.4 Capacité de canal
La notion d’information mutuelle nous permet d’introduire la notion de capacité de canal.

Définition 41 On définit la capacité (mazximale) d’un canal comme le mazimum de ’informa-
tion mutuelle moyenne ot la mazximisation se fait sur la distribution de probabilité des symboles
d’entrée

Cs = mazppe, ) 1(X;Y) (9.101)

Cette définition représente donc la meilleure utilisation que ’on peut faire du canal et elle est
indépendante de la distribution de probabilités des symboles de I’alphabet d’entrée. Il s’agit
évidemment d’une capacité théorique que I’on pourra utiliser comme référence pour la mise au
point de technique de transmission.

Remarquons enfin que la relation 9.101 définit une capacité de canal par symbole. Si le canal
est capable de traiter s symboles par seconde, la capacité par seconde est donnée par

C =sC, (9.102)

Estimation de la capacité d’un canal binaire symétrique

Considérons le schéma de la figure 9.23.

X Y

I
o

y

p(xo) = @ 29=0 Yo

y

plr))=1—a z=1 =1

b

FIGURE 9.23 — Calcul de la capacité de canal d’un canal binaire symétrique.

La capacité du canal s’exprime par

CS = maﬂj{p(@j)}I(X; Y) (9103)
= MaTipe,)y [H(X) — H(X|Y)] (9.104)
= MaTipe,) [H(Y) - H(Y|X)] (9.105)

Calculons I’entropie conditionnelle H (Y| X ). Pour ce faire, appliquons la formule 9.96 adaptée.
Pour la paire entrée-sortie (xg, o), on obtient

H(Y|X) (@oy0) = —P()op(Y0|0) logy (p(yolzo)) (9.106)
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Sachant que la probabilité d’émission du symbole x, vaut « et que la probabilité conditionnelle
p(yo|zo) vaut p (cf. figure 9.23), on obtient

H(Y|X)(£L‘o,yo) = —ap lOgQ p (9107)

En effectuant de méme pour toutes les combinaisons entrée-sortie ((x1, o), (zo,y1) et (x1,41))
et en sommant les différentes contributions, on trouve

1 1
H(Y|X) = H(Y1X) 0 (9.108)
i=0 j=0

= —plogyp — qlogy q (9.109)

On constate donc que H (Y |X) ne dépend que des caractéristiques du canal, on parle d’entropie
de canal. Dés lors,

I(X;Y)=H(Y)+plog,p+ qlog, q (9.110)

Pour maximiser cette quantité, on ne peut plus jouer que sur H(Y). Le maximum que 1'on
peut obtenir avec un canal binaire est une valeur unitaire pour H(Y). La capacité maximale
de canal est alors

Cs =1+ plogyp+ qlog, q (9.111)

Sur le schéma de la figure 9.23, ¢ représente la probabilité de prendre une décision erronée;
c’est la probabilité d’erreur. Dans le cas d’une modulation & deux états, la probabilité d’erreur
est liée au rapport signal a bruit par la relation

q=pe= %erfc 0/%) (9.112)

L’évolution de la capacité de canal en fonction du rapport signal sur bruit est représentée a la
figure 9.24. On constate que, lorsque le rapport signal sur bruit tend vers l'infini (c¢’est-a-dire
que la probabilité d’erreur tend vers 0), la capacité maximale du canal tend vers 1 bit.

Influence du type de modulation
Prenons le cas d’'une modulation a quatre états (4-AM par exemple). La matrice de canal se
complique car il faut calculer plusieurs probabilités d’erreur pour un symbole d’entrée donné.

Cependant, I’expression de la capacité de canal reste de la forme
Cs=H(Y)+ H, (9.113)

ou la valeur maximale de H(Y") est de deux, la conséquence d’une modulation & quatre états
étant que ’'on a deux bits par symbole et ou H. est un terme associé aux transitions de canal.
Il est alors intuitivement acceptable que la capacité de canal tende vers deux quand le rapport
signal a bruit tend vers l'infini. Le raisonnement peut étre répété pour des modulations a 16
voire 64 états. Les résultats sont résumés a la figure 9.24.
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 Cs (bit/symbole)

i 16-AM
4
8-AM
3
2
1
0 a = '| - 2:[dB]

0 10 20 30

FIGURE 9.24 — Capacité de canal pour différents types de modulation.

Geénéralisation au cas continu et second théoréme de SHANNON

Dans le cas ou I’on considére des alphabets d’entrée et de sortie continus, le calcul de la capacité
de canal s’en trouve trés fortement compliqué. Pour un canal blanc additif gaussien de moyenne
nulle et de variance o3, la sortie vaut

Y = X + N(0,0%) (9.114)

Pour le calcul de la capacité de canal, on impose en outre une limitation de la puissance d’entrée

S 2
a UX.

Théoréme 42 [SHANNON/ Des calculs montrent que la capacité d’un canal blanc additif

gaussien de moyenne nulle et de variance o3 s’exprime par

1 2
C, = = log, (1 + U—§> (9.115)
2 o

N

2
. O e . a
ot = représente le rapport signal sur bruit.
N

Cette formule porte le nom de second théoréme de SHANNON. On constate que, dans le cas
d’un bruit important (0% > 0%), le canal ne parvient pas a transmettre de I'information. La
figure 9.25 compare la limite théorique de SHANNON avec les capacités maximales atteintes par
les différentes techniques de modulation. Il est intéressant de noter que la limite théorique de
SHANNON correspond au cas d’'une modulation comportant un nombre infini d’états.
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e (bit/symbole) 16.AM
A oo e e---
- p=10"°
limite de SHANNON\
8-AM
3 F-------m - -——------
p=107"°
4-AM
2 __________________________________
2-AM
T
0 '1 = 1 ~ n[dB]

FIGURE 9.25 — Second théoréme de SHANNON.
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Chapitre 10

Ingénierie des radiocommunications
mobiles terrestres

Ce chapitre aborde I'étude de la partie radio des réseaux de radiocommunications mobiles
terrestres. Les aspects systémes ne seront pas couverts.

10.1 Introduction

La figure 10.1 représente les éléments qui interviennent dans le calcul du bilan de puissance
d’une liaison sans fil. On distingue les pertes d’émission (Lg) et de réception (Lp), dues aux
lignes de transmission reliant les équipements aux antennes ainsi qu’a certains équipements in-
termédiaires (duplexeurs, connecteurs, . . .), les gains d’antenne et ’affaiblissement dans I’espace

(Ae).

A
GE <]<-_-“7

Lg

Emetteur Récepteur

FIGURE 10.1 — Eléments intervenant dans le calcul du budget de puissance d’une liaison sans
fil.

Deés lors, la puissance de réception P, exprimée en [dB], vaut
PR:PE_LE+GE_AQ+GR_LR (101)

ol Pg désigne la puissance d’émission. Le terme d’affaiblissement en espace est délicat s’agissant
de communications mobiles. En effet, le modéle de propagation en espace libre (cf. relation de
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FRIIS) convient raisonnablement bien pour des communications en ligne de vue —on parle
de situation de Line of Sight (LOS) dans la littérature— et dans un espace dégagé, mais il
s’avére inadéquat pour des communications radiomobiles. En effet, le signal détecté au récepteur
comporte éventuellement I'onde émise en ligne de vue! et une série d’ondes diffractées ou
réfléchies a la méme fréquence ; c¢’est une situation typique de multitrajet.

Le signal recu est donc affecté de plusieurs effets de distorsion :

— distorsion de la valeur instantanée de 'amplitude, engendrée par le phénoméne de multitrajet
ou par la présence d’obstacles. Le terme consacré est celui d’évanouissement ou fading.

— distorsion de fréquence. Cet effet résulte de I'effet DOPPLER dii au déplacement du mobile.

— distorsion de phase. Il s’agit d’'une conséquence du multitrajet et de ’effet DOPPLER qui
produit une série de versions décalées dans le temps du signal émis.

Dans le cas d’'une communication numérique, ces effets se traduisent par un accroissement de

I’interférence entre symboles et une diminution du débit utile pour une bande de fréquences

fixe.

En principe, il suffit de connaitre les trajets pour déterminer la correction a apporter au signal
recu. Cette approche déterministe ne convient cependant pas puisque I’environnement fluctue
au cours du temps. En conséquence, on intégre dans les formules donnant le niveau de puissance
recu par un mobile en un point donné des variables aléatoires pour intégrer une incertitude sur
les prédictions. C’est donc une démarche a la fois physique, expérimentale et probabiliste qu’il
conviendra d’adopter pour 'analyse du bilan de liaison.

10.1.1 Sensibilité du mobile et qualité de service

Pour qu’une radiocommunication s’effectue avec un niveau de qualité suffisant, il faut impéra-
tivement satisfaire & deux conditions? :

1. Le niveau de puissance recu par le mobile doit étre supérieur a la sensibilité du mobile,
c’est-a-dire au niveau de puissance minimal que le mobile est susceptible de détecter pour
un bruit d’entrée donné.

2. Le canal ne présente pas une distorsion et un bruit trop élevés.

Un émetteur est caractérisé par sa puissance, un récepteur par sa sensibilité. Pour assurer une

réception correcte, le rapport signal a bruit %, mesuré a un certain point de 1’étage de réception

—généralement a I'entrée du récepteur, aprés amplification—, doit étre supérieur a un seuil donné.
Eb

Ce rapport s’exprime fréquemment comme un rapport d’énergie - ou E), est I’énergie par bit
Eb

transmis et /Ny désigne la densité spectrale de bruit. La valeur de ce seuil de N

fixée par des normes. Par exemple, dans le cas du GSM, le seuil % vaut 8 [dB] en présence
d’évanouissement.

est généralement

Pour relier le rapport % a la sensibilité du mobile, nous effectuons le calcul suivant.
Pour une modulation de largeur de bande W (fréquence de NYQUIST), la puissance de bruit
vaut NoWW et la puissance du signal E, /. Dés lors,
C EW K
N NW Ny

(10.2)

1. En fait, cette situation est rare dans le contexte d’une radiocommunication mobile.
2. En pratique, les opérateurs ajoutent encore une marge de qualité.
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Il en résulte que, dans une échelle logarithmique,

Ey
C=— + N 10.3
NO seuil ( )
Comme en GSM, la largeur de modulation est de 271 [kHz], le bruit thermique est égal a
1,1 x 1072 [mW], soit —120 [dBm] & une température de 290 [K].

Ce rapport est calculé au droit de la sortie de I’étage d’entrée (typiquement aprés démodulation).
Comme 'amplificateur d’entrée amplifie le bruit d’un facteur typique de 10 [dB], le bruit de
fond est borné par —110 [dBm]. Il en découle que la sensibilité du mobile vaut —102 [dBm)]. Le
tableau 10.1 reprend les quelques valeurs de sensibilité pour différents types de récepteurs.

| Type de récepteur | Sensibilité en [dBm] |
Station de base -104
Portable 8 [W] -104
Portable 2 [IW] (GSM 900) -102
GSM bi-bande -102

TABLE 10.1 — Valeurs typiques de sensibilité (d’apres [19]).

10.2 Modéle général de propagation

10.2.1 Introduction

Une communication entre une antenne d’émission et un mobile n’est pas symétrique. En effet,
I’antenne d’émission est généralement placée a une hauteur de plusieurs dizaines de métres,
avec un horizon dégagé, alors que le mobile se déplace dans un environnement contenant divers
obstacles, a un hauteur de 1 & 3 [m]. Une situation typique de liaison est illustrée a la figure 10.2.

On remarquera l'absence d’un trajet direct entre I'antenne de la station de base et le mobile,
ainsi que la présence de signaux réfléchis et diffractés® venant de toutes les directions. Cette
configuration est courante en radiocommunications mobiles terrestres. Un modéle devrait étre
en mesure de considérer ce type de configuration.

Examinons tout d’abord I’évolution de la puissance recue en fonction de la distance par rapport
a ’émetteur fixe. La figure 10.3 montre I’évolution de la puissance en fonction de la distance,
pour une méme configuration, prise a deux moments différents. En raison de toute une série de
facteurs, les deux courbes différent mais elles marquent une décroissance de la puissance avec
I’augmentation de la distance.

D’autre part, en pratique, il suffit de parcourir un autre rayon du cercle centré sur ’antenne
d’émission pour observer une autre courbe d’affaiblissement, la configuration de ’environnement
étant différente.

10.2.2 Modéle

Dans les cas les plus courants, le récepteur et I’émetteur ne sont pas en visibilité directe. On
approxime fréquemment l’affaiblissement du canal par un modéle & 3 étages comprenant :

3. A l'intérieur, il faut encore ajouter les rayons diffractés.
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(a) Vue de profil

xiE»\\:x>\.;

— N

el

(b) Vue aérienne

FIGURE 10.2 — Vue latérale et vue aérienne d’une liaison entre une antenne d’émission et un
mobile.

A Pl [dB]

---35 dB / décade

| | | | -
1 10 100 1000 10000  d [km]

(a) Premiére mesure

A P2 [dB]

---35dB / décade

1 10 100 1000 10000  d [km]

(b) Deuxiéme mesure

FIGURE 10.3 — Evolutions de la puissance en fonction de la distance pour une méme configu-
ration apparente.

178



Prof. Marc Van Droogenbroeck, tous droits réservés

1. une atténuation médiane due a la distance,

2. un terme aléatoire prenant en compte les effets de masque, dus a la présence d’obstacles,
et

3. un autre terme aléatoire décrivant les évanouissements.

10.2.3 Affaiblissement de parcours

Tout comme dans le cas d’une liaison en espace libre, si la distance d entre ’émetteur et le
récepteur augmente la surface apparente de ’antenne de réception diminue, ce qui se traduit
par un accroissement de I'atténuation. En ligne de vue et en I’absence de réflexion, ’affaiblisse-
ment, appelé affaiblissement de parcours ou path loss, est proportionnel au carré de la distance
d?. Comme cette hypothése n’est que rarement vérifiée en pratique, I’affaiblissement est pro-
portionnel & une puissance supérieure de d. On opte, par exemple, pour une valeur médiane de
’affaiblissement valant d*°.

[’affaiblissement fournit une évolution de la puissance qui, localement, peut s’écarter des valeurs
moyennes observées. En effet, prenons le cas d’'une communication GSM a 900 [M H z|, entre une
antenne d’émission et un mobile distant de 1 [km]. Suivant la loi d’affaiblissement en d*°, s’écar-
ter de 1 [m] contribue & une augmentation de I’affaiblissement de 35 x (log;, 1001 — log;, 1000),
soit 0,015 [dB]. Or, la longueur d’onde correspondant & 900 [M Hz]| est 0,33 [m]. Autrement
dit, parcourir une distance de 1[m] équivaut a 3 longueurs d’onde. A supposer qu’une paroi
réfléchisse parfaitement le signal émis, le mobile recoit le signal direct et le signal réfléchi avec
des phases respectives qui peuvent aller de la concordance de phase a 'opposition de phase,
soit un affaiblissement supplémentaire allant de —6 [dB] a +oco [dB]. Ces différents cas de figure
peuvent donc se produire plusieurs fois sur une distance de 1 [m)].

En définitive, c¢’est I'allure de ’affaiblissement que 'on traite avec une loi qui serait fonction de
la distance; & ce titre, la valeur fournie par les modéles empiriques est la valeur médiane des
valeurs observées. Il faut ajouter a cela des effets statistiques de masquage et de phase.

10.2.4 Masquage
Base physique

Le masquage provient de la présence d’obstacles. En premiére approximation, on peut considérer
qu’'un obstacle absorbe un certain pourcentage de la puissance. Ainsi, la puissance transmise
ou diffractée ne représente qu’un certain pourcentage de la puissance incidente. De méme, la
présence d’une vitre se traduit par une certaine diminution de puissance.

Pour modéliser les effets de masquage (shadowing en anglais), aussi appelé évanouissement
lent, nous partons de I’hypothése suivante. Supposons que toutes les contributions de mas-
quage a l'affaiblissement A, en terme de puissance, soient dues & des facteurs multiplicatifs
Ay, Ay, ..., Ay, tous inférieurs a 1, tels que

A=A X Ay x ... X Ay (10.4)

représente ’affaiblissement de masquage *.

4. Cette définition, courante dans la littérature scientifique, peut préter a confusion. En effet, en toute rigueur
A représente 'inverse de ’affaiblissement. Par la suite, nous adopterons néanmoins la définition 10.4.
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Dés lors qu’il y a masquage, la puissance regue Pr vaut
PR:(PEXAPL)X/hXAQX...XAN (105)

ou Apj, est affaiblissement de parcours.

En décibels, 'atténuation totale vaut
Liotale = Lpr + L =Lpp + L1+ Lo+ ...+ Ly (10.6)
Plus spécifiquement, I'atténuation de masquage L est la somme des N contributions

L=Li+Ly+...4+ Ly (10.7)

Si toutes les contributions sont des variables aléatoires de mémes espérance et variance, L est
une variable aléatoire normale par application du théoréme de la limite centrale :

L[dB] = Lsyy [dB] + 0, [dB] x N(0,1) = N(Lso, 02) [dB] (10.8)

tel que Loy est la valeur médiane de I'atténuation et o [dB] sa variance.

En unités naturelles et en écrivant N (0, 1) = X, Paffaiblissement vaut

L = 10%tdBl/10 — 1o(Lso% [dBl+os [dB]xX)/10 (10.9)
10L50% [dB]/10 10°s [dB]xX/10 _ LOV (1010)

ou L, = 10Ls0% [4B]/10 oy
V= IR (10.11)

est une loi log-normale.

Densité de probabilité d’une loi log-normale. Pour calculer la densité de probabilité de
la log-normale, on part de I’expression de la gaussienne. Soit X une variable aléatoire gaussienne
centrée, de variance unitaire. Sa densité de probabilité vaut, pour = € [—o0, 400,

I a2
fx(l‘)z\/%e 2 (10.12)

On définit ensuite la variable aléatoire log-normale V' de la maniére suivante

V = 10%5 = efosX (10.13)
ou In(10
= nio ) _ 0,923 (10.14)

La fonction de répartition de V vaut |21, page 152]

1
Fy(v) = p(V <o) =p(e™¥ <o) =p(X < 2
O

Inv/Bos 1 Inv/Bos 22
= z)dr = — e 2dx 10.16
| == [ (10.16)
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Par dérivation, il en résulte une densité de probabilité

1 22
fx(z) V€ °
= LNV = YT 10.17
fV(U) |aU/a(L| e 60565‘7”” ( )
Bos 17:%
i g —or
2820 19
= { Bmvme T siv=20 (10.18)
0 siv <0

Cette densité de probabilité est représentée a la figure 10.4.

0.8 -

0.6 -

fv(v)

FIGURE 10.4 — Densité de probabilité d’une loi log-normale.

La valeur médiane de V', vsg, est tirée de la valeur médiane de X par vsgy = e%0% = 10° = 1
quelle que soit la valeur de o,.

En pratique, tous les termes ne contribuent pas de la méme maniére a ’affaiblissement. D’autre
part, on peut montrer que les termes de diffraction n’obéissent pas & une simple loi additive,
en raison d’'une dépendance entre certains termes. Néanmoins, diverses mesures montrent que
la loi log-normale est généralement suffisante pour modéliser le masquage.

Impact sur la zone de couverture en bordure d’une cellule

En présence d’un effet de masquage, I'affaiblissement L est une variable aléatoire normale
N(Lsoy, 02) (cf. équation 10.8) :

L[dB] = N(Lsyy, 02) [dB] (10.19)
On peut en déduire une variable aléatoire normale centrée L, au moyen de I’expression
L[dB] = Lsoy [dB] 4+ Ls [dB] (10.20)
ou
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— Lo est la valeur médiane® de I’affaiblissement de parcours telle que fournie par les modéles
empiriques résultant de mesures. En effet, ces mesures fournissent une valeur médiane qui,
outre I’affaiblissement de parcours, englobe un effet moyen de masquage. C’est la raison pour
laquelle on classe les modéles empiriques en fonction de la densité de ’environnement urbain.

— Ly, la variable aléatoire de masquage; c’est-a-dire une variable aléatoire gaussienne de
moyenne nulle et d’écart-type os.

La densité de probabilité de L, est donc

R

620;.
OV 2T

Pour des raisons d’efficacité, il est nécessaire de garantir un niveau de puissance supérieur a la
valeur médiane ; 'ingénieur de réseau n’a guére le choix que d’ajouter une marge supplémentaire
de puissance a 1’émission afin d’augmenter la couverture. A I'ajout de cette marge de m, [dB]
correspond une probabilité de couverture supérieure a celle de la puissance médiane pour une
méme sensibilité de récepteur. Cette probabilité se calcule par

|

fls) =

(10.21)

ly <mg) = / €275 dl 10.22
»( ) - ( )
= /ms L g (10.23)
= — € <95 s .
2 0  OsV2T
1 1 m
= —+ —erf - 10.24
2 2 (\/505) (1024)

erf(z) est la fonction d’erreur
2 S
erf(z) = —/ e Vdt 10.25
@ == (10.25)

L’effet, de masque représente une variation sur les conditions de propagation, tantot favorable
(par exemple visibilité directe), tantot défavorable (par exemple lors de la présence d’un obstacle
important entre I’émetteur et le récepteur). En environnement urbain, I’écart type de la loi a
une valeur typique de 6 [dB] (d’aprés [19]).

La figure 10.5 montre la probabilité de couverture (en %) en fonction de la marge additionnelle
de puissance.

10.2.5 Evanouissement

Pour obtenir la statistique qui décrit le phénomeéne d’évanouissement, il faut distinguer deux
cas, suivant qu’il y ait ou non visibilité directe —ou du moins, un trajet nettement moins atténué
que les autres— entre I’antenne de la station de base et I’antenne du mobile.

Evanouissement en 1’absence d’un trajet direct

Considérons une série de trajets dus a la diffraction et a la réflexion (cf. figure 10.6). Dans un
premier temps, nous considérons le cas d'un émetteur et d’'un récepteur qui ne sont pas en ligne
de vue.

5. La valeur médiane d’une variable aléatoire normale est théoriquement égale & sa moyenne. Pour les me-
sures, le recours & la médiane est préférable si ’on ne dispose pas d’un large ensemble de réalisations car elle
élimine I'impact des valeurs aberrantes.
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Probabilité de couverture (en %)
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FIGURE 10.5 — Pourcentage de couverture tel que défini par un seuil de puissance.

A cos(2m f,t)

FIGURE 10.6 — Effet de multitrajet par diffraction et réflexion.
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[’émetteur envoie un signal cosinusoidal A cos(27 f,t) avec une amplitude et une fréquence f,
constantes. Le signal recu au droit du récepteur X () est composé d’une série d’ondes déphasées
et atténuées

= Cjcos(2m fot + 6;) (10.26)

Cette expression peut s’écrire sous la forme de termes en phase et en quadrature

X(t) = Z[CZ cos(2m f,t) cos§; — C; sin(2m f,t) sin 6;] (10.27)
= Z[AZ cos(2m fot) — By sin(2w f,t)] (10.28)
= X;(t) cos(2m fot) — Xg(t) sin(27 fot) (10.29)

ol I'on a défini

= ZAi = ZC} cost; et Xg(t) ZB ZC’ sin 0; (10.30)

Le canal n’étant pas invariant dans le temps (par exemple en raison de déplacements), les
composantes en phase et en quadrature sont des fonctions temporelles. D’autre part, X () est
la réalisation d’'un processus stochastique qui est la somme de termes indépendants. Dés lors,
en vertu du théoréme de la limite centrale, X, (¢) et X (t) représentent des variables aléatoires
gaussiennes.

Si I’on veut déterminer I'intensité de champ électrique, il faut analyser I’évolution de ’amplitude
du signal. Cette amplitude est définie par®

- \/X;(t) +X3(t), R(t) >0 (10.31)
quant a la phase, elle vaut
B(#) = tan~! );?((t? B(#) € [0, 27| (10.32)
et donc
X () = R(t) cos(2m fot + O(t)) (10.33)

Pour exprimer les densités de probabilité de ces variables aléatoires a partir de X, () et X¢(?),
supposons tout d’abord que les composantes en phase et en quadrature soient des variables
gaussiennes centrées, de méme variance 0% et non corrélées. Les variables sont centrées car
elles résultent de la somme de variables aléatoires de type C;cos6;. Or, en supposant que les
variables C; et cosf; soient indépendantes, £ {C;cosb,} = E{C}, E{cos6;} = 0 si’on consi-
dére un argument uniformément distribué sur Uintervalle [0, 27]. Physiquement, une moyenne
correspond a des contributions d’amplitude négative, plus précisément a des termes en décalage
de phase de 90" & 270°.

6. Les résultats suivants résultent de la, décomposition en composantes de RICE et de la représentation par
un passe-bas équivalent d’un signal passe-bande.
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Densité de probabilité. S’agissant de gaussiennes, la non corrélation entraine I'indépen-
dance [6, page 162|. La densité de probabilité conjointe est dés lors égale a

B 202
fx: x0(T1, 2Q) = 27m§(€ X (10.34)
Le changement de variables
ry = 7TCcoso (10.35)
rg = rsing (10.36)

permet de trouver la densité de probabilité conjointe fro(r, ). En effet, on sait qu’en toute
généralité, un changement de variables fait intervenir le Jacobien

9X; 9Xg
fra(r, @) =| & £E | fx;xo(rcosg, rsing) (10.37)
T
Deés lors,
S L N | Sy A —— (10.38)
ST —rsin¢g rcos¢ =9 '
r 7'2 cos2 (b+'r'2 sin2 b
- 2
= 27 10.39
27T0§(6 " ( )
= { goze x, 120, 6€(0,2n] (10.40)
0 r <0

Densité de probabilité marginale de ’enveloppe. La densité de probabilité marginale
des amplitudes s’obtient en intégrant la densité conjointe sur ®. Un calcul simple conduit &

falr) =14 x¢ 7 120 (10.41)
0 r <0

C’est la densité de probabilité de RAYLEIGH. Elle est illustrée, sous forme normalisée, a la
figure 10.7.

Les moments de cette loi valent [24]

. I X3X...xno%\/m/2 pour n=2k+1
E = 2 10.42
{r { 2k o2k pour n =2k (10.42)
En particulier,
E{r} = V/7n/20x ~1,253 X 0x (10.43)
o = (2 - g) 0% ~ 0,429 x 0% (10.44)
Quant a I'amplitude quadratique moyenne mesurée, elle vaut
+o0o r 2 1/2
Rims = [/ r? = 20% dr} =V2%x ~1,41 X oy (10.45)
0 2moy

On parle généralement d’évanouissement lorsque 'amplitude du signal passe en dessous de
Rims [21].

7. Voir par exemple PAPOULIS [24, page 143] pour une démonstration.
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FIGURE 10.7 — Densité de probabilité de RAYLEIGH.

Densité de probabilité marginale de la phase. Pour obtenir la densité marginale fg (o),
on intégre sur r de 0 & +00 :

1
fo(9) = 5=, @€ [0,2n] (10.46)
ce qui signifie que ® est une variable aléatoire uniforme et indépendante de R, d’ou
fra(r, @) = fr(r)fa(9) (10.47)

Données expérimentales. La figure 10.8 montre I'histogramme de niveaux de puissance
relevés expérimentalement en ’absence d’un trajet direct. Une approximation de la loi de
RAYLEIGH est superposée a cet histogramme.

Evanouissement en présence d’un trajet direct

En présence d’un trajet direct, le signal recu contient le signal transmis en ligne droite, en plus
du bruit et des copies décalées et atténuées du signal utile

Z(t) = Acos(2m f,t +0) + X (t) (10.48)

Ce cas est évidemment plus favorable que le cas précédent puisque le récepteur recoit également
le signal en ligne de vue. L’étude menée ci-apreés vise a mesurer I'importance de I’ajout du signal
direct. Il ne faudrait pas pour autant en déduire des régles de dimensionnement car on doit
tenir compte des conditions les plus défavorables pour I’établissement du bilan de puissance,
c’est-a-dire en ’absence d’un trajet direct.

Pour un signal Z(t) a bande étroite, il est possible de recourir a la décomposition de RICE

Z(t) = Z;i(t) cos(2m fot) — Zg(t) sin(27 fot) (10.49)
Zi(t) = Acosf+ X;(t) (10.50)
ZQ(t) = ASiH@%XQ(t) (1051)
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Distribution de Rayleigh en référence
70 T T T T T T T

Nombre d’occurrences

-85 -80 =75 =70 -65 -60 -55 -50 -45
Niveau du signal [dBm]

FIGURE 10.8 — Histogramme de niveaux de puissance relevés expérimentalement (d’aprés LA-
PIERRE [20]).
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En faisant apparaitre 'amplitude et la phase,

Z(t) = R(t) cos(2m fot + D(2)) (10.52)
R(t) =/ Z;(t) + Z3(t), R(t) >0 (10.53)
et
®(t) = tan* ?((;) (t) € [0, 27| (10.54)
Deés lors,
Zi(t) = R(t)cosd(t) (10.55)
Zo(t) = R(t)sind(¢) (10.56)

Pour une valeur donnée de 0, les variables aléatoires gaussiennes X;(t) et X (¢) étant indépen-
dantes, elles conservent ce caractére. Il en résulte que

Zi(t) = N(Acosb,o%) (10.57)
Zo(t) = N(Asind,o%) (10.58)

La probabilité conjointe, conditionnellement & #, est donc

1 (zlfA00590)2+(2Q7Asin90)2

fz; 2021, 20l0 = 0,) = me 2% (10.59)

Densité de probabilité. Le méme changement de variable fournit le méme Jacobien, d’ot

fra(r,¢l6,) = cosg - sing [z, 2o (r cos ¢, 1sin ¢|6,) (10.60)

—rsing rcos¢

_ (rcos¢p—Acos 90)2+(7‘ sin ¢— A sin 90)2

r

202
= — 7 10.61
2ro% ‘ ) ( )
r _7‘2+A2727‘142COS(907¢)
= 2 10.62
2103 ‘ : ( )

Densité de probabilité marginale de ’enveloppe. L’intégration sur la phase donne

21
fulrlte) = [ rotriolp)ds (10.63)
0
r o 'r2+2A2 2T rA 003(260—qb)
— 271_0%(6 5% /0 e °% d¢ (10.64)
2442 A
— T2e 20% 2l (_27’) (1065)
2moy &
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ou Iyp(x) est la fonction de BESSEL modifiée d’ordre 0 telle que

+0o 2n
xr
n=0

1 517_2 517_4 P 2 5
{ Tt v (10.67)

1,1x
Tor 2,0 <x <10

La fonction Io(x) est représentée a la figure 10.9.

12

lo(x)

FIGURE 10.9 — Fonction de BESSEL modifiée de premiére espéce d’ordre 0.

Remarquons que cette densité de probabilité est indépendante de la phase initiale #,. On peut
donc supprimer la condition en 6, pour aboutir a

r 7T2::2AQ
fa) =4 %e T h(&), r20 (10.68)
0 r <0

Il s’agit de la densité de probabilité de RICE; elle est illustrée (sous forme normalisée) a la
figure 10.10. Lorsque A = 0, il s’agit de la loi de RAYLEIGH.

10.2.6 Autres lois d’affaiblissement

Les lois log-normale, de RAYLEIGH et de RICE tiennent compte des principaux effets d’éva-
nouissement. Il existe néanmoins d’autres modéles, comme les modéles de NAKAGAMI, qui se
révélent plus appropriés dans certaines situations (voir par exemple [30, chapitre 2| pour une
discussion des modéles).
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0.7

FIGURE 10.10 — Densité de probabilité de RICE (pour différentes valeurs de a = 2).

aXx

10.2.7 Effet DOPPLER

Les multitrajets générent un effet d’évanouissement rapide. C’est en fait la somme de phases
distribuées aléatoirement qui modifie I'amplitude instantanée du signal résultant. Il est un autre
effet générateur de distorsion de phase : le mouvement du mobile. Prenons le cas illustré a la
ﬁéure 10.11. Un mobile s’écarte d’une source stationnaire suivant un vecteur vitesse (instantané)

FIGURE 10.11 — Effet DOPPLER.

Considérons que 1’onde recue par le mobile est une onde plane et que le mobile se déplace dans
une direction orientée d’un angle 6. Le déplacement du mobile par rapport au front d’onde
créée une distorsion de la fréquence apparente qui porte le nom d’effet DOPPLER. La distorsion
est proportionnelle au déplacement dans I’axe perpendiculaire au front d’onde.
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Prenons le cas d’une source qui émet un champ électrique sinusoidal de fréquence f.. En I’ab-
sence de mouvement, le champ regu au droit du mobile vaut, suivant la théorie des ondes [25],

E(t) = Eoel@et=F) (10.69)

avec w, = 27 f. et le nombre d’onde [ = 2/\—” Si le mobile est animé d’un mouvement a vitesse
C

7 dans la direction ¢. Le champ regu devient

E(t) = BEoelt=p) (10.70)
= Byelwet=z=pVicosd) (10.71)
Fyed2mfe=3; cosO)t—jpz (10.72)

Le déplacement du mobile entraine donc une distorsion de fréquence d’amplitude

fp= )\KCOSQ = fmcos® (10.73)
C
appelée fréquence DOPPLER. Comme V' et 6 fluctuent au cours du temps, on assiste a une
distorsion de fréquence variable —et donc de phase— pour 'analyse de laquelle il faudra également
recourir a des outils statistiques. La modification de la fréquence porteuse dans une place de
fréquences porte le nom d’étalement DOPPLER. La figure 10.12 montre les spectres & I’émission
et a la réception résultant de I'effet DOPPLER.

Spectre a I’émission Spectre a la réception
A
|
|
|
|
|
|
|
:
Je f Je f

FIGURE 10.12 — Etalement DOPPLER.

Exemple. Prenons le cas d’un mobile GSM (900 [M H z]) se déplagant & 120km /h. La fréquence

DOPPLER maximale intervient lorsque le mobile se déplace dans I’axe de propagation de I'onde,
9 N . @ ) e J J—

c’est-a-dire pour cosf = 1. Dans ce cas, fp = fm = Vf; — 1350100 X gﬁgg = 100[Hz]. La

fréquence instantanée est donc comprise dans un intervalle de largeur 200 [H z].

Spectre DOPPLER classique

L’allure de I’étalement DOPPLER a un impact significatif sur les statistiques d’évanouissement.
Pour en déterminer I’expression, nous partons d’'une hypothése quant a la distribution des
angles d’arrivée dans le plan horizontal des trajets multiples. Le modéle le plus simple consiste
a considérer une variable aléatoire d’angle d’arrivée © dont la densité de probabilité fo () est
uniformément distribuée sur l'intervalle [0, 27].
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La puissance moyenne récoltée dans un secteur angulaire df pour une antenne de gain G(0)
vaut

Pr(0) = G(9) fo(0) df (10.74)

En associant un secteur angulaire & une contribution spécifique de I’étalement DOPPLER, la
puissance correspondante en termes de fréquence vaut

Pr(f) = vp(f)df (10.75)

On remarquera aisément que deux secteurs angulaires d’orientation opposée contribuent a une
méme fréquence. Deés lors,

o(f) df = G(6) fo(8) dB + G(—0) fo(—0) b (10.76)
Ce qui méne a
G(0)fo(0) + G(—0)fo(—0
"}/D(f>| _ ( )fO( )""_‘( )f()( ) (10.77)
do

Par la relation 10.73,

a| :

’@ = fm|—sind| (10.78)

= fmV1—cos26 (10.79)
_ (1 )2
for |1 (fm (10.80)

Finalement, en prenant une antenne de gain symétrique, le spectre vaut
G(G) 0(79)

7o (f
Vl_ L me\/

et 0 pour |f| > f,.. Cette forme de spectre porte le nom de spectre DOPPLER classique; elle
est illustrée a la figure 10.13.

pour |f| < f (10.81)

Bien que leur obtention soit mathématiquement complexe, il existe des expressions des densités
spectrales de la phase du signal, de la fréquence instantanée, de I’enveloppe et d’autres quantités
encore. En particulier, 'analyse de I’enveloppe montre que sa fonction d’autocorrélation se
resserre lorsque la vitesse augmente, ce qui signifie que les enveloppes prises & deux temps
voisins sont moins corrélées et donc que ’évanouissement marque des sauts plus brusques.

10.3 Modéles empiriques

En pratique, les modéles de propagation utilisés ne sont pas des modéles analytiques vu le
nombre élevé de paramétres et la diversité des situations dont il faudrait tenir compte. Plus
que les valeurs des champs en un point, c’est la couverture géographique qui intéresse les
opérateurs de réseau.

Un complément utile aux modéles analytiques est le recours a une base de données topogra-
phique afin de maitriser au mieux la couverture. Cette approche n’exclut en rien le besoin
d’effectuer des mesures en raison de la limitation inhérentes aux différents modéles et de 1’évo-
lution constante de l’environnement. A défaut de mesures, on peut s’appuyer sur des modéles
empiriques qui fournissent des ordres de grandeur fiables pour toute une série de configurations
de référence.
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FIGURE 10.13 — Spectre DOPPLER classique (f. = 900 [M Hz|, V =100 [km/h] et G = 1).

10.3.1 Types d’environnement

Il existe différents types de modéles empiriques. Pour la plupart, on distingue plusieurs types

d’environnements, parmi lesquels :

— l’environnement rural pour lequel ’horizon est principalement dégagé. La propagation est
alors majoritairement influencée par le relief plutot que par les batiments ;

— l’environnement urbain désignant de petites villes ne comportant pas ou peu de hauts buil-
dings;

— D’environnement urbain dense englobant la majorité des grandes villes pour lesquelles I’affai-
blissement est principalement régi par I’agencement des batiments.

La distinction entre un urbain et urbain dense est parfois ténue. Néanmoins, la densification de

I’environnement s’accompagne d’une augmentation de la pente de I’affaiblissement en fonction

de la distance. Des valeurs typiques de pentes sont résumées dans le tableau 10.2. Un exposant

de 3,5 implique un affaiblissement de 35 [dB] par décade.

‘ Environnement ‘ exposant ‘

rural 3,2
urbain 3,5
urbain dense 3,8

TABLE 10.2 — Valeurs de I'exposant de ’affaiblissement de parcours en fonction de la distance
pour différents environnements.

10.3.2 Types de cellule

On distingue aussi, généralement, quatre types de cellules (d’aprés [18]) :

1. la macro-cellule. Il s’agit d’'une cellule de quelques dizaines de kilométres de rayon qui
caractérise les liaisons en milieu suburbain et rural. Les antennes d’émission sont, dans
ce cas particulier, placées sur des positions élevées.
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2. la petite cellule de quelques kilométres de rayon. Elle est particuliérement adaptée a
I’environnement urbain. Les antennes des stations de base sont situées sur des batiments
au-dessus du niveau des toits. En milieu urbain dense, la portée des petites cellules est
plutot de Uordre de 800 [m].

3. la micro-cellule de quelques centaines de métres de rayon. Elle est adaptée a 1’environ-
nement urbain dense. Les antennes des stations de base sont situées sous le niveau des
toits.

4. la pico-cellule. D’une taille de quelques dizaines de métres de rayon, elle convient pour la
propagation a 'intérieur des batiments dans lesquels sont placées les antennes des stations
de base.

10.3.3 Influence de la hauteur des antennes

D’autres parameétres influencent l'affaiblissement de parcours, notamment la hauteur des an-
tennes. Pour le montrer, nous partons de la configuration illustrée a la figure 10.14.

FIGURE 10.14 — Calcul de I'influence de la réflexion.

2

Prenons un trajet direct de type Ae /%% (3 est le nombre d’onde : 3 = s

Que le champ électrique soit & polarisation horizontale ou verticale, on montre que la réflexion
sur un conducteur électrique parfait affecte le champ d’un coefficient —1 (cf. par exemple [25]).
En conséquence, le champ recu au droit du récepteur vaut

AeIBdr _ pp=iBdz — pp—iBdr (1 _ efjﬁ(dzfdl)) (10.82)

Autrement dit, 'affaiblissement qui résulterait d’une propagation en espace libre est affecté
d’un facteur '
[ =1 — g JBlda—dr) (10.83)
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Nous cherchons a présent a illustrer la dépendance en d. Par simple calcul de I’hypoténuse de
triangles rectangles,

di = /(ho— hp)? + d2 (10.84)
dy = /(ho+ hp)?+ &2 (10.85)

2 2
dy—dy =d \/(hbtlhm> +1\/<hb_dhm> +1 (10.86)

Soit encore, aprés utilisation de I'approximation (1 + z)" ~ 1 + nx,

2hph,
dy — dy ~ 207 (10.87)
d
Deés lors, en termes de puissance, le facteur vaut
= |1- e—jﬁ(drdnf (10.88)
= |eiBdd)/2)? | il —d)/2 _ omiBlda=d)/2|? (10.89)
hyhom,
— 4sin? (5 bd ) (10.90)
hyhy, 2 21 hyhy, 2 47 hyh,y, 2
~ 4 ~4|— == 10.91
(6 d > ( A d ) A d ( )
La puissance recue Py vaut alors
AN\ [4m pho \
Pr ~ P — — 10.92
w = PeGeGa () (057) (1092)
hih2,
~ PpGsGr 24 (10.93)
Ou encore, en décibels,

Cette formule montre que I'affaiblissement en fonction de la distance est deux fois plus rapide
qu’en espace libre et qu’il ne dépend plus de la fréquence, si ce n’est au travers des gains
d’antenne. En pratique, il apparait que le modéle simple que nous avons choisi n’est pas trés
représentatif des situations réelles. [’analyse montre néanmoins certaines tendances que 1’on
retrouve dans certains modéles empiriques.

10.3.4 Modéles macrocellulaires

A partir de nombreuses mesures effectuées dans les environs de TOKYO a différentes fréquences,
OKUMURA a calculé ’affaiblissement médian en fonction de la distance. HATA a établi, a partir
de ces courbes, des formules empiriques qui ont été reprises dans le rapport 567-4 du CCIR.

Ce modéle est souvent désigné sous le terme de formule d’OKUMURA-HATA ; il sert de base a
une grande variété de modéles plus affinés. Il s’applique pour des tailles de cellules relativement
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grandes (de rayon supérieur ou égal & 1 [km]) et surtout lorsque I’antenne de la station de base
est située au-dessus des niveaux des toits avoisinants. Plutot que cette formule, valable pour des
fréquences comprises entre 150 et 1000 [M H z]|, nous fournissons I’expression du modéle COST
231-HATA qui s’applique aux fréquences comprises entre 1500 [M H z| et 2000 [M H z|.

En milieu urbain, l’affaiblissement L, vaut, en [dB],
Ly, = 46,33 + 33,91log(f) — 13,821log(hy) — a(hm) + [44,9 — 6,55 log(hy)] logd + Cy,  (10.95)

avec

— f la fréquence, d la distance, hy, h,,, des hauteurs; ces grandeurs sont exprimées respective-
ment en [M Hz|, [km] et [m].

— a(hy) = (1,1log(f) — 0,7)h, — (1,56log(f) — 0,8) pour une ville de taille moyenne; ce
facteur de correction dépend de la hauteur de 'antenne du mobile mais également du type
d’environnement.

— C,, = 0[dB] pour les villes de taille moyenne et les banlieues, et C,,, = 3 [dB] pour les grands
centres métropolitains.

Nous renvoyons le lecteur a des ouvrages spécialisés [19, 21, 32] pour les conditions d’applica-

bilité de la formule et la description d’autre modéles.

10.3.5 Propagation a l'intérieur des batiments

A Tintérieur des batiments, le canal de propagation est sensiblement différent d’un milieu
extérieur bien qu’il soit également le lieu d’évanouissements. Il existe deux types de propagation
a l'intérieur des batiments —on parle de propagation indoor. Ceux-ci sont briévement exposés
ci-aprés.

Propagation “extérieur-intérieur”

La propagation extérieur-intérieur est caractérisée par le fait que ’émetteur est constitué d’une
antenne utilisée pour les communications extérieures et le récepteur est situé a l’intérieur du
batiment. Dans ce cas, ’atténuation est la somme d’un terme d’affaiblissement du signal prove-
nant de I'environnement extérieur auquel s’ajoute un terme représentant les pertes subies par
le signal lors de sa pénétration dans le batiment.

L’estimation de ces pertes de pénétration est rendue trés difficile car elle dépend a la fois de
la fréquence, de I’angle d’incidence, de la distance, du type de facade et de ’environnement et
de I'architecture intérieure. Une solution pragmatique se base sur des campagnes de mesures.
Celles-ci ont pour principal objectif de trouver des valeurs d’ingénierie permettant d’effectuer
le dimensionnement du réseau de maniére a permettre la communication pour un mobile se
trouvant a 'intérieur d’un batiment.

Pour ce faire, on définit deux types de valeurs :
1. le soft indoor, représentant l'atténuation en facade, et
2. le deep indoor, représentant 'atténuation dans des endroits reculés du batiment.

Des valeurs typiques sont de 10 [dB] pour le soft indoor et de 20 [dB] pour le deep indoor a
900 [M H z]. Ces valeurs interviendront lors de ’établissement du bilan de puissance. La hauteur
de I’étage ou se situe le récepteur influence également ces pertes : les pertes de pénétration
diminuent approximativement de 1,5 [dB] par étage.

196



Prof. Marc Van Droogenbroeck, tous droits réservés

Il peut paraitre curieux de pouvoir communiquer dans un batiment alors qu’il n’existe presque
jamais de trajet direct (surtout en deep indoor). Cela s’explique par le fait que les ondes
réussissant a pénétrer dans le batiment sont soumises principalement a trois phénomeénes : la
réflexion, la transmission et la diffraction (cf. figure 10.15).

Rayon transmis

pal

N
~

Rayon réfléchi

Rayons diffractés

FIGURE 10.15 — Transmission, réflexion et diffraction.

Les ondes peuvent dés lors parvenir au récepteur par de multiples réflexions. Il arrive méme que,
par un effet guide d’ondes comme illustré a la figure 10.16, ’affaiblissement devienne inférieur
a Daffaiblissement en espace libre.

Récepteur

S~

Emetteur

FIGURE 10.16 — Effet guide d’ondes.

Propagation “intérieur-intérieur”

Pour la propagation intérieur-intérieur, ’émetteur et le récepteur sont tous deux situés dans le
batiment, on parle de pico-cellule. La propagation dans ce type de milieu est déterminée par des
méthodes de lancé de rayons, ’environnement étant impossible & caractériser analytiquement
ou empiriquement de maniére précise.
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Annexe A

Quelques résultats

A.1 Gain et atténuation

Définition 43 [Gain et atténuation d’un systéme linéaire] Pour un systéme linéaire, le gain
en puissance est le rapport entre la puissance de sortie et la puissance en entrée, [’atténuation
étant le rapport inverse.

On définit parfois, par le biais de la réponse impulsionnelle, le carré du rapport des tensions ou
courants de sortie et d’entrée en [dB]. Néanmoins, ||H(f)||* n’est pas toujours égal au gain en
puissance du circuit.

A.2 Notation phasorielle

Dans tout circuit, sans source d’énergie, les courants sont amortis et s’annullent au cours du
temps. L’application de sources de tension ou de courant sinusoidales engendre des courants
qui, apreés disparition des régimes transitoires, sont sinusoidaux et de méme fréquence que celle
des sources si tous les éléments du circuit ont des caractéristiques linéaires. C’est le régime
sinusoidal permanent. Dés lors, la réponse d’un circuit a 1’excitation sinusoidale sera décrite,
en fonction de la fréquence, par sa fonction de transfert. La linéarité des équations joue ici un
role essentiel.

A chaque grandeur physique évoluant sinusoidalement, on associe une grandeur complexe, dont
la partie réelle sera identifiée avec la grandeur physique a décrire, et dont 'amplitude complexe,
qui en regroupe I'amplitude et la phase, sera la grandeur utile.

Définition 44 Considérons une grandeur sinusoidale x(t) = X cos(wt — 0). On lui associe le
phaseur

X = Xe/ (A.1)

L’expression temporelle est la partie réelle du phaseur préalablement multiplié par ’exponen-
tielle imaginaire ¢/“!. En effet,

z(t) = Re(Xe™) (A.2)
= Re(Xe/“ +9)) (A.3)
= X cos(wt — 0) (A.4)
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Le phaseur est un concept purement mathématique; il n’a pas de signification physique mais
il permet de simplifier I’expression et le calcul de certaines expressions. Ainsi,

) )/(\* Jwt o
( 8? ) = jwXel! (A.5)
et
P )/(\* Jwt
/Xymm— c (A.6)
Jw

A.2.1 Impédance complexe

Soit un circuit formant un dipole électrocinétique que ’on supposera passif, c’est-a-dire qu’il
ne comporte pas de générateur. Supposons tous ses éléments linéaires ; a toute excitation sinu-
soidale v(t) = V cos(wt) entre ses bornes, correspond un courant i(t) = I cos(wt — ¢).

En utilisant la notation phasorielle, I'impédance complexe est définie par la relation

V=2I (A.7)
7 est donc de la forme Ze?. Son module Z , simplement appelé impédance, est égal au rapport
des amplitudes V' et I; il se mesure en ohms [2].
A.2.2 Puissance en régime sinusoidal

Soient v(t) = V cos(wt) la tension aux bornes du dipole étudié et i(t) = I cos(wt — ¢) I'intensité
qui le parcourt. Le dipole recoit la puissance électrocinétique instantanée

v(t)i(t) = VIcos(wt)cos(wt — @) (A.8)
= g(cos ¢ + cos(2wt — ¢)) (A.9)

Cette puissance varie au cours du temps de facon sinusoidale a la fréquence angulaire 2w, autour
d’une valeur P,,, appelée puissance moyenne

VI
I8 = = cos ¢ (A.10)

P, est exactement la moyenne de la puissance recue par le circuit lorsqu’elle est calculée sur
un nombre entier de périodes.
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En notation phasorielle,

P = Re (?ej“’t> Re <fej”t> (A.11)
T Jwt 7% —Jwt Jwt * ,—jwt
_ <Ve +2V e ) Ie +21 e ) (A.12)

Af* Af* 25wt
— Re (VQ ) + Re (%) (A.13)

Pour un circuit passif, d’impédance complexe Z=R+ 1.9, la puissance moyenne vaut alors

o 2 2
p - e LHWLE) 27 (A19

Seule la partie réelle de 'impédance intervient.

A.3 Adaptation d’impédance

Considérons une force électromotrice sinusoidale d’amplitude V' et d’impédance interne 2

Relions ses bornes a celles d’un circuit d’utilisation d'impédance Z L, et cherchons la valeur de
ZL pour laquelle la puissance moyenne fournie au circuit est maximale. En posant Z = Rs+75;s
et ZL = Ry + 7S, on montre aisément que la puissance moyenne dissipée P, dans la charge
est maximale lorsque R, = Ry et Sy, = S}, soit lorsque

7, =2 (A.15)

On dit alors que I'impédance du circuit d’utilisation est adaptée a celle du générateur. La
puissance fournie est maximale et vaut

V2
P=— A.16
= (A.16)

Notons qu’une puissance égale est dissipée dans le générateur, ce qui diminue pour de nom-
breuses applications lI'intérét de cette adaptation.
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distorsion, 146

Doppler, 176, 190
spectre, 192

DS, 92

dtFT, 8

DWDM, 111

E
échantillonnage, 28
effet de fenétrage, 24
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203



Prof. Marc Van Droogenbroeck, tous droits réservés

B, 136, 138

table, 139
estimateur, 19
estimation, 18, 19
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mutuelle, 170
intensité de trafic, 128
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interférence, 79
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IS-95, 107

L
ligne, 146
a paire coaxiale, 154
a paire torsadée, 152
symétrique, 145
line of sight (LOS), 176
log-normale, 180
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M
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masquage, 179
matrice de canal, 169
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modulation, 98
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MSK, 73

numérique, 56
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QPSK, 63
modulation a décalage, 68
MSK, 73
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en fréquences, 111, 112
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par répartition de codes, 119 Rayleigh, 185
temporel, 111, 116 Rice, 189
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critére, 82 séquence
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o pseudo-aléatoire, 95
Okumura-Hata, 195 séquence pseudo-aléatoire, 94
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signalisation, 119, 126
source, 169
spectre, 9
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splitter, 157
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(zlossaire

ADSL  Asymmetric Digital Subscriber Line. Technologie permettant la transmission de signaux
numériques a haut débit (jusqu’a plusieurs Mégabits par seconde) sur une paire torsadée.
Le débit est asymétrique; il est plus important du central vers ’abonné qu’en retour. Le
systéme ADSL est compatible avec le signal téléphonique. ... ......... 111, 150, 157

BPSK Binary Phase Shift Keying. Modulation numérique de phase a 2 états. Il s’agit d’un cas
particulier des modulations numériques de phase a plusieurs états (PSK). ........ B0

CDMA  Code Division Multiple Access. Technologie de transmission numérique permettant la
transmission de plusieurs flux simultanés par répartition de code. Cette technologie permet
une utilisation permanente de la totalité de la bande de fréquences allouée a ’ensemble des
utilisateurs. La technologie prévoit un mécanisme d’accés aux ressources. . ....... 112

cellule En radiocommunications, zone géographique élémentaire d’un réseau radiocellulaire
a laquelle on affecte un ensemble de fréquences non réutilisables dans les zones contigués.
C’est également le nom donné & un paquet ATM qui a une taille de 53 bytes dont 48 sont
destinées a recevoir les données d’un utilisateur. . ............. ... ..., .... 193

DFT Discrete FOURIER Transform. La transformée de FOURIER discréte s’obtient par échan-
tillonnage de la transformée continue. . ........ ... .. .. ... L. 12
Duplex Terme utilisé en télécommunications pour désigner une communication bidirection-
nelle. Dans un systéme audio, le duplex intégral se retrouve par exemple au niveau des
systémes de téléphonie. La transmission dite “semi-duplex" permet également la communi-
cation bidirectionnelle, mais uniquement dans une direction & la fois. C’est par exemple le
cas des systemes walkie-talkie. . . ... ... ... ... ... ... 123

FDM  Frequency Division Multiplexing. Mécanisme de répartition de ressources par multi-
plexage fréquentiel. . .. ... 111
FDMA  Frequency Division Multiple Access. Technique de répartition de ressources par multi-
plexage fréquentiel. Cette technique prévoit un mécanisme d’accés aux ressources. . 112
FEXT Far-End Crosstalk. Interférence électromagnétique entre deux paires de cuivre considé-
rée a l'extrémité réceptrice. Egalement appelée télédiaphonie. ... ............. 159

GSM  Global System for Mobile Communications. Standard de téléphonie mobile adopté en
Europe, en Asie et en Australie. .. ....... ... .. .. . ... .. 123

IS-95 Norme américaine de réseau cellulaire (dit de seconde génération ou 2G) basée sur la
méthode d’accés CDMA. ... ... 107

LOS Line Of Sight. Terme qui désigne qu'un émetteur et un récepteur sont en ligne de vue,
c’est-a-dire que, parmi tous les trajets reliant I’émetteur et le récepteur, un trajet est net-
tement moins atténués que les autres. La visibilité en ligne de vue n’exclut pas les trajets
multiples, contrairement a la visibilité en espace libre. ... ................... 176

modem modulateur démodulateur. Appareil transmettant des signaux numeériques sur le réseau
téléphonique analogique. Offre les fonctions de numérotation, de connexion, et éventuelle-
ment de compression et de correction d’erreur. .. .... .. ... .. L. 156
modulation Technique consistant & modifier 'amplitude, la phase ou la fréquence d’une onde
sinusoidale, appelée porteuse, au moyen d’un signal & transmettre, appelé signal modulant.
Grace a la modulation, on peut translater le contenu fréquentiel d’'un signal modulant ;
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ce procédé permet de partager le spectre de fréquences entre plusieurs utilisateurs. Pour
retrouver le signal modulant original, il faut procéder & une démodulation. . ... .. .. 25
MSK  Minimum Shift Keying. Technique de modulation numérique consistant a effectuer une
fonction XOR entre 2 bits successifs préalablement & une modulation de fréquence a 2
LA, 55
multiplexage Terme technique utilisé en télécommunications pour désigner un procédé qui
consiste a partager des ressources entre plusieurs utilisateurs. Dans un autre contexte et
lorsqu’on parle de signaux, il s’agit d’'une maniére de combiner plusieurs signaux. .. 111

NEXT Near-End Cross(X) Talk. Mesure de la paradiaphonie d’un cable de cuivre. ... 159
NRZ Non Return to Zero. Méthode de représentation de signaux numériques. Cette méthode

représente les symboles numériques par des niveaux de tension constants pendant toute la
durée du symbole. . . ... 56, 57

0SI  Open System Interconnection. Standard de référence d’interconnexion de réseaux déve-
loppé par 'OSI. Ce systéme est différent du modéle Internet. . ... .............. 1

PSK  Phase Shift Keying. Modulation numérique de phase a plusieurs états. Technique de
modulation consistant a sélectionner des échantillons d’une porteuse a amplitude constante
mais avec plusieurs états de phase possibles. ... ... ... .. ... . ... .. .. 61

QPSK  Quadrature Phase Shift Keying. Technique de modulation numérique consistant a ap-
pliquer une modulation des états de phase tant sur une porteuse en cosinus que sur la
POTEEUSE €N SINUS. . . . ottt ettt e e e e e e e e e e e 55

RNIS Réseau Numérique a Intégration de Services. Désigne le réseau téléphonique numé-
rique. Au niveau du réseau, les signaux numériques utiles sont transmis a des multiples de

BAIKD /S| « o oo 156

TDM  Time Division Multiplexing. Mécanisme de répartition de ressources par multiplexage
tempPOTel. . 111, 116
TDMA  Time Division Multiple Access. Technique de répartition de ressources par multiplexage
temporel. Cette technique prévoit un mécanisme d’accés. . .................. 112

UTP  Unshielded Twisted Pair. Désigne un cable non blindé composé de 4 paires en cuivre. La
norme ETA-TTA 586 définit 5 catégories de cables de ce type. . ............... 154
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