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Notations

Cadre analytique :

N N = {0, 1, 2, . . .}
Z Z = {. . . − 2,−1, 0, 1, 2, . . .}
R Ensemble des réels

Constantes :

j Ve
teur unité de l'axe imaginaire j =
√
−1

kB Constante de Boltzmann = 1, 38× 10−23
Joule / degré Kelvin

Variables et fon
tions :

t Variable de temps 
ontinue

f Variable fréquen
e

ω Variable de pulsation ω = 2πf
T Période d'un signal

T0 Période fondamentale d'un signal

△x Pas d'é
hantillonnage en x
△y Pas d'é
hantillonnage en y
x(t) Fon
tion à valeurs 
ontinues, dé�nie pour tout temps t
h(t) Réponse impulsionnelle d'un système

H(f) Transmittan
e d'un système linéaire

f [n] Fon
tion é
hantillonnée, fon
tion dis
rète

Variables et fon
tions de modulation :

m(t) Signal modulant, normalisé à 1 : |m(t)| ≤ 1
s(t) Signal modulé

ka Taux de modulation

β Indi
e de modulation

Eb Énergie par bit

D Débit binaire [b/s]
R Rapidité de modulation [baud]
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Notations fon
tionnelles :

|a| Valeur absolue

−→a Ve
teur

‖a‖ Norme de a
−→a .−→b Produit s
alaire de

−→a et

−→
b

−→a ×−→
b Produit ve
toriel de

−→a et

−→
b

∇.−→a Divergen
e de

−→a
∇×−→a Rotationnel de

−→a
∇2ϕ Lapla
ien de ϕ
∇ϕ Gradient de ϕ
X∗

Complexe 
onjugué de X
Re (a) Partie réelle de a
Im (a) Partie imaginaire de a
X (f) Transformée de Fourier du signal x(t)
⇋ Correspondan
e entre un signal et sa transformée

⊗ Convolution

⊕ OU ex
lusif ou addition modulo-2

sin(πx)
πx

= sin
 (x) Sinus 
ardinal de x
δ(.) Fon
tion delta de Dira


Jn(x) Fon
tion de Bessel d'ordre n
erfc(.) Fon
tion erreur 
omplémentaire

Fon
tions sto
hastiques :

p(A) Probabilité de A
a Valeur moyenne de a
µX Espéran
e mathématique du signal X
σ2
X Varian
e de X

ΓXX (τ) Fon
tion d'auto
orrélation du pro
essus aléatoire stationnaire X(t)
γX(f) Densité spe
trale de puissan
e de X(t)
N0 Densité spe
trale de puissan
e de bruit
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Introdu
tion

Ces notes abordent plusieurs questions avan
ées des systèmes de télé
ommuni
ations ; elles


omportent trois parties 
onsa
rées aux thèmes suivants :

1. les aspe
ts de modélisation en vue de l'exploitation par simulations numériques.

2. les aspe
ts de système.

3. les aspe
ts avan
és relatifs à la 
ou
he physique du modèle OSI.

Dans la partie relative à la modélisation, il s'agit d'analyser les points 
lés intervenant lors de

l'utilisation et lors de la 
on
eption de logi
iels de télé
ommuni
ations. Nous par
ourons les

thèmes de l'estimation spe
trale, de la représentation des signaux modulés en termes de passe-

bas équivalent et de la manière de 
onsidérer un bruit dans un modèle. Cette même partie

approfondit la 
ara
térisation des signaux numériques modulés ainsi que les 
onsidérations de

transmission de signaux numériques dans un 
anal.

Les ressour
es étant limitées, il 
onvient de les partager au mieux. Dans la partie 
onsa
rée

aux aspe
ts système, nous étudions les di�érents moyens usuels de partager les ressour
es (par

répartition de fréquen
e ou répartition temporelle) ainsi que le pro
édé plus ré
ent de partager

par étalement de spe
tre au moyen de 
odes. L'étude du partage des ressour
es est doublé d'une

étude du tra�
 débou
hant sur des règles de dimensionnement appli
able au tra�
 téléphonique.

La dernière partie est 
onsa
rée à l'étude d'éléments de la 
ou
he physique. Nous analyserons

les détails de la transmission sur lignes à paires torsadées en présen
e de diaphonie ainsi que la

manière de traiter les phénomènes d'évanouissement et les bilans de puissan
e dans le 
ontexte

de transmissions mobiles.
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Première partie

Modélisation des systèmes de

télé
ommuni
ations en vue de

l'exploitation par simulations numériques
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Chapitre 1

Théorie de l'estimation et estimation

spe
trale

1.1 Introdu
tion

Si par le passé les développements théoriques primaient, l'extraordinaire puissan
e des ordina-

teurs fait qu'une série de problèmes insolubles analytiquement trouvent une solution sous forme

de simulations. On peut songer en parti
ulier à tous les phénomènes non-linéaires pour lesquels

on pro
édait par linéarisation pour obtenir des solutions pratiques. Aujourd'hui, les simulations

permettent d'aborder toute une série de problèmes nouveaux.

1.1.1 Théorie de l'estimation

La di�
ulté majeure d'une appro
he par simulation réside moins dans la puissan
e né
essaire

que dans l'appro
he de modélisation. Un élément-
lef de 
ette phase de modélisation est la


ara
térisation des phénomènes sto
hastiques, soit de séquen
es aléatoires s'il s'agit de signaux

é
hantillonnés.

Une des
ription possible des séquen
es aléatoires 
onsiste à en déterminer les di�érents mo-

ments. Parfois même, les moments des deux premiers ordres su�sent pour la modélisation

1

.

Dans 
e 
hapitre, nous abordons la question de l'estimation de 
ertains paramètres d'une sé-

quen
e aléatoire. Il s'agit prin
ipalement d'estimer la moyenne, la fon
tion d'auto
orrélation,

la fon
tion d'inter
orrélation ou leur éventuel équivalent dans le domaine fréquentiel. Les te
h-

niques d'évaluation de 
es grandeurs 
adrent dans le domaine de la théorie de l'estimation [14℄.

1.1.2 Rappels de quelques grandeurs asso
iées aux pro
essus sto
has-

tiques

Soit un pro
essus sto
hastiques X(t, ω). On distingue les grandeurs suivantes :

1. Dans le 
as de pro
essus aléatoires gaussiens stationnaires, les moments des deux premiers ordres su�sent

à dé�nir 
omplètement la densité de probabilité 
onjointe et, par 
onséquent, le pro
essus [7℄.
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� Moyenne temporelle

µX(T ) =
1

2T

∫ T

−T
x(t)dt (1.1)

Il s'agit en fait d'une moyenne temporelle d'une réalisation.

� Moyenne statistique

µX(t) = E {X(t)} (1.2)

Cette moyenne est la moyenne statistique de la variable aléatoire au temps t. Bien entendu,

elle ne peut s'obtenir que par modélisation puisqu'elle fait intervenir les valeurs de toutes les

réalisations possibles au temps t.
� Auto
orrélation

ΓXX (t1, t2) = E {X(t1)X(t2)} (1.3)

Dans la mesure où le pro
essus est stationnaire au sens large, on a

µX(t) = µX = 
onstante (1.4)

ΓXX (t1, t2) = ΓXX (t2 − t1) = ΓXX (τ) (1.5)

On dé�nit en
ore la densité spe
trale (de puissan
e) 
omme la transformée de Fourier de la

fon
tion d'auto
orrélation

γX(f) =

∫ +∞

−∞
ΓXX (τ) e−2πjfτdτ (1.6)

La puissan
e d'un pro
essus stationnaire et ergodique E {X2(t)} vaut alors ΓXX (0).

1.1.3 Estimation spe
trale

L'analyse des systèmes de télé
ommuni
ations 
omporte souvent l'étude de l'o

upation spe
-

trale ; 
'est un 
ritère de 
omparaison important. On sait par exemple que le passage de l'ana-

logique au numérique entraîne généralement un a

roissement de la bande passante ; en 
ontre-

partie, le signal numérique o�re une meilleure résistan
e au bruit.

Dans le 
as d'un signal déterministe pla
é à l'entrée d'un système linéaire invariant en temps,

la détermination de la bande o

upée par le signal est relativement aisée. La question est

plus déli
ate quand il s'agit d'étudier les signaux numériques. En e�et, on est souvent amené

à émettre des hypothèses sur le fon
tionnement du système de télé
ommuni
ations (type de

bruit, transmittan
e du 
anal, . . . ) pour arriver à une formulation analytique. Dans 
ertains


as, il n'est pas possible de 
hoisir préalablement un jeu d'hypothèses. On pro
ède alors par

modélisation, mesure, validation et interprétation du résultat. C'est là tout l'enjeu de la théorie

de l'estimation.

Quant il s'agit d'estimer la densité spe
trale de puissan
e ou la transformée de Fourier à

laquelle elle se ramène sous 
ertaines hypothèses, on parle d'estimation spe
trale.

L'estimation spe
trale est un domaine important de traitement numérique des signaux et de

nombreux ouvrages abordent la question [4, 5, 14℄. Il s'agit en fait de déterminer la densité

spe
trale de puissan
e, vu l'importan
e physique qu'elle représente. Le 
ontexte de l'estimation

spe
trale tient prin
ipalement à trois observations

6
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� le pro
essus à analyser est de nature aléatoire. Son observation résulte en une séquen
e

aléatoire qui 
orrespond à une traje
toire parmi toutes les traje
toires possibles. Il 
onvient

don
 de 
ompléter l'observation d'une série d'hypothèses, typiquement la stationnarité au sens

stri
t ou au sens large et l'ergodisme, pour établir une 
orrespondan
e entre la traje
toire

observée et le pro
essus sous-ja
ent ;

� l'observation du pro
essus est limitée dans le temps. Dès lors, l'intégration temporelle qu'ef-

fe
tue la transformée de Fourier se limite à un intervalle de temps. Cette limitation entraîne

un e�et bien 
onnu de fenêtrage, 
e qui a�e
te l'allure des résultats. Plus fondamentalement,

on est en droit de s'interroger sur la validité d'une estimation e�e
tuée sur base d'un inter-

valle temporel plus ou moins long dans la mesure où les pro
essus physiques 
onsidérés ne

sont pas réellement stationnaires.

� l'observation s'e�e
tue par é
hantillonnage temporel. On doit don
 tenir 
ompte des e�ets

induits par l'é
hantillonnage tant au niveau du repli de spe
tre qu'au niveau de la réalisation

de l'implémentation (ajout de valeurs nulles dans la séquen
e pour augmenter la résolution,

et
).

Par la suite, nous allons prin
ipalement nous 
on
entrer sur l'estimation de paramètres d'une

séquen
e é
hantillonnée.

1.2 Dé�nitions

1.2.1 Séquen
e sto
hastique

On part d'un pro
essus sto
hastique X(t) préalablement é
hantillonné. La séquen
e d'é
han-

tillons ainsi obtenus est notée X [n]. L'observation d'une traje
toire possible parmi toutes les

traje
toires possibles fournit un signal x[n] ; on parle d'une réalisation du pro
essus.

Le pro
essus X [n] est entièrement dé
rit si, quel que soit le 
hoix des indi
es n1, n2, . . ., nm,
on 
onnaît la fon
tion de densité de probabilité 
onjointe de X [n1], X [n2], . . ., X [nm]. Ce n'est
généralement pas le 
as.

On étend sans peine les notions valables pour les pro
essus 
ontinus à des séquen
es. Ainsi, on

dira d'une séquen
e qu'elle est stationnaire au sens large si

E {X [n]} = µ (1.7)

et

ΓXX [n, n + k] = E {X∗[n]X [n + k]} = ΓXX [k] (1.8)

Dès lors que la séquen
e est stationnaire au sens stri
t large, sa moyenne est une 
onstante

et sa fon
tion d'auto
orrélation dépend uniquement de l'é
art temporel entre les variables

é
hantillonnées.

Exemple. Porteuse modulée par une phase aléatoire Θ.

Soit la séquen
e aléatoire suivante,

X [n] = Ac cos(2πfcn +Θ) (1.9)

où Ac et fc sont des 
onstantes et Θ est une variable aléatoire uniformément répartie sur [0, 2π].
Par 
al
ul,

E {X [n]} = 0 (1.10)

7
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et

ΓXX [n, n + k] = E {X∗[n]X [n+ k]} (1.11)

=
A2
c

2
cos(2πfck) (1.12)


e qui signi�e qu'il s'agit bien d'un pro
essus stationnaire au sens large.

1.2.2 Transformée de Fourier dis
rète

Spe
tre d'une séquen
e déterministe

Prenons une séquen
e déterministe x[nTs] non périodique et é
hantillonnée ave
 une période

Ts.

Dé�nition 1 [Transformée de Fourier à temps dis
ret℄ La transformée de Fourier

à temps dis
ret (dtFT) de 
ette séquen
e est dé�nie par

X (f) =

+∞∑

n=−∞
x[nTs]e

−2πjfnTs
(1.13)

Il ne s'agit ni plus ni moins que de la transformée de Fourier du signal é
hantillonné. En e�et,

la fon
tion é
hantillonnée xs(t) est liée au signal sous-ja
ent par la relation

xs(t) =
+∞∑

n=−∞
x[nTs]δ(t− nTs) (1.14)

La transformée de Fourier de 
e signal vaut

Xs(f) =

∫ +∞

−∞

+∞∑

n=−∞
x[nTs]δ(t− nTs)e

−2πjftdt (1.15)

=
+∞∑

n=−∞
x[nTs]

∫ +∞

−∞
δ(t− nTs)e

−2πjftdt (1.16)

=
+∞∑

n=−∞
x[nTs]e

−2πjfnTs
(1.17)

On remarquera que 
ette fon
tion est 
ontinue et périodique de période fs =
1
Ts
; la 
onnaissan
e

de 
ette fon
tion sur l'intervalle [0, fs[ su�t don
. En e�et,

X (f + fs) =
+∞∑

n=−∞
x[nTs]e

−2πj(f+fs)nTs =
+∞∑

n=−∞
x[nTs]e

−2πjfnTse−2πjn = X (f) (1.18)

Ce phénomène est bien 
onnu : l'é
hantillonnage dans le domaine temporel entraîne l'apparition

de 
opies de la transformée au droit des fréquen
es multiples de fs. Il est d'usage de dé�nir une
fréquen
e normalisée ou fréquen
e réduite F par

F =
f

fs
(1.19)
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de sorte que F par
ourt l'intervalle [0, 1[ ou [−1
2
, 1
2
[. Si en plus de l'utilisation de la fréquen
e

normalisée, on adopte l'é
riture x[n] en lieu et pla
e de x[nTs], la transformée de Fourier à

temps dis
ret s'exprime sous la forme normalisée suivante.

Dé�nition 2 [Transformée de Fourier à temps dis
ret normalisée℄

X (F ) =
+∞∑

n=−∞
x[n]e−2πjFn

(1.20)

On déduit la formule inverse

x[n] =

∫ 1
2

− 1
2

X (F )e2πjFndF (1.21)

ou

x[n] =

∫ 1

0

X (F )e2πjFndF (1.22)

Convergen
e

On montre [4, page 45℄ que si la séquen
e x[n] est de module sommable, 
'est-à-dire si

+∞∑

n=−∞
‖x[n]‖ < +∞ (1.23)

la transformée 
onverge uniformément vers une fon
tion 
ontinue de F .

Si, par 
ontre, x[n] est de 
arré sommable, à savoir

+∞∑

n=−∞
‖x[n]‖2 < +∞ (1.24)

sans être de module sommable, alors la série 
onverge en moyenne quadratique. Il peut ne pas

y avoir 
onvergen
e uniforme. La fon
tion ‖X (f)‖2 est désignée par le terme de spe
tre. Dans

la littérature, 
e terme est aussi asso
ié à la fon
tion ‖X (f)‖. Les deux expressions deviennent

équivalentes si l'on utilise l'é
helle logarithmique des dé
ibels.

Exemple. Transformée de Fourier d'un signal re
tangulaire.

Considérons une fon
tion re
tangulaire rectN [n] valant 1 pour n ∈ {−N, . . . , N} et 0 ailleurs.

On 
al
ule alors

X (F ) =
N∑

n=−N
x[n]e−2πjFn

(1.25)

= e2πjFN(1 + . . .+ e−2πjF (2N+1)) (1.26)

= e2πjFN
(1− e−2πjF (2N+1))

1− e−2πjF
(1.27)

=
sin((2N + 1)πF )

sin(πF )
(1.28)

Ce signal est purement réel ; il est représenté à la �gure 1.1 pour deux valeurs de N .
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Figure 1.1 � Transformées de Fourier d'un signal re
tangulaire (N = 2 et N = 5).
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La transformée inverse a pour expression

x[n] =

∫ 1

0

X (F )e2πjFndF (1.29)

La fon
tion 
omplexe X (F ) peut aussi s'exprimer sous la forme

X (F ) = ‖X (F )‖ ejφ(F )
(1.30)

dont le terme d'amplitude est appelé spe
tre d'amplitude de x[n].

Exemple. Impulsion de Dira
 dis
rète dé
alée.

Considérons le signal

x[n] =

{
1, n = 1
0, n 6= 1

= δ[n− 1] (1.31)

X (F ) = e2πjF (1.32)

Énergie

Tout 
omme dans le 
as d'une fon
tion 
ontinue, l'énergie du signal est 
onservée par rapport

à sa transformée de Fourier.

Dé�nition 3 L'énergie totale du signal vaut

E =

+∞∑

n=−∞
‖x[n]‖2 (1.33)

Proposition 4 L'égalité de Parseval s'exprime sous la forme

+∞∑

n=−∞
‖x[n]‖2 =

∫ 1

0

‖X (F )‖2 dF (1.34)

Séquen
e périodique

Le 
as des séquen
es périodiques est parti
ulier 
ar 
ette périodi
ité résulte généralement d'une

opération d'é
hantillonnage ; il s'agit alors d'une périodi
ité �
tive.

Dé�nition 5 Une séquen
e est périodique s'il existe une valeur entière N telle que

x[n] = x[n+N ] (1.35)

pour toute valeur n.
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1.2.3 Transformée de Fourier dis
rète

Le 
al
ul de la transformée en temps dis
ret à partir des é
hantillons de la séquen
e aboutit à

une fon
tion 
ontinue peu 
ommode pour des traitements numériques. Dès lors, on pro
ède à

l'é
hantillonnage de la transformée. Son intérêt réside dans le fait que son 
al
ul se limite à un

nombre �ni d'é
hantillons tant dans le domaine temporel que dans le domaine transformé.

Dé�nition 6 [Transformée de Fourier dis
rète (DFT)℄

X (Fk) =
N−1∑

n=0

x[n]e−2πjFkn, Fk =
k

N
, k ∈ {0, . . . , N − 1} (1.36)

L'é
hantillonnage de la fon
tion dans le domaine spe
tral introduit une reprodu
tion de la

séquen
e é
hantillonnée dans le domaine temporel ; la période fondamentale est N . Ce 
hoix

est 
ommun mais il n'est pas obligatoire : on aurait pu 
hoisir une période d'é
hantillonnage

di�érente à N pour é
hantillonner la transformée de Fourier. L'analyse des propriétés de la

DFT montre des similitudes ave
 
elles de la dtFT, à une ex
eption près : les 
al
uls se font

modulo N.

Proposition 7 [Égalité de Parseval℄

N−1∑

n=0

‖x[n]‖2 = 1

N

N−1∑

k=0

‖X (Fk)‖2 , Fk =
k

N
(1.37)

Comme le signal périodique a une énergie in�nie, on utilisera plut�t la notion de puissan
e

moyenne de la séquen
e dé�nie par

P =
1

N

N−1∑

n=0

‖x[n]‖2 (1.38)

soit en
ore

P =
1

N2

N−1∑

n=0

‖X (Fk)‖2 , Fk =
k

N
(1.39)

1.2.4 Observation spe
trale

L'estimation spe
trale s'arti
ule sur la notion de transformée de Fourier. Dès lors, la 
om-

préhension de ses propriétés est essentielle. Pour toute transformée de Fourier, on distingue

les deux 
ritères de qualité suivants : pré
ision sur la position des raies et résolution.

Pré
ision

Pour illustrer l'utilisation de la transformée de Fourier dis
rète dans l'observation de spe
tres

de signaux, 
onsidérons la suite x[n] obtenue par é
hantillonnage de l'exponentielle 
omplexe

e2πjF0t
à la 
aden
e Fs = 1/Ts (
et exemple est tiré de [4℄). En posant f0 = F0/Fs < 1, on

a x[n] = e2πjf0n. Le fait de réduire la durée d'observation à un intervalle N fait apparaître
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Figure 1.2 � Transformée de Fourier à temps dis
ret de l'exponentielle 
omplexe f0 = 7
32

ave
 N = 32.
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des ondulations dans la transformée de Fourier à temps dis
ret du signal. Ce phénomène est

illustré à la �gure 1.2 pour N = 32 et f0 =
7
32
.

Comme la transformée de Fourier dis
rète 
orrespond à l'é
hantillonnage à la transformée à

temps dis
ret aux points de fréquen
e k/N , elle est en général 
onstituée de valeurs di�érentes

de 0, sauf si f0 est exa
tement un multiple de 1/N . Ces deux situations sont représentées

respe
tivement à la �gure 1.3 et 1.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Figure 1.3 � Transformée de Fourier dis
rète de l'exponentielle 
omplexe f0 = 7
32

ave


N = 32.

Comme on peut le voir à la �gure 1.4, une exponentielle dont la fréquen
e n'est pas un multiple

de

1
N

apparaît sous la forme de plusieurs raies parmi lesquelles la plus pro
he est 
elle dont

l'amplitude est maximale.

Résolution en fréquen
e

La pré
ision ne doit pas être 
onfondue ave
 la résolution qui est le pouvoir de distinguer deux

fréquen
es voisines dans un signal. Il est 
ommode de dé�nir la résolution par l'é
art minimum

en fréquen
e qu'il faut mettre entre deux sinusoïdes d'amplitudes di�érentes pour observer sur

le spe
tre de leur somme un 
reux de plus de 3 [dB] entre les deux maxima.

Comme on l'a vu, le fait d'avoir limité le nombre de valeurs traitées à N 
onduit à l'apparition

de lobes dans le spe
tre d'une sinusoïde. Le lobe prin
ipal a une largeur égale à 2/N . Il s'ensuit

que, si x[n] 
ontient deux sinusoïdes dont les fréquen
es sont séparées de moins de 1/N , les

lobes prin
ipaux de 
ha
une d'elles seront si pro
hes qu'il sera di�
ile de les distinguer ave



ertitude. Et 
e
i est d'autant plus vrai que les deux amplitudes sont très di�érentes. Ainsi,
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Figure 1.4 � Transformée de Fourier dis
rète de l'exponentielle 
omplexe f0 = 7,5
32

ave


N = 32.

3 dB

Figure 1.5 � Résolution en fréquen
e.
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si fs = 1/Ts désigne la fréquen
e d'é
hantillonnage, la résolution R exprimée en [Hz] est de
l'ordre de grandeur de fs/N qui est pré
isément l'inverse du temps total d'analyse, à savoir

T = NTs.

Proposition 8 La résolution en fréquen
e est de l'ordre de grandeur de l'inverse du temps total

d'analyse.

Le produit R × T joue en quelque sorte le r�le de fa
teur de mérite dans l'utilisation de la

transformée de Fourier à temps dis
ret pour la re
her
he de fréquen
es. Typiquement, si on


hoisit R et T tels que le produit R× T ≥ 3, les fréquen
es seront fa
iles à séparer.

Spe
tre à 
ourt terme

Comme l'analyse en fréquen
e 
lassique est une opération qui 
ouvre la totalité de l'axe des

fréquen
es, 
ette opération e�e
tue une moyenne sur l'axe des temps. Cet e�et moyenneur

peut aller jusqu'à o

ulter les phénomènes à observer. Cela ne signi�e pas que l'information

soit détruite. La transformée de Fourier est en e�et bije
tive sous les 
onditions d'existen
e

énon
ées pré
édemment.

Prenons l'exemple d'une onde 
ontinue x(t) 
onstituée de deux portions su

essives de fré-

quen
es f1 et f2 (
f. �gure 1.6).
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−0.5
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

Figure 1.6 � Deux portions de sinusoïdes et le spe
tre 
orrespondant (d'après [4℄).

Sa transformée de Fourier 
ontient l'information 
on
ernant l'ordre dans lequel apparaissent

les sinusoïdes. Toutefois 
ette information n'est pas expli
ite, même si elle se trouve dans l'infor-

mation de phase. Par 
onséquent, l'observation du seul module nous fait é
happer l'apparition

de f1 avant f2.
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Par 
ontre, si on dé
oupe le segment de données en Nsi sous-intervalles 
onsé
utifs pour lesquels

on 
al
ule la transformée de Fourier, le spe
tre montre que temporellement la fréquen
e 0, 1
apparaît avant la fréquen
e 0, 2. La �gure 1.7 montre les transformées des sous-intervalles

su

essifs.
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Figure 1.7 � Deux portions de sinusoïdes et le spe
tre 
orrespondant dans une fenêtre d'analyse

glissante (d'après [4℄).

En posant Ni le nombre de points dans un intervalle, on peut faire les remarques suivantes :

� la transformée de Fourier e�e
tue une moyenne sur Ni valeurs : prendre une grande va-

leur provoque un fort lissage des �u
tuations temporelles du signal. Cela implique que les

transitions sont moins bien lo
alisées. L'aptitude à séparer deux événements temporels est

de l'ordre de Ni ;

� par 
ontre, dans les mêmes 
onditions, 
omme 
haque transformée de Fourier dis
rète

dispose de plus de points de 
al
ul, la largeur des lobes (de l'ordre de 1/Ni) diminue et les

pi
s de fréquen
e apparaissent plus nettement.

On peut résumer 
es remarques en formulant que, lors de l'utilisation de la transformée de Fou-

rier dis
rète à 
ourt terme, l'amélioration de la résolution temporelle détériore la résolution

fréquentielle.

1.2.5 Spe
tre d'une séquen
e aléatoire

L'analyse d'un signal déterministe a permis d'introduire les expressions de transformée de

Fourier à temps dis
ret et de transformée de Fourier dis
rète.

L'analyse de signaux aléatoires s'en inspire. Les traje
toires d'un pro
essus aléatoire (
f. �-

gure 1.8), bien qu'étant toutes imprévisibles, possèdent des 
ara
téristiques 
ommunes. La
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moyenne et la fon
tion d'auto
ovarian
e sont deux moyens de 
ara
tériser 
e 
omportement.
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Figure 1.8 � Une série de traje
toires et leur transformée de Fourier à temps dis
ret.

La 
ondition de module sommable (
f. relation 1.23) n'est pas respe
tée pour une séquen
e

stationnaire au sens large. En e�et, l'énergie d'une telle séquen
e est in�nie. Par 
ontre, sa

puissan
e est �nie, tout 
omme dans le 
as de signaux périodiques, 
e qui va nous amener à

déterminer sa densité spe
trale de puissan
e.

1.3 Énon
é du problème de l'estimation

Soit une série de N é
hantillons {x[0], x[1], . . . , x[N − 1]} obtenus par é
hantillonnage d'un

pro
essus sto
hastique. Nous supposons que 
ette séquen
e est stationnaire et ergodique. Il

faut estimer déterminer 
ertains paramètres relatifs à 
ette séquen
e telle que la moyenne µX ,
la 
ovarian
e CXX(k) ou la densité spe
trale de puissan
e γX(F ). Ces paramètres, moyennes

d'ensemble, sont des paramètres déterministes. Si l'on disposait d'un réalisation s'étendant

sur tout l'axe temporel, il serait aisé de les 
al
uler en vertu de l'hypothèse d'ergodisme. En

pratique, la durée d'observation est �nie ; on dispose par exemple de {x[0], x[1], . . . , x[N −1]}.
C'est la durée d'observation qui pose problème, l'absen
e d'ergodisme ne garantit plus l'égalité

entre la moyenne ensembliste et la moyenne temporelle.

1.3.1 Estimateur

Soit à estimer le paramètre α ; 
ette quantité est non aléatoire.
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À partir des é
hantillons {x[0], x[1], . . . , x[N −1]}, on 
al
ule une 
ertaine estimation notée α̂.
Cette estimation est don
 une fon
tion A des é
hantillons

α̂ = A(x[0], x[1], . . . , x[N − 1]) (1.40)

La fon
tion A est appelée estimateur de α ; α̂ est l'estimation.

Contrairement à α, l'estimation α̂ est une variable aléatoire puisqu'elle fait intervenir les é
han-

tillons d'une séquen
e aléatoire. À 
e titre, elle possède une 
ertaine densité de probabilité, une

moyenne, une varian
e, et
.

Ce problème est di�érent des problèmes ren
ontrés en statistique 
ar il s'agit d'estimer une

fon
tion et non une série de paramètres.

1.3.2 Propriétés d'un bon estimateur

L'estimation idéale aurait une densité de probabilité fα̂ = δ(α−α̂). L'estimateur réel s'en é
arte

et il y a don
 du sens à parler de moyenne et de varian
e de l'estimateur. En pratique, on lui

asso
ie les paramètres de qualité suivants :

� le biais. Le biais est dé�ni par

bα̂ = µα̂ − α (1.41)

Un estimateur de biais nul est dit non biaisé.

� la varian
e de l'estimateur, qui est 
elle de la variable α̂, soit

σ2
α̂ = E

{
(α̂− µα̂)

2
}

(1.42)

� l'erreur quadratique moyenne (Mean Square Error). Il s'agit de la quantité

MSEα̂ = E
{
(α̂− α)2

}
(1.43)

On montre aisément que

MSEα̂ = b2α̂ + σ2
α̂ (1.44)

S'il est souhaitable que l'estimateur soit non biaisé, les moments d'ordre 2 jouent un r�le 
apital

quand il s'agit d'examiner la 
onvergen
e des estimateurs. En e�et, il ne servirait à rien d'avoir

un estimateur non biaisé mais ave
 un é
art type élevé. Comme il faut que biais et é
art type

soient tous deux petits, la meilleure mesure reste l'erreur quadratique moyenne.

On parle d'estimateur 
onsistant si son erreur quadratique moyenne tend vers 0 lorsque la durée
d'observation tend vers l'in�ni, soit

lim
N→+∞

MSEα̂ = 0 (1.45)

Cette 
ondition, à mettre en parallèle ave
 l'ergodisme, est essentielle quand il s'agit d'exploiter

les données d'é
hantillons prélevés sur une longue période.
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1.3.3 Estimateur à maximum de vraisemblan
e

Une 
lasse importante d'estimateurs est 
elle des estimateurs de vraisemblan
e maximale. Pré-


isons d'emblée que 
ette te
hnique ne s'applique que pour estimer des paramètres d'une densité

de probabilité de forme analytique 
onnue, mais dépendant de 
es paramètres. Elle est sans

intérêt si 
ette forme analytique n'est pas 
onnue.

Soient {X [0], X [1], . . . , X [N−1]} les variables aléatoires dont on pourra faire une observation.

La densité de probabilité jointe de 
es variables peut dépendre de p paramètres {α1, α2, . . . , αp}
f(X [0], X [1], . . . , X [N − 1]; α1, α2, . . . , αp) (1.46)

Elle est appelée fon
tion de vraisemblan
e de 
es paramètres lorsqu'on y insère les valeurs

observées {x[0], x[1], . . . , x[N − 1]}.
L'estimateur à maximum de vraisemblan
e des paramètres {α1, α2, . . . , αp} 
onsiste à 
al
uler
les valeurs {α̂1, α̂2, . . . , α̂p} qui maximisent la fon
tion de vraisemblan
e. On obtient don
 les

estimations en 
her
hant la solution du système de p équations à p in
onnues

α̂i = αi ⇒ ∂f

∂αi
= 0 pour i = 1, 2, p (1.47)

sous réserve de dérivabilité et d'uni
ité du maximum.

Intervalles de 
on�an
e

Cette notion est liée à la te
hnique de l'estimation à maximum de vraisemblan
e. Cette te
h-

nique 
onduit à une formule analytique bien déterminée, du type

α̂ = S(x[0], x[1], . . . , x[N − 1]) (1.48)

Supposons un instant que la densité de probabilité de la variable aléatoire α̂ soit 
onnue. Alors,

étant donné un nombre ǫ (0 < ǫ < 1), il est possible de 
al
uler le plus petit intervalle [α1, α2]
tel que

p(α1 < α̂− α < α2) = 1− ǫ (1.49)

que l'on peut en
ore é
rire

p(α̂− α2 < α < α̂− α1) = 1− ǫ (1.50)

Bien que 
e soit α̂ qui est la variable aléatoire et que α soit une variable 
ertaine, mais in
onnue,

on a tendan
e à interpréter 
ette relation 
omme la probabilité que α appartienne à l'intervalle

[α̂− α2, α̂− α1].

Après observation, on aura obtenu une 
ertaine valeur (réalisation) α̂0 de α̂. Le plus petit

intervalle [α̂0 − α2, α̂0 − α1] tel que

p(α̂0 − α2 < α < α̂0 − α1) = 1− ǫ (1.51)


e qui revient à ∫ α̂0−α1

α̂0−α2

Fα̂(α̂)dα̂ = 1− ǫ (1.52)

est appelé intervalle de 
on�an
e. Cet intervalle est interprété 
omme 
elui dans lequel on risque

de trouver la valeur vraie α̂ ave
 une probabilité 1−ǫ ; 
ependant, une telle interprétation n'étant
pas 
orre
te, on utilise le vo
able 
on�an
e pour la quantité 1 − ǫ. On parle ainsi d'intervalle

de 
on�an
e à 90% ou à 99%.
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1.3.4 Un exemple : estimation de la moyenne

Supposons que, à propos d'une séquen
e aléatoire x[n], on ne sa
he rien d'autre qu'elle est

stationnaire et ergodique. On dispose d'un enregistrement {x[0], x[1], . . . , x[N − 1]} de durée

N , et l'on voudrait estimer la moyenne µx. La moyenne arithmétique des é
hantillons

µ̂x =
1

N

N−1∑

n=0

x[n] (1.53)

semble être un estimateur raisonnable.

Biais de µ̂x ?

En prenant l'espéran
e mathématique des deux membres de 
ette équation, on a

E {µ̂x} = µx (1.54)

et l'on voit que 
et estimateur est non biaisé.

Varian
e de µ̂x ?

Essayons à présent d'en déterminer la varian
e. Soustrayant membre à membre les deux équa-

tions pré
édentes, il vient

µ̂x −E {µ̂x} =
1

N

N−1∑

n=0

(x[n]− µx) (1.55)

et ensuite

σ2
µ̂x =

1

N2

N−1∑

n=0

N−1∑

n′=0

E {(x[n]− µx)(x[n
′]− µx)} (1.56)

=
1

N2

N−1∑

n=0

N−1∑

n′=0

Cxx[n− n′] (1.57)

=
1

N2

N−1∑

i=−(N−1)

(N − |i|)Cxx[i] (1.58)

Cette dernière expression s'obtient en observant que, dans la double somme 1.57, la di�éren
e

n− n′
prend N fois la valeur 0, N − 1 fois les valeurs ±1, et
.

Cette expression met en éviden
e un problème 
ourant dans le domaine de l'estimation. Alors

qu'on tente i
i d'estimer un moment du premier ordre, il faudrait 
onnaître les moments du

deuxième ordre pour déterminer la pré
ision de l'estimateur : plus généralement, la pré
ision

de l'estimateur des moments d'un ordre déterminé dépend des moments d'un ordre supérieur.

Ceux-
i sont logiquement in
onnus, et il faudra les estimer eux-mêmes pour avoir une idée de

la pré
ision de l'estimateur.

Revenons au 
as présent. La double somme 1.57 
omprend N2
termes et, d'une manière gé-

nérale, il se pourrait que la varian
e de l'estimateur ne dé
roisse pas lorsque la durée N de
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l'enregistrement augmente. Cependant, si la fon
tion de 
ovarian
e Cxx[i] dé
roît ave
 i et, plus
pré
isément, si limi→+∞Cxx[i] = 0, la simple somme apparaissant dans l'équation 1.58 
roît

proportionnellement à N lorsque N → +∞. Dans 
e 
as, la varian
e de l'estimateur de µ̂x
dé
roît 
omme

1
N
et l'estimateur est 
onsistant. Ainsi, si l'on savait que x[n] est un bruit blan


d'intensité σ2
x, on aurait σ2

µ̂x
= σ2x

N
.

On pourrait 
roire, à tort, que la moyenne arithmétique est le seul estimateur de la moyenne.

En fait, dans les 
as où l'on ne dispose que d'un faible nombre d'é
hantillons, il est intéressant

de re
ourir à la médiane. Si pour 
ertaines distributions aléatoires, par exemple la gaussienne,

médiane et moyenne sont 
onfondues, il n'empê
he qu'en pratique la médiane est parfois préférée

à la moyenne arithmétique.

1.4 Estimation spe
trale

1.4.1 Introdu
tion

Dans le 
as d'une séquen
e aléatoire, l'estimation spe
trale 
onsiste à estimer la densité spe
trale

de puissan
e. Cette estimation ne pourra s'appuyer que sur les valeurs observées qui résultent de

la réalisation de la séquen
e aléatoire. On peut montrer que, moyennant 
ertaines hypothèses,

l'estimation spe
trale s'apparente à l'estimation de la transformée de Fourier de la séquen
e

observée.

Pour le démontrer, nous partons d'un signal x(t) déterministe, à énergie �nie, 
'est-à-dire tel

que

∫ +∞

−∞
|x(t)|2 dt < +∞ (1.59)

Cette hypothèse est légitime en pratique 
ar les signaux observés proviennent de pro
essus

physiques réels et limités dans le temps. On dé�nit alors une pseudo fon
tion d'auto
orrélation

par

Γxx (τ) =

∫ +∞

−∞
x(t)x(t + τ)dt (1.60)

dont l'expression est 
alquée sur l'expression 
orrespondante pour un pro
essus sto
hastique.

À supposer que le signal ait des 
ara
téristiques stationnaires, on dé�nit également une densité

spe
trale de puissan
e par

γx(f) =

∫ +∞

−∞
Γxx (τ) e

−2πjfτdτ (1.61)

Si l'on 
onsidère la transformée de Fourier du signal x(t)

X (f) =

∫ +∞

−∞
x(t)e−2πjftdt (1.62)

22



Prof. Mar
 Van Droogenbroe
k, tous droits réservés

on peut réé
rire l'expression de la densité spe
trale en introduisant X (f)

γx(f) =

∫ +∞

−∞
Γxx (τ) e

−2πjfτdτ (1.63)

=

∫ +∞

−∞

(∫ +∞

−∞
x(t)x(t + τ)dt

)
e−2πjfτdτ (1.64)

=

∫ +∞

−∞
x(t)

(∫ +∞

−∞
x(t + τ)e−2πjfτdτ

)
dt (1.65)

=

∫ +∞

−∞
x(t)

(
X (f)e2πjft

)
dt (1.66)

= X (f)

∫ +∞

−∞
x(t)e2πjftdt (1.67)

= X (f)X ∗(f) (1.68)

= ‖X (f)‖2 (1.69)

Ainsi don
, une estimation simple de la densité spe
trale de puissan
e sur base de l'observation

�
e qui présuppose stationnarité et ergodisme� équivaut à l'estimation de la transformée de

Fourier au 
arré de l'observation. Ce n'est pas la seule façon de faire 
ar on peut tout aussi

bien estimer la fon
tion d'auto
orrélation et en prendre la transformée de Fourier.

Le développement pré
édent a montré le lien existant entre une densité spe
trale et la trans-

formée de Fourier (au 
arré) d'un signal. Il a néanmoins 
omplètement o

ulté la question

de l'estimation 
ar il y a plus qu'une marge entre le traitement d'un signal 
ontinu et le trai-

tement d'une séquen
e. En fait, les di�
ultés de l'estimation résultent en grande partie des

é
hantillonnages et d'une limitation de la durée d'observation. La raison pour laquelle la lit-

térature propose de nombreuses méthodes d'estimation provient des 
hoix qui sont faits pour

obtenir une estimation ayant 
ertaines propriétés. C'est don
 plus une question de 
hoix qu'une

question de rigueur ou de �abilité.

Dans les paragraphes suivants, nous présentons un estimateur de la fon
tion d'auto
orrélation

et, ensuite, divers estimateurs de la densité spe
trale de puissan
e. En tout état de 
ause,

nous 
onsidérons une séquen
e x[n] aléatoire stationnaire et ergodique que, pour la simpli-


ité, nous supposons 
entrée. Les estimations sont à déduire d'un enregistrement expérimental

{x[0], x[1], . . . , x[N − 1]} de longueur N .

1.4.2 Estimateur biaisé de la séquen
e d'auto
orrélation

L'estimateur biaisé de la séquen
e d'auto
orrélation est dé�ni par

Γ̂XX [k] =
1

N

N−|k|−1∑

n=0

x[n]x∗[n+ |k|] pour |k| ≤ N − 1 (1.70)
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Cette expression nous permet de 
al
uler une estimée de la densité spe
trale par transformée

de Fourier

γ̂X(F ) =

N−1∑

k=−(N−1)

Γ̂XX [k]e
−2πjFk

(1.71)

=
1

N

N−1∑

k=−(N−1)

N−|k|−1∑

n=0

x[n]x∗[n + |k|]e−2πjFk
(1.72)

1.4.3 Estimateur simple de la densité spe
trale de puissan
e : le pé-

riodigramme

Par 
al
ul, on montre aisément que

γ̂X(F ) =
1

N

∥∥∥∥∥
N−1∑

n=0

x[n]e−2πjFn

∥∥∥∥∥

2

(1.73)

qui n'est rien d'autre que la transformée de Fourier au 
arré de l'enregistrement, prolongé

par des zéros.

Cet estimateur est appelé périodigramme. Il est malheureusement biaisé et

E {γ̂X(F )} =

N−1∑

k=−(N−1)

[
1− |k|

N

]
Γ̂XX [k]e

−2πjFk
(1.74)

Le périodigramme est un estimateur asymptotiquement sans biais de la densité spe
trale de

puissan
e : pour une durée d'observation N su�samment grande, γ̂X(F ) �u
tue autour de la
vraie valeur de γX(F ). Par 
ontre, l'amplitude des �u
tuations, qui est donné par la varian
e

de γ̂X(F ), ne tend pas vers 0 lorsque N tend vers l'in�ni. Plus pré
isément, on montre que 
ette

varian
e est de l'ordre de grandeur de la valeur à estimer. La �gure 1.9 montre quatre périodi-

grammes et une 
ertaine densité spe
trale théorique. On observe que, malgré l'allongement de

la durée d'observation, l'amplitude des �u
tuations ne diminue pas.

En pratique, on applique la transformée dis
rète. Dès lors,

γ̂X(Fk) =
1

N

∥∥∥∥∥
N−1∑

n=0

x[n]e−2πjkn/N

∥∥∥∥∥

2

(1.75)

1.4.4 E�et de fenêtrage

On peut aussi s'intéresser à la forme de la fon
tion fenêtre que l'on applique. En e�et,

γ̂X(F ) =
1

N

∥∥∥∥∥
N−1∑

n=0

x[n]e−2πjFn

∥∥∥∥∥

2

(1.76)

=
1

N

∥∥∥∥∥
+∞∑

n=−∞
x[n]wR[n]e

−2πjFn

∥∥∥∥∥

2

(1.77)

24



Prof. Mar
 Van Droogenbroe
k, tous droits réservés

0 0.1 0.2 0.3 0.4 0.5
−30

−20

−10

0

10

20

30

40
N = 100

0 0.1 0.2 0.3 0.4 0.5
−30

−20

−10

0

10

20

30

40
N = 200

0 0.1 0.2 0.3 0.4 0.5
−30

−20

−10

0

10

20

30

40
N = 500

0 0.1 0.2 0.3 0.4 0.5
−30

−20

−10

0

10

20

30

40
N = 1000

Figure 1.9 � Flu
tuations du périodigramme en fon
tion de la période totale d'observation N .

où wR[n] est une fon
tion de fenêtrage de forme re
tangulaire dé�nie par

wR[n] =

{
1, n ∈ {0, 1, . . . , N − 1}
0, ailleurs

(1.78)

L'e�et de la fenêtre n'est pas négligeable 
ar il a�e
te le spe
tre du signal observé. Aussi,

di�érentes méthodes d'estimation spe
trale tentent-elles d'établir un 
ompromis entre pré
ision

spe
trale et e�et de fenêtrage.

La question de l'estimation spe
trale est trop vaste pour que nous l'abordions autrement que par

une sensibilisation à la di�
ulté intrinsèque à estimer un spe
tre. Pour une étude approfondie,

nous renvoyons le le
teur intéressé à des ouvrages spé
ialisés [4, 5, 14℄.
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Chapitre 2

Représentation des signaux et des

systèmes passe-bande

2.1 Introdu
tion

La numérisation des signaux s'opère en plusieurs étapes su

essives. Dans un premier temps, le

signal original est �ltré ; il en dé
oule un signal à spe
tre limité

1

. Le signal est alors prêt pour

une phase de numérisation qui débute par un é
hantillonnage à une fréquen
e supérieure à la

fréquen
e de Nyquist. Ainsi, la transmission d'un signal de parole �ltré à 4 [kHz] et numérisé

né
essite tout au plus quelques dizaines de kb/s.

Sur une ligne téléphonique, la transmission s'e�e
tue en bande de base. Après tout, la ligne

étant physiquement dédiée à un utilisateur, il n'y a au
une raison parti
ulière de partager le


anal en modulant le signal. De plus, on a tout intérêt à 
onserver un signal en bande de base

puisque l'atténuation y est la plus faible.

La situation est tout autre dans l'espa
e. La ressour
e étant partagée, 
haque utilisateur se voit

allouer une bande de fréquen
es spé
i�que. Pour l'o

uper, un mélangeur transpose le signal de

la bande de base vers la bande de fréquen
es dédiée. Après transmission, on ramène le signal

en bande de base et on pro
ède à la démodulation.

On voit don
 apparaître deux types de 
onsidérations fréquentielles :

� la bande de base. C'est la bande o

upée par le signal original.

� la bande utile, bande dans laquelle on vient pla
er le signal initialement en bande de base.

On parle alors de système passe-bande puisque, du point de vue de l'utilisateur, le système

agit par transparen
e dans la bande utile mais il annulle les 
omposantes hors bande.

Cette notion de passe-bande est formalisée par la dé�nition suivante.

Dé�nition 9 [Passe-bande℄ Un signal déterministe g(t) est de type passe-bande s'il existe

deux valeurs W et f0, pour lesquelles W ≪ f0, et telles que

∀f 6∈ [f0 −
W

2
, f0 +

W

2
], ‖G(f)‖ = 0 (2.1)

1. En toute rigueur, un signal à spe
tre limité est à durée in�nie. Mais 
omme les signaux réels sont à durée

�nie, il y a une 
ontradi
tion à dé�nir un signal à spe
tre limité. On utilise néanmoins 
ette modélisation.
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La �gure 2.1 représente un signal passe-bande. Il est à remarquer que le spe
tre d'un signal

réel ne doit nullement être symétrique par rapport à la fréquen
e f0. Ainsi, si la modulation

d'amplitude 
onduit à un spe
tre symétrique autour de la fréquen
e porteuse, la modulation

d'amplitude à bande résiduelle produit un spe
tre non symétrique.

‖G(f)‖

f−f0
W

f0

Figure 2.1 � Spe
tre d'un signal passe-bande.

La modélisation d'un signal passe-bande peut paraître plus 
omplexe puisque le signal �u
tue

à une 
aden
e rythmée par la plus haute fréquen
e 
ontenue dans le signal. Fort heureusement,

on peut tirer pro�t du fait que le signal de départ se situe en bande de base.

N'oublions pas que, 
omme il s'agit de re
onstituer 
e signal en bande de base �le signal modulé

n'est pas une �n en soi�, on peut s'interroger sur la possibilité de modéliser les signaux et les

systèmes à des fréquen
es nettement inférieures à la fréquen
e porteuse.

La démodulation d'un signal AM à porteuse par déte
teur de 
rête utilise 
e prin
ipe. En e�et,

un 
hoix judi
ieux des 
onstantes de temps permet de ré
upérer l'enveloppe du signal. Hormis

l'obligation de 
hoisir les 
onstantes de temps en fon
tion de la borne maximale de la bande de

base et en fon
tion de la fréquen
e porteuse lors de la synthèse d'un déte
teur, il apparaît que

le 
ir
uit de démodulation travaille dans une plage de fréquen
es telle que dé�nie par la bande

de base ; il n'y a pas de 
omposante haute-fréquen
e.

Avant d'aborder plus en détail la phase de modélisation, examinons la question de l'é
hantillon-

nage des signaux passe-bande.

2.1.1 É
hantillonnage des signaux passe-bande

Prenons un signal passe-bande g(t). On montre le théorème d'é
hantillonnage uniforme suivant

pour les signaux passe-bande.

Théorème 10 Une fon
tion g(t) à énergie �nie et à spe
tre limité, 
'est-à-dire dont la trans-

formée de Fourier G(f) est de largeur W , et qui admet une borne supérieure fu, est entière-
ment déterminée par ses é
hantillons g[nTs], n ∈ {−∞,+∞} si la fréquen
e d'é
hantillonnage

fs vaut
2fu
k
, tel que k est le plus grand entier stri
tement inférieur à

fu
W
.

Il est à noter que toutes les fréquen
es d'é
hantillonnage ne 
onviennent pas sauf si elles sont

stri
tement supérieures à 2fu.

Démonstration

On sait que le spe
tre d'un signal é
hantillonné gs(t) est périodique 
entré sur les multiples ifs :

gs(t) ⇋ fs

+∞∑

i=−∞
G(f − ifs) (2.2)
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Dans notre 
as, le signal est de type passe-bande. L'é
hantillonnage pourrait amener un 
hevau-


hement des 
opies des spe
tres si l'on n'y prend garde. Prenons une fréquen
e d'é
hantillonnage

fs dé�nie par
2fu
k
. Pour éviter tout repli de spe
tre, il faut impérativement que fs > 2W . Dès

lors, on obtient

2fu
k
> 2W , 
e qui implique k < fu

W
.

Exemple. Considérons un signal W = 20 [kHz] et fu = 105 [kHz]. Par appli
ation du théo-

rème, k < 5, 25. Autrement dit, la fréquen
e d'é
hantillonnage fs = 42 [kHz] 
onvient. La
�gure 2.2 représente le signal é
hantillonné dans le domaine spe
tral. On est évidemment loin

de la fréquen
e de Nyquist qui aurait prévalu s'il ne s'agissait d'un signal passe-bande.

����
����
����
����

����
����
����
����

f
W

‖Gs(f)‖

fu

Figure 2.2 � Signal passe-bande et signal après é
hantillonnage.

Plusieurs remarques s'imposent :

� S'il est vrai que le théorème garantit que soit préservée la bande de fréquen
e utile, il ne

dit rien quant à la position des 
opies du spe
tre. On sait tout au plus que le spe
tre doit

être symétrique puisque le signal é
hantillonné est réel. Il serait pourtant fort agréable de

n'avoir que la partie située à droite ou à gau
he de l'origine et de la 
entrer sur l'origine.

On pourrait alors utiliser 
ette 
opie pour des opérations de type passe-bas, nettement plus

fa
iles à réaliser. Pré
isons toutefois que la partie qui aboutirait près de l'origine n'est pas

né
essairement symétrique ; le �ltrage de la 
omposante à basse fréquen
e fournira don
 un

signal 
omplexe.

� Le théorème ne fait nullement intervenir le 
on
ept de fréquen
e porteuse même si la majorité

des signaux de type passe-bande sont le résultat d'une phase de modulation.

2.2 Représentation des signaux passe-bande déterministes

Le modèle développé 
i-après aboutit à dé�nir des signaux passe-bande 
omplexes et une fré-

quen
e de référen
e pour permettre la mise en 
orrespondan
e entre un signal passe-bande

original et le signal passe-bas de synthèse.

Dé�nition 11 [Passe-bas équivalent℄ Considérons un signal passe-bande déterministe g(t).
Le signal g(t) peut s'é
rire sous la forme de

g(t) = Re
(
g(t)e2πjf0t+jϕ0

)
(2.3)

telle que f0 est une fréquen
e de référen
e 
ontenue dans la bande utile du signal

2

. Dans 
ette

égalité, g(t) porte le nom de passe-bas équivalent.

2. ϕ0 est souvent 
hoisi nul par 
ommodité. Cela ne nuit en rien à la généralité des propos.
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Dans un sou
i de rigueur, il 
onviendrait plut�t de parler de famille de passe-bas équivalents.

À l'éviden
e, toute fon
tion g(t) = (g(t) + jz(t))e−2πjf0t−jϕ0
respe
te l'égalité 2.3.

La détermination d'un type de passe-bas équivalent revient don
 à 
hoisir une fon
tion parti-


ulière pour z(t). Comme on pourra s'en aper
evoir le 
hoix n'est pas unique. Pour 
ompliquer

l'a�aire, 
ertains auteurs [23℄ dé�nissent le passe-bas équivalent en introduisant un fa
teur de

normalisation

√
2 dans l'expression 2.3 a�n d'éviter l'apparition d'un fa
teur 2 lors de l'analyse

de systèmes linéaires ; on trouve les deux dé�nitions dans la littérature.

2.2.1 Signaux modulés

La modulation est un pro
édé qui, en toute généralité, 
onvertit une paire de signaux modulants

m1(t), m2(t) dé�nis en bande de base, en un signal modulé s(t) de la forme

s(t) = Re
(
(m1(t) + jm2(t))e

2πjfct+jϕc
)

(2.4)

Par 
omparaison ave
 la dé�nition d'un passe-bas équivalent (relation 2.3), le 
hoix suivant

s'impose

s(t) = m1(t) + jm2(t) (2.5)

La fréquen
e porteuse joue alors le r�le de fréquen
e de référen
e

3

. Ce passe-bas équivalent n'a

pas de réelle signi�
ation physique puisqu'il est de nature 
omplexe. C'est néanmoins un signal

de synthèse fort 
ommode, 
omme nous le verrons, pour traiter les signaux passant dans un

système linéaire.

Les signaux m1(t) et m2(t) sont appelés respe
tivement 
omposante en phase et 
omposante

en quadrature de s(t), 
ar

s(t) = m1(t) cos(2πfct+ ϕc)−m2(t) sin(2πfct + ϕc) (2.6)

Dans le 
as d'une modulation numérique linéaire, les signaux m1(t) et m2(t) représentent une
séquen
e d'impulsions mises en forme. On peut aisément trouver les équivalents passe-bas des

prin
ipales modulations numériques.

Modulation numérique d'amplitude à 2n états

Un signal numérique à 2n états modulé en amplitude (2n-ASK) est de la forme

s(t) =
+∞∑

k=−∞
AkRect[0,T ](t− kT ) cos(2πfct) (2.7)

où Ak est une variable aléatoire pouvant prendre 2
n
valeurs di�érentes. Le passe-bas équivalent

est tout simplement

s(t) =
+∞∑

k=−∞
AkRect[0,T ](t− kT ) (2.8)

3. Ce 
hoix 
onvient dans bon nombre de 
as mais il arrive qu'un autre 
hoix soit plus judi
ieux ; 
'est la

fa
ilité de formulation résultante qui guidera le 
hoix �nal.
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Modulation numérique de phase à 2n états

De même, sa
hant qu'un signal numérique à 2n états modulé en phase (2n-PSK) est de la forme

s(t) =

+∞∑

k=−∞
Rect[0,T ](t− kT ) cos(2πfct + θk) (2.9)

où θk est une variable aléatoire pouvant prendre 2n valeurs di�érentes dans l'intervalle [0, 2π].
Le passe-bas équivalent est

s(t) =
+∞∑

k=−∞
Rect[0,T ](t− kT )ejθk (2.10)

En e�et, en prenant ϕc = 0,

s(t) = Re

(
+∞∑

k=−∞
Rect[0,T ](t− kT )ejθke2πjfct

)
=

+∞∑

k=−∞
Rect[0,T ](t− kT ) cos(2πfct+ θk) (2.11)

2.2.2 Signal analytique

Jusqu'à présent, nous avons étudié les signaux modulés. Néanmoins, le prin
ipe de ramener

le signal en bande de base s'applique à tous les signaux de type passe-bande. Cela né
essite

pourtant quelques pré
autions si l'on veut éviter des re
ouvrements de spe
tre à l'origine.

Prenons un signal g(t) réel et déterministe. Le prin
ipe de base 
onsiste à e�a
er une partie du

spe
tre avant de pro
éder à un dépla
ement fréquentiel. L'opération est sans perte d'information

si l'on se rappelle que le spe
tre d'un signal réel est tel que

Re (G(−f)) = Re (G(f)) (2.12)

Im (G(−f)) = −Im (G(f)) (2.13)

L'exploitation de la symétrie permet de ne 
onsidérer que les fréquen
es positives durant les


al
uls, à 
ondition bien sûr de re
onstituer les fréquen
es négatives pour rétablir la nature du

signal réel en �n de 
al
uls.

Soit don
 le �ltre H(f) supprimant les fréquen
es négatives ; par la même o

asion, il ampli�e

les fréquen
es positives d'un fa
teur 2 de manière à 
onserver le même niveau d'énergie. Ce

�ltre se 
ara
térise par la transmittan
e

H(f) =

{
0 si f < 0
2 si f ≥ 0

(2.14)

qui peut également se mettre sous la forme

H(f) = 1 + sgn(f) (2.15)

Étant donné que la transformée de Fourier de la fon
tion sgn est donnée par

sgn(t) ⇋
1

πjf
(2.16)
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on peut utiliser la propriété de dualité de la transformée de Fourier pour déduire que

j

πt
⇋ sgn(f) (2.17)

On arrive alors à l'expression de la réponse impulsionnelle du �ltre

h(t) = δ(t) +
j

πt
(2.18)

Dé�nition 12 [Signal analytique℄ La réponse d'un tel �ltre à un signal d'entrée g(t) est

appelée signal analytique. Elle est notée ga(t) et vaut

ga(t) = g(t)⊗
(
δ(t) +

j

πt

)
(2.19)

= g(t) + jg(t)⊗ 1

πt
(2.20)

On dé�nit ensuite la transformée de Hilbert d'un signal.

Dé�nition 13 [Transformée de Hilbert℄ Soit un signal g(t). Sa transformée de Hil-

bert, notée g̃(t), vaut

g̃(t) = g(t)⊗ 1

πt
(2.21)

Par 
ette dé�nition,

ga(t) = g(t) + jg̃(t) (2.22)

Le signal analytique est don
 
omposé d'une partie réelle, qui n'est autre que le signal original,

et d'une partie imaginaire qui en est la transformée de Hilbert. L'apparition d'une 
omposante

imaginaire ne doit pas nous étonner 
ar elle résulte de la rupture de symétrie dans le spe
tre.

La norme du signal analytique est appelée enveloppe du signal.

Le signal g̃(t) porte aussi le nom de signal en quadrature du signal d'entrée. Cette appellation

provient des 
ara
téristiques du �ltre

1
πt
. En e�et, la transmittan
e de 
e �ltre vaut −jsgn(f).

Dès lors,

G̃(f) = −jsgn(f)G(f) (2.23)

Autrement dit, les fréquen
es positives et négatives subissent toutes un déphasage de −π
2
. Par

la même o

asion, on remarque que la transformée de Hilbert o

upe la même bande de

fréquen
e que le signal original.

Propriétés de la transformée de Hilbert

Propriété 14 L'énergie (ou la puissan
e) d'un signal et 
elle de sa transformée de Hilbert

sont égales.

Démonstration

L'énergie de la transformée de Hilbert d'un signal vaut

∫ +∞

−∞
‖g̃(t)‖2 dt =

∫ +∞

−∞

∥∥∥G̃(f)
∥∥∥
2

df (2.24)
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Or

∥∥∥G̃(f)
∥∥∥
2

= ‖−jsgn(f)‖2 ‖G(f)‖2 (2.25)

= ‖G(f)‖2 (2.26)

Propriété 15 [35, page 96℄ Un signal est orthogonal à sa transformée de Hilbert. Pour un

signal d'énergie, ∫ +∞

−∞
g(t)g̃(t)dt = 0 (2.27)

et pour un signal de puissan
e

lim
T→+∞

1

2T

∫ +T

−T
g(t)g̃(t)dt = 0 (2.28)

Transformée de Hilbert d'un signal modulé

Cal
ulons tout d'abord la transformée de Hilbert d'un 
osinus. Soit g(t) = cos(2πfct). Le
spe
tre de signal vaut

G(f) = δ(f − fc) + δ(f + fc)

2
(2.29)

d'où, par appli
ation de la relation 2.23,

G̃(f) =
−jδ(f − fc) + jδ(f + fc)

2
(2.30)

=
δ(f − fc)− δ(f + fc)

2j
(2.31)

qui n'est autre que le transformée de Fourier d'un sinus. Ainsi,

˜cos(2πfct) = sin(2πfct) (2.32)

Ce résultat ne doit pas nous étonner 
ar il dé
oule d'un déphasage du 
osinus par ajout d'une

phase −π
2
. Le même raisonnement 
onduit aisément au résultat suivant.

Propriété 16 [Transformée de Hilbert d'un signal modulé℄ Soit un signal g(t) en

bande de base,

˜g(t) cos(2πfct) = g(t) sin(2πfct) (2.33)
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Représentation passe-bas à partir du signal analytique

Le signal analytique peut être utilisé pour 
onstruire un signal passe-bas équivalent. En e�et,

il su�t de ramener le signal analytique près de l'origine par une translation de son spe
tre. Un

moyen 
ommode 
onsiste à prendre la fréquen
e de référen
e f0 du signal passe-bande pour

e�e
tuer le dépla
ement. Mais 
e 
hoix n'est nullement obligatoire.

Dé�nition 17 [Enveloppe 
omplexe du signal℄ Le signal obtenu par dé
alage du signal

analytique le long de l'axe fréquentiel porte le nom d'enveloppe 
omplexe du signal original. Elle

sera notée eg(t).

Par dé�nition, l'enveloppe 
omplexe et son spe
tre sont respe
tivement liés à leur équivalent

analytique par les relations

eg(t) = ga(t)e
−2πjf0t

(2.34)

Eg(f) = Ga(f + f0) (2.35)

La démar
he adoptée a permis de 
onstruire l'enveloppe 
omplexe à partir du signal de départ.

Pour se 
onvain
re de l'utilité de l'enveloppe 
omplexe 
omme passe-bas équivalent, déterminons

le lien inverse. Un 
al
ul simple montre que

g(t) = Re (ga(t)) (2.36)

= Re
(
eg(t)e

2πjf0t
)

(2.37)

Il s'agit don
 bien d'une forme valide de passe-bas équivalent tel que dé�nie par la relation 2.3.

Dé
omposition de Ri
e

Il nous reste maintenant à déterminer des moyens pratiques pour 
al
uler l'enveloppe 
omplexe

d'un signal. Pour 
e faire, on dé
ompose l'enveloppe 
omplexe en sa partie réelle et sa partie

imaginaire

eg(t) = gI(t) + jgQ(t) (2.38)

Nous avons pris le soin de faire référen
e au signal g pour des raisons qui apparaîtront bient�t.
gI(t) s'obtient 
omme suit

gI(t) = Re (eg(t)) (2.39)

= Re
(
ga(t)e

−2πjf0t
)

(2.40)

= g(t) cos(2πf0t) + g̃(t) sin(2πf0t) (2.41)

De même,

gQ(t) = Im (eg(t)) (2.42)

= Im
(
ga(t)e

−2πjf0t
)

(2.43)

= −g(t) sin(2πf0t) + g̃(t) cos(2πf0t) (2.44)

Les signaux gI(t) et gQ(t) sont appelés 
omposantes de Ri
e ou 
omposantes en quadrature. Sur

le plan théorique, on peut les 
al
uler très simplement à partir du s
héma dé
rit à la �gure 2.3.
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+π
2

g(t)

cos (2πfct)

Hilbert

sin (2πfct)

+

+

gI(t)

Figure 2.3 � S
héma de 
al
ul de la 
omposante en phase de Ri
e.

L'intérêt des 
omposantes de Ri
e est 
lair lorsqu'on détermine le signal de départ à partir de

l'enveloppe 
omplexe. En e�et,

g(t) = Re (ga(t)) (2.45)

= Re
(
eg(t)e

2πjf0t
)

(2.46)

= Re
(
(gI(t) + jgQ(t))e

2πjf0t
)

(2.47)

= gI(t) cos(2πf0t)− gQ(t) sin(2πf0t) (2.48)

Cette dernière expression traduit un résultat important : tout signal passe-bande peut s'ex-

primer 
omme la somme de deux signaux 
on�nés à l'intérieur de l'intervalle de fréquen
es

[−W
2
, W

2
] et modulés en quadrature.

La �gure 2.4 montre 
omment re
onstituer le signal original à partir de ses 
omposantes de

Ri
e.

cos (2πfct)

sin (2πfct)

+π
2

gI(t)

g(t)

gQ(t)

+

−

Figure 2.4 � S
héma de re
onstitution d'un signal à partir de ses 
omposantes de Ri
e.

L'enveloppe 
omplexe peut aussi s'é
rire sous la forme d'une amplitude instantanée et d'une

phase instantanée

eg(t) = ag(t)e
jφg(t)

(2.49)
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On a alors les trois relations

ag(t) =
√
g2I (t) + g2Q(t) (2.50)

φg(t) = tan−1 gQ(t)

gI(t)
(2.51)

g(t) = ag(t) cos(2πf0t+ φg(t)) (2.52)

Dès lors, on trouve un se
ond résultat important : tout signal passe-bande peut s'exprimer sous

la forme d'un signal modulé en phase et en amplitude. Le passage de g(t) dans un déte
teur

de 
rête produit ag(t). D'autre part, moyennant la suppression de la modulation résiduelle, un

déte
teur de phase ou un dis
riminateur de fréquen
es sera en mesure de déterminer l'allure de

la modulation angulaire.

En pratique

Les expressions 2.41 et 2.44 de 
al
ul des 
omposantes de Ri
e, pour rigoureuses qu'elles

soient, ne sont guère pratiques 
ar elles exigent la détermination préalable de la transformée de

Hilbert. Un moyen très fa
ile 
onsiste à pro
éder à l'instar d'un démodulateur d'amplitude :

on multiplie le signal original par 2 cos(2πf0t) (ou 2 sin(2πf0t)) et on applique un �ltre passe-

bas, 
omme illustré par le s
héma 2.5.

En e�et,

g(t)× 2 cos(2πf0t) = 2 [gI(t) cos(2πf0t)− gQ(t) sin(2πf0t)] cos(2πf0t) (2.53)

= 2
[
gI(t) cos

2(2πf0t)− gQ(t) sin(2πf0t) cos(2πf0t)
]

(2.54)

= gI(t) + gI(t) cos(4πf0t)− gQ(t) sin(4πf0t) (2.55)

Un �ltrage passe-bas fournit don
 bien gI(t).

+π
2

gI(t)

2 sin (2πf0t)

2 cos (2πf0t)

−gQ(t)

g(t)

Figure 2.5 � S
héma de 
al
ul pratique des 
omposantes de Ri
e.

Les 
omposantes de Ri
e o

upent une bande de fréquen
es qui n'est pas fondamentalement

plus large que 
elle de l'enveloppe 
omplexe. Pour le montrer, 
al
ulons le spe
tre de gI(t).
Comme gI(t) =

1
2

(
eg(t) + e∗g(t)

)
,

GI(f) =
1

2

(
Eg(f) + E∗

g (−f)
)

(2.56)
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Dès lors, si la transformée Eg(f) est nulle ∀f : |f | > fsup, le spe
tre de la 
omposante en phase

est 
on�né dans l'intervalle de fréquen
es [−fsup,+fsup].

2.3 Systèmes linéaires, invariants en translation et passe-

bande

Tout 
omme pour les signaux passe-bande, la réponse impulsionnelle d'un système linéaire,

invariant en translation et passe-bande peut s'exprimer au départ de l'enveloppe 
omplexe de

la réponse impulsionnelle

h(t) = Re
(
eh(t)e

2πjf0t
)

(2.57)

Filtrer un signal réel g(t) par un �ltre de réponse impulsionnelle h(t) peut se faire au 
hoix :

� par 
onvolution g(t)⊗ h(t) ;
� en �ltrant le signal analytique ga(t) par un système ayant ha(t) pour réponse impulsionnelle ;

ou en
ore

� en �ltrant l'enveloppe 
omplexe eg(t) par eh(t).

Détaillons 
ette dernière méthode. Le signal �ltré vaut

y(t) = g(t)⊗ h(t) (2.58)

=

∫ +∞

−∞
h(λ)g(t− λ)dλ (2.59)

Comme on peut é
rire

g(t) =
1

2

(
eg(t)e

2πjf0t + e∗g(t)e
−2πjf0t

)
(2.60)

et

h(t) =
1

2

(
eh(t)e

2πjf0t + e∗h(t)e
−2πjf0t

)
(2.61)

Dès lors,

y(t) =
1

4
e2πjf0t

∫ +∞

−∞
eh(λ)eg(t− λ)dλ (2.62)

+
1

4
e−2πjf0t

∫ +∞

−∞
e∗h(λ)e

∗
g(t− λ)dλ (2.63)

+
1

4
e−2πjf0t

∫ +∞

−∞
eh(λ)e

∗
g(t− λ)e4πjf0λdλ (2.64)

+
1

4
e2πjf0t

∫ +∞

−∞
e∗h(λ)eg(t− λ)e−4πjf0λdλ (2.65)

Les troisième et quatrième termes tendent vers 0 lorsque la fréquen
e de référen
e f0 est large-
ment supérieure aux fréquen
es utilisées dans la bande de base. Dans 
e 
as en e�et, le signal

e∗h(λ)eg(t − λ) �u
tue peu pendant une période de l'exponentielle et, moyennant l'hypothèse

raisonnable que 
e signal est 
onstant sur toute la durée d'une période, l'intégrale se 
ompense

demi-
y
le par demi-
y
le, pour s'annuler. Il reste alors les deux premiers termes

y(t) =
1

2
Re ((eh(t)⊗ eg(t)) e

2πjf0t) (2.66)
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D'où l'on 
on
lut que

ey(t) =
1

2
eh(t)⊗ eg(t) (2.67)

À l'ex
eption du fa
teur

1
2
, le �ltrage de l'enveloppe 
omplexe du signal par 
elle de la réponse

impulsionnelle fournit l'enveloppe 
omplexe du signal y(t). Le fa
teur

1
2

orrige le fa
teur 2

qui est introduit dans le signal analytique de la transmittan
e. En e�et, si la normalisation de

l'énergie du signal analytique a un sens pour des signaux pris séparément, elle aboutit à une

augmentation d'énergie lors des multipli
ations de 
e type de signaux. Pour s'en 
onvain
re, il

su�t de prendre une transmittan
e passe-bande idéale, pour réaliser que la sortie du �ltre sera

multipliée par 2 par rapport au signal d'entrée.

On devine tout l'intérêt de 
e dernier résultat 
ar il signi�e que tout signal passe-bande traité

par un système passe-bande peut se 
al
uler à partir d'enveloppes 
omplexes dont les fréquen
es

sont faibles par rapport à la fréquen
e de référen
e. Il 
onvient de relever que tous les 
al
uls

pré
édents présupposent que la fréquen
e de référen
e soit la même pour toutes les enveloppes


omplexes.

2.4 Représentation des signaux passe-bande aléatoires

Nous allons voir qu'il est possible, 
omme pour les signaux déterministes du type passe-bande,

de 
ara
tériser un pro
essus aléatoire stationnaire du type passe-bande en introduisant les

notions de signal analytique et d'enveloppe 
omplexe. Soit don
 un pro
essus aléatoire X(t),
stationnaire et de type passe-bande, 
'est-à-dire dont la densité spe
trale de puissan
e γX(f)
est nulle en dehors d'une 
ertaine bande de fréquen
es.

2.4.1 Signal analytique d'un pro
essus sto
hastique

Par analogie ave
 les signaux déterministes, on dé�nit le signal analytique en �ltrant le pro
essus

sto
hastique X(t) par un �ltre H(f) qui élimine les fréquen
es négatives

H(f) =

{
0 si f < 0
2 si f ≥ 0

(2.68)

Ce �ltre va être appliqué la densité spe
trale de puissan
e γX(f)
4

. Par le théorème deWiener-

Kint
hine, la densité spe
trale de puissan
e du signal analytique est donnée par

γXa
(f) = ‖H(f)‖2 γX(f) (2.69)

=

{
4 γX(f) si f ≥ 0

0 si f < 0
(2.70)

Observons que la densité spe
trale de puissan
e du signal analytique peut en
ore s'é
rire sous

la forme γXa
(f) = 2H(f) γX(f). Comme la réponse impulsionnelle du �ltre H(f) est égale à

h(t) = δ(t) +
j

πt
(2.71)

4. Remarquons qu'il n'y a pas de sens à appliquer le �ltre à la transformé de Fourier du signal sto
hastique

X(t). En e�et, on appliquerait le �ltre à la transformée de Fourier d'une réalisation et non au signal lui-même.

Dès lors, la 
ara
térisation serait propre à une réalisation et non au signal sto
hastique sous-ja
ent.
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il est fa
ile de 
al
uler la fon
tion d'auto
orrélation du signal analytique par transformée de

Fourier inverse

ΓXaXa
(τ) = 2(ΓXX (τ) + jΓ̃XX(τ)) (2.72)

où ΓXaXa
(τ), ΓXX (τ) et Γ̃XX(τ) sont respe
tivement la fon
tion d'auto
orrélation du signal

analytique, la fon
tion d'auto
orrélation du pro
essus sto
hastique X(t) et la transformée de

Hilbert de ΓXX (τ).

2.4.2 Enveloppe 
omplexe d'un pro
essus sto
hastique

Par analogie ave
 le 
as déterministe, on dé�nit la fon
tion d'auto
orrélation de l'enveloppe


omplexe 
omme suit

ΓeXeX (τ) = ΓXaXa
(τ) e−2πjf0τ

(2.73)

Les densités spe
trales de puissan
e de l'enveloppe 
omplexe et du signal analytique sont alors

liées par

γeX (f) = γXa
(f + f0) (2.74)

On peut en
ore montrer que l'on peut retrouver la fon
tion d'auto
orrélation du pro
essus

sto
hastique X(t) à partir de 
elle de l'enveloppe 
omplexe

ΓXX (τ) =
1

2
Re (ΓXaXa

(τ)) (2.75)

=
1

2
Re
(
ΓeXeX (τ) e2πjf0τ

)
(2.76)

Il est �nalement possible d'exprimer la densité spe
trale de puissan
e de X(t) en fon
tion de


elle de l'enveloppe 
omplexe. Il su�t de remarquer que la fon
tion d'auto
orrélation de X(t)
peut s'é
rire sous la forme

ΓXX (τ) =
1

4

[
ΓeXeX (τ) e2πjf0τ + ΓeXeX (τ)∗ e−2πjf0τ

]
(2.77)

et de 
al
uler la transformée de Fourier de 
ette dernière expression

γX(f) =
γeX (f − f0) + γ∗eX(−f − f0)

4
(2.78)

Néanmoins, il est intéressant d'étudier l'enveloppe 
omplexe, non plus en terme de fon
tion

d'auto
orrélation, mais dire
tement via son expression temporelle.

2.4.3 Lien entre un pro
essus sto
hastique et son enveloppe 
omplexe

Par analogie ave
 le 
as déterministe, on peut exprimer l'enveloppe 
omplexe dire
tement sous

la forme

X(t) = Re
(
eX(t) e

2πjf0t
)

(2.79)

X(t) étant un pro
essus sto
hastique, l'enveloppe 
omplexe eX(t) est également un pro
essus

sto
hastique. É
rit tel quel, le pro
essus sto
hastiqueX(t) n'est pas stationnaire 
ar sa moyenne

dépend du temps, que l'enveloppe 
omplexe soit stationnaire ou non. Comme pour le 
as des
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signaux déterministes, il est né
essaire de stationnariser le signal en introduisant une phase

aléatoire Θ uniformément répartie sur [0, 2π[. Ainsi, on é
rit

X(t) = Re
(
eX(t) e

j(2πf0t+Θ)
)

(2.80)

À partir de 
ette expression, il est possible de retrouver la fon
tion d'auto
orrélation de X(t).
Il su�t de remarquer que

X (t) =
1

2

[
eX (t) ej(2πf0t+Θ) + eX

∗ (t) e−j(2πf0t+Θ)
]

(2.81)

Il vient

ΓXX (t, t− τ) = E {X (t) X∗ (t− τ)} (2.82)

= E {X (t) X (t− τ)} (2.83)

où nous avons utilisé le fait que X(t) est réel. En remplaçant X (t) par sa valeur, il vient après

al
ul des espéran
es

ΓXX (t, t− τ) =
1

4
E
{
eX (t) eX

∗ (t− τ) e2πjf0τ + eX
∗ (t) eX (t− τ) e−2πjf0τ

}
(2.84)

=
1

4
E
{
2Re

(
eX (t) eX

∗ (t− τ) e2πjf0τ
)}

(2.85)

=
1

2
Re
(
E
{
eX (t) eX

∗ (t− τ) e2πjf0τ
})

(2.86)

=
1

2
Re
(
ΓeXeX (t, t− τ) e2πjf0τ

)
(2.87)

Dès lors, si le pro
essus sto
hastique X(t) est stationnaire, son enveloppe 
omplexe l'est égale-

ment et on peut é
rire

ΓXX (τ) =
1

2
Re
(
ΓeXeX (τ) e2πjf0τ

)
(2.88)

2.4.4 Dé
omposition de Ri
e d'un pro
essus sto
hastique

Comme pour l'enveloppe 
omplexe, on peut dé�nir les 
omposantes en phase et en quadrature

d'un pro
essus sto
hastique

eX(t) = XI(t) + j XQ(t) (2.89)

La dé
omposition de Ri
e du pro
essus sto
hastique X(t) est alors donnée par

X(t) = Re
(
eX(t) e

2πjf0t
)

(2.90)

= Re
(
(XI(t) + j XQ(t)) e

2πjf0t
)

(2.91)

= XI(t) cos(2πf0t)−XQ(t) sin(2πf0t) (2.92)

Il est important de remarquer que XI(t) et XQ(t) sont également des pro
essus sto
hastiques.

Dès lors, on 
on
lut que tout pro
essus sto
hastique dont la densité spe
trale est à bande

étroite peut être 
ara
térisé par une paire de signaux modulants XI(t), XQ(t), eux aussi à

bande étroite

5

, qui modulent respe
tivement un 
osinus et un sinus, quelle que soit l'allure de

X(t) !

5. Pour se 
onvain
re que XI(t), XQ(t) sont à bande étroite, il su�t de revenir à la manière dont on 
al
ule


es signaux, par exemple 
omme indiqué à la �gure 2.5.
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Chapitre 3

Cal
ul du bruit dans les systèmes de

télé
ommuni
ations

3.1 Introdu
tion

La présen
e du bruit joue un r�le essentiel dans la 
on
eption des systèmes de télé
ommuni
a-

tions. On distingue prin
ipalement deux 
lasses de sour
es de bruit :

� les sour
es externes au système : bruit atmosphérique, bruit solaire, bruit 
osmique, et
,

� les sour
es internes au système.

Ce ne sont pas tant les sour
es de bruit et leur nature physique qui nous intéressent mais la

manière dont le bruit a�e
te les signaux utiles.

3.2 Sour
es physiques de bruit

Le bruit peut avoir di�érentes origines. Il serait fastidieux de tenter de les dé
rire tous en détail.

I
i, nous nous 
ontenterons d'étudier le bruit thermique jusqu'à formuler une expression utile

pour les 
al
uls.

3.2.1 Bruit thermique

Du fait de l'agitation thermique des éle
trons, une résistan
e R portée à une température abso-

lue T (
'est-à-dire exprimée en degré Kelvin [K]) produit à ses bornes une for
e éle
tromotri
e

E(t) qui est une fon
tion aléatoire. Cet e�et, appelé e�et Johnson, fut entre autres étudié par

Nyquist.

L'e�ort de modélisation 
onsiste à

� dé
rire le phénomène aléatoire pour une résistan
e simple,

� analyser l'e�et du bruit dans des 
on�gurations éle
triques 
omplexes.

Formules de Nyquist

Une résistan
e R portée à une température absolue T [K] possède le s
héma équivalent de

Thévenin de la �gure 3.1, 
omprenant une résistan
e R dépourvue de bruit et une for
e
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éle
tromotri
e de bruit thermique E(t) qui est une fon
tion aléatoire, stationnaire, 
entrée,

gaussienne et qui est en première approximation un bruit blan
 de densité spe
trale de puissan
e

γE(f) = 2kBTR (3.1)

où kB = 1, 38× 10−23 [J/K] est la 
onstante de Boltzmann.

R

G = 1/RE(t) I(t) = E(t)
R

(a) (b)

Figure 3.1 � Équivalents de Thévenin (a) et de Norton (b) 
orrespondant au bruit ther-

mique dans une résistan
e.

L'équivalent de Norton fournit quant à lui

γI(f) = 2kBTG (3.2)

Dépendan
e fréquentielle

L'étude plus détaillée du phénomène de bruit thermique fait apparaître une dépendan
e fré-

quentielle par le biais d'un fa
teur p(f)

γE(f) = 2kBTRp(f) (3.3)

où

p(f) =
hf

kBT

1

ehf/kBT − 1
(3.4)

est le fa
teur de Plan
k [35℄. Dans la gamme de fréquen
es 
onsidérées, il est raisonnable de

supposer que la densité spe
trale de puissan
e est 
onstante.

Généralisation à un dip�le d'impédan
e 
omplexe

Considérons à présent le 
as d'un dip�le d'impédan
e interne 
omplexe Zs. La densité spe
trale
de puissan
e prend alors la forme

γE(f) = 2kBTRe (Zs(f)) (3.5)

Dès lors, la valeur quadratique moyenne de la for
e éle
tromotri
e de bruit thermique dans un

intervalle [−f − df, −f ] ∪ [f, f + df ] vaut

dE2 = 4kBTRsdf (3.6)
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3.3 Cara
térisation d'un dip�le

Pour 
ara
tériser le bruit d'un dip�le, 
onsidérons le s
héma tel qu'illustré à la �gure 3.2. Par

hypothèse, il s'agit d'un 
ir
uit lo
alisé

1

tel que

Zs (f) = Rs (f) + jXs (f) (3.7)

est l'impédan
e de sour
e et ZL(f) l'impédan
e de 
harge.

Zs

ZLE

Figure 3.2 � Une 
harge 
onne
tée à une sour
e.

De plus, en toute généralité, l'impédan
e est une fon
tion de la fréquen
e. Par la suite, 
e ne

sera plus indiqué expli
itement mais 
ette 
ondition n'en demeure pas moins vraie.

3.3.1 Puissan
e disponible

La puissan
e disponible aux bornes d'un dip�le est un élément essentiel de 
on
eption d'un


ir
uit. En e�et, on sait que le transfert maximum de puissan
e a lieu à l'adaptation 
onjuguée

de l'impédan
e de sour
e. C'est bien évidemment sous 
e régime que l'on sera souvent amené

à travailler.

Cas des signaux sinusoïdaux

Considérons le 
as de signaux sinusoïdaux. La puissan
e de sour
e fournie par le dip�le Psf
vaut

Psf =
1

T

∫ T

0

v(t)i(t)dt =
1

2
Re
(
V̂ Î∗

)
(3.8)

Dans une 
harge ZL

V̂ =
ÊZL

Zs + ZL
(3.9)

et

Î =
Ê

Zs + ZL
(3.10)

On a don
 une puissan
e

Psf =
Ê2Re (ZL)

2 ‖Zs + ZL‖2
(3.11)

1. On pourrait néanmoins étendre sans peine le développement à des lignes de transmission.
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On sait que la puissan
e fournie par le dip�le est maximale à l'adaptation 
onjuguée. Cette

puissan
e, notée Psd, est appelée puissan
e disponible du dip�le ; elle vaut

Psd =
Ê2

8Re (Zs)
(3.12)

La puissan
e disponible dépend de la valeur de 
rête de la for
e éle
tromotri
e et de la partie

réelle du dip�le. C'est don
 un invariant pour la famille des impédan
es dont la partie résistive

est identique.

Cas des pro
essus sto
hastiques

Dans le 
as de pro
essus sto
hastiques, les relations restent valables à 
ondition de les formuler

entre densités spe
trales de puissan
e. Examinons la question pour un bruit aléatoire quel
onque

Pbf = lim
T→+∞

1

T

∫ T

0

V (t)I(t)dt (3.13)

En 
onsidérant le 
adre usuel de signaux stationnaires au sens large, il est possible d'établir une

fon
tion qui lie la densité spe
trale de la for
e éle
tromotri
e à la densité spe
trale de puissan
e

du signal observé dans la 
harge. En e�et, la relation 3.12 exprime un lien entre des puissan
es.

Dans 
ette expression, on peut voir le fa
teur

1
4Re(Zs)


omme le gain en puissan
e entre une

entrée et la sortie, le gain en puissan
e étant le 
arré de la transmittan
e. Par appli
ation du

théorème de Wiener-Kint
hine,

γbd(f) =
γE(f)

4Re (Zs)
(3.14)

Remarquons que 
ette formulation est aussi bien valable pour les signaux utiles délivrés par

la sour
e que pour le bruit parasite introduit par 
ette même sour
e. Au dénominateur, on

retrouve un fa
teur 4 et non 8 
omme dans l'expression 3.12. Cela s'explique simplement par

le fait que la dé�nition de la puissan
e disponible Psd s'appuie sur l'expression de la puissan
e

fournie Psf , qui elle fait intervenir les valeurs de 
rête et don
 un fa
teur

1
2
supplémentaire.

Exemple. Dans le 
as parti
ulier du bruit thermique

γbd(f) =
γE(f)

4Re (Zs)
=

2kBTRe (Zs)

4Re (Zs)
=
kBT

2
(3.15)

La densité spe
trale de bruit disponible dépend don
 de la température mais pas de la fréquen
e ;


'est don
 un bruit blan
 de densité spe
trale uniforme

kBT
2
.

Résumé

Le tableau 3.1 reprend les prin
ipaux résultats énon
és dans 
ette se
tion.

3.3.2 Température de bruit d'un dip�le linéaire

La relation 3.15 est 
ommode à bien des égards ; en e�et, la densité spe
trale est uniforme et

exprimée 
omme le produit de 
onstantes par la température absolue. Cette relation a don
 été

généralisée pour traiter le bruit en général.
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Charge quel
onque Adaptation 
onjuguée

Signaux sinusoïdaux Psf =
1
2
Re
(
V̂ Î∗

)
= Ê2Re(ZL)

2‖Zs+ZL‖2
Psd =

Ê2

8Re(Zs)

Signaux sto
hastiques Pbf = limT→+∞
1
T

∫ T
0
V (t)I(t)dt γbd(f) =

γE(f)
4Re(Zs)

Bruit thermique γbd(f) =
kBT
2

Table 3.1 � Cara
térisation des puissan
es d'un dip�le.

Température de bruit pon
tuelle

Dé�nition 18 La température de bruit pon
tuelle, ou à une fréquen
e donnée, est la tempéra-

ture absolue à laquelle doit être portée une impédan
e pour produire, par bruit thermique, à 
ette

fréquen
e, la même densité spe
trale de la puissan
e de bruit disponible que le dip�le 
onsidéré.

On a don
, par dé�nition,

γbd(f) =
kBT (f)

2
(3.16)

de sorte que toutes les formules établies pour le bruit thermique sont valables à 
ondition

d'utiliser T (f). La dé�nition n'implique 
ependant pas que le bruit en étude soit d'origine

thermique.

On peut 
omprendre l'idée de l'introdu
tion de la température de bruit pon
tuelle en reve-

nant un instant à la nature sto
hastique des phénomènes. En e�et, 
onsidérons deux signaux

sto
hastiques de bruit N(t) et N ′(t). En prenant l'hypothèse réaliste de bruits statistiquement

indépendants, la densité spe
trale de la somme N(t) + N ′(t) est la somme des densités spe
-

trales : γN(f) + γN ′(f). Or, 
es densités spe
trales peuvent elles-mêmes s'é
rire sous la forme

1
2
kBT et

1
2
kBT

′
, 
e qui fournit la somme

1
2
kB(T + T ′) = 1

2
kBT

′′
. C'est là tout le prin
ipe du

re
ours à une température de bruit pon
tuelle du type de T ′′
.

Température de bruit

Si l'on a a�aire à un dip�le dont la densité spe
trale est 
on
entrée autour d'une position

fréquentielle 
entrale, on peut dé�nir la bande passante de bruit W . La valeur maximale de

T (f), notée T , est appelée température de bruit du dip�le et la puissan
e de bruit disponible

sur tout l'axe des fréquen
es est donné par

Pbd(f) = kBTW (3.17)

3.3.3 Rapport signal à bruit d'un dip�le générateur

Le signal aléatoire délivré par le dip�le se 
ompose du signal utile auquel se superpose un bruit.

Dans la mesure où les deux signaux s'additionnent et qu'ils sont statistiquement indépendants,

la densité spe
trale de la somme est la somme des densités spe
trales. Dans l'analyse, on peut

don
 traiter les signaux séparément.

Dé�nition 19 Le rapport signal à bruit (S/N) du dip�le est dé�ni 
omme le rapport de la

puissan
e disponible du signal à 
elle du bruit

S

N
=
Psd
Pbd

(3.18)
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Lorsque le signal est modulé, on utilise, par 
onvention, pour la dé�nition de la puissan
e du

signal :

� en modulation d'amplitude ou en modulation angulaire, la puissan
e de la porteuse non

modulée

2

,

� en modulation d'amplitude à porteuse supprimée, la puissan
e moyenne du signal, et

� en modulation d'impulsions, la puissan
e de 
rête.

3.4 Cara
térisation d'un quadrip�le

L'étude du bruit dans un quadrip�le est 
omplexe en raison de la diversité des fon
tions de

transfert qu'il permet de réaliser. Pour la simpli
ité, nous nous limitons au 
as du quadrip�le

linéaire tel que représenté à la �gure 3.3.

1

1 2

2

quadrip�le

linéaire

sortie

ZS

E

V

entrée

Figure 3.3 � S
héma d'un quadrip�le.

Ce quadrip�le peut être un ampli�
ateur ou un atténuateur. Il peut être purement résistif ou

non.

3.4.1 Notion de gain

Par dé�nition, le gain d'un quadrip�le est le rapport de la densité spe
trale de sortie à la densité

spe
trale d'entrée ; il dépend de la fréquen
e 
onsidérée. Le 
as du mélangeur est atypique 
ar

toutes les 
omposantes ne travaillent pas à la même fréquen
e. Aussi faudrait-il dé�nir plusieurs

types de gain. Dans la suite, le 
as du mélangeur sera éludé.

3.4.2 Fa
teur de bruit d'un quadrip�le

Introdu
tion

Pour dé
rire 
onvenablement un quadrip�le en sortie, il faut impérativement tenir 
ompte de

l'entrée. Ainsi, si l'entrée est un 
ir
uit ouvert ou si elle est 
ourt-
ir
uitée, la sortie ne sera

généralement pas la même.

2. La puissan
e de la porteuse est souvent notée C. Dès lors, le rapport signal à bruit est plut�t un rapport

porteuse à bruit ; on le note

C
N
.
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Lors de la 
ara
térisation du bruit du quadrip�le, 
'est le bruit interne, produit par le quadrip�le,

qui nous intéresse. Cette 
ara
térisation né
essite néanmoins que l'on pré
ise le type de 
ir
uit

pla
é à l'entrée. Alors, plut�t que de 
onsidérer un 
ir
uit ouvert ou un 
ourt-
ir
uit, on préfère

prendre une sour
e de référen
e pro
he de la réalité, à savoir une sour
e de bruit thermique de

température ambiante de référen
e. Ce 
hoix 
onduit à la dé�nition du fa
teur de bruit. Nous

verrons ensuite 
omment traiter une sour
e di�érente de la sour
e de référen
e.

Dé�nition 20 [Fa
teur de bruit℄ L'impédan
e interne du quadrip�le générateur étant don-

née, le fa
teur de bruit du quadrip�le à la fréquen
e d'entrée f , noté F0(f), est le rapport de (1)

la densité spe
trale de bruit disponible à la sortie du quadrip�le, à la fréquen
e 
orrespondante,

lorsque la température de bruit du dip�le générateur est T0 = 290 [K] à (2) la partie de 
ette

densité spe
trale due au bruit du dip�le générateur à la fréquen
e f .

Dans 
ette dé�nition, on peut rempla
er le terme �disponible� par �fournie par�.

En raison de l'indépendan
e statistique des bruits, la densité spe
trale de bruit disponible,

à une 
ertaine fréquen
e, à la sortie du quadrip�le est la somme de la densité spe
trale de

bruit disponible du générateur multipliée par le gain, à 
ette même fréquen
e, et des densités

spe
trales de bruit propres au quadrip�le. Considérons pour l'étude analytique le dessin de la

�gure 3.4.

1

1 2

2

linéaire

Rs

Rin = Rs

γbd1(f) =
1
2
kBT0

γbd2(f) = G(f)γbd1(f) + γbdq(f)

Quadrip�le

4kBTRsW

Figure 3.4 � S
héma d'un quadrip�le bruité.

Si l'on 
onsidère un dip�le générateur porté à la température T0 en entrée, on peut é
rire la

densité spe
trale disponible à la sortie sous la forme

γbd2(f) = γbd1(f) |T=T0 G(f) + γbdq(f) =
1

2
kBT0G(f) + γbdq(f) (3.19)

où G(f) représente le gain en puissan
e à la fréquen
e f . Dès lors,

F0(f) =
γbd2(f)

γbd1(f) |T=T0 G(f)
= 1 +

γbdq(f)
1
2
kBT0G(f)

(3.20)

Le fa
teur de bruit est évidemment supérieur ou égal à l'unité. Il fait l'objet de mesure et


ara
térise le quadrip�le.
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Interprétation de la notion de fa
teur de bruit

Soient γ
in

(f) et γ
out

(f) les densités spe
trales du signal utile respe
tivement à l'entrée et à la

sortie du quadrip�le. Le rapport du signal à bruit à l'entrée vaut don


(
S

N

)

in

=
γ
in

(f)

γbd1(f)
(3.21)

Pareillement, à la sortie du quadrip�le,

(
S

N

)

out

=
γ
out

(f)

γbd2(f)
(3.22)

Dès lors, (
S
N

)
in(

S
N

)
out

=
γ
in

(f)

γbd1(f)

γbd2(f)

γ
out

(f)
(3.23)

Mais, 
omme le signal est ampli�é par un gain G(f), 
'est-à-dire que γ
out

(f) = G(f)γ
in

(f) ,

e rapport devient (

S
N

)
in(

S
N

)
out

=
γbd2(f)

γbd1(f)G(f)
= F0(f) (3.24)

En d'autres termes, le fa
teur de bruit n'est jamais que le quotient du rapport signal à bruit

en entrée par le rapport signal à bruit en sortie. Il représente don
 la dégradation du rapport

signal à bruit, après passage dans un quadrip�le.

Cir
uits équivalents

À partir du fa
teur de bruit, on peut aussi 
al
uler la puissan
e de bruit disponible en sortie

γbd2(f) = γbd1(f) |T=T0 G(f)F0(f) (3.25)

Cette formulation permet d'exprimer le bruit inje
té par le quadrip�le par un bruit équivalent

qui serait pla
é à l'entrée. Le dessin de la �gure 3.5 montre les deux 
ir
uits équivalents.

Fa
teur de bruit moyen

Le fa
teur de bruit traduit la dégradation du rapport signal à bruit en sortie du quadrip�le.

Comme il dépend de la fréquen
e, on lui préfère parfois le fa
teur de bruit moyen.

Dé�nition 21 Le fa
teur de bruit moyen est le rapport de (1) la puissan
e de bruit disponible

à la sortie du quadrip�le à (2) la partie de 
ette puissan
e due au dip�le générateur supposé à

la température de bruit T0 = 290 [K].

Par dé�nition du fa
teur de bruit pon
tuel, la puissan
e de bruit disponible à la sortie du

quadrip�le possède une densité spe
trale

γbd2(f) =
1

2
kBT0G(f)F0(f) (3.26)

on a alors l'expression du fa
teur de bruit moyen

F0m =

∫ +∞
−∞

1
2
kBT0G(f)F0(f)df∫ +∞

−∞
1
2
kBT0G(f)df

=

∫ +∞
−∞ G(f)F0(f)df∫ +∞

−∞ G(f)df
(3.27)
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G

G

γbdq(f)

γbd2(f) = G(f)γbd1(f) + γbdq(f)

γbd1(f)

γbd1(f)

(F0(f)− 1)γbd1(f)

γbd2(f) = G(f)F0(f)γbd1(f)

Figure 3.5 � Un quadrip�le bruité et son s
héma équivalent.

Fa
teur de mérite

Il s'agit d'une grandeur qui n'est pas normalisée, 
ontrairement au fa
teur de bruit.

Si la température de bruit du dip�le était Ts 6= T0, on pourrait dé�nir un fa
teur de bruit F (f),
en reprenant point par point le raisonnement pré
édent. En égalant la densité spe
trale de bruit

propre au quadrip�le

γbdq(f) = (F0(f)− 1)
1

2
kBT0G(f) (3.28)

= (F (f)− 1)
1

2
kBTsG(f) (3.29)

Comme le gain n'est a priori pas fon
tion de la température, pour toute fréquen
e f ,

(F − 1)Ts = (F0 − 1)T0 (3.30)

d'où

F = 1 +
T0
Ts

(F0 − 1) (3.31)

et une relation identique entre F0m et Fm. F , appelé fa
teur de mérite, exprime la dégradation

du rapport signal à bruit lorsque la température du dip�le générateur est Ts.

3.4.3 Température de bruit e�e
tive du quadrip�le

Pour des quadrip�les à faible bruit, le fa
teur de bruit est pro
he de 1. Il est don
 malaisé

de 
omparer des quadrip�les à faible bruit. On utilisera alors plut�t la notion de température

e�e
tive issue du développement suivant

γbd2(f) =
1

2
kBT0G(f) + γbdq(f) (3.32)

=
1

2
kB[T0 + (F0 − 1)T0]G(f) (3.33)
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et la densité spe
trale de la puissan
e de bruit disponible à la sortie du quadrip�le est équivalente

à 
elle que l'on aurait si, le quadrip�le n'étant pas bruyant, la température de bruit du dip�le

était augmentée de

Te = (F0 − 1)T0 (3.34)

Cette quantité est appelée température de bruit e�e
tive du quadrip�le à la fréquen
e 
onsidé-

rée. On dé�nit de même la température e�e
tive moyenne

Tem = (F0m − 1)T0 (3.35)

3.4.4 Lien entre fa
teur de bruit et température e�e
tive

L'équation 3.34 fournit une relation immédiate entre le fa
teur de bruit et la température

e�e
tive. Cette relation vaut

F0 =
T0 + Te
T0

= 1 +
Te
T0

(3.36)

3.4.5 Cas parti
ulier : quadrip�le atténuateur résistif

Considérons un 
ir
uit résistif atténuateur, 
ara
térisé par un fa
teur d'atténuation L entre les

puissan
es disponibles d'entrée et de sortie. Ce fa
teur d'atténuation dé�nit une sorte de gain

en puissan
e inverse G = 1/L.

Imaginons un instant que l'on porte le quadrip�le atténuateur résistif à la température T0.
Comme l'atténuateur est purement résistif, la puissan
e de bruit au droit de la borne de sortie

vaut don
, expérimentalement, à adaptation 
onjuguée en sortie,

γbd2(f) =
1

2
kBT0 (3.37)

Notons qu'on a la même puissan
e de bruit à l'entrée (si l'on réalise une adaptation en entrée

également).

Pour obtenir le fa
teur de bruit, on exprime la puissan
e de bruit disponible en présupposant

une température d'entrée normalisée à T0. Si on 
ara
térise l'atténuateur par sa température

e�e
tive Te et en 
ombinant les expressions 3.33 et 3.34,

γbd2(f) =
1

2
kB(T0 + Te)

1

L
(3.38)

En égalant les deux dernières expressions, on obtient

Te = (L− 1)T0 (3.39)

Dès lors,

F0 = 1 +
(L− 1)T0

T0
(3.40)

soit en
ore

F0 = 1 +
(L− 1)T0

T0
= L (3.41)

pour un atténuateur à température ambiante T0. Autrement dit, la fa
teur de mérite est égal

au fa
teur d'atténuation.
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Remarquons qu'il n'est pas anormal d'avoir un fa
teur de bruit qui ne fasse pas intervenir la

température physique du quadrip�le. Le fa
teur de bruit représente la dégradation du rapport

signal à bruit au passage d'un quadrip�le ; 
e n'est pas l'expression du seul bruit interne du

quadrip�le mais bien de la somme du bruit normalisé après passage dans le quadrip�le et du

bruit intrinsèque de l'atténuateur.

3.5 Cas
ade de quadrip�les

Pour analyser le bruit dans une 
as
ade de quadrip�les, on fait l'hypothèse d'une adaptation

entre les quadrip�les et on utilise une même température de référen
e (
hoisie i
i égale à T0) pour
la dé�nition des fa
teurs de bruit �autrement dit, une référen
e de bruit identique à l'entrée.

L'utilisation des s
hémas équivalents aboutit à la représentation graphique des quadrip�les en


as
ade de la �gure 3.6, où l'on a simpli�é la notation en ignorant la dépendan
e fréquentielle

des fa
teurs de bruit et des gains. De plus, on 
onsidère que γbd1(f) |T=T0 est la référen
e de

γbd1(f)

(F01 − 1)γbd1(f)
(F02 − 1)γbd1(f)

G1F01γbd1(f)
G2G1

F02F01

Figure 3.6 � Mise en 
as
ade de quadrip�les.

bruit 
ommune.

En sortie du premier quadrip�le,

γbd(f) = γbd1(f) |T=T0 G1F01 (3.42)

Ce bruit passe à travers le se
ond quadrip�le. À la sortie de 
e dernier, on a une densité spe
trale

de bruit qui est la somme du bruit d'entrée multiplié par le gain et le bruit propre

γbd(f) = γbd1(f) |T=T0 G1G2F01 + γbd1(f) |T=T0 G2(F02 − 1) (3.43)

Dès lors

F0 =
G1G2F01 +G2(F02 − 1)

G1G2

= F01 +
F02 − 1

G1

(3.44)

Plus généralement, pour un quadrip�le à n étages,

F0 = F01 +
F02 − 1

G1
+
F03 − 1

G1G2
+ · · · = F01 +

n∑

i=2

F0i − 1∏i−1
j=1Gj

(3.45)

De même,

Te = Te1 +
Te2
G1

+
Te3
G1G2

+ · · · = Te1 +
n∑

i=2

Tei∏i−1
j=1Gj

(3.46)

On voit don
 qu'il est préférable de pla
er l'ampli�
ateur de gain important et de fa
teur de

bruit faible en tête de 
haîne.
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Chapitre 4

Modulations numériques

4.1 Introdu
tion

À l'instar de la modulation analogique, la modulation numérique est une opération qui trans-

pose le spe
tre d'un signal numérique pour l'amener autour d'une fréquen
e porteuse.

Il existe de nombreux 
ritères guidant le 
hoix d'un type de modulation. Il va de soi que

l'importan
e relative d'un 
ritère dépend de l'appli
ation envisagée.

Les 
ritères de 
omparaison sont 
lassés en trois 
atégories prin
ipales (d'après [2℄)

1. la résistan
e aux distorsions et aux interféren
es ; 
ette 
lasse 
omporte les 
ritères de

(a) la résistan
e au bruit en terme de probabilité d'erreur, 
elle-
i étant généralement

une fon
tion du rapport énergie à bruit Eb/N0,

(b) la sensibilité aux interféren
es dues à des multitrajets,

(
) la sensibilité aux imperfe
tions des �ltres qui produit de l'interféren
e entre les sym-

boles numériques,

(d) la sensibilité aux non-linéarités,

2. l'o

upation spe
trale 
ara
térisée par

(a) l'e�
a
ité spe
trale exprimée en (bit/se
onde) par Hertz [b/s/Hz], qui représente
le débit binaire que l'on peut transmettre dans un 
anal large de 1 [Hz] pour un type

de modulation,

(b) le 
omportement asymptotique de la densité spe
trale de puissan
e, 
'est-à-dire la

rapidité de dé
roissan
e de la 
ourbe de densité spe
trale de puissan
e en fon
tion

de la fréquen
e,

3. la simpli
ité d'implémentation.

Dans un premier temps, nous aborderons les modulations numériques au moyen d'un forma-

lisme général. Nous traiterons ensuite quelques exemples 
ommuns de modulations numériques

linéaires 
omme la modulation de phase à deux états BPSK, la modulation de phase en quadra-

ture QPSK ou la modulation MSK.
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4.2 Dé�nition des modulations numériques

4.2.1 Formulation générale

Soit m (t) un signal en bande de base préalablement mis en forme ; il s'agit par exemple d'un

signal NRZ. Un modulateur numérique transforme le signal modulant m(t) en fournissant le

signal modulé s(t) suivant
s(t) = Re

(
ψ [m(t)] ej(2πfct+ϕc)

)
(4.1)

où fc est la fréquen
e porteuse du signal modulé et ϕc une phase 
onstante. ψ [m(t)] est une
fon
tion du signal m(t) et 
onstitue l'enveloppe 
omplexe es(t) du signal modulé. Étant donnée

la forme de l'équation (4.1), le signal s(t) est réel et passe-bande autour de la fréquen
e fc.

4.2.2 Typologie des modulations

La fon
tion 
omplexe ψ(.) = ψI(.) + j ψQ(.) dé�nit le type de modulation. On distingue géné-

ralement deux types de modulations :

� les modulations linéaires pour lesquelles ψ [m(t)] est une fon
tion linéaire de m(t).
� les modulations angulaires pour lesquelles ψ [m(t)] a la forme

ψ [m(t)] = ejϕ[m(t)]
(4.2)

où ϕ [m(t)] est une fon
tion linéaire de m(t).
Le signal modulé peut également s'exprimer par les relations

s(t) = ψI [m(t)] cos (2πfct + ϕc)− ψQ [m(t)] sin (2πfct + ϕc) (4.3)

qui met en éviden
e la 
omposante en phase ψI [m(t)] et en quadrature ψQ [m(t)] du signal

modulé, et

s(t) = ‖ψ [m(t)]‖ cos (2πfct + ϕc + arg ψ [m(t)]) (4.4)

qui, 
ette fois, met en éviden
e l'enveloppe et la phase du signal modulé.

Par la suite, nous nous 
on
entrerons essentiellement sur les modulations numériques linéaires

qui s'expriment par

s(t) = Re

(
ej(2πfct+ϕc)

+∞∑

k=−∞
dk(t) e

j(θk−2πfckT )

)
(4.5)

où les signaux dk(t) 
ontiennent l'information à transmettre et θk est une phase 
onstante. Deux
types de modulation linéaire seront détaillées :

� les modulations �
lassiques�, pour lesquelles θk = 2πfckT , et
� les modulations à dé
alage (ou o�set), pour lesquelles θk = 2πfckT + k π

2
.

4.3 Modulations linéaires �
lassiques�

4.3.1 Des
ription

Les modulations linéaires 
lassiques sont telles que θk = 2πfckT . Dès lors, le signal modulé

prend la forme

s(t) = Re
(
es(t) e

j(2πfct+ϕc)
)

(4.6)
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où l'enveloppe 
omplexe s'exprime par

es(t) =

+∞∑

k=−∞
dk(t) (4.7)

=

+∞∑

k=−∞
Dk gk(t− kT ) (4.8)

Le signal gk(t) est un signal de mise en forme réel (non 
omplexe). Pour la simpli
ité, nous


hoisirons une onde de mise en forme unique gk(t) = g(t), ∀k. Dk est une variable aléatoire


omplexe qui 
ontient l'information numérique à transmettre. Elle prendra généralement la

forme Dk = Ak + jBk où Ak et Bk sont deux variables aléatoires réelles.

L'enveloppe 
omplexe s'exprime également par es(t) = sI(t) + jsQ(t) où les signaux réels sI(t)
et sQ(t) représentent respe
tivement la 
omposante en phase et en quadrature

sI(t) =
+∞∑

k=−∞
Ak g(t− kT ) (4.9)

sQ(t) =

+∞∑

k=−∞
Bk g(t− kT ) (4.10)


e qui 
onduit à l'expression suivante du signal modulé

s(t) = sI(t) cos (2πfct + ϕc)− sQ(t) sin (2πfct+ ϕc) (4.11)

soit en
ore, en remplaçant sI et sQ par leur valeur,

s(t) =

[
+∞∑

k=−∞
Ak g(t− kT )

]
cos (2πfct+ ϕc)−

[
+∞∑

k=−∞
Bk g(t− kT )

]
sin (2πfct+ ϕc) (4.12)

En toute généralité don
, le signal modulé peut être vu 
omme la modulation en quadrature

de deux signaux numériques en bande de base (de type NRZ).

4.3.2 Cal
ul de la densité spe
trale de puissan
e

Le 
al
ul de la densité spe
trale de puissan
e d'un pro
essus sto
hastique n'a véritablement de

sens que si 
e pro
essus est stationnaire au sens large. Pour rappel un pro
essus aléatoire X(t)
est stationnaire au sens large si les deux 
onditions suivantes sont remplies

� sa moyenne µX est indépendante du temps t,
� sa fon
tion d'auto
orrélation ΓXX (t, t− τ) = E {X(t)X∗(t− τ)} ne dépend que de la dif-

féren
e de temps τ entre les instants d'observation. La fon
tion d'auto
orrélation est alors

notée ΓXX (τ).

La densité spe
trale de puissan
e d'un pro
essus sto
hastique stationnaire au sens large s'obtient

en 
al
ulant la transformée de Fourier de sa fon
tion d'auto
orrélation.
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Densité spe
trale du puissan
e du signal modulé

Le signal numérique modulé est un pro
essus sto
hastique S(t) que l'on peut é
rire, en prenant

arbitrairement ϕc = 0, sous la forme

S(t) = Re
(
M(t) ej2πfct

)
(4.13)

où M(t) est un pro
essus sto
hastique 
omplexe. Remarquons tout d'abord que le pro
essus

sto
hastique S(t) n'est pas stationnaire au sens large vu 
ar sa moyenne dépend du temps. Il

est don
 né
essaire de stationnariser le signal. Pour 
ela, nous ajoutons une phase aléatoire Θ
uniformément répartie sur [0, 2π[

S(t) = Re
(
M(t) ej(2πfct+Θ)

)
(4.14)

Comme le pro
essus sto
hastique M(t) et la variable aléatoire Θ sont non-
orrélés, il est aisé

de montrer que la moyenne du pro
essus sto
hastique S(t) est nulle et don
 indépendante du
temps.

Fon
tion d'auto
orrélation. En toute généralité, l'expression de la fon
tion d'auto
orréla-

tion d'un signal sto
hastique 
omplexe Z(t) vaut E {Z(t)Z∗(t− τ)}. Comme le signal modulé

est réel, sa fon
tion d'auto
orrélation devient

ΓSS (t, t− τ) = E {S(t)S(t− τ)} (4.15)

Dès lors, en prenant la forme alternative suivante pour S(t)

S(t) =
1

2

[
M(t) ej(2πfct+Θ) +M∗(t) e−j(2πfct+Θ)

]
(4.16)

et, en remplaçant S(t) par sa valeur, le 
al
ul des espéran
es fournit

1

ΓSS (t, t− τ) =
1

4
E
{
M(t)M∗(t− τ) ej2πfcτ +M∗(t)M(t− τ) e−j2πfcτ

}
(4.17)

=
1

4
E
{
2Re

(
M(t)M∗(t− τ) ej2πfcτ

)}
(4.18)

=
1

2
Re
(
E
{
M(t)M∗(t− τ) ej2πfcτ

})
(4.19)

=
1

2
Re
(
ΓMM (t, t− τ) ej2πfcτ

)
(4.20)

Densité spe
trale de puissan
e. Dès lors, il vient que, si l'enveloppe 
omplexe M(t)
est un pro
essus sto
hastique stationnaire au sens large, le signal modulé S(t) est également

stationnaire au sens large. Il est alors possible de 
al
uler sa densité spe
trale de puissan
e en

prenant la transformée de Fourier de sa fon
tion d'auto
orrélation. Étant donné que

ΓSS (τ) =
1

4

[
ΓMM (τ) ej2πfcτ + ΓMM (τ)∗ e−j2πfcτ

]
(4.21)

il vient �nalement

γS(f) =
γM (f − fc) + γ∗M (−f − fc)

4
(4.22)

où γM(f) est la densité spe
trale de puissan
e de l'enveloppe 
omplexe M(t).

1. En fait, l'espéran
e des deux termes faisant intervenir la variable aléatoire Θ est nulle.
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Densité spe
trale de l'enveloppe 
omplexe

L'enveloppe 
omplexe du signal modulé est un pro
essus sto
hastique 
omplexe exprimé par

M(t) =
+∞∑

k=−∞
Dk g(t− kT ) (4.23)

La séquen
e de variables aléatoires Dk est 
ara
térisée par

� sa moyenne : µD = E {Dk}
� sa varian
e : σ2

D = E {(Dk − µD) (Dk − µD)
∗}

� sa fon
tion d'auto
orrélation : ΓAA (k, k − l) = E {DkDk−l
∗}

� sa fon
tion d'auto
ovarian
e : CAA(k, k − l) = E {(Dk − µD) (Dk−l − µD)
∗}

Après stationnarisation de la séquen
e de variables aléatoiresDk, on montre (voir 
ours de �Prin-


ipes des télé
ommuni
ations analogiques et numériques�) que la densité spe
trale de puissan
e

de M(t) est donnée par

γM(f) = ‖G(f)‖2 γD (fT )

T
(4.24)

où

γD (fT ) =
+∞∑

l=−∞
ΓDD (l) e−j2πlfT (4.25)

Si on ajoute l'hypothèse de variables aléatoires Dk non-
orrélées

2

(CDD(k, k − l) = 0), on
montre que

γM(f) =
‖G(f)‖2

T

[
σ2
D + ‖µD‖2

+∞∑

m=−∞

1

T
δ
(
f − m

T

)]
(4.26)

La densité spe
trale de puissan
e de l'enveloppe 
omplexe M(t) est don
 réelle et symétrique.

La densité spe
trale en 
on
lusion

En 
onséquen
e des relations 4.22 et 4.26, la densité spe
trale de puissan
e du signal modulé est

fournie par (remarquons que, dans le 
as présent, l'expression de γM(f) est purement réelle) :

γS(f) =
γM (f − fc) + γM (f + fc)

4
(4.27)

La seule 
onnaissan
e de l'enveloppe 
omplexe et de la fréquen
e porteuse permet don
 de

déterminer la densité spe
trale d'un signal numérique 
lassique.

4.3.3 Modulation d'amplitude numérique (Amplitude Shift Keying)

Des
ription

La modulation d'amplitude numérique (ASK) est une version simple des modulations numé-

riques linéaires 
lassiques. Elle est 
ara
térisée par une variable aléatoire Dk purement réelle

(Bk = 0). L'enveloppe 
omplexe d'un signal modulé ASK, qui vaut

es(t) =
+∞∑

k=−∞
Ak g(t− kT ) (4.28)

2. La non-
orrélation des symboles su

essifs garantit un transfert d'information maximum. Mais en 
ontre-

partie de l'absen
e de redondan
e, l'information est très sensible à des e�ets de bruit.
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est don
 purement réelle.

Il est 
ourant de 
hoisir 
omme signal de mise en forme une impulsion re
tangulaire de durée

T
g(t) = re
t[0,T ] (t) (4.29)

Pour arriver à interpréter le signal modulé, on détermine l'enveloppe a(t) et la phase ϕ(t) du
signal modulé. Ces deux signaux s'obtiennent aisément à partir de l'enveloppe 
omplexe par la

relation

es(t) = a(t) ejϕ(t) (4.30)

Étant donné que la variable aléatoire Ak peut s'é
rire Ak = ‖Ak‖ e(1−sgn(Ak))
π
2
j
, nous pouvons

déduire

a(t) =
+∞∑

k=−∞
‖Ak‖ re
t[0,T ] (t− kT ) (4.31)

ϕ(t) =
+∞∑

k=−∞

π

2
(1− sgn (Ak)) re
t[0,T ] (t− kT ) (4.32)

Il apparaît que l'enveloppe du signal varie par paliers, 
e qui est un in
onvénient si le signal passe

au travers d'un 
anal a�e
tant l'amplitude ou d'un système non-linéaire, 
omme par exemple

un ampli�
ateur travaillant à saturation. Quant à la phase, elle marque des dis
ontinuités par

sauts de π. Ces sauts de phase sont également 
ritiques 
ar il né
essite des �ltres de ré
eption

à large bande passante sous peine de détériorer le signal modulé.

Cas parti
ulier : modulation d'amplitude numérique à deux états (ASK-2)

Dans le 
as de la modulation ASK-2, la variable aléatoire Ak peut prendre deux valeurs : +A
ou −A. Pour 
ette modulation, on voit que l'enveloppe du signal est 
onstante. Par 
ontre, la

phase subit toujours des sauts de π radians toutes les T se
ondes.

Il est 
ourant de représenter une modulation par un diagramme de 
onstellations ou diagramme

des états de phase, qui n'est rien d'autre que le plan 
omplexe de la variable aléatoire 
omplexe

Dk, dans lequel on représente toutes les valeurs que peut prendre Dk. On attribue le signal

g(t) cos (2πfct+ ϕc), 
orrespondant à Ak, à l'axe réel pour faire référen
e à la 
omposante en

phase et −g(t) sin (2πfct + ϕc), 
orrespondant à Bk, à l'axe imaginaire pour faire référen
e à la


omposante en quadrature.

La présen
e de g(t) signi�e que le diagramme de 
onstellations est indépendant du signal de

mise en forme. La �gure 4.1 montre le diagramme de 
onstellations pour la modulation ASK-2.

Densité spe
trale de puissan
e de l'ASK-2

Déterminons à présent la densité spe
trale de puissan
e du signal modulé ASK-2. Commençons

par déterminer la densité spe
trale de puissan
e de l'enveloppe 
omplexe. Nous ferons l'hypo-

thèse que les deux amplitudes ±A sont équiprobables. La moyenne µA de la variable aléatoire

Ak est don
 nulle. Sa varian
e est donnée par σ2
A = E {A2

k} = A2
. Le signal de mise en forme

étant la fon
tion re
t[0,T ] (t), sa transformée de Fourier vaut

G(f) = e−j2πf
T
2 T sinc(fT ) (4.33)
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(A, 0)(−A, 0)

−g(t) sin (2πfct+ ϕc)

g(t) cos (2πfct+ ϕc)

Figure 4.1 � Diagramme des états de phase de la modulation ASK-2 ou BPSK.

Il en résulte une densité spe
trale de puissan
e pour l'enveloppe 
omplexe donnée par

γes(f) = A2T sinc2 (fT ) (4.34)

et �nalement une densité spe
trale de puissan
e du signal modulé valant

γs(f) =
A2T

4

{
sinc2 [(f − fc) T ] + sinc2 [(f + fc)T ]

}
(4.35)

Comme la variable aléatoire Ak ne peut prendre que deux valeurs dans le 
as de la modulation

ASK-2, le signal modulé ne transmet qu'un seul bit d'information pendant la durée T . Il vient
don
 que la densité spe
trale de puissan
e d'un signal ASK-2 est donnée par la relation 4.35

pour T = Tb où Rb = 1/Tb est le débit binaire, en
ore appelé fréquen
e bit, exprimé en [b/s].

4.3.4 Modulation de phase numérique (Phase Shift Keying)

Des
ription

Bien que la modulation PSK soit une modulation de phase, nous allons montrer que 
e type de

modulation fait partie intégrante des modulations linéaires 
lassiques. Typiquement, un signal

modulé PSK a la forme

s(t) = A

+∞∑

k=−∞
re
t[0,T ] (t− kT ) cos (2πfct+ ϕc + ψk) (4.36)

où ψk est une variable aléatoire 
onstante sur l'intervalle de temps [kT, (k + 1)T [, pouvant
prendre N valeurs possibles D

ψk ∈
{
ψ

∣∣∣∣ψ = ϕ0 + i
2π

N
, i = 0, ..., N − 1

}
(4.37)

Le signal modulé a don
 une enveloppe 
onstante et subit un saut de phase toutes les T se
ondes.
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Cher
hons à présent à faire le lien ave
 les modulations linéaires 
lassiques. Pour 
ela, nous

réé
rivons s(t) sous la forme

s(t) = A

+∞∑

k=−∞
re
t[0,T ] (t− kT ) [cos (2πfct+ ϕc) cosψk − sin (2πfct + ϕc) sinψk]

=

[
+∞∑

k=−∞
A cosψk re
t[0,T ] (t− kT )

]
cos (2πfct + ϕc) (4.38)

−
[

+∞∑

k=−∞
A sinψk re
t[0,T ] (t− kT )

]
sin (2πfct+ ϕc) (4.39)

L'enveloppe 
omplexe du signal s'en déduit don


es(t) = sI(t) + j sQ(t) (4.40)

= A

+∞∑

k=−∞
re
t[0,T ] (t− kT ) (cosψk + j sinψk) (4.41)

Nous retrouvons don
 bien l'expression générale de l'enveloppe 
omplexe d'un signal numérique

linéaire 
lassique pour lequel

Dk = Aejψk
(4.42)

g(t) = re
t[0,T ] (t) (4.43)

Il est alors aisé de déterminer l'enveloppe et la phase du signal modulé :

a(t) = A
+∞∑

k=−∞
re
t[0,T ] (t− kT ) (4.44)

ϕ(t) =
+∞∑

k=−∞
ψk re
t[0,T ] (t− kT ) (4.45)

Nous retrouvons bien évidemment que l'enveloppe du signal modulé est 
onstante et que la

phase varie par paliers de manière dis
ontinue.

Cas parti
ulier : modulation PSK-2 ou BPSK

La modulation BPSK est une modulation à 2 états 
orrespondant à ψk ∈ {0, π}. La variable

aléatoireDk peut don
 prendre les valeurs {Aej0, A ejπ}, 
e qui 
orrespond à {(A, 0) , (−A, 0)}.
La modulation BPSK 
orrespond ainsi exa
tement à la modulation ASK-2. Son plan de 
onstel-

lations est don
 également 
elui de la �gure 4.1.

Densité spe
trale de puissan
e. Les modulations ASK-2 et BPSK étant identiques, elles

ont même densité spe
trale de puissan
e (T = Tb). Elle est exprimée par

γs(f) =
A2Tb
4

{
sinc2 [(f − fc)Tb] + sinc2 [(f + fc) Tb]

}
(4.46)
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4.3.5 Modulation en quadrature de phase (Quadrature Phase Shift

Keying)

Des
ription

La modulation en quadrature de phase (QPSK) 
orrespond à une modulation PSK-4,


'est don
 une modulation à 4 états (M = 4). La phase ψk peut prendre les valeurs

{−3π/4,−π/4,+π/4,+3π/4}. Autrement dit, la variable aléatoire Dk prend une des va-

leurs suivantes

3

Dk ∈
{
Ae−j

3π
4 , Ae−j

π
4 , Aej

π
4 , Aej

3π
4

}
(4.47)

Le diagramme de 
onstellations est représenté à la �gure 4.2.

(+ A√
2
,+ A√

2
)

(+ A√
2
,− A√

2
)

00

01

(− A√
2
,+ A√

2
)

(− A√
2
,− A√

2
)

11

10

−g(t) sin (2πfct + ϕc)

g(t) cos (2πfct+ ϕc)

Figure 4.2 � Diagramme de 
onstellations pour la modulation QPSK.

Considérons une sour
e binaire fournissant le train d'impulsions suivant

I(t) =

+∞∑

k=−∞
Ik δ(t− kTb) (4.48)

où Ik = +1 
orrespond à l'information binaire 1 et Ik = −1 
orrespond à l'information binaire

0. Le débit binaire est égal à Rb = 1/Tb. À partir de la séquen
e I(t), nous formons les deux

séquen
es

sI(t) =
A√
2

+∞∑

k=−∞
I2k g(t− kT ) =

+∞∑

k=−∞
Ak g(t− kT ) (4.49)

sQ(t) =
A√
2

+∞∑

k=−∞
I2k+1 g(t− kT ) =

+∞∑

k=−∞
Bk g(t− kT ) (4.50)

où T = 2Tb, g(t) est une impulsion de mise en forme de durée T , Ak = I2k
A√
2
et Bk = I2k+1

A√
2
.

Ces deux séquen
es 
orrespondent respe
tivement aux bits pairs et impairs de la séquen
e de

départ et 
onstituent les 
omposantes en phase sI(t) et en quadrature sQ(t) du signal modulé

3. On utilise parfois l'ensemble de 
es valeurs dé
alées de

π
4 , 
e qui 
onduit à l'ensemble des phases possibles

suivant :

{
−A, Ae−j π

2 , A, Aej
π

2

}
.
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QPSK. La �gure 4.3 illustre la formation de 
es séquen
es pour un signal de mise en forme égal

à

g(t) = re
t[0,T ] (t) = re
t[0,2Tb] (t) (4.51)

qui 
orrespond à la modulation QPSK 
lassique.

t

t

t

Tb

1 1

0

1 1

0 0

1

0

1 1

0 0

1

1 1 1

0 0 0 0

1 1 1 1 1

0 0

I(t)

sI(t)

sQ(t)

+1

−1

+ A√
2

− A√
2

T = 2Tb

+ A√
2

− A√
2

t
3π
4

−π
4

3π
4

3π
4

−π
4

3π
4

π
4

φ(t)

Figure 4.3 � Formation des 
omposantes en phase et en quadrature pour la modulation QPSK

(ave
 mise en forme par un signal re
tangulaire).

Nous allons à présent déterminer l'enveloppe et la phase instantanée pour une impulsion de

mise en forme re
tangulaire. L'enveloppe 
omplexe est donnée par

es(t) = sI(t) + j sQ(t) (4.52)

=
+∞∑

k=−∞
(Ak + j Bk) re
t[0,T ] (t− kT ) (4.53)

=
A√
2

+∞∑

k=−∞
(I2k + j I2k+1) re
t[0,T ] (t− kT ) (4.54)

Il vient alors

a(t) =
√
s2I(t) + s2Q(t) (4.55)

=
A√
2

+∞∑

k=−∞

√
I22k + I22k+1 re
t[0,T ] (t− kT ) (4.56)

= A

+∞∑

k=−∞
re
t[0,T ] (t− kT ) (4.57)
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et

ϕ(t) =

+∞∑

k=−∞
re
t[0,T ] (t− kT ) tan−1

(
I2k+1

I2k

)
(4.58)

Avant d'analyser 
es résultats, il est important de remarquer que nous avons fait sortir les

termes

∑
re
t[0,T ] (t− kT ) de la ra
ine 
arrée et de l'ar
tangente. Cela s'explique par le fait

qu'il faut voir a(t) et ϕ(t) 
omme des fon
tions temporelles. Or, 
es fon
tions temporelles sont


onstruites de manière à n'avoir, en 
haque moment, qu'un seul terme 
ontribuant de la somme

pour sI(t) et pour sQ(t). De plus, les termes 
ontribuants sont 
eux obtenus pour des valeurs de

k identiques. On peut don
 réaliser, à tout instant, une rédu
tion à deux termes et re
onstituer

la totalité du signal temporel en plaçant bout à bout toutes les 
omposantes temporelles.

Revenons à présent à l'interprétation des signaux. Nous voyons don
 que l'enveloppe du signal

modulé est 
onstante et égale à A. Le rapport I2k+1/I2k peut prendre les valeurs ±1, 
e qui


orrespondrait à 2 états seulement. Cependant, la fon
tion tan−1
est dé�nie à π radians près.

En fait, pour déterminer la phase, il faut se référer au plan de 
onstellations (�gure 4.2).

La phase varie don
 par paliers de manière dis
ontinue. La �gure 4.3 montre la valeur instanta-

née de ϕ(t) pour une séquen
e binaire donnée. On peut remarquer que la phase peut subir des

sauts de ±π
2
ou de ±π toutes les T se
ondes. Ces di�érentes transitions sont représentées en

pointillés sur la �gure 4.2. Lors des transitions±π, on voit que l'enveloppe instantanée du signal
peut s'annuler pendant le temps de la transition (passage par zéro dans le plan des 
onstel-

lations). En e�et, des transitions instantanées sont irréalisables physiquement. Si le signal est

�ltré, il peut perdre sa propriété d'enveloppe 
onstante, 
e qui est gênant lorsque qu'il passe

dans un système présentant des distorsions d'amplitude. En�n, des sauts brusques de phase im-

pliquent également une bande passante plus importante. La �gure 4.4 montre un signal modulé

QPSK pour une séquen
e binaire donnée.

Modulateur QPSK

La �gure 4.5 montre le modulateur QPSK. Les di�érents signaux apparaissant sur 
ette �gure

sont également présents à la �gure 4.4.

Démodulateur QPSK

Le signal modulé QPSK 
orrespond à la modulation en quadrature de deux signaux numé-

riques en bande de base. La première phase de la démodulation 
onsiste don
 à retrouver les


omposantes en phase et en quadrature du signal modulé. Les deux signaux numériques en

bande de base obtenus sont ensuite démodulés grâ
e au �ltre adapté (un pour 
haque signal)

et re
ombinés pour former la séquen
e binaire de départ. Le s
héma du démodulateur QPSK

est repris à la �gure 4.6.

Densité spe
trale de puissan
e

L'enveloppe 
omplexe du signal modulé est donnée par

es(t) =

+∞∑

k=−∞
Dk g(t− kT ) (4.59)
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Figure 4.4 � Illustration de la modulation QPSK : (a) séquen
e binaire I(t), (b) signal sI(t),
(
) signal sQ(t), (d) sI(t) cos (2πfct), (e) sQ(t) sin (2πfct) et (f) signal modulé s(t).

−π
2

cos (2πfc)t

sin (2πfc)t

sQ(t) sQ(t) sin (2πfct)

parallèle

sI(t) sI(t) cos (2πfct)

+

−
s(t)

série

I(t)

Figure 4.5 � Modulateur QPSK.
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−π
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ision

Filtre adapté et dé
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1
2
I(t)

cos (2πfc)t

s(t)

sin (2πfc)t

1
2
sQ(t)

1
2
sI(t)

Figure 4.6 � Démodulateur QPSK.

où le signal de mise en forme g(t) et la variable aléatoire Dk valent respe
tivement

g(t) = re
t[0,2Tb] (t) (4.60)

Dk =

(
± A√

2
,± A√

2

)
(4.61)

Nous faisons à nouveau l'hypothèse que les quatre valeurs possibles pour Dk sont équiprobables.

La moyenne µD est don
 nulle et la varian
e est égale à σ2
D = E

{
‖Dk‖2

}
= A2

. Il vient, après


al
ul de la transformée de Fourier du signal de mise en forme,

γes(f) = 2A2Tb sinc
2 (2fTb) (4.62)

La densité spe
trale de puissan
e d'un signal modulé en QPSK s'exprime �nalement par

γs(f) =
A2Tb
2

{
sinc2 [(f − fc) 2Tb] + sinc2 [(f + fc) 2Tb]

}
(4.63)

et est identique à 
elle de la modulation BPSK pour un débit binaire double.

4.4 Modulations linéaires à dé
alage (O�set)

4.4.1 Des
ription

Les modulations linéaires à dé
alage présentent la parti
ularité que la variable aléatoire Dk est

purement réelle (Dk = Ak) et que la phase θk de l'expression (4.5) est égale à 2πfckT + k π
2
.

L'expression de l'enveloppe 
omplexe du signal modulé se simpli�e don
 en

es(t) =

+∞∑

k=−∞
Ak g(t− kT ) ejk

π
2

(4.64)

Bien que la variable aléatoire Ak soit réelle, l'enveloppe 
omplexe es(t) est bel et bien un signal

à valeurs 
omplexes.
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Mettons-nous à présent dans le vas où T = Tb, la durée de l'impulsion de mise en forme g(t)
n'étant pas en
ore �xée. Le signal modulé prend la forme

s(t) =

+∞∑

k=−∞
Ak g(t− kTb) cos

(
2πfct+ ϕc + k

π

2

)
(4.65)

=

[
+∞∑

k=−∞
Ak g(t− kTb) cos

(
k
π

2

)]
cos (2πfct+ ϕc) (4.66)

−
[

+∞∑

k=−∞
Ak g(t− kTb) sin

(
k
π

2

)]
sin (2πfct+ ϕc) (4.67)

En tenant 
ompte du fait que cos (kπ/2) = 0 pour k impair et que sin (kπ/2) = 0 pour k pair,

les 
omposantes en phase et en quadrature peuvent s'exprimer par

sI(t) =

+∞∑

k=−∞
Ak g(t− kTb) cos

(
k
π

2

)
(4.68)

=

+∞∑

k=−∞
A2k (−1)k g (t− 2kTb) (4.69)

et

sQ(t) =
+∞∑

k=−∞
Ak g(t− kTb) sin

(
k
π

2

)
(4.70)

=
+∞∑

k=−∞
A2k+1 (−1)k g (t− (2k + 1)Tb) (4.71)

On voit que, par rapport aux modulations linéaires 
lassiques, les séquen
es sI(t) et sQ(t) sont
dé
alées entre elles de la durée d'un bit Tb, d'où le nom de modulation à dé
alage.

4.4.2 Cal
ul de la densité spe
trale de puissan
e

Dans le 
as des modulations linéaires à dé
alage, l'expression (4.64) de l'enveloppe 
omplexe

ne permet pas un 
al
ul dire
t de sa densité spe
trale de puissan
e, en raison de la présen
e

du fa
teur ejk
π
2
(en e�et, il faut que l'expression fasse intervenir une onde de mise en forme de

type φ(t − kT ) alors qu'elle vaut g(t− kT ) ejk
π
2
). L'idée 
onsiste à modi�er l'expression de la

mise en forme en ajoutant un terme e
−j2π t

4Tb
, de sorte à obtenir une onde de mise en forme qui

vaudra :

g(t− kT ) ejk
π
2 e

−j2π t
4Tb = g(t− kT ) e−j

π
2T

(t−kT )
(4.72)

A�n de 
ontrebalan
er l'ajout d'une phase dans l'expression du signal modulant, nous allons

introduire un terme de 
ompensation au niveau de la fréquen
e porteuse, pour aboutir à une

nouvelle fréquen
e porteuse f ′
c. Le signal modulé vaut pré
isément :

s(t) = Re
(
es(t) e

j(2πfct+ϕc)
)

(4.73)

= Re

(
es(t) e

−j2π t
4Tb e

j
(
2π

(
fc+

1
4Tb

)
t+ϕc

))
(4.74)

= Re
(
v(t) ej(2πf

′

ct+ϕc)
)

(4.75)
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où nous avons posé

v(t) = e
−j2π t

4Tb es(t) (4.76)

f ′
c = fc +

1

4Tb
(4.77)

Si nous 
onnaissons la densité spe
trale de puissan
e du signal 
omplexe v(t), il est possible de

al
uler la densité spe
trale de puissan
e du signal modulé par le biais de la formule

γs(f) =
γv (f − f ′

c) + γ∗v (−f − f ′
c)

4
=
γv

(
f − fc − 1

4Tb

)
+ γ∗v

(
−f − fc − 1

4Tb

)

4
(4.78)

que nous avons démontrée pré
édemment. Nous allons à présent montrer que v(t) peut se

mettre sous la forme (4.23) pour laquelle nous sommes à même de 
al
uler la densité spe
trale

de puissan
e. En fait,

v(t) =

+∞∑

k=−∞
Ak g(t− kTb) e

jk π
2 e

−j2π t
4Tb

(4.79)

=

+∞∑

k=−∞
Ak g(t− kTb) e

−j π
2Tb

(t−kTb)
(4.80)

=
+∞∑

k=−∞
Ak h(t− kTb) (4.81)

où nous avons posé

h(t) = g(t) e
−j πt

2Tb
(4.82)

Le signal h(t) 
orrespond à un nouveau signal de mise en forme dont la transformée de Fourier

se déduit du signal g(t)

H(f) = G
(
f +

1

4Tb

)
(4.83)

La densité spe
trale de puissan
e du signal v(t) s'obtient alors en adaptant la formule (4.26)

γv(f) =
‖H(f)‖2

Tb

[
σ2
A + µ2

A

+∞∑

m=−∞

1

Tb
δ

(
f − m

Tb

)]
(4.84)

Nous avons à présent à notre disposition tous les outils né
essaires au 
al
ul de la densité

spe
trale de puissan
e de signaux numériques linéaires à dé
alage.

4.4.3 Modulation en quadrature de phase à dé
alage (O�set Quadra-

ture Phase Shift Keying)

Des
ription

La modulation OQPSK est une version �à dé
alage� de la modulation QPSK. C'est don
 une

modulation PSK-4 et le diagramme de 
onstellations (�gure 4.2) reste d'appli
ation. La di�é-

ren
e essentielle réside dans la formation des 
omposantes en phase et en quadrature du signal

modulé.
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Considérons une sour
e binaire fournissant le train d'impulsions suivant

I(t) =
+∞∑

k=−∞
Ik δ(t− kTb) (4.85)

où Ik = +1 représente l'information binaire 1 et Ik = −1 
orrespond à l'information binaire 0.

Le débit binaire est égal à Rb = 1/Tb. À partir de la séquen
e I(t), les 
omposantes en phase

sI(t) et en quadrature sQ(t) sont formées de la manière suivante

sI(t) =
A√
2

+∞∑

k=−∞
I2k g (t− 2kTb) =

+∞∑

k=−∞
A2k (−1)k g (t− 2kTb) (4.86)

sQ(t) =
A√
2

+∞∑

k=−∞
I2k+1 g (t− (2k + 1)Tb) =

+∞∑

k=−∞
A2k+1 (−1)k g (t− (2k + 1)Tb)(4.87)

où g(t) est une impulsion de mise en forme de durée T = 2Tb, A2k = (−1)k I2k
A√
2
et A2k+1 =

(−1)k I2k+1
A√
2
, ∀k. Ces deux séquen
es 
orrespondent respe
tivement aux bits pairs et impairs

de la séquen
e de départ. La 
omposante en phase sI(t) est la même pour la modulation OQPSK

et la modulation QPSK. Par 
ontre, la 
omposante en quadrature SQ(t) est dé
alée de Tb par
rapport à la modulation QPSK. La �gure 4.7 illustre la formation de 
es séquen
es pour un

signal de mise en forme égal à

g(t) = re
t[0,T ] (t) = re
t[0,2Tb] (t) (4.88)

qui 
orrespond à modulation OQPSK 
lassique.

Il est maintenant nettement moins évident de 
al
uler l'enveloppe et la phase instantanée du

signal modulé, 
ela à 
ause du �
hevau
hement� entre les impulsions de sI(t) et sQ(t). En toute

généralité, nous pouvons é
rire

a(t) =
√
s2I(t) + s2Q(t) (4.89)

pour l'enveloppe instantanée et

ϕ(t) = arctan

[
sQ(t)

sI(t)

]
(4.90)

pour la phase instantanée. En observant la �gure 4.7, nous pouvons déduire que l'enveloppe

du signal modulé est 
onstante, sauf peut-être aux transitions des signaux sI(t) et sQ(t), 
'est-
à-dire toutes les Tb se
ondes. La phase, quant à elle, varie toujours par paliers ; pour s'en


onvain
re, il su�t à nouveau de se référer au plan de 
onstellations de la �gure 4.2. Deux

di�éren
es essentielles sont 
ependant à remarquer. Tout d'abord, la phase ne 
hange plus de

valeur toutes les T = 2Tb se
ondes 
omme dans la modulation QPSK mais bien toutes les Tb
se
ondes. De plus, il n'y a plus, à 
haque transition de la phase, qu'un saut de ±π

2
. Le fait de

dé
aler la séquen
e sI(t) a fait disparaître les transitions de ±π. En e�et, dans la modulation

QPSK, les transitions de ±π étaient dues aux transitions simultanées des signaux sI(t) et

sQ(t). Dans la modulation OQPSK, 
es deux signaux ne varient jamais en même temps. Les

transitions possibles sont représentées en pointillés sur la �gure 4.8. Celles-
i ne se faisant plus

qu'horizontalement ou verti
alement, l'enveloppe du signal modulé ne peut don
 plus s'annuler,


e qui est un gros avantage de la modulation OQPSK par rapport à la modulation QPSK.

La �gure 4.9 montre un signal modulé OQPSK pour une séquen
e binaire donnée.
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Figure 4.7 � Formation des 
omposantes en phase et en quadrature pour la modulation

OQPSK (ave
 une mise en forme par un signal re
tangulaire).
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Figure 4.8 � Diagramme de 
onstellations pour la modulation OQPSK.
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Figure 4.9 � Illustration de la modulation OQPSK : (a) séquen
e binaire I(t), (b) sI(t),
(
) sQ(t), (d) sI(t) cos (2πfct), (e) sQ(t) sin (2πfct) et (f) signal modulé s(t).

Modulateur et démodulateur OQPSK

Les 
ir
uits de modulation et de démodulation pour l'OQPSK sont tout à fait semblables à


eux utilisés pour le QPSK, mis à part un délai de Tb qu'il faut introduire dans la bran
he en

quadrature des 
ir
uits.

Densité spe
trale de puissan
e

L'enveloppe 
omplexe du signal modulé est donnée par

es(t) =
+∞∑

k=−∞
Ak g(t− kTb) e

jk π
2

(4.91)

où le signal de mise en forme g(t) et la variable aléatoire Ak valent respe
tivement

g(t) = re
t[0,2Tb] (t) (4.92)

Ak ∈
{
+
A√
2
,− A√

2

}
(4.93)

Nous faisons à nouveau l'hypothèse que les deux valeurs possibles pour Ak sont équiprobables.
La moyenne µA est don
 nulle et la varian
e est égale à σ2

A = E {A2
k} = A2

2
. Il vient après 
al
ul

de la transformée de Fourier du signal de mise en forme H(f) = G
(
f + 1

4Tb

)
,

γv(f) = 2A2Tb sinc
2

[(
f +

1

4Tb

)
2Tb

]
(4.94)

72



Prof. Mar
 Van Droogenbroe
k, tous droits réservés

Conformément à la relation (4.78), la densité spe
trale de puissan
e d'un signal modulé en

OQPSK s'exprime don
 �nalement par

γs(f) =
A2Tb
2

{
sinc2 [(f − fc) 2Tb] + sinc2 [(f + fc) 2Tb]

}
(4.95)

et est exa
tement identique à 
elle d'un signal modulé QPSK.

4.4.4 Modulation à saut de phase minimum (Minimum Shift Keying)

Bien que plus avantageuse que la modulation QPSK, la modulation OQPSK présente en
ore

un in
onvénient : des dis
ontinuités de phase qui entraînent une bande passante importante.

La modulation à saut de phase minimum (MSK) permet de supprimer 
es dis
ontinuités de

phase. Celle-
i présente les mêmes parti
ularités que la modulation OQPSK sauf que les sauts

de phase se font de manière 
ontinue pendant la durée d'un bit Tb de telle sorte que la phase

instantanée du signal modulé est une fon
tion 
ontinue du temps.

Des
ription

La 
ara
téristique qui di�éren
ie la modulation MSK de la modulation OQPSK est le signal de

mise en forme qui devient

g(t) = re
t[0,2Tb] (t) sin

(
πt

2Tb

)
(4.96)

Pour établir l'expression des 
omposantes de l'enveloppe 
omplexe, on reprend l'expression de

l'enveloppe d'une QPSK, à savoir,

es(t) =

+∞∑

k=−∞
Ak g(t− kTb) e

jk π
2

(4.97)

La relation 4.96 évaluée en t− kTb devient

g(t− kTb) = re
t[0,2Tb] (t− kTb) sin

(
π

2Tb
(t− kTb)

)
(4.98)

d'où l'expression de l'enveloppe 
omplexe de la MSK suivante :

es(t) =

+∞∑

k=−∞
Ak g(t− kTb) e

jk π
2 = Ak re
t[0,2Tb] (t− kTb) sin

(
π

2Tb
(t− kTb)

)
ejk

π
2

(4.99)

Pour passer à sI(t) et sQ(t), on prend respe
tivement les parties réelle et imaginaire de 
ette

enveloppe 
omplexe. Pour sI(t), on obtient

sI(t) =

+∞∑

k=−∞
Ak re
t[0,2Tb] (t− kTb) sin

(
πt

2Tb
− k

π

2

)
cos(k

π

2
) (4.100)

Comme sinA cosB = 1
2
sin(A− B) + 1

2
sin(A+B), 
ela équivaut à

sI(t) =

+∞∑

k=−∞
Ak re
t[0,2Tb] (t− kTb)

(
1

2
sin

(
πt

2Tb

)
+

1

2
sin

(
πt

2Tb
− kπ

))
(4.101)
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Si k est impair, les deux termes entre parenthèses sont opposés et ils se 
ompensent. Pour k
pair, les termes s'additionnent, si bien qu'au �nal, on a

sI(t) =
+∞∑

k=−∞
A2k re
t[0,2Tb] (t− 2kTb) sin

(
πt

2Tb

)
(4.102)

En�n, 
omme sin( πt
2Tb

) = cos(π
2
− πt

2Tb
) = cos( πt

2Tb
− π

2
), on a

sI(t) = cos

(
πt

2Tb
− π

2

) +∞∑

k=−∞
A2k re
t[0,2Tb] (t− 2kTb) (4.103)

Le signal sI(t) peut être vu 
omme un signal du type NRZ multiplié par une 
osinusoïde. Un

développement similaire donne pour la 
omposante en quadrature de phase

sQ(t) = sin

(
πt

2Tb
− π

2

) +∞∑

k=−∞
A2k+1 re
t[0,2Tb] (t− 2kTb) (4.104)

Ces deux expressions vont nous permettre de déterminer l'enveloppe instantanée et la variation

de phase instantanée du signal modulé. L'enveloppe est donnée par

a(t) =
√
s2I(t) + s2Q(t) (4.105)

=

√
A2 cos2

(
πt

2Tb
− π

2

)
+ A2 sin2

(
πt

2Tb
− π

2

)
(4.106)

= A (4.107)

L'enveloppe du signal modulé est don
 
onstante et égale à A. La phase instantanée peut

s'exprimer par

ϕ(t) = tan−1

[
sQ(t)

sI(t)

]
(4.108)

= tan−1

[
tan

(
πt

2Tb
− π

2

) ∑+∞
k=−∞A2k+1 re
t[0,2Tb] (t− (2k + 1)Tb)∑+∞

k=−∞A2k re
t[0,2Tb] (t− 2kTb)

]
(4.109)

Si maintenant, on observe l'évolution de la phase pendant un intervalle de temps Tb d'un bit,

la fra
tion dans l'argument de la fon
tion tan−1
vaut ±1 et la variation de la phase vaut

∆ϕ(t) = ± πt

2Tb
(4.110)

La phase varie don
 linéairement de

π
2
sur la durée de Tb se
ondes. Contrairement aux mo-

dulations vues jusqu'i
i, la modulation MSK présente des sauts de phase qui se réalisent en

�dou
eur�. Par exemple, pour passer de

π
4
à

3π
4
, la phase prend Tb se
ondes, tandis que l'en-

veloppe reste 
onstante au 
ours du temps. La �gure 4.10 montre en pointillés les transitions

possibles pour la modulation MSK.

On peut également représenter l'évolution de la phase par 
e que l'on appelle le treillis de phase.

Il représente toutes les variations possibles de ϕ(t). La �gure 4.11 montre le treillis de phase

pour la modulation MSK. La phase est maintenant une fon
tion 
ontinue du temps. On peut

espérer avoir une bande passante moins importante que pour la modulation QPSK ou OQPSK.
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Figure 4.10 � Diagramme de 
onstellation pour la modulation MSK.
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Figure 4.11 � Treillis de phase pour la modulation MSK.
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La �gure 4.12 montre un signal modulé MSK pour une séquen
e binaire donnée. En observant

le signal modulé, on peut également l'interpréter 
omme une modulation de fréquen
e. En e�et,

en é
rivant

s(t) = a(t) cos [2πfct+ ϕ(t)] (4.111)

et 
onsidérant une période Tb, nous obtenons

s(t) = A cos

(
2πfct±

πt

2Tb

)
(4.112)

= A cos

[
2π

(
fc ±

1

4Tb

)
t

]
(4.113)

qui représente bien une modulation de fréquen
e dont l'ex
ursion est égale à ∆f = 1
4Tb

.
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Figure 4.12 � Illustration de la modulation MSK : (a) séquen
e binaire I(t), (b) sI(t), (
) sQ(t),
(d) sI(t) cos (2πfct), (e) sQ(t) sin (2πfct) et (f) signal modulé s(t).

Densité spe
trale de puissan
e

L'enveloppe 
omplexe du signal modulé est à nouveau donnée par

es(t) =

+∞∑

k=−∞
Ak g(t− kTb) e

jk π
2

(4.114)

où le signal de mise en forme g(t) et la variable aléatoire Ak valent respe
tivement

g(t) = re
t[0,2Tb] (t) sin

(
πt

2Tb

)
(4.115)

Ak ∈ {+A,−A} (4.116)
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Nous faisons à nouveau l'hypothèse que les deux valeurs possibles pour Ak sont équiprobables.
La moyenne µA est don
 nulle et la varian
e est égale à σ2

A = E {A2
k} = A2

. Il vient après 
al
ul

de la transformée de Fourier du signal de mise en forme H(f) = G
(
f + 1

4Tb

)
,

γv(f) =
16A2Tb
π2





cos
[
2π
(
f + 1

4Tb

)
Tb

]

1− 16
(
f + 1

4Tb

)2
T 2
b





2

(4.117)

La densité spe
trale de puissan
e d'un signal modulé en MSK s'exprime don
 �nalement par

γs(f) =
4A2Tb
π





(
cos [2π (f − fc)Tb]

1− 16 (f − fc)
2 T 2

b

)2

+

(
cos [2π (f + fc) Tb]

1− 16 (f + fc)
2 T 2

b

)2


 (4.118)

Contrairement à la densité spe
trale de puissan
e de la modulation OQPSK qui dé
roît en

1/f 2
, la densité spe
trale de la modulation MSK dé
roît en 1/f 4

, 
e qui fournit don
 un gain

en bande passante. La �gure 4.13 permet de 
omparer les densités spe
trales de puissan
e des

modulation BPSK, OQPSK (≡ QPSK) et MSK pour Rb = 1/Tb = 1 [b/s]. Nous voyons que
la dé
roissan
e en 1/f 4

est a

ompagnée d'un élargissement du lobe prin
ipal par rapport à la

modulation OQPSK.
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f − fc

BPSK

MSK

OQPSK

Figure 4.13 � Comparaison des densités spe
trales de puissan
e.

La modulation utilisée pour la transmission GSM est une variante de la MSK ; il s'agit d'une

te
hnique appelée Gaussian Minimum Shift Keying (GMSK) pour laquelle l'onde de mise en

forme est une gaussienne.
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Chapitre 5

Modélisation du 
anal pour transmissions

numériques et interféren
e inter-symboles

Dans un 
anal de 
ommuni
ation, une sour
e importante d'erreurs est la présen
e de bruit

sur le 
anal de transmission ; 
ette question a déjà été largement abordée pré
édemment. Nous

allons à présent nous intéresser à une autre sour
e de distorsion, appelée interféren
e inter-

symboles qui apparaît, pour des 
ommuni
ations numériques, lorsque le 
anal de transmission

est dispersif (e�et de la bande passante �nie du 
anal).

Prenons le 
as d'une transmission par mise en forme NRZ. On sait que la densité spe
trale du

signal NRZ o

upe tout le spe
tre, malgré que la dé
roissan
e de la norme en fon
tion de la

fréquen
e soit signi�
ative. Or, il est rare qu'un système soit à bande passante in�nie ou que le


anal ait une transmission de 
anal idéal sur la largeur de bande 
onsidérée. En 
onséquen
e,

le signal NRZ subit des distorsions subséquentes au passage dans le 
anal. Ces distorsions se

traduisent inélu
tablement par un re
ouvrement entre symboles su

essifs.

Pour la fa
ilité des développements, nous nous limitons à une transmission binaire en bande de

base.

5.1 Dé�nition de l'interféren
e inter-symboles

Considérons un système de modulation d'impulsions PAM (Pulse Amplitude Modulation) en

bande de base dont le s
héma général est représenté à la �gure 5.1. L'information à transmettre

est la séquen
e binaire {bk} dont 
haque symbole (1 ou 0) est de durée Tb. Le modulateur va

mettre en forme la séquen
e {bk}, grâ
e à l'impulsion de mise en forme gE(t), et fournir le signal

s(t) =

+∞∑

k=−∞
Ak gE(t− kTb) (5.1)

où les amplitudes Ak (représentant l'information binaire transmise à l'instant t = kTb) sont

liées à la séquen
e {bk} par la relation

Ak =

{
+1 si bk = 1
−1 si bk = 0

(5.2)
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Filtre de mise en

forme gE(t)

Canal de
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gaussien w(t)
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Organe de

dé
ision

Filtre ré
epteur

gR(t)
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Ré
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en ti = iTb

Σ

seuil λ

1 si y(ti) > λ 0 si y(ti) < λ

Signal d'entrée binaire {bk}

{Ak}
Émetteur

É
hantillonnage

Figure 5.1 � S
héma général de la transmission en bande de base
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Le signal transmis au travers du 
anal est don
 s(t). Celui-
i va être modi�é par 
onvolution

ave
 la réponse impulsionnelle h(t) du 
anal de transmission. De plus, un bruit (supposé blan


et gaussien) vient s'ajouter au signal dans le 
anal. Le signal reçu, noté x(t), est ensuite �ltré
par un �ltre de ré
eption, de réponse impulsionnelle gR(t). La sortie de 
e �ltre, notée y(t), est
é
hantillonnée au rythme de l'émetteur, 
'est-à-dire toutes les Tb se
ondes et est syn
hronisé
ave
 
elui-
i (les instants d'é
hantillonnage sont déterminés par une horloge qui est extraite du

signal y(t)). Finalement la séquen
e d'é
hantillons ainsi obtenue est utilisée pour re
onstruire

la séquen
e originale {bk} au moyen d'un organe de dé
ision. L'amplitude de 
haque é
hantillon

est 
omparée à un seuil λ.

La sortie du �ltre de ré
eption peut s'é
rire sous la forme

y(t) =
+∞∑

k=−∞
Akδ(t− kTb)⊗ gE(t)⊗ h(t)⊗ gR(t) + w(t)⊗ gR(t) (5.3)

où le symbole ⊗ est une 
onvolution. En prenant les notations suivantes

µp(t) = gE(t)⊗ h(t)⊗ gR(t) (5.4)

n(t) = w(t)⊗ gR(t) (5.5)

où µ est un fa
teur d'é
helle 
onstant et µp(t) est le résultat du passage du signal de mise en

forme gE(t) au travers des deux �ltres h(t) et gR(t) 
ara
térisant respe
tivement le 
anal et le

�ltre de ré
eption. Le terme n(t) est le résidu du bruit additif w(t) ajouté par le 
anal, �ltré

par le �ltre de ré
eption. Il représente don
 toujours un bruit blan
 gaussien 
ar il est passé au

travers d'un �ltre linéaire. En général, w(t) est modélisé 
omme un bruit blan
 additif gaussien

de moyenne nulle. On obtient �nalement

y(t) = µ

+∞∑

k=−∞
Akp(t− kTb) + n(t) (5.6)

Cette formule montre que le train d'impulsions n'est plus re
tangulaire. Le fa
teur d'é
helle µ
est 
hoisi de telle sorte que le signal p(t) soit normalisé, 
'est-à-dire

p(0) = 1 (5.7)

Cette relation justi�e l'utilisation de µ 
omme fa
teur d'é
helle pour tenir 
ompte des 
hange-

ments de l'amplitude du signal lors de son passage à travers le système. De plus, 
ette relation

représente une 
ontrainte mathématique et n'a au
une signi�
ation physique. Avant de pour-

suivre, il est important de remarquer que, pour être rigoureux, il faudrait introduire un délai t0
dans l'argument de p(t− kTb) a�n de représenter l'e�et du délai de la transmission au travers

du système. Cependant, pour simpli�er l'exposé, nous 
hoisissons de prendre 
e délai égal à

zéro, et 
ela sans perdre en généralité.

Vu qu'une 
onvolution dans le domaine temporel équivaut à un produit dans le domaine fré-

quentiel, nous déduisons de la relation 5.4 que

µP(f) = GE(f)H(f)GR(f) (5.8)
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Le signal y(t) à la sortie du �ltre de ré
eption est é
hantillonné aux instants ti = iTb (il est
intéressant de rappeler que l'é
hantillonnage se fait à la �n de la période, 
e
i résultant de la

théorie de du �ltre adapté), 
e qui fournit les é
hantillons

y(ti) = µ

+∞∑

k=−∞
Akp((i− k)Tb) + n(ti) (5.9)

= µAi +
+∞∑

k = −∞
k 6= i

Akp((i− k)Tb) + n(ti) (5.10)

Le premier terme µAi représente la 
ontribution du i-ème bit transmis et don
 le symbole

d'intérêt. Le se
ond terme représente l'e�et résiduel de tous les autres bits transmis sur le

i-ème bit, qu'ils aient été transmis avant ou après le i-ème bit. Cet e�et résiduel est appelé

interféren
e inter-symboles. L'importan
e de 
et e�et dépend de l'étalement de p(t). On peut

déjà remarquer que pour minimiser le terme d'interféren
e inter-symboles, il faudra 
hoisir une

forme adéquate pour la fon
tion p(t) de manière à éliminer 
e se
ond terme. Le dernier terme

de n(ti) est le bruit n(t) é
hantillonné à l'instant ti.

En l'absen
e d'interféren
e inter-symboles et de bruit, l'équation 5.10 se réduit à

y(ti) = µAi (5.11)


e qui montre bien que, sous 
es 
onditions idéales, le i-ème bit transmis est dé
odé 
orre
te-

ment. La présen
e inévitable d'interféren
e inter-symboles et de bruit dans le système introduit

des erreurs au niveau de l'organe de dé
ision. Dès lors, lors la 
on
eption du �ltre de mise

en forme et du �ltre de ré
eption, l'obje
tif est de minimiser les e�ets de l'interféren
e inter-

symboles et du bruit, aboutissant ainsi à un taux d'erreurs aussi faible que possible.

Il existe deux types de transmission :

� la transmission où le bruit est prépondérant, 
'est le 
as des 
ommuni
ations satellite par

exemple, pour lequel on privilégie le bon fon
tionnement du �ltre adapté,

� la transmission où le rapport signal sur bruit est important, 
omme pour le 
as du réseau

téléphonique par exemple, et dès lors le fon
tionnement du système est essentiellement limité

par l'interféren
e inter-symboles, et non par le bruit.

Dans l'étude qui suit, nous nous pla
erons dans le se
ond 
as et nous négligeons ainsi le terme

n(t) et nous nous fo
alisons sur la question de la rédu
tion, voire de l'élimination de l'interfé-

ren
e inter-symboles.

5.2 Critère de Nyquist

Le but poursuivi est, 
omme mentionné pré
édemment, de 
hoisir la forme de p(t) de manière

à minimiser, voire éliminer, le terme d'interféren
e. Or, nous avons vu que p(t) est liée à gE(t),
h(t) et gR(t). Cependant, en général, la fon
tion de transfert du 
anal de transmission h(t)
est �xée et il est don
 impossible de la modi�er pour minimiser l'interféren
e inter-symboles.

Il reste 
ependant deux degrés de liberté : l'impulsion de mise en forme gE(t) et la réponse

impulsionnelle du �ltre de ré
eption gR(t). Le terme d'interféren
e étant exprimé en fon
tion
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de l'impulsion p(t), nous allons simplement déterminer une forme pour p(t) telle que l'interfé-
ren
e s'annulle 
omplètement. Les fon
tions gE(t) et gR(t) pourront ensuite être obtenues en

exploitant l'équation 5.8.

Le dé
odeur extrait la séquen
e de 
oe�
ients Ak en é
hantillonnant la sortie du �ltre y(t) toutes
les Tb se
ondes. Pour le i-ème bit, le dé
odage à interféren
e inter-symboles nulle survient si les


ontributions Akp(iTb− kTb) sont nulles pour k 6= i. Dès lors, il faut que l'impulsion p(t) véri�e
la 
ondition

p(iTb − kTb) =

{
1 si i = k
0 si i 6= k

(5.12)

où p(0) = 1 par normalisation. Si p(t) véri�e 
ette 
ondition, il n'y pas d'interféren
e inter-

symboles et la ré
eption est parfaite en l'absen
e de bruit. On 
onstate déjà, intuitivement,

qu'une fon
tion sinus 
ardinal permettrait de remplir 
ette 
ondition.

Du point de vue de la synthèse du système, il est intéressant de reprendre la 
ondition 5.12

dans le domaine fréquentiel. Comme la propriété que doit véri�er p(t) est donnée en des points

bien pré
is (au droit des é
hantillons), 
onsidérons la version é
hantillonnée de p(t) représentée
par la séquen
e d'é
hantillons {p(mTb)} pour m = 0,±1,±2, ... Le signal

ps(t) =

+∞∑

m=−∞
p(mTb)δ(t−mTb) (5.13)

représente alors une version é
hantillonnée du signal p(t). Par le théorème d'é
hantillonnage, il

est fa
ile de 
al
uler la transformée de Fourier du signal ps(t)

Ps(f) = fb

+∞∑

m=−∞
P(f −mfb) (5.14)

où fb = 1/Tb est le débit binaire (ou rythme) exprimé en [b/s]. On remarque dès lors une

répétition du spe
tre autour de tous les multiples entiers de la fréquen
e d'é
hantillonnage. La

fon
tion Ps(f) peut en
ore s'é
rire sous la forme

Ps(f) =
∫ +∞

−∞

+∞∑

m=−∞
[p(mTb)δ(t−mTb)] e

−2πjft dt (5.15)

mais vu que la somme se réduit au terme 
orrespondant à m = 0, on peut en
ore é
rire

Ps(f) =

∫ +∞

−∞
p(0)δ(t)e−2πjtf dt (5.16)

= 1 (5.17)

Il nous reste maintenant à 
ombiner les équations et pour obtenir

+∞∑

m=−∞
P(f −mfb) = Tb (5.18)

Nous pouvons à présent énon
er le 
ritère de Nyquist pour une transmission en bande de base

idéale en l'absen
e de bruit.
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Proposition 22 [Critère de Nyquist℄ La transformée de Fourier P(f) de l'impulsion

p(t) élimine totalement l'interféren
e inter-symboles pour des é
hantillons pris toutes les Tb
se
ondes si elle véri�e la 
ondition

+∞∑

m=−∞
P(f −mfb) = Tb (5.19)

Rappelons que la transformée P(f) dépend du système dans son ensemble ; 
ela in
lut le �ltre

de mise en forme, la transmittan
e du 
anal et le �ltre de ré
eption.

5.2.1 Canal idéal de Nyquist

La façon la plus simple de satisfaire l'équation 5.19 
onsiste à 
hoisir pour P(f) une impulsion

de forme re
tangulaire

P(f) =

{
1

2W
−W < f < W

0 |f | > W
(5.20)

=
1

2W
re
t[−W,+W ] (f) (5.21)

où la bande de base du système W est dé�nie par

W =
fb
2

=
1

2Tb
(5.22)

La 
ondition est don
 bien satisfaite. Cette équation permet de dire qu'au
une fréquen
e né-


essaire ne dépasse la moitié du débit binaire. On en déduit qu'une fon
tion p(t) qui satisferait
le 
ritère de Nyquist est, 
omme il avait été signalé pré
édemment, le sinus 
ardinal :

p(t) =
sin(2πWt)

2πWt
= sinc(2Wt) (5.23)

Une telle fon
tion p(t) (ou P(f)) 
ara
térise le 
anal idéal de Nyquist. Les �gures 5.2.(a)

et .5.2.(b) montre les fon
tions p(t) et P(f). p(t) peut dès lors être vue 
omme la réponse

impulsionnelle d'un �ltre passe bas idéal de fréquen
e de 
oupure 
orrespondant à W .

À la �gure 5.2.(b), on voit également les di�érents instants d'é
hantillonage. Il est 
lair que, si

le signal reçu y(t) est é
hantillonné aux instants t = 0,±Tb,±2Tb, ..., les impulsions µp(t− iTb)
(i = 0,±1,±2, . . .) n'interfèrent pas entre elles. Cette 
ondition est illustrée à la �gure 5.3 pour

la séquen
e binaire 1011010. On 
onstate dès lors qu'aux instants d'é
hantillonnage, tous les

sinus 
ardinal relatif aux symboles perturbateurs sont nuls.

Il existe 
ependant des raisons pour lesquelles l'impulsion en sinus 
ardinal ne peut être utilisée

en pratique :

1. elle né
essite que P(f) soit 
onstante sur l'intervalle de fréquen
e [−W,+W ] et nulle

partout ailleurs. Cela est pratiquement irréalisable en raison des transitions abruptes en

±W (un �ltre passe-bas idéal n'est pas réalisable),

2. la fon
tion p(t) dé
roît en 1/|t| pour |t| élevé ; elle dé
roît don
 très lentement, les sinus


ardinal se réper
uteront don
 sur des é
hantillons lointains. Il y a dès lors très peu de

marge d'erreur a

eptable sur les instants d'é
hantillonnage 
ar si on n'é
hantillonne pas
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Figure 5.2 � Canal idéal de Nyquist.
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Figure 5.3 � Une série d'impulsions 
orrespondant à la séquen
e 1011010.
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tout à fait au bon moment, tous les sinus 
ardinaux sont non nuls, 
e qui donne une erreur


umulée importante.

Pour évaluer 
et e�et d'erreur d'é
hantillonnage, 
onsidérons que l'on é
hantillonne le

signal y(t) en t = ti +∆t, où ∆t est le dé
alage temporel. Pour la 
larté, on suppose que

ti = 0. En l'absen
e de bruit, nous avons don


y(∆t) = µ

+∞∑

k=−∞
Ak p(∆t− kTb) (5.24)

= µ

+∞∑

k=−∞
Ak

sin[2πW (∆t− kTb)]

2πW (∆t− kTb)
(5.25)

Sa
hant que

sin[2πW (∆t− kTb)] = sin(2πW∆t) cos(2πWkTb) (5.26)

− cos(2πW∆t) sin(2πWkTb) (5.27)

= (−1)k sin(2πW∆t) (5.28)

Comme 2WTb = 1 par dé�nition, nous pouvons réé
rire

y(∆t) = µA0 sinc(2W∆t) +
µ sin(2πW∆t)

π

+∞∑

k = −∞
k 6= 0

Ak
(−1)k

(2W∆t− k)
(5.29)

Le premier terme 
orrespond au symbole désiré, tandis que la série représente l'interféren
e

inter-symboles dues à l'erreur ∆t. Il est malheureusement possible que 
ette série diverge,

provoquant des dé
isions erronées au ré
epteur.

5.2.2 Impulsion en 
osinus surélevé

Nous pouvons trouver une parade aux di�
ultés ren
ontrées ave
 le 
anal idéal de Nyquist

en augmentant le bande passante d'une valeur ajustable entre W et 2W . Nous allons spé
i�er

la fon
tion P(f), en 
onsidérant trois termes de la 
ondition 5.18, et restreindre l'intervalle de

fréquen
e étudié à [−W,+W ]. On obtient don
 une forme appro
hée du 
ritère de Nyquist :

P(f) + P(f − 2W ) + P(f + 2W ) =
1

2W
, −W ≤ f ≤ W (5.30)

Il est possible de déterminer un ensemble de fon
tions P(f) qui véri�ent 
ette dernière 
ondition.
Une forme spé
iale de la fon
tion P(f) souvent utilisée en pratique est l'impulsion en 
osinus

surélevé dont le spe
tre est donné par

P(f) =





1
2W

0 ≤ |f | < f1
1

4W

{
1− sin

[
π(|f |−W )
2W−2f1

]}
f1 ≤ |f | ≤ 2W − f1

0 |f | ≥ 2W − f1

(5.31)

La 
onstante f1 et la bande de base W sont liées par

α = 1− f1
W

(5.32)
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où α est un paramètre, appelé fa
teur de rollo�, qui indique l'ex
ès en bande passante né
essaire

par rapport au 
anal idéal de Nyquist. La bande passante du système BT est maintenant égale

à

BT = 2W − f1 =W (1 + α) (5.33)

Les fon
tions P(f) et p(t) sont respe
tivement représentées aux �gures 5.4.(a) et 5.4.(b) pour

α = 0, α = 0, 5 et 1. Pour α = 0, l'impulsion 
orrespond au 
anal idéal de Nyquist.

(a)

−3 −2 −1 1 2 30

0.5

1.0

(b)

α = 0
α = 0.5

α = 1

2WP (f)

-2 -1.5 -1 -0.5

0 0.5

1

1.5

2

0.8

0.6

0.4

0.2

α = 1

α = 0.5

α = 0

p(t)

t
Tb

f
W

Figure 5.4 � Impulsion en 
osinus surélevé.

L'impulsion p(t) est simplement la transformée de Fourier inverse de P(f)

p(t) = sinc(2Wt)

(
cos(2παWt)

1− 16α2W 2t2

)
(5.34)
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La fon
tion p(t) est formée par le produit de deux fa
teurs : le fa
teur sinc(2Wt) qui 
orrespond
au 
anal idéal et une fon
tion qui dé
roît en 1/|t|2 lorsque |t| est grand. Le premier fa
teur

assure que la fon
tion p(t) passe par zéro aux instants d'é
hantillonnage ti = i∆t tandis que
le se
ond fa
teur réduit l'extension temporelle de l'impulsion de telle sorte que l'erreur ∆t
est 
onsidérablement réduite. Pour α = 1, l'extension temporelle de l'impulsion est minimale.

L'erreur ∆t diminue don
 lorsque α augmente. Cependant, la bande passante est d'autant plus

grande que α est grand, pour atteindre sa valeur maximale 2W �soit le double de la bande

passante né
essaire pour le 
anal idéal de Nyquist�, lorsque α = 1. Un 
ompromis existe don


entre la bande passante est la diminution de l'interféren
e inter-symboles. Typiquement, une

valeur de α = 0.3 
onvient.

La synthèse d'un système de télé
ommuni
ations numérique est rendue di�
ile par le fait que


'est la fon
tion p(t) qui doit posséder une réponse impulsionnelle en forme de 
osinus surélevé.

Or, p(t) résulte de la mise en 
as
ade de trois systèmes (gE(t), h(t) et gR(t)). La synthèse de


es systèmes doit don
 être telle que l'ensemble doit être 
ara
térisé par un 
osinus surélevé.
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Chapitre 6

Étalement de spe
tre

6.1 Introdu
tion

L'o

upation spe
trale est un sou
i ré
urrent pour la mise au point de te
hniques de modulation.

Lors d'une transmission en bande de base, on 
her
he à donner une forme adéquate à la densité

spe
trale en fon
tion de l'appli
ation visée. Pour des 
ommuni
ations en espa
e libre, on tente

de trouver le 
ompromis entre l'o

upation spe
trale et la résistan
e au bruit.

Un système à étalement de spe
tre se 
ara
térise par le fait que la bande passante B est

largement supérieure au débit d'information Rb exprimé en [b/s]. Cet a

roissement de bande

s'a

ompagne, 
omme nous le verrons par la suite, d'une meilleure résistan
e au bruit.

Historiquement, 
e sont les militaires qui ont développé en premier les te
hniques d'étalement de

spe
tre. Il existe néanmoins aujourd'hui des systèmes de transmission numérique 
ommer
iaux

qui en utilisent le prin
ipe. Le tableau 6.1 fournit une 
omparaison des di�érentes fon
tions de

l'étalement de spe
tre.

Obje
tifs Domaine militaire Appli
ation 
ommer
iale

Lutte 
ontre le brouillage

√ √

A

ès multiple

√ √

Déte
tion di�
ile

√

Prote
tion des données

√ √

Appel séle
tif

√ √

Identi�
ation

√ √

Navigation

√ √

Prote
tion 
ontre les multi-trajets

√ √

Faible densité de �ux émis

√ √

Table 6.1 � Appli
ations de systèmes à étalement de spe
tre (d'après [21℄).

6.1.1 Te
hniques d'étalement

Il existe essentiellement deux te
hniques d'étalement du spe
tre

� l'étalement par sauts de fréquen
e ou Frequen
y Hoping. Le spe
tre d'une porteuse modulée

est étalé en 
hangeant la fréquen
e de la porteuse pseudo-aléatoirement au 
ours du temps,
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e qui permet de faire varier Tc pseudo-aléatoirement au 
ours du temps. La te
hnique du

saut de fréquen
e (non-aléatoire) est utilisée en GSM (
f. [11℄ pour plus de détails).

� l'étalement dire
t ou Dire
t Spreading (DS). Cette te
hnique porte aussi le nom Code-

Division Multiplexing (CDM) 
ar elle 
onsiste à étaler le spe
tre en multipliant le signal

utile par un signal numérique dont la 
aden
e bit est nettement supérieure appelé 
ode.

Dans tout système de transmission, qu'il soit partagé ou non, il est né
essaire de 
réer le signal

à transmettre mais aussi de dé�nir des moyens et 
onventions pour interpréter 
orre
tement le

signal à la ré
eption. Il faut don
 détailler un moyen d'a

éder au message utile après étalement.

Ces te
hniques sont reprises généralement sous le vo
able de Code-Division Multiple A

ess

(CDMA), qui est souvent utilisé pour désigner la te
hnique d'étalement dire
t elle-même.

Dans la suite, nous analysons la te
hnique de l'étalement ; la question de l'a

ès au signal n'est

pas abordée dans 
e 
hapitre.

6.2 Étalement dire
t

6.2.1 Prin
ipes de base de l'étalement dire
t

Pour aborder les développements mathématiques, prenons un exemple simple permettant

d'illustrer le prin
ipe de l'étalement. Dans un système à étalement de spe
tre, on 
onsidère

deux types de signaux :

1. le signal 
ontenant les données à transmettre, de période Tb,

2. le signal permettant d'e�e
tuer l'étalement, de période Tc (on parle de �
hip�), nettement

plus petite que Tb.

Par la suite, nous 
hoisissons que Tb est un multiple entier de période Tc :

Tb = NTc (6.1)

Ce 
hoix permet, entre autres, d'assurer une 
ohéren
e entre la syn
hronisation des informations

portées par les deux signaux.

Considérons la �gure 6.1. Le premier signal représente le signal de données binaires à trans-

mettre (i
i, deux bits) ainsi que l'o

upation spe
trale asso
iée (idéalisée). Le deuxième signal

représente un exemple de séquen
e d'étalement. On 
onstate que son o

upation spe
trale est

dilatée par N .

Dans un système à étalement dire
t, le taux de transmission de symboles (1/Tb) d'un signal

bipolaire binaire est modi�é en multipliant 
ette onde par un 
ode bipolaire binaire pseudo-

aléatoire périodique dont la durée Tc est nettement plus 
ourte que 
elle de départ ; on obtient

alors un signal tel que 
elui représenté à la troisième ligne de la �gure 6.1. Son spe
tre est

approximativement aussi large que 
elui de la séquen
e d'étalement.

La �gure 6.2 donne une représentation plus �dèle des densités spe
trales de puissan
e du signal

de données et de la séquen
e d'étalement. Elle met aussi en lumière le théorème de 
onservation

de la puissan
e (
onservation de l'aire sous la 
ourbe).

Un raisonnement simple, par l'absurde, permet de se 
onvain
re de la 
onservation de puissan
e.

En e�et, le signal étalé résulte de la multipli
ation de la séquen
e initiale par le 
ode d'étalement.

Remarquons qu'une deuxième multipli
ation du signal étalé par le 
ode d'étalement fournit le
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Figure 6.1 � Exemple d'étalement d'un signal de données binaires.
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Figure 6.2 � E�et de la multipli
ation par une séquen
e sur le spe
tre.
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signal de départ. Dès lors, s'il y avait perte ou gain de puissan
e durant l'étalement, l'appli
ation

su

essive de deux phases d'étalement ne fournirait pas le signal de départ.

Les séquen
es d'étalement ont pour but de faire apparaître, pour l'utilisateur 
ourant, les autres

utilisateurs 
omme du bruit. Ces séquen
es doivent dès lors avoir les 
ara
téristiques les plus

pro
hes possible de 
elles d'un bruit blan
. Néanmoins, pour que le ré
epteur puisse retrouver

le signal utile, il doit aussi être 
apable de régénérer la séquen
e ayant servi à l'étalement. Il ne

peut don
 s'agir d'une véritable séquen
e aléatoire mais bien d'une séquen
e déterministe ayant

des propriétés aussi pro
hes que possibles de 
elles d'une séquen
e aléatoire ; on parle don
 de

séquen
es pseudo-aléatoires. De plus, pour des raisons pratiques de réalisation, les séquen
es

sont périodiques.

Pour 
onstruire des générateurs de séquen
es pseudo-aléatoires, on peut partir de l'étude des

propriétés des séquen
es aléatoires et imposer algébriquement des propriétés similaires aux

générateurs. C'est la démar
he que nous suivrons i
i. Une remarque s'impose néanmoins : il

est possible de 
onstruire plusieurs types de générateurs de séquen
es aléatoires. L'étude menée

dans 
e do
ument ne se veut don
 pas exhaustive. Le le
teur est invité à 
onsulter des ouvrages

spé
ialisés pour une typologie des générateurs de séquen
es pseudo-aléatoires.

6.2.2 Génération des séquen
es pseudo-aléatoires

Une séquen
e pseudo-aléatoire est une séquen
e binaire périodique dont l'onde ressemble, mis

à part le 
ara
tère périodique, à une séquen
e binaire totalement aléatoire pro
he d'un bruit.

Ce type de séquen
es est par exemple généré à l'aide d'un registre à dé
alage à 
ontre-réa
tion,

dont le s
héma général est montré à la �gure 6.3.

....

2

m

1

Flip-�op

Séquen
e

de sortie

Horloge

Cir
uit logique

Figure 6.3 � Registre à dé
alage à 
ontre-réa
tion.

Ce registre est 
onstitué de m �ip-�ops (éléments mémoire) et d'un 
ir
uit logique qui sont

inter
onne
tés pour former un 
ir
uit à 
ontre-réa
tion. Les �ip-�ops sont régulés par une seule

horloge. À 
haque 
oup d'horloge, le 
ontenu de 
haque �ip-�op est dé
alé d'une pla
e vers la

droite. De même, à 
haque 
oup d'horloge, le 
ir
uit logique 
al
ule une fon
tion booléenne du


ontenu des m �ip-�ops et le résultat est réinje
té à l'entrée du registre. La séquen
e pseudo-

aléatoire est ainsi déterminée par le nombrem de �ip-�ops, l'état initial du registre et la fon
tion

booléenne implémentée.

Ave
 un nombre m de �ip-�ops, le registre peut avoir 2m états possibles. Ainsi, la séquen
e

pseudo-aléatoire, issue de la sortie du dernier �ip-�op, peut avoir au maximum une période de

2m. Lorsque le 
ir
uit logique est 
onstitué uniquement d'additionneurs modulo-2, le registre
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est dit linéaire et l'état 0 (zéro dans 
haque �ip-�op) n'est pas permis sinon la séquen
e pseudo-

aléatoire reste indé�niment nulle. Dès lors, une séquen
e pseudo-aléatoire générée par un registre

à dé
alage linéaire ne peut avoir qu'une période maximale de 2m−1. On parle alors de séquen
e

de longueur maximale.

Tout l'art de la 
on
eption du 
ir
uit 
onsiste à synthétiser une fon
tion booléenne génératri
e

d'une séquen
e se rappro
hant au mieux d'une séquen
e aléatoire.

Exemple. Considérons le registre à dé
alage linéaire de la �gure 6.4.

modulo-2

Additionneur

Flip-�op

Séquen
e

de sortie

s3s2s1s0

Horloge

3

21

Figure 6.4 � Exemple de registre à dé
alage linéaire.

L'état initial du registre est supposé être 100 (lorsqu'on lit le 
ontenu des �ip-�ops de la gau
he

vers la droite). Les états su

essifs du registre sont 100, 110, 111, 011, 101, 010, 001, 100, ... La
séquen
e de sortie est alors égale à 0011101..., qui se répète ; 
ette séquen
e a une période de

23 − 1 = 7 bits. Il est à noter que l'état initial est arbitraire mais non nul.

Propriétés d'une séquen
e de longueur maximale

Considérons des symboles 0 et 1 respe
tivement représentés par les niveaux −1 et +1. Les
séquen
es de longueur maximale ont des propriétés pro
hes de 
elles des séquen
es binaires

purement aléatoires

1

, à savoir une moyenne nulle et une fon
tion d'auto-
orrélation en forme

de delta de Dira
.

Établissons 
es propriétés. La période d'une séquen
e de longueur maximale est dé�nie par

N = 2m − 1 (6.2)

Appelons c(t) l'onde résultant de la séquen
e de longueur maximale, 
omme illustré à la �-

gure 6.5(a) pour N = 7.

La période de l'onde c(t) est égale à

Tb = NTc (6.3)

où Tc, appelée période 
hip, est la durée d'un bit de la séquen
e de longueur maximale.

Deux propriétés des séquen
es pseudo-aléatoires sont immédiates :

1. L'utilisation d'une séquen
e réellement aléatoire ne permettrait pas de restituer le signal utile au ré
epteur

pré
isément en raison de l'aspe
t aléatoire !
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1. [Espéran
e℄ Pour une séquen
e à longueur maximale, tous les états internes des registres

sont possibles à l'ex
eption de l'état nul (il y a 7 états internes possibles dans notre

exemple). Si l'on retire l'état ave
 tous les bits mis à 1, pour tout état interne il y a un

dual (les 0 sont à 1 et ré
iproquement). Un état et son dual fournissent en sortie des bits

de signe opposé et don
 
es derniers se 
ompensent. Pour le 
al
ul de l'espéran
e, ll ne

reste alors qu'à 
onsidérer l'état ave
 tous les bits à 1, qui lui fournit 1 en sortie. Dès lors,

l'espéran
e vaut

E {c(t)} =
1

N
(6.4)

Contrairement à une séquen
e aléatoire, l'espéran
e n'est pas nulle mais elle diminue ave


la taille du 
ode d'étalement.

2. [Périodi
ité de la fon
tion d'auto-
orrélation℄ La fon
tion d'auto
orrélation d'une

séquen
e de longueur maximale est périodique.

Par l'établissement de la fon
tion d'auto
orrélation, nous partons de la dé�nition de la fon
tion

d'auto
orrélation d'un signal périodique c(t) de période Tb, qui est donnée par

Γcc (τ) =
1

Tb

∫ +Tb/2

−Tb/2
c(t)c(t + τ)dτ (6.5)

où τ appartient à l'intervalle [−Tb/2,+Tb/2]. En appliquant 
ette formule à la séquen
e de

longueur maximale c(t), on obtient

Γcc (τ) =

{
1− N+1

NTc
|τ | , |τ | ≤ Tc

− 1
N

ailleurs

(6.6)

Ce résultat est montré à la �gure 6.5(b) pour m = 3 et N = 7.

Étant donné qu'une périodi
ité dans le domaine temporel 
orrespond à un é
hantillonnage

uniforme dans le domaine fréquentiel, et la forme de la fon
tion d'auto
orrélation de c(t), on
peut déterminer la densité spe
trale de puissan
e de c(t)

γc(f) =
1

N2
δ(f) +

1 +N

N2

+∞∑

n=−∞, n 6=0

(
sin(π n

N
)

π n
N

)2

δ

(
f − n

NTc

)
(6.7)

qui est représentée à la �gure 6.5(
) pour m = 3 et N = 7. Au vu de 
es résultats, il est

maintenant possible de 
omparer une séquen
e de longueur maximale et une séquen
e réellement

aléatoire :

� sur une période de la séquen
e de longueur maximale, la fon
tion d'auto
orrélation de c(t)
est similaire à 
elle de la séquen
e aléatoire. En e�et, la fon
tion d'auto
orrélation d'une

séquen
e aléatoire vaut {
1− |τ |

Tc
|τ | ≤ Tc

0 |τ | > Tc
(6.8)

Il apparaît don
 que les densités spe
trales des deux séquen
es ont une même enveloppe, à

savoir sinc2(fT ).
� la di�éren
e fondamentale réside dans le fait que le spe
tre de la séquen
e aléatoire est 
ontinu

tandis que 
elui de la séquen
e de longueur maximale est 
omposé de raies espa
ées de 1/NTc.
Lorsque l'on augmente la valeur de N , 
'est-à-dire le longueur de la séquen
e de longueur maxi-

male, la séquen
e pseudo-aléatoire se rappro
he plus d'une séquen
e aléatoire pure. Cependant,

le prix à payer ave
 une grande valeur de N , est une augmentation de la bande passante né
es-

saire. Un 
ompromis doit dès lors être établi.
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0 0 1 1 1 0 1 0 0 1 1 1 0 1

t

Séquen
e binaire

-1

1.0

(a)

−Tc
0−NTc NTc

(b)

f
0− 1

Tc

(
)

Tc

NTc

+1

Tc

2
Tc

1
Tc

− 2
Tc

1
NTc

τ

Γcc (τ)

γc(f)

− 1
N

Figure 6.5 � Propriétés d'une séquen
e de longueur maximale.

97



Prof. Mar
 Van Droogenbroe
k, tous droits réservés

Choix d'une séquen
e de longueur maximale

La question qui se pose à présent 
onsiste à savoir 
omment 
hoisir la fon
tion logique du

registre à dé
alage pour obtenir une période désirée N . La littérature fournit des tables ave


les 
onne
tions à réaliser entre les éléments du 
ir
uit pour di�érentes valeurs de m. Une telle

table est montrée à la �gure 6.6.

[2,1℄

[3,1℄

[4,1℄

[5,2℄, [5,4,3,2℄, [5,4,2,1℄

[6,1℄, [6,5,2,1℄, [6,5,3,2℄

[7,1℄, [7,3℄, [7,3,2,1℄, [7,4,3,2℄, [7,6,4,2℄, [7,6,3,1℄,

[7,6,5,2℄, [7,6,5,4,2,1℄, [7,5,4,3,2,1℄

[8,4,3,2℄, [8,6,5,3℄, [8,6,5,2℄, [8,5,3,1℄, [8,6,5,1℄,

[8,7,6,1℄, [8,7,6,5,2,1℄, [8,6,4,3,2,1℄

Registre à dé
alage

de longueur m

4

6

8

2

3

5

7

Con�gurations possibles pour la rétroa
tion

Figure 6.6 � Table permettant de 
onstruire le registre à dé
alage adéquat [15, page 584℄.

Plus m augmente, plus il y a de possibilités de 
ir
uits.

Exemple. Considérons une séquen
e de longueur maximale né
essitant l'utilisation d'un re-

gistre de longueur m = 5. Pour 
ette valeur de m, nous 
hoisissons dans la table une bou
le à

rétroa
tion du type [5, 2]. La 
on�guration 
orrespondante est montrée à la �gure 6.7(a). En

supposant un état initial 10000, la �gure 6.2 montre l'évolution du registre pour une période

de la séquen
e de longueur maximale. On remarque qu'en �n de période, le registre est revenu

à son état initial. On aurait également pu 
hoisir la 
on�guration [5, 4, 2, 1] 
omme le montre

la �gure 6.7(b) et on aurait une autre séquen
e pseudo-aléatoire de même longueur.

6.2.3 Prin
ipe de la transmission en bande de base

Soit la séquen
e binaire {bk} représentant l'information à transmettre. Cette séquen
e 
onduit à

dé�nir une onde 
ontinue b(t) par un 
odage de type NRZ bipolaire ±1. De même, on 
onstitue

un signal temporel c(t) à partir des éléments {ck} d'une séquen
e pseudo-aléatoire.

L'étalement du spe
tre de b(t) se réalise au moyen d'une modulation

2

qui n'est autre que la

multipli
ation de c(t) et b(t), 
omme le montre la �gure 6.8(a).

Or, une multipli
ation dans le domaine temporel revient à faire une 
onvolution dans le domaine

fréquentiel. Dès lors, si le signal b(t) est à bande étroite et que c(t) est à large bande, le spe
tre
du signal résultant

m(t) = c(t)b(t) (6.9)

sera pratiquement aussi large que 
elui de c(t). En e�et,

2. Conformément à l'usage repris dans la littérature s
ien�tique, le terme modulation est utilisé tant�t pour

dé
rire l'étalement, tant�t pour désigner l'opération qui fait intervenir une porteuse AC cos(2πfct).
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Séquen
e

Flip-�op

(b)

(a)

de sortie

de sortie

5

4

32

1

Horloge

Horloge

modulo-2

Additionneur

Séquen
e

Flip-�op

5432

1

Figure 6.7 � Deux s
hémas possibles pour m = 5 [15, page 584℄.

NRZ

NRZ

m(t) r(t)

i(t)

Σ

(a)

(b)

1 si v > 0

0 si v < 0

Seuil λ = 0

Organe de

∫ Tb
0
dt

r(t)

(
)

X

c(t)

z(t) v

désision

m(t)
X

b(t)

c(t)

{bk}

{ck}

Figure 6.8 � Modèle d'une transmission à spe
tre étalé en bande de base.
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Registres

Bit de rétroa
tion 1 0 0 0 0 Bit de sortie

0 0 1 0 0 0 0

1 1 0 1 0 0 0

0 0 1 0 1 0 0

1 1 0 1 0 1 0

1 1 1 0 1 0 1

1 1 1 1 0 1 0

0 0 1 1 1 0 1

1 1 0 1 1 1 0

1 1 1 0 1 1 1

0 0 1 1 0 1 1

0 0 0 1 1 0 1

0 0 0 0 1 1 0

1 1 0 0 0 1 1

1 1 1 0 0 0 1

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 1 0

0 0 1 1 1 1 1

0 0 0 1 1 1 1

1 1 0 0 1 1 1

1 1 1 0 0 1 1

0 0 1 1 0 0 1

1 1 0 1 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1

1 1 0 0 1 0 1

0 0 1 0 0 1 0

0 0 0 1 0 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 1 0 0 0 0 1

Table 6.2 � Évolution du registre de la �gure 6.7(a) au 
ours d'une période de la séquen
e [15,

page 585℄.
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M(f) = B(f)⊗ C(f) (6.10)

=

∫ +∞

−∞
C(τ)B(f − τ) dτ (6.11)

Or, on e�e
tue le produit des deux 
ourbes et on intègre sur toutes les valeurs di�érentes de

zéro. On obtient dès lors un signal large bande. De plus, la �gure 6.9 montre très 
lairement

que la période du signal étalé est de Tc et don
 la bande de base du signal étalé vaut

1
2Tc

, 
e

qui représente un signal large bande.

On dit que la séquen
e c(t) joue le r�le de 
ode d'étalement. La formation du signal m(t) est
montrée à la �gure 6.9.

Tc

t

t

NTc

(b)

(
)

t
0

(a)

Signal de données b(t)

Code d'étalement c(t)

Tb

Signal étalé m(t)

+1

-1

-1

0

+1

0

-1

+1

Figure 6.9 � Formation du signal m(t) par étalement du spe
tre de b(t).

Pour une transmission en bande de base (sans utilisation d'une porteuse), on transmet le signal

étalé m(t) sur le 
anal.

Le ré
epteur reçoit le signal étalé m(t) bruité par des interféren
es 
ara
térisées par le signal
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i(t) (
f. �gure 6.8(b))

r(t) = m(t) + i(t) (6.12)

= c(t)b(t) + i(t) (6.13)

Le signal d'interféren
e se 
ompose de signaux émis par d'autres utilisateurs dans la même

bande de fréquen
es ainsi que du bruit.

Pour re
ouvrer le signal original et la séquen
e binaire sous-ja
ente, le signal reçu r(t) est ap-
pliqué à l'entrée d'un démodulateur qui 
onsiste en une multipli
ation suivi d'un intégrateur et

d'un organe de dé
ision, 
omme l'illustre la �gure 6.8(
). Au niveau du mélangeur, le signal reçu

r(t) est multiplié par une réplique exa
te de la séquen
e pseudo-aléatoire utilisée au ré
epteur.

Nous faisons l'hypothèse que le ré
epteur travaille en syn
hronisme parfait ave
 l'émetteur. La

sortie de l'étage de multipli
ation est alors donnée par

z(t) = c(t)r(t) (6.14)

= c2(t)b(t) + c(t)i(t) (6.15)

Cette dernière équation montre que le signal b(t) est multiplié deux fois par la séquen
e pseudo-
aléatoire c(t), tandis que le signal i(t) n'est multiplié qu'une seule fois. Vu que c(t) vaut +1 ou

−1, le signal c2(t) est égal à 1 pour tout instant t. Don
, le signal z(t) se réduit à

z(t) = b(t) + c(t)i(t) (6.16)

Nous voyons don
 que le signal b(t), qui 
ontient l'information utile, se retrouve à la sortie

de l'étage de multipli
ation. Si le terme additif c(t)i(t) semble gênant, il faut bien voir que

la multipli
ation de i(t) par le 
ode d'étalement c(t) a pour e�et d'étaler le spe
tre de i(t).
Dès lors, le signal c(t)i(t) est à large bande tandis que le signal b(t) est à bande étroite. Ce

signal large bande 
ontient notamment les signaux étalés des autres utilisateurs, 
eux-
i étant


onsidérés 
omme du bruit.

En appliquant le signal z(t) à l'entrée d'un �ltre passe-bas, en l'o

urren
e l'intégrateur, la

majeure partie de l'énergie de c(t)i(t) est �ltrée. L'e�et de l'interféren
e i(t) est don
 fortement

réduit à la sortie du ré
epteur. En réalité, à partir du signal z(t), tout se passe 
omme pour

la démodulation d'un signal numérique par le �ltre adapté suivi de l'organe de dé
ision. Le

signal b(t) est le signal numérique à démoduler et c(t)i(t) peut être vu 
omme l'approximation

d'un bruit blan
 additif gaussien. Plus la séquen
e pseudo-aléatoire est longue, plus 
ette ap-

proximation est véri�ée. Cependant, le prix à payer pour 
ette augmentation de la prote
tion


ontre les interféren
es est une augmentation de la bande passante requise, de la 
omplexité du

système, ainsi que des délais.

En résumé, l'utilisation d'un 
ode d'étalement dans l'émetteur produit un signal large bande

transmis sur le 
anal. Celui-
i apparaît 
omme du bruit pour un ré
epteur qui n'a pas 
onnais-

san
e du 
ode d'étalement initial.

6.2.4 Étalement dire
t par modulation BPSK

Nous allons à présent voir 
omment on peut intégrer la notion d'étalement dire
t de spe
tre

dans un système de modulation. Le type de modulation 
hoisie est une modulation de phase

binaire 
ohérente (BPSK).
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La �gure 6.10(a) montre le s
héma d'un tel modulateur. Le modulateur transforme tout d'abord

la séquen
e {bk} en signal NRZ bipolaire pour obtenir le signal b(t). Il y a ensuite deux étages

de modulation : le premier étage multiplie le signal b(t) par la séquen
e pseudo-aléatoire c(t)
tandis que le deuxième étage est un modulateur BPSK. Le message transmis x(t) est alors un
signal modulé en DS/BPSK (Dire
t-Sequen
e spread Binary Phase Shift-Keying). La phase

θ(t) du signal modulé x(t) vaut 0 ou π selon que les signaux b(t) et c(t) sont de même polarité

ou non à l'instant t. Un saut de phase est ainsi observé tous les Tc.

Filtre

passe-bas

X

(b)

En
odeur

NRZ

X

B-PSK

x(t)

(a)

y(t)

0 si v < 0

1 si v > 0

données binaires

Séquen
e de

{bk}
b(t) m(t)

Modulateur

Porteuse

Générateur

de 
ode PN

c(t)

Déte
teur 
ohérent

Signal reçu

Modulateur

produit

Porteuse lo
ale

Générateur

lo
al de 
ode

PN

∫ Tb

0 dt
v

Organe de

désision

Figure 6.10 � S
héma-blo
 de la modulation DS/BPSK.

La �gure 6.11 illustre la formation du signal modulé BPSK. La �gure 6.11.(
) représente don


le signal qui sera envoyé sur le 
anal pour la transmission d'un bit.

Le ré
epteur, illustré à la �gure 6.10(b) est 
omposé de deux étages. Au niveau du premier

étage, le signal reçu y(t) est appliqué à l'entrée d'un démodulateur 
ohérent BPSK, 
onstitué

d'un mélangeur alimenté par une porteuse générée lo
alement, suivi d'un �ltre passe-bas dont

la bande passante est limitée à 
elle de m(t). Le deuxième étage de démodulation e�e
tue le

�désétalement� du spe
tre en multipliant la sortie du �ltre passe-bas par la 
opie exa
te de la

séquen
e pseudo-aléatoire utilisée à l'émetteur. Le reste de la démodulation est identique à 
elle

utilisée pour la transmission en bande de base (�ltre adapté et organe de dé
ision).

Bruit

Remarquons que le 
anal de transmission 
ontient une série de bruits, typiques pour 
e genre

d'appli
ations :
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t

(a)

t

−Ac

(b)

(
)

-1

t

−Ac

Ac

Ac

s(t)

Porteuse

m(t)

+1

Tb

Figure 6.11 � Modulation BPSK du signal.
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� un bruit blan
 additif gaussien, qui modélise la présen
e d'une somme de bruits indépendant

entre eux.

� des interféren
es à bande étroite, qui viennent se �loger� dans 
ertaines bandes de fréquen
e.

C'est pré
isément au moment de 
ontrer 
es bruits (ou signaux) parasites à bande étroite

que l'étalement dire
t, voire par sauts de fréquen
e, montre tout son intérêt.

� les signaux BPSK/CDMA des autres utilisateurs. Si M représente le nombre d'utilisateurs

dans la même bande de fréquen
e, on 
onsidère généralement une puissan
e de bruit égale à

M − 1 fois la puissan
e nominale d'un utilisateur.

Analyse

La �gure 6.10 représente un modulateur où l'étalement de spe
tre se fait avant la modula-

tion de phase numérique. Pour une analyse plus détaillée, il est intéressant d'intervertir �


on
eptuellement� 
es deux étapes de modulation 
omme le montre le s
héma de la �gure 6.12.

Cette permutation est li
ite 
ar les opérations d'étalement de spe
tre et de modulation BPSK

sont des multipli
ations, et don
 
ommutatives. Il en va de même pour les opérations de démo-

dulation. Le fait de permuter les deux opérations permet de modi�er la réponse impulsionnelle

du �ltre adapté qui, pour rappel, est donnée par

h(t) = g(Tb − t) (6.17)

Combinant les deux opérations, g(t) devient cos(2πfct). La réponse impulsionnelle du �ltre

adapté sera don
 un 
osinus retourné.

Emetteur

Canal

Ré
epteur

s(t) x(t)
XΣ

Générateur

binaire PSK

Modulation

Déte
teur


ohérent

Porteuse lo
ale

Porteuse

Signal de

données b(t)

j(t)
c(t)

Générateur

de 
ode PN


ode PN

lo
al de

c(t)

y(t) u(t)

Estimation

de b(t)
X

Figure 6.12 � Permutation entre étalement et modulation de phase

Les interféren
es sont modélisées par le signal j(t) qui est de type passe-bande. La sortie du


anal y(t) s'exprime don
 par

y(t) = x(t) + j(t) (6.18)

= c(t)s(t) + j(t) (6.19)

où s(t) est le résultat de la modulation BPSK du signal b(t).
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Au ré
epteur, le signal reçu y(t) est tout d'abord multiplié par la séquen
e pseudo-aléatoire

c(t), 
e qui donne le signal

u(t) = c(t)y(t) (6.20)

= c2(t)s(t) + c(t)j(t) (6.21)

= s(t) + c(t)j(t) (6.22)

Cette dernière équation montre que le signal à l'entrée du démodulateur 
ohérent BPSK est

un signal modulé en BPSK augmenté de l'interféren
e c(t)j(t). La démodulation peut alors se

faire, 
omme pour le 
as de la transmission en bande de base, en utilisant un �ltre adapté suivi

d'un organe de dé
ision, le terme d'interféren
e étant 
onsidéré 
omme un bruit blan
 additif

gaussien.

6.3 Étude des performan
es

6.3.1 Gain d'étalement

Un 
al
ul 
omplet et détaillé (voir [15, page 596℄) débou
he sur une relation liant le rapport

signal sur bruit à la sortie et 
elui à l'entrée ; en voi
i l'expression

10 log

(
S

N

)

OUT

= 10 log

(
S

N

)

IN

+ 3 + 10 log

(
Tb
Tc

)
(6.23)

Le terme de 3 [dB] provient du gain obtenu sur le rapport signal sur bruit en utilisant la

déte
tion 
ohérente.

Dé�nition 23 On dé�nit le gain d'étalement (en [dB]) 
omme

GE = 10 log

(
Tb
Tc

)
(6.24)

Ce gain mesure l'impa
t sur le rapport signal sur bruit obtenu par usage de la te
hnique d'éta-

lement. On 
onstate que le gain d'étalement égale le fa
teur d'étalement N . Plus la séquen
e

d'étalement est longue, plus le gain d'étalement est important.

6.3.2 Probabilité d'erreur

Par un 
al
ul semblable à 
e qui a été fait pour la modulation BPSK (voir 
ours de �Prin
ipes

des télé
ommuni
ations analogiques et numériques�), il est possible de déterminer la probabilité

d'erreur pour la modulation DS/BPSK ; elle vaut (
f. [15, page 597℄)

Pe ≃
1

2
erfc

(√
Eb
IT

)
(6.25)

où Eb est l'énergie par bit du message b(t), Tc la durée d'un 
hip et I la puissan
e moyenne du

signal d'interféren
e

I =
1

Tb

∫ Tb

0

j2(t) dt (6.26)

En fait, si on 
ompare 
ette probabilité d'erreur à 
elle obtenue pour la démodulation BPSK,

tout se passe 
omme si le signal BPSK était plongé dans un bruit blan
 gaussien de densité

spe
trale de puissan
e égale à ITc.
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6.3.3 Marge d'interféren
e

Pour pouvoir exprimer analytiquement l'intérêt de l'étalement de spe
tre, dé�nissons 
ertains

paramètres

� S [W ] le niveau de puissan
e du signal utile, égal au produit de l'énergie par bit et de la

fréquen
e d'émission des bits,

� B [Hz] la largeur du 
anal spe
tral disponible,

� Rb =
1
Tb
[Hz] le débit utile ou la fréquen
e bit du message à transmettre,

� Eb [J = W × s] l'énergie par bit,
� I [W ] le niveau de puissan
e des signaux d'interféren
e (
elui-
i in
lus tous les types d'inter-

féren
es), et

� N0 [W/Hz] la densité spe
trale de bruit.

On peut interpréter le rapport suivant 
omme un rapport du niveau d'interféren
e à signal utile

I

S
=

N0B

Eb/Tb
=

BTb
Eb/N0

=
B/Rb

Eb/N0
(6.27)

Dès lors qu'on se �xe un rapport énergie à bruit requis au ré
epteur

(
Eb

N0

)
req

pour que le système

fon
tionne 
orre
tement, on dispose d'une marge qui, en [dB], s'exprime par

I

S
[dB] =

B

Rb
[dB]−

(
Eb
N0

)

req

[dB] (6.28)

Le rapport

I
S
est appelé marge d'interféren
e tandis que le rapport

B
Rb

est le gain d'étalement.

En e�et,

B

Rb
=
Tb
Tc

(6.29)

Pour un gain d'étalement unitaire, la valeur du rapport

(
Eb

N0

)
est tout simplement égale au

rapport signal S à interféren
e I.

Exemple. Soit à transmettre un signal vo
al numérique à une 
aden
e bit de 9600 [Hz]. Prenons
ensuite une largeur de 
anal de B = 1, 2288 [MHz] telle qu'utilisée dans le système améri
ain à

étalement de spe
tre IS-95. Pour un rapport énergie à bruit requis de 6 [dB], 
e qui 
orrespond
à une 
ertaine probabilité d'erreur, on 
al
ule une marge de

10 log

(
1, 2288× 106

9600

)
− 6 = 15, 1 [dB] (6.30)

En 
on
lusion, les bits d'information à la sortie du ré
epteur peuvent être déte
tés de ma-

nière �able même lorsque le bruit ou les interféren
es à l'entrée du ré
epteur sont majorés de

15, 1 [dB]. Cette marge disponible va don
 permettre de rajouter des utilisateurs sans hypothé-

quer la qualité de la 
ommuni
ation.

L'étalement a toutefois ses limites 
ar il faut bien borner la valeur de N . Pour a

roître davan-

tage en
ore le nombre d'utilisateurs, il est né
essaire de re
ourir à une te
hnique d'étalement

de spe
tre ave
 saut de fréquen
e.
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6.3.4 Capa
ité d'un système à étalement de spe
tre

C'est une règle générale que l'utilisation d'une bande de fréquen
e plus large a

roît la résistan
e

au bruit. Dès lors qu'un utilisateur est seul à utiliser un large 
anal, il béné�
iera d'un qualité

de transmission idéale. Une telle situation est néanmoins rare 
ar elle entraîne un gaspillage de

ressour
es qui ne se justi�e pas. En pratique don
, un utilisateur partage le 
anal ave
 d'autres

utilisateurs. Le nombre d'utilisateurs simultanés dans une même bande de fréquen
e est appelée


apa
ité. La proposition suivante établit un résultat important pour le 
al
ul de la 
apa
ité des

te
hniques d'étalement de spe
tre.

Proposition 24 La 
apa
ité d'un système à étalement de spe
tre est proportionnelle au gain

d'étalement.

Pour l'établir, supposons qu'un utilisateur soit le seul à o

uper la bande de fréquen
es. La

puissan
e de porteuse est alors C = S = Eb/Tb = RbEb. De la même manière, la puissan
e de

bruit à l'entrée de la station de base vaut

I = BN0 (6.31)

Dès lors, le rapport de la puissan
e de porteuse d'un mobile à l'entrée de la station de base

vaut

C

I
=
RbEb
BN0

=
Eb/N0

B/Rb
(6.32)

Soit M le nombre de mobiles traités par la 
ellule. En supposant que tous les émetteurs tra-

vaillent à même niveau de puissan
e et en négligeant le bruit thermique, les autres mobiles

produisent une puissan
e d'interféren
e

I = C(M − 1) (6.33)


e qui 
onduit à

C

I
=

1

M − 1
(6.34)

En 
ombinant les deux expressions de

C
I
, on en déduit

M =
B

Rb

1

Eb/N0
+ 1 ≃ B

Rb

1

Eb/N0
(6.35)

On voit don
 que la 
apa
ité de la 
ellule est bien proportionnelle au gain d'étalement

B
Rb
.

M est don
 approximativement égal à la marge d'interféren
e. Dans l'exemple du paragraphe

pré
édent, on observe un nombre d'utilisateurs égal à M = 101,51 ≈ 32. On voit dès lors que,

plus on veut mettre des utilisateurs sur la même bande de fréquen
es pour une même probabilité

d'erreur, plus le gain d'étalement doit être important et don
 plus B doit être élevé par rapport

à Rb, et don
, plus Tc doit être petit par rapport à Tb. Une interprétation intéressante est

montrée à la �gure 6.13 ; la puissan
e de l'utilisateur ramenée dans une bande large de W [Hz]
dépasse largement la puissan
e d'interféren
e des autres utilisateurs.

Mais on peut en
ore faire d'autres gains permettant d'augmenter le nombre d'utilisateurs sur

une 
ellule. En e�et, lors d'une 
onversation, les temps morts o

upent une partie non négli-

geable du temps total. Des études ont montré que le temps de 
onversation est de l'ordre de
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Figure 6.13 � Interprétation de l'étalement de spe
tre.

35% du temps total de la 
ommuni
ation. Comme, en pratique, on ne 
oupe pas instantanément

le message dès déte
tion d'un silen
e, on 
onsidère plut�t un fa
teur d'o

upation α de 50%,


e qui statistiquement mène à un nombre d'utilisateurs simultanés

M ≃ B

Rb

1

Eb/N0

1

α
(6.36)

À 
e dernier 
al
ul s'ajoute une autre 
onsidération relative à la dire
tivité des antennes. Pour

une même 
ellule, on pla
e généralement plusieurs antennes (typiquement trois), 
ha
une ayant

une dire
tivité telle qu'elle est responsable de la 
ouverture d'une portion de la 
ellule, 
e qui

divise la zone de rayonnement de la 
ellule en plusieurs se
teurs. Ce
i permettrait d'augmenter

le nombre d'utilisateurs dans une même 
ellule par un fa
teur trois, mais pour éviter un trou

de 
ouverture, on assure un 
ertain re
ouvrement (par exemple 15%). Le tout amène un gain

G supplémentaire, égal à 3× 0, 85, 
onduisant à une valeur de M de

M ≃ B

Rb

1

Eb/N0

1

α
G (6.37)

En�n, 
onsidérant trois 
ellules trise
torielles, la te
hnique de CDM implique l'utilisation des

mêmes fréquen
es pour toutes les 
ellules (on utilise toute la bande passante), 
e qui implique

un 
ertain re
ouvrement qui se traduit par un fa
teur de réutilisation de fréquen
e Fe inférieur
à l'unité.

Fe =
Surfa
e utile

Surfa
e géographique totale

(6.38)

Ce qui donne l'estimation suivante pour le nombre d'utilisateurs par 
ellule

M ≃ B

Rb

1

Eb/N0

1

α
GFe (6.39)

Pour le GSM, Fe ≃ 1.
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Chapitre 7

Multiplexage et a

ès au multiplex

7.1 Introdu
tion

La paire torsadée qui relie un abonné au 
entral téléphonique est habituellement dédiée à un

utilisateur unique

1

. Cet utilisateur peut dès lors, à sa guise et à toute heure, utiliser la totalité

du spe
tre fréquentiel ; par ailleurs, la te
hnologie ADSL en tire pro�t. Cette souplesse a un prix


ar, la ligne restant ina
tive pendant une très longue période, l'utilisation moyenne de quelques

dizaines de minutes par jour doit su�re à rentabiliser l'investissement 
onsenti par l'opérateur.

7.1.1 Multiplexage

Dans l'air ou sur un réseau de télédistribution, le partage du spe
tre et le partage temporel

des ressour
es font partie intégrante du dimensionnement du réseau. Ces partages résultent de

pro
édés de multiplexage qui 
onsistent à 
ombiner plusieurs signaux pour les transmettre

sur un même support.

Historiquement, on en distingue prin
ipalement deux :

� le multiplexage en fréquen
es (Frequen
y Division Multiplexing - FDM). Cette te
hnique de

multiplexage alloue une bande de fréquen
es spé
i�que à 
haque signal.

� le multiplexage temporel (Time Division Multiplexing - TDM). Il 
onsiste à réguler les moments

d'o

upation du 
anal pour 
haque signal.

La te
hnique plus ré
ente du multiplexage par étalement de spe
tre a ouvert de nouvelles voies

pour le partage de ressour
es. Cette te
hnique réalise à la fois un partage fréquentiel et temporel.

Pour être 
omplet, signalons qu'il existe des te
hniques de multiplexage propres à 
ertains

supports. Ainsi, dans le domaine de la transmission par �bre optique, on a développé des

te
hniques de multiplexage par longueurs d'onde (Wave Division Multiplexing - WDM) ave


quelques variantes parti
ulièrement adaptées à la transmission à très haut débit (Dense Wave

Division Multiplexing - DWDM) .

7.1.2 A

ès multiple

Dès lors qu'il y a multiplexage et don
 partage des ressour
es, il 
onvient de dé�nir

1. Dans de très rares 
as, il existe des 
on
entrateurs de lignes qui 
ombinent des signaux entre les abonnés

et le 
entral téléphonique.
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� des moyens te
hniques pour a

éder à 
es ressour
es individuelles. On parle de méthodes

d'a

ès telles que le FDMA (la lettre A désignant A

ess), TDMA, CDMA, . . .
� des stratégies pour disposer du 
anal. C'est par le biais de stratégies qu'on espère atteindre

au haut de performan
e (haut débit, faible délai, faible taux de 
ongestion, . . .). La question
des stratégies ne sera pas abordée i
i.

7.2 Multiplexage par répartition en fréquen
es

7.2.1 Prin
ipe

L'utilisation de 
ertains supports de transmission exige un partage adéquat des ressour
es fré-

quentielles. La te
hnique de multiplexage par répartition en fréquen
es 
onsiste à former un

signal 
omposite par translation fréquentielle de 
ertains signaux. La �gure 7.1 en illustre le

prin
ipe. On dispose d'une série de signaux Xi(f) en bande de base à transmettre simulta-

f−f3 f3

f−f3 f3

−f2 f2

−f2 f2

−f1 f1

−f1 f1

f

f

f

X1(f)

X2(f)

X3(f)

f1

f2

f3

f

f

Signal multiplexé

Figure 7.1 � Prin
ipe du multiplexage en fréquen
e.

nément. Au moyen de mélangeurs a

ordés à des fréquen
es spé
i�ques, le spe
tre de 
haque

signal est dépla
é le long de l'axe des fréquen
es et ajouté au signal multiplex de manière à


ouvrir une 
ertaine plage fréquentielle, tout en évitant un 
hevau
hement en ménageant des

bandes de garde entre les signaux.

Le signal multiplexé est transmis au ré
epteur qui doit extraire un à un tous les signaux au

moyen de mélangeurs a

ordés aux mêmes fréquen
es qu'à l'émission. Le prin
ipe est identique

à 
elui d'une démodulation 
ohérente (voir �gure 7.2).
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f−f3 f3−f2 f2−f1 f1

Signal multiplexé

f

X3(f)

f

X2(f)

f

X1(f)

f2 f3f1

f1 f2 f3

Figure 7.2 � Prin
ipe du démultiplexage en fréquen
e.
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7.2.2 Bande passante

La bande totale du signal est la somme des bandes des signaux augmentée de bandes de garde

destinée à protéger le multiplex ainsi 
onstitué des signaux voisins.

La borne inférieure de la bande passante est fournie par la somme des bandes des messages


onstituants. Ainsi, soit W la bande totale et Wi les bandes individuelles,

W >
∑

i

Wi (7.1)

7.2.3 A

ès au multiplex

La question de l'a

ès (FDMA) est relativement simple 
ar 
'est la fréquen
e porteuse du signal

Wi dans le multiplex qui permet de séle
tionner un signal. Cette allo
ation est généralement

statique. Le partage fréquentiel des ressour
es est illustré à la �gure 7.3.

Temps

Fréquen
e

A

B

C

Canal physique

Utilisateur 1

Utilisateur 2

Non o

upé

A,B,C : porteuses

Figure 7.3 � Partage des ressour
es par multiplexage en fréquen
e : le FDMA (Frequen
y

Division Multiple A

ess).

7.2.4 Exemple : multiplex de téléphonie analogique entre 
entraux

En téléphonie, avant l'introdu
tion du numérique, le moyen le plus é
onomique de transmettre

des signaux analogiques sur de longues distan
es a 
onsisté à assembler des signaux modulés

en amplitude à bande latérale unique par multiplexage fréquentiel. Le CCITT

2

a ainsi dé�ni

des normes pour l'assemblage de 12 jusqu'à pas moins de 10.000 
anaux vo
aux. Dans 
es

s
hémas, on réserve un 
anal large de 4 [kHz] pour un signal vo
al o

upant une bande de 300
à 3400 [Hz]. Ce s
héma est illustré à la �gure 7.4.

Le groupe de base est 
onstitué suivant la règle

fc = 60 + 4n [kHz], n ∈ {1, . . . , 12} (7.2)

où 
haque signal est modulé par une modulation à bande latérale résiduelle. Les groupes sont

ensuite rassemblés pour former des super-groupes et ainsi de suite. Le se
ond é
helon de la

hiérar
hie est représenté à la �gure 7.5.

2. Le CCITT est l'an
ien nom de l'ITU se
tion T.
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Figure 7.4 � Les étapes de 
onstitution d'un groupe de base et d'un super-groupe.
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108
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516

564

612

fréquen
es porteuses

kHz

groupe No 1 2 3 4 5

411.920

312

360

408

456

504

552

Figure 7.5 � Constitution de super-groupes [17, page 122℄.
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7.3 Multiplexage par répartition temporelle

7.3.1 Prin
ipe

Le multiplexage par répartition temporelle (TDM, Time Division Multiplexing) est une te
hnique

de traitement de données par mélange temporel ayant pour but de permettre l'a
heminement

sur un même 
anal (appelé voie haute vitesse HV), un ensemble d'informations provenant

de di�érents 
anaux à faibles débits (appelés voies basses vitesses BV) lorsque 
elles-
i doivent


ommuniquer simultanément d'un même point de départ à un même point d'arrivée. Le prin
ipe

est illustré à la �gure 7.6.

M

U

L

T

I

P

L

E

X

M

U

L

T

I

P

L

E

X

1
2

n

1

n

2

Voies BV

Voie HV

Figure 7.6 � S
héma de multiplexage temporel.

À l'autre bout de l'a
heminement, un démultiplexeur opère à l'inverse. Ce multiplexage est

dit temporel dans la mesure où les données 
orrespondant à 
haque voie sont inter
alés dans

le temps. Ainsi 
ir
ulent séquentiellement et 
y
liquement sur la voie HV des informations

appartenant à di�érentes sour
es (
f. �gure 7.7).

N N

"mots" 
ontenant

l'information de 
haque voie

1 2 3 1 2 3

1ère information des 2ème information des

voies 1 à N voies 1 à N

Figure 7.7 � Stru
ture temporelle de multiplexage par répartition temporelle des ressour
es.

Le multiplexage peut être e�e
tué soit après l'opération d'é
hantillonnage de 
haque voie et

avant le 
odage, soit après 
elui-
i.

Lors du démultiplexage des voies, 
'est-à-dire de la ré-a�e
tation des données en fon
tion de

leur sour
e d'origine, il faut que l'on puisse distinguer les di�érents é
hantillons. Pour 
ela,

on inter
ale dans la su

ession de données un mot de repère, dont l'o

urren
e est égale à la

période d'é
hantillonnage (�gure 7.8).

L'ensemble 
onstitué du mot de repère et de l'information de même rang pour toutes les voies

est appelé trame. Sa durée est égale à Te.

7.3.2 Bande passante

Le multiplexage par répartition temporelle s'analyse le plus fa
ilement en 
onsidérant la �-

gure 7.9(a). On suppose que toutes les sour
es d'information sont é
hantillonnées à la fréquen
e
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N1 2 3N1 2 3

Te

mots de repère

Figure 7.8 � Mot de repère.

de Nyquist ou à une fréquen
e supérieure. Un 
ommutateur entrela
e les données suivant un

ordre préétabli. Le même ordre permet de désentrela
er les données.

.

.

.

.

.

.

s1

s2 s2

sN

s2
..... .....

.....

.....

signal en bande de base

syn
hronisation


anal

s1

s1

s2

s1

t

sN

sN

sour
e 1

sour
e 2

sour
e N

utilisateur 1

utilisateur 2

utilisateur N

Figure 7.9 � S
héma de multiplexage temporel.

Si tous les signaux sont é
hantillonnés à une même fréquen
e, le 
ommutateur passe régulière-

ment d'un signal à l'autre. Dans le 
as de signaux é
hantillonnés à des fréquen
es di�érentes,

les signaux les plus larges en bande de base prennent une partie plus signi�
ative du multiplex.

La bande de base minimale pour un système TDM se détermine aisément. Supposons que l'on

travaille à la fréquen
e de Nyquist pour tous les signaux. Pendant l'intervalle de temps T , le
signal i fournit 2WiT é
hantillons. Le total pour tous les signaux vaut don


ns =
∑

i

2WiT (7.3)

Si le signal �nal est en bande de base et que 
ette bande vaut W , il faut impérativement 2W
é
hantillons au moins pour le 
ara
tériser. Pour l'intervalle T , on a don


ns = 2WT =
∑

i

2WiT (7.4)

Dès lors,

W =
∑

i

Wi (7.5)


e qui est rigoureusement identique au 
as du multiplexage FDM.
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7.3.3 A

ès au multiplex

Tout 
omme pour le FDM, l'a

ès est généralement statique. Néanmoins, le TDM o�re un

moyen aisé de transmettre des informations individuelles à des débits di�érents. Le s
héma

d'a

ès doit alors être 
onvenu entre l'extrémité émettri
e et l'extrémité ré
eptri
e. Le s
héma

de partage par répartition temporelle est illustré à la �gure 7.10.

Fréquen
e

Temps

Canal physique

1
2 3 4 1 2

3 4

Utilisateur 1

Utilisateur 2

Non o

upé

1,2,3,4 : timeslots

Figure 7.10 � Partage des ressour
es par multiplexage en temps : le TDMA (Time Division

Multiple A

ess).

7.3.4 Exemple de multiplexage temporel : système téléphonique nu-

mérique PCM 30 voies européen

Cara
téristiques

Il permet de transmettre simultanément sur un même support 30 voies téléphoniques 
lassiques :

� B = bande passante du signal à 
oder = 300− 3400 [Hz] et fe = 8 [kHz].
� numérisation PCM ave
 loi A (=87,6) de 
ompression 13 segments sur 8 bits, Dbv = débit

basse vitesse = 64 [kb/s].
� multiplexage temporel à 32 intervalles de temps (IT) 
omprenant un IT de verrouillage de

trame (VT) et un IT de signalisation (SI).

Stru
ture de la trame

Elle est dé
oupée en 32 IT, 
ha
un 
omposé d'un o
tet (8 bits), numérotés de 0 à 31 (�gure 7.11).

0 1 2 ...... 16 ...... 30 31

Figure 7.11 � Stru
ture de la trame.

La période d'é
hantillonnage Te = 1/fe = 125 [µs], 
orrespond à la durée de la trame. Chaque

IT possède une durée égale à tIT = 125
32

= 3, 9 [µs]. Chaque bit dure Tb =
3,9
8

= 488 [ns]. Ces
valeurs sont représentées à la �gure 7.12.

Le débit de la voie HV 
omposée de 30 voies est don
 D = 32 × 8 × 8 = 2048 [kb/s] =
2, 048 [Mb/s]. On parle de trame à 2 [Mb/s]
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0 1 2 ...... 16 ...... 30 31

87654321 3, 9[µs]

488[ns]

Figure 7.12 � Stru
ture de la trame au niveau bit.

R�le des IT

� Les IT de 1 à 15 et 17 à 31 sont a�e
tés aux voies de parole téléphonique ou à la transmission

numérique (données, fax, . . .). Ils ont 
ha
un un débit de 64 [kb/s].
� L'IT0 
ontient le mot de repère évoqué pré
édemment, appelé mot de verrouillage de trame,

et noté VT. Il ne joue pas le même r�le selon qu'il se situe dans une trame paire ou impaire.

Le verrouillage de trame permet de syn
hroniser les équipements de ré
eption sur le 
y
le des

données émises à la mise en mar
he du système, puis d'une manière périodique a�n de véri�er

le syn
hronisme du fon
tionnement général. Dans 
e 
as pré
is, on parle de verrouillage

regroupé, 
'est-à-dire dont les informations sont groupées dans un même IT en tête de trame.

Il existe un autre type de verrouillage dit réparti si le mot possède des informations lo
alisées

dans plusieurs IT di�érents, ou bien sur plusieurs trames di�érentes.

� L'IT16 est réservé à la signalisation des 30 voies. Celle-
i a pour but de transmettre les

informations relatives ou pas aux données (maintenan
e des systèmes, tests, 
ommandes,

gestion du réseau...), pour la 
ommande des opérations de 
ommutation. Elle est i
i de

type �hors o
tet regroupé�, 
'est-à-dire regroupé dans l'IT 16. Chaque IT16 a pour r�le la

signalisation simultanée de deux voies. Il faut don
 15 IT16, soit 15 trames, pour signaliser

toutes les voies de données. L'ensemble de 
es 15 trames, auxquelles on ajoute une 16-ième

trame appelée trame 0, 
onstitue une multitrame. Cette trame 0 
omprend dans l'IT16 un

mot de repère, appelé mot de verrouillage multitrame (VMT) né
essaire lors du multiplexage

à la syn
hronisation des trames. Il o

upe les quatre premiers bits de 
et IT (�gure 7.13).

7.4 Multiplexage par répartition de 
odes

Le prin
ipe de base est 
elui de l'étalement de spe
tre. Le multiplexage par répartition de 
odes

ne né
essite ni une allo
ation �xe des fréquen
es 
omme en FDM, ni un séquen
ement stri
t


omme en TDM, 
omme le montre la �gure 7.14.

Le fa
teur limitatif le plus important est 
elui des inter
orrélations entre utilisateurs dès lors

que les utilisateurs re
ourent à des 
odes distin
ts. Considérons, pour l'analyse, la situation de

la �gure 7.15.

On prend le 
as le plus défavorable de deux utilisateurs i et j parfaitement en phase et travaillant

à la même fréquen
e. On 
her
he à déterminer l'e�et d'interféren
e dû à l'utilisateur i à la

sortie du ré
epteur j. Soit bi(t) la séquen
e (en forme bipolaire −1, +1) de l'utilisateur i. Soit
un dé
alage τ entre les horloges de référen
e des deux utilisateurs. On montre aisément que
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d′c′b′a′dcba
IT16 trame T15

125[µs]

T10 T11 T12 T13 T14 T15

125[µs]

IT IT IT IT IT IT
0 1 2 3

1101100X

XXXXXΦ1X

XXΦX0000

d′c′b′a′dcba

d′c′b′a′dcba

7654321P

Mot alterné :

1 trame sur 2

488[ns]

Mot VMT

IT16 trame T1

IT16 trame T2

Signalisation

Signalisation

Signalisation

Voie 16

Voie 17

Voie 30

X : bits libres

Φ : bits d'alarmes

16 31

T9T8T7T6T5T4T3T2T1T0

Signalisation

Voie 1

Signalisation

Voie 2

Signalisation

Voie 15

Mot VT IT16 de la T0
IT1 à 15
IT17 à 31

30 voies téléphoniques

MULTITRAME

3, 9[µs]

Figure 7.13 � Multitrame (d'après [9℄).

Fréquen
e

Temps

Code

Canal physique

Utilisateur 1

Utilisateur 2

Non o

upé

Figure 7.14 � Multiplexage de ressour
es par répartition de 
ode (Code Division Multiple

A

ess).
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i

Transmetteur du

ème utilisateur j

Transmetteur du

ème utilisateur

i ème utilisateur

Ré
epteur du

bi(t− τ )

ci(t− τ )

cos (2πfct)

i j

cos (2πfct)

bj(t) = 0
utilisateur

utilisateur


anal

cos (2πfct) cos (2πfct)

ci(t− τ )

cj(t)

cj(t)

dé
ision

organe

vi > 0 vj > 0
soit 0 si

soit 1 si soit 0 si

soit 1 si

vi < 0 vj < 0

seuil à 0

seuil à 0

vi vj
j ème utilisateur

Ré
epteur du

∫ Tb

0
dt

∫ Tb

0
dt

organe

dé
ision

Figure 7.15 � S
héma d'analyse pour l'inter
orrélation des séquen
es étalées.
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l'interféren
e de i à l'entrée de l'organe de dé
ision de j vaut

vj(τ)|bj(t)=0 =

∫ Tb

0

bi(t− τ)cj(t)ci(t− τ)dt (7.6)

= ±
∫ Tb

0

cj(t)ci(t− τ)dt (7.7)

On peut 
hoisir de réé
rire 
ette équation sous la forme

vj(τ)|bj(t)=0 = ±TbΓji(τ) (7.8)

où

Γji(τ) =
1

Tb

∫ Tb

0

cj(t)ci(t− τ)dt (7.9)

Cette moyenne temporelle est appelée fon
tion d'inter
orrélation partielle. Pour avoir une in-

terféren
e nulle, il faudrait que 
ette fon
tion soit nulle pour toute valeur τ . En général, les sé-

quen
es à longueur maximale n'ont pas de bonnes propriétés d'inter
orrélation partielle 
omme

le montre la �gure 7.16 ; la fon
tion d'inter
orrélation est loin d'être nulle pour toute valeur de

τ .

-15

-20

-10

-5

0

5

10

15

20

-60

-40

-20

0

20

40 60

Delai τ

Rij(τ)

Figure 7.16 � Fon
tion d'inter
orrélation de deux séquen
es pseudo-aléatoires de période N =
63 ([6, 1] et [6, 5, 2, 1]) (d'après [15, page 608℄).

7.4.1 Séquen
es de Gold

En pratique, les séquen
es à longueur maximale sont de piètres 
andidats pour une utilisation

partagée. On utilise plut�t une 
lasse de 
odes parti
ulière appelée séquen
es de Gold. Il

est possible de montrer qu'un 
hoix pré
is des séquen
es à longueur maximale 
onduit à des

séquen
es de Gold dont la fon
tion d'inter
orrélation n'a que trois valeurs distin
tes.
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Le bon sens impose que 
haque utilisateur ait son propre 
ode. On peut néanmoins montrer [16,

page 128℄ qu'à la 
ondition d'avoir des émetteurs dont les phases sont non 
orrélées, la trans-

mission est possible en présen
e d'utilisateurs re
ourant tous à un 
ode unique.

7.5 Dis
ussion

7.5.1 Combinaison de te
hniques de multiplexage

Les te
hniques de multiplexage ne sont pas né
essairement utilisées isolément. En e�et, dans le


as pratique du GSM, l'opérateur alloue une série de 
anaux fréquentiels. Ces 
anaux sont ensuite

partagés entre utilisateurs par multiplexage à répartition temporelle. On parle de te
hnique

FD/TDMA. Un tel s
héma est illustré à la �gure 7.17. De plus, il y a séparation des bandes

de fréquen
e suivant que le signal va de la station de base vers l'utilisateur ou l'inverse. Cette

te
hnique est parfois appelée FDD/TDD (le se
ond D signi�ant Duplex).

Fréquen
e

Temps

A

B

C

A,B,C : porteuses

2 3 4 1 2

3 4

Utilisateur 1

Utilisateur 2

Non o

upé

1,2,3,4 : timeslots

1

Figure 7.17 � Partage de ressour
es par multiplexage en temps et en fréquen
e, 
ombinaison

du TDMA et du FDMA.

Dans le 
as du standard améri
ain IS-95, le multiplexage temporel est rempla
é par un multi-

plexage par spe
tre étalé ; il s'agit alors de FD/CDMA.

7.5.2 Comparaison de normes de mobilophonie

Le tableau 7.1 
ompare les prin
ipaux standards de 
ommuni
ations pour mobiles.
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Système GSM DCS-1800 IS-54 IS-95 (DS)

Mode d'a

ès TDMA/FDMA TDMA/FDMA TDMA/FDMA CDMA/FDMA

Bande de fréquen
e

Montée (Mhz) 935-960 1710-1785 869-894 869-894

Des
ente (Mhz) 890-915 1805-1880 824-849 824-849

(Europe) (Europe) (USA) (USA)

Espa
ement des 
anaux

Des
ente (kHz) 200 200 30 1250

Montée (kHz) 200 200 30 1250

Modulation GMSK GMSK π/4 DQPSK BPSK/QPSK

Puissan
e du mobile

Max./Moyenne 1W/125mW 1W/125mW 600mW/200mW 600mW

Codage de voix RPE-LTP RPE-LTP VSELP QCELP

Débit voix (kb/s) 13 13 7,95 8 (var.)

Débit binaire 
anal

Montée (kb/s) 270,833 270,833 48,6

Des
ente (kb/s) 270,833 270,833 48,6

Trame (ms) 4,615 4,615 40 20

Table 7.1 � Comparaison de standards de 
ommuni
ation pour mobiles.
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Chapitre 8

Étude du tra�


8.1 Introdu
tion

La di�
ulté majeure de l'exploitation d'un réseau 
onsiste en son dimensionnement. En e�et,

tout est question de 
ompromis entre le risque de blo
age dû à une o

upation de toutes les

ressour
es et le 
oût qu'entraîne un sur-dimensionnement d'un réseau.

Le réseau téléphonique est 
ritique du point de vue de la gestion du tra�
, en raison de sa

stru
ture de réseau 
ommuté (
f. illustration à la �gure 8.1). En e�et, une 
ommuni
ation

o

upe une voie de bout en bout pour la totalité de la durée d'un appel. Il faut don
 éviter

qu'un 
ommutateur n'ait plus au
un 
ir
uit disponible lors de l'établissement d'un nouvel appel.

lien aérien

Téléphone

Téléphone

Commutateur lo
alCommutateur lo
al intermédiaire

Commutateur

�ls de 
uivre �bre optique �ls de 
uivre

Figure 8.1 � Stru
ture d'un réseau 
ommuté

La question ne pourra se résoudre qu'en termes statistiques. Il semble en e�et impensable de

fournir une ligne à 
haque utilisateur. En général, on met en pla
e N lignes, dont le nombre est

nettement inférieur au nombre d'utilisateurs, que les di�érents utilisateurs doivent se partager.

Il arrive alors qu'un utilisateur, voulant a

éder au réseau, trouve toutes les lignes o

upées.

Ce phénomène s'appelle 
ongestion du réseau. Toute la problématique du dimensionnement du

réseau est don
 de déterminer le nombre de lignes N à installer pour que la probabilité de


ongestion du réseau soit inférieure à une 
ertaine probabilité (par exemple 0,01 ou 0,02). Pour


ela, on devra tenir 
ompte de la manière dont les utilisateurs utilisent le réseau, par exemple,

en prenant en 
ompte le nombre moyen d'appels observés pendant un 
ertain laps de temps et

la durée moyenne des appels.
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Ce 
hapitre traite prin
ipalement le 
as d'un fais
eau entre deux 
ommutateurs. Le dimension-

nement d'un réseau de 
ommutateurs inter
onne
tés relève d'une analyse approfondie du tra�


et d'une réelle optimisation des ressour
es.

8.1.1 Cara
térisation du tra�


Une 
lassi�
ation simple des te
hniques d'analyse du tra�
 di�éren
ie les systèmes à perte

et les systèmes à délai. Dans un système à perte, une tentative d'appel survenant lors d'une


ongestion est ignorée. Un système à délai mémorise les appels ex
édentaires dans une queue

jusqu'à la libération d'une ressour
e.

Une 
ommuni
ation téléphonique né
essite l'établissement d'un 
ir
uit. Un 
ir
uit est un 
he-

min de 
ommutation �xe pour la totalité de la durée de la 
ommuni
ation. Il doit être établi,

maintenu et relâ
hé en �n de 
ommuni
ation. L'établissement et le relâ
hement de la 
ommu-

ni
ation s'e�e
tuent au moyen de signaux de signalisation. La gestion du tra�
 téléphonique se

fait généralement par un système à perte

1

.

Contrairement à une 
ommuni
ation téléphonique, les données (Internet, . . . ) sont envoyées

par un mé
anisme de transmission par paquets. Les routeurs, 
entres de 
ommutation pour les

paquets d'information Internet, gèrent une mémoire limitée, organisée en plusieurs queues. La

gestion de 
es queues est 
omplexe et elle introduit un délai aléatoire de transmission. Il arrive

également qu'un routeur supprime 
ertains paquets en raison d'un manque de ressour
es.

Intensité, tra�
 et 
harge : quelles mesures ?

Un réseau téléphonique est 
onstitué de deux types de lignes :

� les lignes où vont transiter les 
ommuni
ations ou les données,

� les lignes où va transiter la signalisation né
essaire à l'établissement de la liaison entre deux

terminaux.

Pour le dimensionnement, on ne 
onsidère que les lignes transportant l'information des utilisa-

teurs (à l'ex
lusion des lignes utilisées par exemple pour la gestion du réseau ou la signalisation).

On supposera disposer d'un fais
eau à N 
anaux entre deux 
ommutateurs (
f. �gure 8.2). Le

dimensionnement 
onsiste à trouver une relation entre la 
harge du réseau et la probabilité de


ongestion.

La nature aléatoire du tra�
 s'exprime par le biais de deux pro
essus sto
hastiques : les ten-

tatives d'appel et le temps de 
ommuni
ation. On suppose habituellement qu'une tentative

d'appel d'un utilisateur est indépendante de toute tentative d'un autre utilisateur. Dès lors, le

nombre de tentatives d'appel pendant tout intervalle de temps est indéterminé. Dans la ma-

jorité des 
as, le temps de 
ommuni
ation est également aléatoire. Aussi, la 
harge de tra�


d'un réseau est fon
tion de la fréquen
e des appels et du temps moyen de 
ommuni
ation. La

�gure 8.3 montre le pro�l d'a
tivité d'un fais
eau 
omposé de 5 lignes.

Pour mesurer la 
apa
ité du fais
eau, on pourrait prendre le volume de tra�
 é
oulé pendant la

période d'observation ; il s'agirait dans 
e 
as de l'intégrale du nombre de 
ommuni
ations ins-

tantanées, tel que représenté à la �gure 8.3. En pratique, on préfère utiliser la notion d'intensité

de tra�
.

1. Sauf pour les appels prioritaires pour lesquels le système libère les 
ir
uits né
essaires.
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Canal dédié à la signalisation

Canal pour les 
ommuni
ations

Tronçon

Commutateur Commutateur

Figure 8.2 � Fais
eau entre deux 
ommutateurs.

2

4

5

1

Nombre de 
ommuni
ations

3

5

temps

temps

Pro�l d'utilisation des lignes

4

3

2

1

0

Figure 8.3 � Pro�l d'a
tivité d'un fais
eau 
omposé de 5 lignes.
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Dé�nition 25 [Intensité du tra�
 é
oulé℄ L'intensité du tra�
 é
oulé I est le rapport entre

le volume du tra�
 observé et la période d'observation T .

En fait, l'intensité telle que dé�nie 
i-avant est un estimateur du tra�
 é
oulé ; en toute rigueur,

il faudrait augmenter indé�niment la période T pour éliminer tout �e�et de bord�. Soit T , la
période d'observation

2

. La fon
tion indi
atri
e 1i(t) du 
ir
uit i vaut 1 si le 
ir
uit est utilisé

au temps t ; elle vaut 0 sinon. Pour un fais
eau de N 
ir
uits, l'intensité vaut alors

I =

∫ T
0

∑N
i=1 1i(t)dt

T
=

∑N
i=1

∫ T
0
1i(t)dt

T
(8.1)

L'intensité de tra�
 représente don
 l'o

upation moyenne du lien durant une 
ertaine période.

Bien que l'intensité soit adimensionnelle, 
omme l'expression d'un rapport entre deux temps,

on parle d'Erlang, noté [E], du nom du théori
ien Danois, père de la théorie. Remarquons

que la 
apa
ité maximale d'un 
ir
uit est de 1 Erlang. Dans un système à perte, la 
apa
ité

n'ex
ède jamais le nombre de 
ir
uits.

En pratique, on utilise deux paramètres importants pour 
ara
tériser le tra�
 :

1. le taux moyen d'appels entrants λe, mesuré en [appels/s],

2. la durée moyenne d'un appel tm, en [s/appel]. Si #T représente le nombre d'appels e�e
-

tués pendant l'intervalle de temps T , alors la durée moyenne vaut

tm =

∑N
i=1

∫ T
0
1i(t)dt

#T
(8.2)

Charge. Ces deux paramètres permettent de dé�nir la 
harge.

Dé�nition 26 [Charge de tra�
 é
oulé℄ On dé�nit la 
harge é
oulée d'un fais
eau, expri-

mée en Erlang, 
omme le produit du taux d'appels entrants par la durée moyenne d'appel. On

la note Ae.
Ae = λetm (8.3)

Il est important de remarquer que l'on ex
lut, dans la 
harge, la 
harge due à la signalisation.

D'autre part, la 
harge, qui est une 
ombinaison de deux paramètres moyens, ne fournit au
une

information quant à une 
orrélation éventuelle entre le taux d'appel et la durée.

Exemple : l'analyse des appels d'une so
iété révèle un taux d'appel de 40 appels par heure et

une durée moyenne par appel de 5 minutes. La 
harge vaut don


40

60
× 5 =

200

60
= 3, 3 [E] (8.4)


e qui signi�e qu'il y a en moyenne 3,3 lignes o

upées si la distribution est uniforme.

Charge de référen
e. La 
harge maximale disponible sur un fais
eau à N liens vaut théo-

riquement N . Elle 
orrespond à une o

upation permanente des 
anaux. En pratique, 
omme

les appels ont lieu de manière aléatoire, il arrive que le fais
eau soit 
ongestionné, 
'est-à-dire

que les N liens soient o

upés. La 
harge pratique est don
 inférieure à N .

Lors de l'étude du tra�
, il faut distinguer deux types de 
harge :

2. Il s'agit typiquement d'une période de 15 minutes.
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1. la 
harge o�erte, 
'est la 
harge qui serait transportée par le réseau s'il pouvait honorer

toutes les demandes de 
onnexion.

2. la 
harge é
oulée ; la 
harge réellement mesurée dans le réseau.

La 
harge o�erte est utilisée dans la dé�nition de la 
harge A.

Dé�nition 27 La 
harge o�erte A vaut

A = λtm (8.5)

où λ est le taux moyen de tentatives d'appels.

Par 
onstru
tion, la 
harge é
oulée est inférieure à N . La 
harge o�erte est théoriquement sans

limite. La probabilité de rejet, notée B, s'é
rira 
omme le quotient du nombre d'appels rejetés

au nombre de tentatives n (ne est le nombre d'appels a

eptés) dans tout intervalle de temps,

par exemple la durée moyenne de 
ommuni
ations. Ainsi,

B =
n− ne
n

=
A− Ae
A

(8.6)

Le nombre de 
anaux né
essaire pour assurer une borne maximale à la probabilité de rejet d'un

appel en raison d'une 
ongestion momentanée est prin
ipalement une fon
tion de la 
harge

maximale souhaitée par l'opérateur du réseau. Comme 
ette 
harge �u
tue au 
ours du temps,

il est d'usage de 
hoisir une 
harge de référen
e pour une heure de pointe, représentant la


harge à allouer par utilisateur. Par exemple, on 
onsidère que le probabilité qu'un utilisateur

o

upe une ligne en heure de pointe est de l'ordre de 0, 02 à 0, 1. Cela revient à admettre que le

réseau doit réserver une 
apa
ité A0 de 0, 02 à 0, 1 [E] par utilisateur. Dès lors, le nombre total
d'utilisateurs ayant a

ès au réseau en heure de pointe, pour une probabilité de blo
age �xée,

vaut

M =
A

A0
(8.7)

Une dernière remarque s'impose. Lors du dimensionnement d'un réseau d'entreprise, il importe

de tenir 
ompte de plusieurs types de tra�
. À défaut de renseignement statistique sur le tra�


téléphonique d'une entreprise, on formule l'hypothèse suivante (valeurs statistiques admises par

la profession, d'après [29, page 27℄) : le tra�
 d'un poste, à l'heure de pointe, est en moyenne


onsidéré 
omme étant égal à 0, 12 [E] se répartissant 
omme suit :

� 0,04 [E] en tra�
 sortant,

� 0,04 [E] en tra�
 entrant,

� 0,04 [E] en tra�
 interne à l'entreprise.

8.2 Analyse statistique des appels

Un réseau peut être dimensionné de plusieurs façons. Dans un 
ertain 
as, il faut pouvoir

a

epter un a

ès simultané pour tous les utilisateurs. Ce système, pour performant qu'il soit,

est extrêmement 
oûteux. Une appro
he plus réaliste 
onsiste à dimensionner un réseau sur

base d'une 
apa
ité 
ommer
ialement souhaitable en période de pointe. Comme préalable se

pose alors la question de déterminer les paramètres de dimensionnement.

Pour rappel, pour 
al
uler la 
apa
ité d'un réseau téléphonique, il faut tenir 
ompte de deux

paramètres :

1. le nombre de tentatives d'appels durant une période déterminée et

2. la durée des appels.
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8.2.1 Pro
essus de dénombrement

Pour la modélisation de la distribution des appels, nous allons partir d'un pro
essus aléatoire de

dénombrement ou de 
omptage D(t) qui détermine pour tout temps t le nombre d'appels initiés
après t = 0. Autrement dit, D(t) 
ompte le nombre d'appels e�e
tués pendant l'intervalle ]0, t].
Il s'agit bien évidemment d'un pro
essus à valeurs entières dont les réalisations se représentent

sous la forme d'une fon
tion en es
aliers. À la �gure 8.4, on 
onstate qu'au temps t = 8∆T ,

inq appels ont été initiés.

D(t)

t

D1

D8

1

2

3

4

5

∆T

Figure 8.4 � Réalisations d'un pro
essus de 
omptage.

Plut�t que 
ette 
ourbe, 
'est le nombre d'o

urren
es pendant tout intervalle [t1, t2] qui nous in-
téresse ; après tout, on devra bien se 
hoisir une durée typique pour l'analyse. Imaginons que l'on

puisse dé
ouper l'axe temporel en intervalles de largeur △T tellement étroits qu'ils 
ontiennent

tout au plus une o

urren
e. Cha
un de 
es intervalles, référen
és par ]n△T, (n + 1)△T ], est
le lieu d'une variable aléatoire binaire Dn. Dès lors, Dn = 1 implique qu'une tentative d'appel

a été menée pendant l'intervalle de temps ]n△T, (n + 1)△T ], Dn = 0 mentionne qu'au
une

tentative d'appel n'a été menée pendant 
et intervalle. À supposer que 
es variables aléatoires

soient indépendantes, la résultante n'est autre qu'une loi binomiale.

Par généralisation, pour toute 
onstante positive λ > 0, il est possible de 
hoisir une valeur pour
△T telle que λ△T < 1 (pour pouvoir dé�nir une probabilité). Si λ△T représente la probabilité

de réussite

3

de 
ha
une des variablesD1, D2, . . ., 
onsidérant un intervalle de temps T = m△T ,
on obtient les probabilités suivantes :

1. probabilité d'avoir n tentatives d'appels pendant la durée T et don
 sur les m intervalles

de temps ∆T (n réussites pour la loi binomiale) :

(λ∆T )n =

(
λT

m

)n
(8.8)

2. probabilité d'avoir m− n intervalles de temps ∆T sans tentative d'appel (m− n é
he
s)

(1− λ∆T )m−n =

(
1− λT

m

)m−n
(8.9)

3. Et don
 (1− λ∆T ) représente l'absen
e de tentative.
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Le nombre d'o

urren
es Dm obtenues pendant un intervalle de temps T = m△T obéit dès lors

à la fon
tion de densité de probabilité suivante (loi binomiale)

fDm
(n) = p(Dm = n) =

{
Cn
m

(
λT
m

)n (
1− λT

m

)m−n
n = 0, 1, . . . , m

0 n 6= 0, 1, . . . , m
(8.10)

où Cn
m = m!

n!(m−n)! . La variable aléatoire Dm, représentant le nombre de tentatives d'appel

pendant l'intervalle de temps T , est une variable aléatoire binomiale de moyenne m(λT
m
) = λT .

Le paramètre λ représente don
 le nombre moyen de tentatives d'appels par unité de temps

tandis que λT représente le nombre moyen de tentatives d'appels sur l'intervalle de temps T .

8.2.2 Variable aléatoire de Poisson : dé�nition et propriétés

Le développement pré
édent présuppose une durée parti
ulière△T . Il est intéressant d'examiner

le 
omportement lorsque m→ +∞, 
'est-à-dire lorsque △T → 0.

La densité de probabilité du dénombrement (relation 8.10) peut s'é
rire sous la forme suivante,

pour n = 0, 1, . . . , m,

fDm
(n) = Cn

m

(
λT

m

)n(
1− λT

m

)m−n
(8.11)

=
m!

n!(m− n)!

(
λT

m

)n(
1− λT

m

)m−n
(8.12)

=
m(m− 1) . . . (m− n+ 1)

n!

(λT )n

mn

(
1− λT

m

)m−n
(8.13)

=
m(m− 1) . . . (m− n+ 1)

mn

(λT )n

n!

(
1− λT

m

)m−n
(8.14)

Le premier fa
teur de 
e produit 
ontient n termes au numérateur et également n termes au

dénominateur. De plus, à mesure que m → +∞, 
haque rapport de type

(m−...)
m

tend vers 1.
Dès lors,

lim
m→+∞

m(m− 1) . . . (m− n+ 1)

mn
= 1 (8.15)

Le se
ond fa
teur ne dépend pas de m. Quant au troisième terme, il vaut

(
1− λT

m

)m−n
=

(
1− λT

m

)m
(
1− λT

m

)n (8.16)

et don


lim
m→+∞

(
1− λT

m

)m
(
1− λT

m

)n = lim
m→+∞

(
1− λT

m

)m
= e−λT (8.17)

Dès lors,

lim
m→+∞

fDm
(n) =

{
(λT )n

n!
e−λT n = 0, 1, . . . , m

0 n 6= 0, 1, . . . , m
(8.18)

qui n'est autre que la variable aléatoire de Poisson de paramètre α = λT . Étant donné que

l'on à fait tendre m vers l'in�ni, l'indi
e de la variable aléatoire Dm n'a plus de raison d'être ;

nous é
rirons don
 D.
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Dé�nition 28 [Variable aléatoire de Poisson℄ On appelle variable aléatoire de Poisson

une variable aléatoire D dis
rète dont la densité de probabilité est

fD(n) =

{
(λT )n

n!
e−λT n = 0, 1, . . .

0 n 6= 0, 1, . . .
(8.19)

Elle représente don
 i
i la probabilité d'avoir n tentatives d'appels pendant la durée T .

La loi de Poisson fait intervenir un taux moyen d'o

urren
es λ et un intervalle de temps

d'observation T ; 
es dénominations sont justi�ées par le théorème suivant (on dé�nit α = λT ) :

Théorème 29 [34, page 63℄ Soit à e�e
tuer n tirages. Pour 
haque tirage, la probabilité de

l'événement pertinent est dé�nie égale à

α
n
, où α > 0 est une 
onstante et n > α. Soit une

variable aléatoire Sn qui dénombre les o

urren
es d'événements pertinents pour n tirages ef-

fe
tués. Lorsque n→ +∞, la densité de probabilité de Sn 
onverge vers une loi de Poisson de

paramètre α.

Démonstration.

Elle dé
oule des développements pré
édents.

Théorème 30 L'espéran
e et la varian
e d'une variable aléatoire de Poisson valent toutes

deux α

µD = α (8.20)

σ2
D = α (8.21)

Démonstration.

Démontrons la relation 8.20.

µD =

+∞∑

i=0

ifD(i) =

+∞∑

i=0

i
αi

i!
e−α (8.22)

Le terme i = 0 de la sommation vaut 0. Après le 
hangement de variable i = j + 1,

µD =

+∞∑

j=0

(j + 1)
αj+1

(j + 1)!
e−α = α

+∞∑

j=0

αj

j!
e−α

︸ ︷︷ ︸
1

= α (8.23)

Le fait que la somme soit égale à 1 dé
oule du fait que la fon
tion de répartition de la loi

de Poisson vaut 1 à l'in�ni (la somme des probabilités dé�nies par la variable aléatoire de

Poisson vaut 1). La relation 8.21 se démontre d'une manière identique.

Ainsi don
, α = λT est égal à la valeur moyenne de la loi de Poisson, d'où le fait que λ = α
T

est la valeur moyenne du nombre d'o

urren
es par unité de temps ; on parle parfois d'intensité

pour λ.
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Question 31 Soit un taux moyen d'appels de 4 par minute. Quelle est la probabilité P≥5

d'avoir 5 appels ou plus pendant une minute ?

Réponse

Par la variable de Poisson,

P≥5 =
+∞∑

i=5

fD(i) = 1−
4∑

i=0

fD(i) (8.24)

Comme α = λT = 4× 1 = 4,

P≥5 = 1−
(
1 +

41

1!
+

42

2!
+

43

3!
+

44

4!

)
e−4 = 0, 37 (8.25)

8.2.3 Pro
essus de Poisson

Prenons un intervalle de temps ]t0, t1]. Le nombre d'o

urren
es pendant 
et intervalle de temps

est fourni par la loi de Poisson ave
 T = t1− t0. Ce résultat s'appuie sur le fait que les tirages
que représente la loi binomiale sont indépendants entre eux. Dès lors, les o

urren
es relevées

sur des intervalles de temps sans re
ouvrement sont indépendants. À la limite, lorsque T → 0,
le dénombrement résulte d'une su

ession d'observations indépendantes, toutes dé
rites par une

loi de Poisson. Il s'agit dans 
e 
as d'un pro
essus de Poisson.

Dé�nition 32 [Pro
essus de Poisson℄ Un pro
essus de dénombrement D(t) est un pro-


essus de Poisson d'intensité λ s'il respe
te la double 
ondition suivante

(1) le nombre d'o

urren
es durant tout intervalle de temps ]t0, t1], D(t1)−D(t0), est une va-

riable aléatoire de Poisson d'espéran
e λ(t1 − t0), et
(2) pour toute paire d'intervalle ]t0, t1], ]t2, t3], le nombre d'o

urren
es durant 
es intervalles,

D(t1)−D(t0) et D(t3)−D(t2), sont des variables aléatoires indépendantes.

8.2.4 Temps entre o

urren
es

Le pro
essus de Poisson est sans mémoire puisqu'il garantit l'indépendan
e entre intervalles

su

essifs. Cette propriété permet de 
al
uler le temps entre o

urren
es. En e�et, si on appelle

Xn la variable aléatoire de temps entre les o

urren
es n et n − 1, si de plus X1 est dé�nie à

partir d'un temps supposé être le lieu d'une o

urren
e, on établit le théorème suivant (voir

�gure 8.5 pour l'illustration des variables Xn).

Théorème 33 Les variables aléatoires X1, X2, . . . représentant les temps entre o

urren
es

d'un pro
essus aléatoire de Poisson d'intensité λ sont indépendantes et elles ont pour densité

de probabilité

fXn
(x) =

{
λe−λx x ≥ 0
0 x < 0

(8.26)
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D(t)

t

1

2

3

4

5

X1 X2 X3 X4 X5

o

urren
e 4

o

urren
e 1

Figure 8.5 � Pro
essus de Poisson : dé�nition des variables aléatoires Xn.

Démonstration.

Soient xi les réalisations des variables aléatoires Xi. L'o

urren
e n− 1 se produit à l'instant

tn−1 = x1 + . . .+ xn−1 (8.27)

Pour toute valeur x > 0, Xn > x si et seulement s'il n'y a au
une o

urren
e durant l'inter-

valle de temps ]tn−1, tn−1 + x]. Par dé�nition du pro
essus de Poisson, la valeur des variables

X1, . . . , Xn−1 n'intervient pas dans la détermination de la probabilité au-delà de tn−1 (hypo-

thèse d'un pro
essus de poisson sans mémoire). Dès lors

p(Xn > x|X1 = x1, . . . , Xn−1 = xn−1) = p(D(tn−1 + x)−D(tn−1) = 0) (8.28)

Or, 
ette probabilité représente la probabilité de réalisation d'une variable aléatoire de Poisson

dont le paramètre n est nul, don
 la probabilité de ne pas avoir de tentative d'appel pendant

l'intervalle de temps ]tn−1, tn−1 + x]. Dès lors,

p(D(tn−1 + x)−D(tn−1) = 0) = e−λx (8.29)

Xn est don
 bien indépendante des autres Xi et sa fon
tion de répartition vaut

FXn
(x) = p(Xn ≤ x) = 1− p(Xn > x) =

{
1− e−λx x > 0
0 x ≤ 0

(8.30)

dont la dérivée 
orrespond à la densité de probabilité fournie par la relation 8.26.

La variable aléatoire Xn est une variable aléatoire exponentielle dont l'espéran
e E {X} = 1
λ
.

En fait, le nombre d'o

urren
es moyen par unité de temps du pro
essus de dénombrement

est inversement proportionnel à la durée moyenne séparant deux o

urren
es. Aussi, le temps

moyen à attendre est don
 inversement proportionnel au nombre moyen d'o

urren
es.

Cette formule permet de 
onstater que la probabilité de ne pas avoir d'appel pendant une

période T diminue exponentiellement au 
ours du temps, résultat repris 
omme 
i-après.

Corollaire 34 La probabilité P0 de ne pas avoir d'o

urren
es pendant l'intervalle de temps t
vaut

P0(λt) = e−λt (8.31)
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Question 35 Soit un 
entral téléphonique desservant 10.000 utilisateurs. Supposons que


haque utilisateur génère une tentative d'appel par heure. Déterminez la 
aden
e (en nombre

de fois par se
onde) à laquelle deux appels arrivent à moins de 0,1 [s℄ entre eux.

Réponse

Le taux moyen d'appels vaut

λ =
10.000

3600
= 2, 78 [appel/s]

Selon l'équation 8.31, la probabilité de ne pas avoir de tentative pendant 100 [ms] vaut

P0(0, 278) = e−0,278 = 0, 757

Ce qui revient à dire que 24,3% des tentatives d'appel sont é
artées de moins de 100 [ms]. La

aden
e s'obtient alors par

λ (1− P0(0, 278)) = 0, 67 [fois/s] (8.32)

8.2.5 Temps de 
ommuni
ation

Examinons à présent le temps de 
ommuni
ation, aussi appelé temps de servi
e. Le pro
essus

de servi
e peut être d'une 
omplexité extrême, mais on se 
ontente le plus souvent de supposer

que la durée d'un appel est indépendante de 
elle des autres et que toutes les durées obéissent

à la même loi. Deux hypothèses pratiques sont examinées.

Hypothèse 1 : temps de 
ommuni
ation 
onstant

Bien que le temps de 
ommuni
ation tm ne soit pas 
onstant pour une 
ommuni
ation télépho-

nique, le modèle 
onvient pour 
ertains types de transmission de données.

On détermine aisément le nombre de lignes o

upées à tout moment. En e�et, en supposant

l'absen
e de 
ongestion, la probabilité d'avoir n 
ir
uits o

upés est déterminée par la proba-

bilité d'avoir n o

urren
es pendant l'intervalle tm pré
édant l'analyse. Comme le nombre de


ir
uits a
tifs n'est autre que la 
harge Ae = λetm, la probabilité d'avoir n 
ir
uits o

upés

s'obtient par la loi de Poisson. Cette probabilité vaut

fD(n) =
Ane
n!
e−Ae

(8.33)

Hypothèse 2 : temps de 
ommuni
ation à dé
roissan
e exponentielle

L'hypothèse d'un temps de 
ommuni
ation à dé
roissan
e exponentielle est plus vraisemblable

pour des 
ommuni
ations téléphoniques. La probabilité que la 
onversation dure plus longtemps

de t vaut alors
P (> t) = e−

t
tm

(8.34)

où tm est le temps de 
ommuni
ation moyen.

La loi exponentielle jouit d'une propriété remarquable : quelle que soit la durée de la 
ommuni-


ation, la probabilité n'est fon
tion que du temps à venir. Ainsi, si une 
ommuni
ation a duré

5 [s], la probabilité de durer 3 nouvelles se
ondes vaut P (> 3) = e−3/tm
. Pour une durée totale

de 8 [s], la probabilité vaut P (> 8) = P (> 5)× P (> 3) = e−5/tm × e−3/tm = e−8/tm
.
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8.3 Lois d'analyse du tra�


Dans un modèle traditionnel de réseau 
ommuté téléphonique, on 
onsidère qu'un fais
eau

o�re N 
anaux à un nombre d'utilisateurs largement supérieur à N et on suppose que 
haque

utilisateur e�e
tue des appels de 
ourte durée. Cette vision traditionnelle n'est plus tout à fait

adaptée au tra�
 a
tuel du réseau téléphonique ; en e�et, le réseau téléphonique transporte un

pour
entage non négligeable de 
onne
tions à Internet. Or, la durée moyenne d'une 
onnexion

à Internet est largement supérieure à la durée d'un appel téléphonique vo
al. Nous adopterons

néanmoins l'hypothèse traditionnelle dans nos développements.

8.3.1 Modèle d'un système ave
 perte (sans mémoire) : statistique

d'Erlang B

La statistique Erlang B va nous permettre de déterminer la probabilité de tentative d'appels

lors d'une 
ongestion du réseau (probabilité que les N lignes du réseau soient o

upées) en

fon
tion de la 
harge et du nombre de lignes 
ara
térisant le tronçon 
onsidéré.

Pour analyser la 
harge d'un réseau, il faut prendre en 
ompte le nombre de tentatives d'appel,

le nombre de 
onnexions en 
ours et le nombre d'arrêts d'appel.

Nombre de tentatives d'appel

Le nombre de tentatives d'appel peut être vu 
omme un pro
essus de dénombrement. Pendant

l'intervalle de temps △t (intervalle de temps d'observation), le nombre de tentatives d'appel

NA est don
 une variable aléatoire de Poisson telle que

p(NA = n) =
(λ△t)n
n!

e−λ△t, n = 0, 1, . . . (8.35)

où λ représente le nombre moyen de tentatives par unité de temps.

Nombre d'arrêts d'appel (relâ
hements de ligne)

De même, le nombre d'arrêts ND pour un nombre d'arrêt moyen η par unité de temps vaut

p(ND = n) =
(η△t)n
n!

e−η△t, n = 0, 1, . . . (8.36)

Charge

À tout moment, des tentatives d'appel et des arrêts peuvent avoir lieu sur la ligne ; la 
harge

�u
tue don
 entre 0 etN appels en 
ours. Pour un intervalle de temps très 
ourt dt, la probabilité
d'avoir exa
tement une tentative d'appel (n = 1) vaut λdte−λdt ≃ λdt alors que la probabilité

d'avoir un appel qui se termine vaut ηdte−ηdt ≃ ηdt.

Dès lors, à supposer que k lignes sur un total de N lignes soient o

upées à l'instant t, on

al
ule respe
tivement trois probabilités sur un intervalle de temps dt
� P1 la probabilité d'une tentative d'appel,
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� P2 la probabilité d'un arrêt et

� P3 la probabilité d'un statu quo en matière d'o

upation de lignes.

Elles valent respe
tivement

P1 = λdt (8.37)

P2 = C1
k(ηdt)

1(1− ηdt)k−1 ≃ kηdt (8.38)


ar on tient 
ompte du fait que n'importe quelle ligne parmi les k lignes peut se libérer pendant
l'intervalle de temps dt. Finalement, l'événement de statu quo se produit quand il n'y a pas

de tentative d'appel et qu'au
une des k lignes o

upées n'est sujet à un relâ
hement. Ainsi, la

probabilité P3 est donnée par

P3 = (1− λdt)(1− kηdt) (8.39)

= 1− λdt− kηdt+ kλη(dt)2 (8.40)

≃ 1− λdt− kηdt (8.41)

Dé�nissons alors p(k; t+dt) 
omme la probabilité qu'il y ait k lignes o

upées à l'instant t+dt.
Il est alors possible de déterminer p(k; t+ dt) en utilisant les probabilités P1, P2 et P3

p(k; t+ dt) = P3 p(k; t) + P1 p(k − 1; t) + P2 p(k + 1; t) (8.42)

≃ (1− λdt− kηdt) p(k; t) + λdt p(k − 1; t) + (k + 1)ηdt p(k + 1; t)

Le premier terme 
orrespond au fait qu'il y avait déjà k lignes o

upées à l'instant t mais

qu'au
une tentative d'appel ni d'arrêt n'ait eu lieu. Le deuxième terme 
orrespond au fait qu'il

y avait k − 1 lignes o

upées à l'instant t mais qu'une tentative d'appel (dès lors réussie) ait

eu lieu. En�n, le dernier terme 
orrespond au fait qu'il y avait k+1 lignes o

upées à l'instant

t et qu'une ligne se soit libérée pendant l'intervalle de temps dt. Il existe 
ependant deux 
as

parti
uliers 
orrespondant à k = 0 et k = N

p(0; t+ dt) = (1− λdt) p(0; t) + ηdt p(1; t) (8.43)

représentant le 
as où au
une ligne n'est o

upée (il n'y a don
 pas de possibilité de relâ
hement

d'une ligne) et

p(N ; t + dt) = (1− λdt−Nηdt) p(N ; t) + λdt p(N − 1; t) (8.44)

pour le 
as où toutes les lignes sont o

upées (une nouvelle tentative d'appel ne peut don
 être

générée).

En régime, on peut faire l'hypothèse que les probabilités ne sont pas fon
tion du temps et é
rire

p(k; t+ dt) = p(k; t) = Pk, k = 0, 1, 2, ..., N (8.45)

L'équation de transition peut alors s'é
rire

Pk = (1− λdt− kηdt)Pk + λdt Pk−1 + (k + 1)ηdt Pk+1 (8.46)

⇒ 0 = [(−λ− kη)Pk + λPk−1 + (k + 1)η Pk+1] dt (8.47)

⇒ (λ+ kη)Pk = λPk−1 + (k + 1)η Pk+1, 0 < k < N (8.48)
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De même, les deux 
as parti
uliers deviennent

λP0 = η P1, k = 0 (8.49)

(λ+Nη)PN = λPN−1, k = N (8.50)

De plus, les probabilités Pk doivent respe
ter la 
ondition suivante

P0 + P1 + ...+ PN = 1 (8.51)

On peut montrer [21℄ que l'expression de Pk véri�ant toutes 
es 
onditions est donnée par

Pk =
(λ/η)k

k!∑N
i=0

(λ/η)i

i!

(8.52)

Cette formule représente ainsi la probabilité d'avoir k lignes o

upées. Elle est valable ∀k ∈
[0, N ].

Formule d'Erlang B. L'état qui résulte d'une o

upation de toutes les lignes est appelé


ongestion. Si un appel est rejeté en raison d'une o

upation des N lignes, la probabilité de 
et

événement de blo
age est 
elle de PN (k = N)

B = PN =
(λ/η)N

N !∑N
i=0

(λ/η)i

i!

(8.53)

Cette expression de la probabilité de blo
age est la formule dite d'Erlang B.

Proposition 36 [Espéran
e de la loi la distribution d'Erlang B℄ L'espéran
e des pro-

babilités Pk fournit le nombre moyen de lignes o

upées, 
'est-à-dire la 
harge du tra�
 é
oulé.

Cette espéran
e vaut

E{k} = A(1− B) (8.54)

Démonstration. En e�et,

E{k} =
N∑

k=0

k
(λ/η)k

k!∑N
i=0

(λ/η)i

i!

=
λ

η

N−1∑

k=0

(λ/η)k

k!∑N
i=0

(λ/η)i

i!

=
λ

η
(1− B) = A(1−B) (8.55)

où A est la 
harge o�erte du fais
eau et A(1 − B) la 
harge réelle. Dans la mesure où la

probabilité de blo
age est petite, l'o

upation moyenne des N lignes est égale à

λ
η
.

La probabilité de blo
age s'exprime don
 par l'expression

B = PN =
AN

N !∑N
k=0

Ak

k!

, A =
λ

η
(8.56)

Interprétation. La probabilité de blo
age augmente ave
 la 
harge A et dé
roît ave
 N ,


omme le montre graphiquement la �gure 8.6. Pour une probabilité de blo
age �xée, le rapport

A/N (
harge o�erte à 
haque utilisateur) est proportionnel au nombre de lignes N . Dès lors,

la 
harge A, pour une probabilité de blo
age �xée, augmente plus que proportionnellement

en fon
tion du nombre de lignes N . Pour s'en 
onvain
re, il su�t de regarder le tableau 8.1.

Doubler la valeur de N de 10 à 20 entraîne la multipli
ation de A par 12/4, 5 = 2, 67. Pour
B = 1%, on observe un gain important en e�
a
ité lorsque l'on passe de 10 à 20 lignes tandis

que 
e gain est nettement moins important lorsque l'on doit, pour une même probabilité de

blo
age, ajouter des lignes à un fais
eau 
ontenant déjà 50 à 60 lignes.
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Figure 8.6 � Loi de probabilité Erlang B (d'après [21, page 271℄).

N 10 20 30 40 50 60 70 80 90 100

A 4,5 12,0 20,3 29,0 37,9 46,9 56,1 65,4 74,7 84,1

A
N

0,45 0,60 0,68 0,73 0,76 0,78 0,80 0,82 0,83 0,84

Table 8.1 � Illustration des proportions pour B = 0, 01

Dimensionnement. Le dimensionnement d'un fais
eau téléphonique est réalisé en re
her-


hant la 
harge maximale A (en Erlang) qui peut être fournie lorsque désire maintenir la pro-

babilité de blo
age B en-dessous d'un 
ertain seuil, par exemple B = 0, 01 ou 0, 02, qui est une
valeur typique pour le dimensionnement d'un fais
eau dans un réseau. La formule d'Erlang B

est souvent utilisée dans 
e but par
e qu'elle est tabulée et fa
ilement interprétable, bien qu'elle

fournisse une valeur plus faible pour B que 
ertaines formules établies à partir d'hypothèses

autres quant au tra�
. En e�et, la formule d'Erlang B ne tient pas 
ompte du fait qu'une

tentative d'appel ayant é
houé peut être re
onduite jusqu'à a

eptation par le réseau.

Insistons sur le fait que la 
harge maximale ne représente pas la 
harge moyenne o�erte à 
haque

utilisateur, mais une 
harge globale maximale.

Table. Une table de la loi d'Erlang B est donnée à la page 140. Soit, par exemple, N = 20
et B = 0, 01. À partir de la table, nous obtenons A = 12, 0 [E]. Si une 
harge A0 = 0, 03 [E]
doit être o�erte à 
haque utilisateur en moyenne, le nombre d'utilisateurs doit être limité à

M = A/A0 = 400.

Tentatives et essais re
onduits. L'e�et d'une tentative d'appel ayant é
houé mais re
on-

duite jusqu'à obtention d'une ligne peut être modélisé assez fa
ilement. Appelons A′
la 
harge

réelle qui tient 
ompte de la re
onduite des tentatives é
houées. On a

A′ = A+ AB + (AB)B + (AB2)B + ... =
A

1− B
(8.57)
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La table de la �gure 8.2 peut être utilisée pour trouver A′
. Il est important de noter qu'en

prin
ipe le réseau doit être dimensionné pour 
ette 
harge A′
et non pour la 
harge A. Alors

A peut être obtenue par A = (1 − B)A′
. Par exemple, pour B = 0, 02 et N = 30, la table

donne A = 21, 9 qui doit être vu 
omme la valeur de A′
. La valeur de A est alors égale à

(1−0, 02)×21, 9 = 21, 5. Si on désire o�rir à 
haque utilisateur une 
harge moyenne A0 = 0, 03,
on doit limiter le nombre d'utilisateurs à M = A/A0 = 715, 
ontre 730 lorsque qu'au
une

tentative ayant é
houé n'est re
onduite.

B B
N 0,01 0,005 0,003 0,001 N 0,01 0,005 0,003 0,001

1 0,01 0,005 0,003 0,001 31 21,2 19,9 19,0 17,4

2 0,153 0,105 0,081 0,046 32 22,0 20,7 19,8 18,2

3 0,46 0,35 0,29 0,19 33 22,9 21,5 20,6 19,0

4 0,87 0,7 0,6 0,44 34 23,8 22,3 21,4 19,7

5 1,4 1,1 1,0 0,8 35 24,6 23,2 22,2 20,5

6 1,9 1,6 1,4 1,1 36 25,5 24,0 23,1 21,3

7 2,5 2,2 1,9 1,6 37 26,4 24,8 23,9 22,1

8 3,1 2,7 2,5 2,1 38 27,3 25,7 24,7 22,9

9 3,8 3,3 3,1 2,6 39 28,1 26,5 25,5 23,7

10 4,5 4,0 3,6 3,1 40 29,0 27,4 26,3 24,4

11 5,2 4,6 4,3 3,7 41 29,9 28,2 27,2 25,2

12 5,9 5,3 4,9 4,2 42 30,8 29,1 28,0 26,0

13 6,6 6,0 5,6 4,8 43 31,7 29,9 28,8 26,8

14 7,4 6,7 6,2 5,4 44 32,5 30,8 29,7 27,6

15 8,1 7,4 6,9 6,1 45 33,4 31,7 30,5 28,4

16 8,9 8,1 7,6 6,7 46 34,3 32,5 31,4 29,3

17 9,7 8,8 8,3 7,4 47 35,2 33,4 32,2 30,1

18 10,4 9,6 9,0 8,0 48 36,1 34,2 33,1 30,9

19 11,2 10,3 9,8 8,7 49 37,0 35,1 33,9 31,7

20 12,0 11,1 10,5 9,4 50 37,9 36,0 34,8 32,5

21 12,8 11,9 11,2 10,1 51 38,8 36,9 35,6 33,3

22 13,7 12,6 12,0 10,8 52 39,7 37,7 36,5 34,2

23 14,5 13,4 12,7 11,5 53 40,6 38,6 37,3 35,0

24 15,3 14,2 13,5 12,2 54 41,5 39,5 38,2 35,8

25 16,1 15,0 14,3 13,0 55 42,4 40,4 39,0 36,6

26 17,0 15,8 15,1 13,7 56 43,3 41,2 39,9 37,5

27 17,8 16,6 15,8 14,4 57 44,2 42,1 40,8 38,3

28 18,6 17,4 16,6 15,2 58 45,1 43,0 41,6 39,1

29 19,5 18,2 17,4 15,9 59 46,0 43,9 42,5 40,0

30 20,3 19,0 18,2 16,7 60 47,0 44,8 43,4 40,8

Table 8.2 � Tables de la loi d'Erlang B.

8.3.2 Autres modèles

Pour terminer, le tableau 8.3 et la �gure 8.7 dressent une 
omparaison des probabilités de

blo
age obtenues pour di�érents modèles.
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Type d'analyse Traitement des appels perdus Formule de blo
age

Formules pour un grand nombre (in�ni) de sour
es de tra�


Erlang B pas de re
onduite B1 =
PN∑N
k=0 Pk

ave
 Pk =
Ak

k!

Re
onduite des appels é
houés re
onduits si B est la probabilité d'erreur

appels é
houés tant qu'ils é
houent A′ = A/(1− B)

Erlang C appels é
houés pla
és dans B = B1[
1−A(1−B1)

N

]

une �le d'attente in�nie

Molina idem que Erlang C B = 1− e−A
∑N−1

k=0 Pk = e−A
∑∞

k=N Pk
Formules pour un nombre �ni de sour
es, M

Engest pas de re
onduite B2(ρ) =
pN∑N
k=0 pk

, pk =

(
M
k

)
ρk

et A(ρ) ≃ Mρ
[1+ρB2(ρ)]

Bernoulli appels perdus retenus B =
∑M

k=N

(
M
k

)(
A
M

)k (
1− A

M

)M−k

Table 8.3 � Résumé de di�érentes formules de blo
age (d'après [21℄).

On voit que, de manière générale, la loi d'Erlang B sous-estime la probabilité de blo
age par

rapport à d'autres modèles. De plus, si la probabilité d'erreur est de l'ordre de 10−2
, on 
onstate

sur le graphique 8.7 qu'il y a peu de �u
tuations entre les di�érentes formules. En pratique, on

se 
ontente bien souvent de la loi d'Erlang B.

10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

Re
onduite des

B

tentatives d'appel

A [Erlang℄

Erlang C

Molina

Erlang B

Figure 8.7 � Comparaison des probabilités de blo
age (d'après [21, page 332℄).
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Troisième partie

Éléments de la 
ou
he physique
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Chapitre 9

Transmission sur ligne à paires

symétriques et réseau téléphonique

9.1 Introdu
tion

La transmission peut se réaliser sur di�érents supports (
âble 
oaxial, paire torsadée, �bre

optique, . . .) ou dans l'air. Si les lois de Maxwell régissent l'ensemble des phénomènes de

propagation éle
tromagnétiques, les propriétés des matériaux in�uen
ent 
onsidérablement les

performan
es, rendant les supports non inter
hangeables à bien des égards.

La �gure 9.1 fournit les ordres de grandeur des performan
es distan
e/débit que l'on peut

obtenir pour di�érents supports de transmission physiques. Très 
lairement, 
'est l'utilisation

de la �bre monomode qui représente le meilleur 
hoix a
tuel.

1

1

10

100

1000

10 100 1000 10000

Fibre monomode

Fibre à gradient d'indi
e

Câble

Paire torsadée

Distan
e maximale [km℄

Débit [Mb/s℄

Figure 9.1 � Comparaison de divers supports de transmission (d'après [33℄).

9.1.1 Limitations

Plusieurs phénomènes a�e
tent la transmission d'un signal numérique par une onde éle
troma-

gnétique. Citons en quelques-uns :
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Atténuation L'atténuation est un phénomène équivalent à une perte d'énergie du signal se

propageant. On l'exprime généralement en [dB] par kilomètre.

Distorsion Un 
anal qui fournit en sortie la version du signal original ainsi que des versions

atténuées dé
alées dans le temps, introduit un e�et de distorsion d'amplitude (l'amplitude

de la transmittan
e du 
anal n'est pas 
onstante en fon
tion de la fréquen
e) et de phase

(la phase n'est pas linéaire en fon
tion de la fréquen
e).

Dispersion La dispersion est le phénomène à l'origine d'un étalement de l'onde, 
e qui dans

le 
as de 
ommuni
ations numériques, se réper
ute par une 
onfusion entre symboles

su

essifs (le 
anal possède une bande passante �nie).

Bruit Il est totalement impossible d'éviter un bruit dans un système de 
ommuni
ations. En

fait, les équipements génèrent eux-mêmes un bruit. À 
ela vient se rajouter le bruit du


anal. Aujourd'hui, on préfère utiliser des te
hniques de transmission numériques pour

lutter 
ontre les e�ets d'un bruit additif de 
anal. On peut ainsi espérer un taux d'erreur

de l'ordre de 10−12
pour une transmission sur �bre optique et 10−7

sur une ligne à paire

de 
uivre.

9.1.2 Probabilité d'erreur par paquet

En pratique, le taux d'erreur par bit Pe n'est pas le seul paramètre signi�
atif pour une transmis-

sion numérique. En e�et, les bits d'information sont rarement isolés ; ils sont plut�t regroupés

par paquets. Or, une erreur sur 1 bit du paquet revient à 
onsidérer le paquet 
omme fautif

dans sa totalité, 
e qui implique quelquefois une retransmission du paquet.

Soit N la taille des paquets à transmettre. La probabilité d'erreur par paquet vaut le 
omplé-

mentaire de la probabilité qu'au
un des N bits ne soit erroné. Dès lors,

PP = 1− (1− Pe)
N

(9.1)

En négligeant les termes du se
ond ordre, on obtient

PP ≃ N × Pe si N × Pe ≪ 1 (9.2)

Exemple. Une taille de paquet deN = 105 bits et un taux d'erreur par bit Pe = 10−7

onduisent

à PP ≃ 10−2
.

9.2 Transmission par ligne

En raison de leur 
oût modeste, on utilise depuis longtemps les supports de 
uivre pour trans-

mettre des signaux : des lignes à paires symétriques en téléphonie ou dans 
ertains réseaux

lo
aux, un 
âble 
oaxial pour la distribution de signaux de télévision ou des lignes mi
ro-

rubans en hyperfréquen
e. C'est dire l'importan
e que revêt 
e type de support en pratique.

Nous abordons son étude par l'analyse des propriétés.

9.2.1 Dé�nitions

Dé�nition 37 On appelle ligne tout support physique de transmission 
onstitué d'un milieu

matériel �ni.
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Les deux formes de lignes les plus 
ourantes sont la paire torsadée 
onstituée de deux 
ondu
-

teurs arrangés en héli
e et la paire 
oaxiale formée de deux 
ondu
teurs 
on
entriques séparés

par un isolant.

Dé�nition 38 On appelle 
âble de transmission, tout support physique 
onstitué d'un en-

semble de lignes.

9.2.2 Propriétés éle
triques du 
uivre

En régime statique, les lignes 
onstituées de 
uivre possèdent des propriétés éle
triques qui, au

niveau ma
ros
opique, s'expriment prin
ipalement par une résistan
e, un e�et 
apa
itif et un

e�et indu
tif.

Résistan
e

Un �l de 
uivre de se
tion S présente une résistan
e au 
ourant de valeur

R =
ρl

S
(9.3)

où ρ et l désignent respe
tivement la résistivité du 
ondu
teur et la longueur du �l (
f. �-

gure 9.2). Ce paramètre, di�érent pour tout �l, a une in�uen
e dire
te sur l'atténuation de

l'onde transportée et don
 a�e
te majoritairement l'amplitude de l'onde transportée.

l

L

l

r

h

Figure 9.2 � Résistan
e d'un 
ondu
teur.

Mais 
e n'est pas le seul paramètre important 
ar il faut également tenir 
ompte des e�ets


apa
itifs et indu
tifs d'une paire de �ls.

Capa
itan
e

On peut montrer que, pour les stru
tures de la �gure 9.3, les 
apa
itan
es par unité de longueur

valent respe
tivement

C =
2πǫ

ln(r2/r1)
(9.4)

C =
πǫ

ln(s/r)
(9.5)
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r

r

r2

r1

Coaxe
Paire de �ls

Fil au-dessus d'un plan

s

s

Figure 9.3 � Se
tion de di�érentes lignes.

Indu
tan
e

Quant à la valeur de l'indu
tan
e, elle s'obtient en tirant pro�t de la propriété générale suivante

LC = ǫ (9.6)

Dans 
e qui suit, la ligne est 
onsidérée 
omme idéale, 
'est-à-dire 
omme ayant les mêmes

propriétés éle
triques sur toute sa longueur.

9.2.3 Propagation

La propagation d'un onde éle
tromagnétique le long d'une ligne de transmission prend la forme

d'une onde éle
tromagnétique transverse (TEM, Transverse Ele
tromagneti
 Mode). L'onde

se propage prin
ipalement dans le diéle
trique qui sépare les deux 
ondu
teurs d'une ligne de

transmission. La �gure 9.4 montre les formes des 
hamps dans une série de stru
tures éle
triques

à deux 
ondu
teurs.

Lignes de 
hamp magnétique

Lignes de 
hamp éle
trique

bi�laire

2 plans


oaxe

Figure 9.4 � Con�guration du 
hamp éle
tromagnétique en mode TEM pour quelques types

de lignes.

9.2.4 Modèle éle
trique

Après avoir déterminé les 
ara
téristiques éle
triques prin
ipales d'une paire de 
ondu
teurs,

on peut modéliser le fon
tionnement éle
trique d'une ligne en imaginant le système 
omme une
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su

ession de bouts de lignes in�nitésimaux ; la �gure 9.5 montre un bout de ligne in�nitésimal.

Ldz Rdz

Gdz Cdz

Figure 9.5 � Segment de ligne in�nitésimal.

Paramètres primaires

R, L, C et G sont appelés paramètres primaires de la ligne ave


� R = résistan
e linéique élémentaire, représentant la résistan
e de la ligne par unité de lon-

gueur [Ω/m]. Elle dépend en parti
ulier de la se
tion et de la nature du 
ondu
teur,

� L = indu
tan
e linéique [H/m], modélisant la présen
e d'un �ux variable autour et entre les

stru
tures 
ondu
tri
es,

� C = 
apa
ité linéique [F/m], 
ara
térisant la 
apa
ité du diéle
trique 
onstituant la ligne,

� G = admittan
e linéique [Ω−1/m], représentant les pertes diéle
triques et les défauts d'isola-
tion de la ligne. Elle dépend de la nature des isolants.

Équations des télégraphistes

En mettant bout à bout des segments de ligne in�nitésimaux et sur base du s
héma de la

�gure 9.6, on obtient aisément le système d'équations suivantes, dites équations des télégra-

phistes,

∂V

∂z
= − RI − L

∂I

∂t
(9.7)

∂I

∂z
= − GV − C

∂V

∂t
(9.8)

V (z)

I(z + dz) = I(z)− dI

Générateur

I(z) Ldz Rdz

Gdz
Cdz

V (z + dz)
= V (z)− dV

Charge

Figure 9.6 � Modèle d'une ligne de transmission éle
trique.

La solution du système s'obtient en dérivant l'équation 9.7 par rapport à z et en tenant 
ompte

de 9.8. On obtient une équation aux dérivées partielles du se
ond ordre

∂2V

∂z2
= RGV + (RC + LG)

∂V

∂t
+ LC

∂V 2

∂t2
(9.9)
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Cas parti
ulier 1 : ligne sans perte

Dans le 
as d'une ligne sans perte (R = G = 0),

∂2V

∂z2
= LC

∂V 2

∂t2
(9.10)


e qui 
orrespond à une équation d'ondes bien 
onnue dont la solution est une 
ombinaison

linéaire de signaux sinusoïdaux

V (z, t) = (A cos kz +B sin kz)(C cos 2πft+D sin 2πft) (9.11)

où A, B, C et D sont des 
onstantes dont les valeurs dépendent des 
onditions initiales.

Cas parti
ulier 2 : régime permanent

En régime permanent, V (z, t) = V (z)ejωt. La solution est de la forme

∂2V

∂z2
= (R + jLω)(G+ jCω)V (z) = γ2V (z) (9.12)

En prenant une 
onstante de propagation γ = α + jβ, on obtient

V (z) = Vie
−γz + Vre

γz
(9.13)

L'onde est don
 
onstituée d'une onde in
idente (Vie
−γz

) et d'une onde ré�é
hie (Vre
γz
). De

plus, on 
onstate que les deux ondes subissent une atténuation e−αz liée au fa
teur α. On voit

tout de suite que l'atténuation 
roît ave
 la longueur de la ligne.

La présen
e d'une atténuation ne signi�e pas que toute transmission soit impossible mais bien

que le signal est atténué dès qu'il y a des pertes dans le 
ondu
teur, impliquant une longueur

maximale de la ligne. L'analyse en détail de la question montre que l'atténuation dépend de

la fréquen
e. En fait, elle augmente ave
 la fréquen
e. Il est dès lors plus intéressant d'utiliser

les basses fréquen
es pour la transmission. Néanmoins, rien n'empê
he d'utiliser les zones d'at-

ténuation plus importantes. C'est le mode de fon
tionnement des modems à haut débit ADSL

dont le spe
tre d'utilisation est montré à la �gure 9.7.

Téléphone : 0− 4kHz

en remontée : 25− 100kHz

en des
ente : 100kHz − 1MHz

f

Figure 9.7 � Spe
tre d'un signal ADSL.
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Paramètres se
ondaires

Les paramètres primaires ne modélisent la ligne que d'une manière mi
ros
opique. On leur

préfère souvent les paramètres dits se
ondaires suivants pour déterminer les propriétés ma
ro-

s
opiques du support :

� impédan
e 
ara
téristique Zc
C'est une donnée 
omplexe qui représente la valeur de l'impédan
e à 
onne
ter en bout de

ligne de manière à obtenir une impédan
e d'entrée de la ligne égale à 
ette impédan
e ; on

la nomme Zc. En pratique, on doit absolument tenir 
ompte de la valeur de l'impédan
e

lors du ra

ordement de lignes ou d'équipements à un réseau. En e�et, si deux lignes n'ont

pas la même impédan
e, le droit du ra

ord est le lieu de ré�exions parasites qui diminuent


onsidérablement les performan
es de la transmission. En e�et, le 
oe�
ient de ré�exion est

donné par

ZL − Zc
ZL + Zc

(9.14)

où ZL est l'impédan
e de 
harge. On voit don
 que le 
oe�
ient de ré�exion s'annulle lorsque

l'impédan
e de 
harge d'une ligne (égale à l'impédan
e d'entrée de la ligne ra

ordée à 
ette

ligne) est égal à son impédan
e 
ara
téristique. Il 
onvient de remarquer que l'adaptation de

ligne n'est pas équivalente à l'adaptation 
onjuguée ; la première 
onduit à une absen
e de

ré�exion, la se
onde à un transfert maximum de puissan
e dans la 
harge. Ces deux types

d'adaptation sont néanmoins 
ompatibles lorsque la 
harge est purement réelle.

� 
oe�
ient de propagation γ (
f. supra)

Par dé�nition : γ = α + jβ où

� α = a�aiblissement linéique en Néper/mètre [Np/m] 1

� β = déphasage linéique (en [rad/m])

Le fa
teur d'atténuation α représente les pertes subies par le signal éle
trique lors de la propa-

gation le long de la ligne. Il se mesure en inje
tant un signal à l'une des extrémités de la ligne

et en mesurant le signal reçu à l'autre extrémité. β est lié à la longueur d'onde λ et à la vitesse

de propagation v de l'onde éle
tromagnétique dans le support par

β =
2π

λ
=
ω

v
=

2πf

v
(9.15)

Relations entre les paramètres primaires et se
ondaires

Les paramètres primaires et se
ondaires sont liés par les relations suivantes

Zc =

√
R + jωL

G+ jωC
(9.16)

γ =
√

(R + jωL)(G+ jωC) (9.17)

Ces équations sont générales et valables sur tout type de ligne. Toutefois, 
ertaines simpli�
a-

tions sont possibles en 
onsidérant un 
ara
tère plut�t indu
tif ou pas de ligne, une fréquen
e

d'utilisation élevée ou non. D'autre part, on peut raisonnablement admettre que l'admittan
e

linéique est négligeable, autrement dit G = 0, en présen
e d'un isolant entre les 
ondu
teurs.

1. Le Néper est lié au dé
ibel par la relation suivante : 1 [Np] = 8, 68 [dB].
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Et don
,

Zc ≃
√
R + jωL

jωC
(9.18)

γ ≃
√
(R + jωL)jωC (9.19)

9.2.5 Étude fréquentielle des paramètres

Il est intéressant de mener l'étude fréquentielle des paramètres de ligne en haute fréquen
e

(ωL≫ R). Exploitant l'hypothèse de haute fréquen
e, on obtient

γ ≃
√

(R + jωL)jωC (9.20)

≃
√
jωC

√
jωL

√
1 +

R

jωL
(9.21)

≃
√
jωC

√
jωL

(
1 +

R

j2ωL

)
(9.22)

≃ 1

2
R

√
C

L
+ jω

√
LC (9.23)

Pour les développements, on 
onsidérera qu'à haute fréquen
e, C et L sont indépendants de la

fréquen
e. De plus, en raison de l'e�et de peau du 
ondu
teur (densité de 
ourant non-uniforme

dans toute la se
tion du 
ondu
teur), on admet que R est proportionnel à

√
f :

R = R0

√
f (9.24)

Dès lors, l'a�aiblissement linéique évolue don
 
omme suit

α = k
√
fLo (9.25)

où Lo désigne la longueur de la ligne.

Exprimons à présent l'atténuation en dé
ibels

A [dB] = 20 log
[
e−k

√
fLo

]
=

20 ln
[
e−k

√
fLo

]

ln 10
(9.26)


e qui nous amène à la relation suivante

A [dB] = A0

√
fLo (9.27)

Dès lors, passer de Lo à 2Lo double les pertes. Cette équation est importante pour l'étude du

transfert de puissan
e entre paires voisines.

9.3 Exemples de lignes

9.3.1 Lignes à paires symétriques

Elles sont 
onstituées de deux paires identiques (lignes aériennes) ou vrillés (paires torsadées).
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Comportement des 
âbles téléphoniques à basses fréquen
es

Pour un nombre élevé de 
ommuni
ations téléphoniques, les lignes sont regroupées en quartes

étoiles en �ls de 
uivre de 0,4 à 0,8 [mm] de diamètre. Le 
âble enterré ainsi 
onçu peut 
ontenir

plusieurs 
entaines de paires isolées par du polyéthylène. Aux fréquen
es vo
ales (ωL≪ R), on
peut montrer que

α = β ≈
√
ωRC

2
÷
√
f (9.28)

et

Zc =

√
R

ωC
÷ 1√

f
(9.29)

Exemple. Ordre de grandeur des paramètres primaires pour une paire de diamètre 0,4 [mm] :
R = 290 [Ω/km], C = 50 [nF/km], α = 0, 2 [Np/km] à 800 [Hz].

Ces lignes sont utilisées pour des liaisons à faible distan
e, par exemple entre abonnés et 
en-

traux téléphoniques.

Comportement des 
âbles téléphoniques à hautes fréquen
es

L'utilisation de 
âbles à hautes fréquen
es s'est développée par l'emploi de multiplexage fré-

quentiel à 
ourants porteurs, permettant de transmettre sur un seul support symétrique un

nombre élevé de voies téléphoniques. Ce
i né
essite un a�aiblissement aussi faible que possible.

Exemple. Ordre de grandeur des paramètres primaires et se
ondaires pour un diamètre de

0, 9 [mm] ave
 isolation papier et C = 31, 5 [nF/km] :

Fréquen
e R [Ω/km] L [µH/km] |Z|c [Ω] α [mNp/km]

10 [kHz] 52,3 766 188 151

120 [kHz] 98,7 67,5 156 363

Table 9.1 � Ordres de grandeur des paramètres d'une ligne téléphonique.

Lignes pour transmissions numériques

Elles sont 
onstituées de deux 
ondu
teurs métalliques torsadés présentant des 
ara
téristiques

identiques. Les 
ondu
teurs sont isolés par une 
ou
he de polyéthylène. Elles peuvent être

utilisées pour le transport de signaux numériques et 
onstituent un des supports les plus utilisés

en tant que 
âble universel pour la téléphonie ou le transfert de données ou d'images à haut

débit. Leur prin
ipal avantage est un faible 
oût et une grande fa
ilité de mise en ÷uvre. A�n

d'éviter une trop grande diaphonie entre lignes, les pas de torsade sont tous di�érents, évitant

ainsi toute imbri
ation d'une ligne dans l'autre (on évite qu'une ligne soit 
onstamment à 
�té

d'une autre ligne, 
e qui impliquerait un 
ouplage 
apa
itif).

Ces lignes sont assez limitées par rapport à la distan
e maximale sur laquelle elles peuvent

transmettre l'information numérique sans régénération du signal qui est d'environ 100 [m].
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Dans un réseau lo
al, les 
âbles peuvent être 
onstitués de paires non blindées (UTP, Unshielded

Twisted Pair), é
rantées (FTP, Foiled Twisted Pair) ou é
rantées paire par paire (STP, Shielded

Twisted Pair). Leur impédan
e 
ara
téristique est de 100, 120 ou 150 [Ω]. Les 
âbles sont 
lassés
par 
atégorie en fon
tion de leur bande passante (
f. tableau 9.2).

Catégorie Bande passante Exemples d'utilisation

1, 2 Distribution téléphonique (voix)

3 16 [MHz] Voix numérique, réseaux lo
aux Ethernet 10 [Mb/s] et
Any Lan

4 20 [MHz] Réseaux Token Ring

5 100 [MHz] Réseaux lo
aux Ethernet 10 et 100 [Mb/s], Token Ring

et Any Lan

Table 9.2 � Catégories de 
âbles [29℄.

9.3.2 Lignes à paires 
oaxiales

Constitution

Elles sont 
onstituées de deux 
ondu
teurs 
ylindriques 
on
entriques séparés par un isolant

(air ou diéle
trique) et enveloppés dans une prote
tion extérieure.

L'âme 
entrale peut être 
omposée d'un ou de plusieurs �ls de 
uivre ou d'a
ier. L'isolant sert

à séparer l'âme du 
ondu
teur extérieur. Les propriétés du 
âble sont prin
ipalement liées à

la nature de 
et isolant. Le 
ondu
teur extérieur est réalisé à partir de tresses, d'un tube ou

d'une feuille de 
uivre ou d'aluminium. La gaine extérieure, généralement en PVC, té�on ou

polyéthylène (PE), sert de prote
tion mé
anique et 
himique. Elle peut elle-même être in
luse

dans une enveloppe supplémentaire (en plomb, �bre de verre ou métallique) pour des 
onditions

extrêmes d'utilisation.

Propriétés

La �gure représente une vue de fa
e d'un 
âble 
oaxial.

diéle
trique

gaine

d
D

(ǫr)

âme

Figure 9.8 � Vue de fa
e d'un 
âble 
oaxial.

Le rapport D/d des diamètres des 
ondu
teurs est dire
tement lié à l'atténuation α. Certaines
études ont montré qu'une atténuation minimale par unité de longueur est obtenue pour D/d =
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3, 6. Ainsi, la plupart des 
âbles 
ommer
ialisés respe
tent 
e rapport. Pour des 
ondu
teurs en


uivre :

α [Np/km] =
0, 692× 10−3

√
ǫrf
[
1
d
+ 1

D

]

log(D/d)

ave
 d et D en [mm], f en [Hz].

Le tableau 9.3 donne deux exemples des propriétés de di�érents 
âbles 
oaxiaux normalisés par

l'ITU (
f. [12, page 66℄).

Type d [mm] D [mm] Zc [Ω] α [dB/100m] à 200 [MHz] α [dB/100m] à 3 [GHz]

RG58W 0,9 4,95 50 24 140

RG35BU 2,65 17,27 75 4,7 37

Table 9.3 � Cara
téristiques de deux 
âbles 
oaxiaux.

Les deux grandes familles de 
oaxiaux utilisés ont une impédan
e 
ara
téristique égale à 50 [Ω]
ou 75 [Ω]. Généralement, les 
oaxiaux 50 [Ω] sont utilisés pour des transmissions en bande de

base, 
eux de 75 [Ω] en large bande. Leurs appli
ations prin
ipales 
on
ernent les transmissions

numériques à haut débit (500 [Mb/s]), an
iennement les transmissions téléphoniques sur des

grandes distan
es ou la télévision par 
âble (300 [MHz]).

9.4 Réseau téléphonique

Le réseau téléphonique historique est 
onstitué d'une série de paires de 
uivre reliant 
haque

abonné au 
entral. Notons qu'une paire est toujours dédiée à 
haque utilisateur. La transmission

s'e�e
tue en général de manière analogique jusqu'au 
entral téléphonique. À l'entrée du 
entral,

le signal analogique est 
onverti sous forme numérique et a
heminé tel quel jusqu'au dernier


entral téléphonique. Le signal numérique est ensuite interpolé et transmis sur la paire de

l'abonné destinataire. Ce s
héma est illustré à la �gure 9.9.

Analogique Analogique

Réseau numérique

Figure 9.9 � Ligne analogique.

A 
haque passage dans un 
entral, le signal numérique est 
ommuté, 
'est-à-dire qu'il passe

systématiquement d'une entrée spé
i�que à une sortie spé
i�que. La 
ommutation est rapide
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ar le 
hemin de passage est établi lors de l'appel, pour toute la durée de l'appel. On parle de


ir
uit ou de mode 
onne
té

2

.

En 
e qui 
on
erne la bande passante, l'opérateur garantit la délivran
e d'un 
anal transparent

pour les fréquen
es 
omprises dans l'intervalle [300Hz, 3400Hz] ; on parle de la bande vo
ale.

C'est don
 dans 
ette bande qu'a lieu le transfert du signal vo
al ainsi que des informations

numériques transmises au moyen d'un modem.

Analogique

Réseau numérique

Modem

Analogique

Modem

Figure 9.10 � Transmission par modem dans la bande [300Hz, 3400Hz].

Fort heureusement, la transmission par le biais de modems dans la bande vo
ale n'est pas le

seul moyen de transmettre des informations numériques. Il est par exemple possible de re
ourir

au Réseau Numérique à Intégration de Servi
es (RNIS). Il s'agit d'un prolongement de l'a

ès

numérique jusqu'à l'abonné.

Comme représenté à la �gure 9.11, l'a

ès au RNIS se présente sous la forme d'un bus o�rant

plusieurs 
anaux en parallèle. Pour un a

ès de base, l'abonné dispose de 2 
anaux à 64 [kb/s].
Ces 
anaux sont 
ompatibles ave
 les 
anaux 64 [kb/s] utilisés entre 
entraux. Dès lors, il est tout
à fait possible d'avoir une 
ommuni
ation numérique à l'origine et une terminaison analogique.

Analogique

Réseau numérique

N

NT1

Numérique Numérique

Figure 9.11 � RNIS.

L'usage d'une bande de fréquen
es limitée à la bande [300Hz, 3400Hz] n'a de sens que s'il

s'agit d'établir une 
ommuni
ation entre deux points distants. Bien entendu, rien n'interdit

2. À l'inverse, la 
ommutation d'informations suivant le proto
ole IP se fait par paquets. Il n'y a pas de


hemin préétabli pour toute la durée de l'é
hange.
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d'utiliser une bande plus large entre un abonné et le 
entral téléphonique 
ar le support est

spé
i�que à un abonné. Le RNIS utilise 
ette astu
e pour transmettre des signaux numériques

dans une bande de fréquen
es, ex
édant la bande vo
ale, entre l'abonné et le 
entral.

La transmission numérique à haut débit dans le réseau téléphonique par ADSL pousse le prin
ipe

plus loin : la transmission de l'information numérique se fait hors bande vo
ale de manière à

garantir la 
oexisten
e ave
 le signal vo
al analogique usuel. Cette 
oexisten
e n'est e�e
tive

que sur la paire dédiée 
ar au fran
hissement du 
entral téléphonique, les signaux sont séparés

par �ltrage et inje
tés dans des réseaux de transmission spé
i�ques. Cette séparation, e�e
tuée

au niveau du 
entral téléphonique par un splitter, est illustrée à la �gure 9.12.

ATM / IPSplitter

Réseau numérique

Modem

Figure 9.12 � Con�guration d'une 
onnexion ADSL.

Du 
�té de l'abonné, on pla
e un �ltre qui sépare les bandes de fréquen
es ; 
e �ltre n'est

en prin
ipe pas indispensable puisque les signaux vo
aux et de données o

upent des bandes

distin
tes. Ce �ltre ainsi que sa 
ourbe de gain

3

(tension de sortie sur tension d'entrée, exprimé

en [dB]) sont présentés à la �gure 9.13.
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Figure 9.13 � Filtre de séparation pour les signaux d'une ligne 
onvertie à l'ADSL et sa 
ourbe

de gain.

3. Le résultat des mesures a été fourni par Valéry Broun.
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9.5 Fon
tions de transfert de puissan
e diaphoniques et

transmission à haut débit

9.5.1 Prin
ipe

Lorsque deux lignes sont spatialement pro
hes, il peut exister une in�uen
e parasite entre

les signaux d'information qui sont véhi
ulés sur 
haque voie. Cette perturbation est appelée

diaphonie. L'origine physique de la diaphonie est l'existen
e d'un 
ouplage 
apa
itif et indu
tif

entre les lignes 
onsidérées. Ce 
ouplage est d'autant plus fort que les lignes sont pro
hes.

Ainsi, au sein d'un même fais
eau (appelé quarte), les 
ouplages sont parti
ulièrement forts.

C'est notamment le 
as entre les paires 1 et 2 représentées à la �gure 9.14.

Paire 3

Paire 2

Paire 1

Figure 9.14 � La diaphonie provient de la proximité des paires de 
uivre.

Selon que la ligne perturbatri
e provoque un parasite vers l'une ou l'autre des extrémités de la

ligne parasitée, on parle de paradiaphonie ou de télédiaphonie (�gure 9.15).

Z

Z

Paradiaphonie

Z

du signal

Puissan
e Z

Z

Z

Z

Z
du signal

Puissan
e

Télédiaphonie

Ligne

perturbatri
e

Ligne

utile

Figure 9.15 � Paradiaphonie et télédiaphonie.

L'a�aiblissement paradiaphonique est en parti
ulier une grandeur importante dans la pratique

pour 
ara
tériser un 
âble de transmission : il permet d'évaluer, à l'entrée d'une ligne perturbée,

la perte de signal provoquée par la ligne perturbatri
e voisine. Il dépend de la distan
e entre

les lignes d'un même 
âble, des 
ombinaisons des pas de torsades (pour les paires torsadées) et

de la te
hnique de 
onstru
tion du 
âble.
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9.5.2 Diaphonie dans le réseau téléphonique

La diaphonie est bien présente dans le réseau téléphonique. En e�et, les lignes sortent du


entral téléphonique dans des 
âbles pouvant atteindre plusieurs 
entaines, voire milliers de

paires. Cette proximité entraîne des e�ets diaphoniques importants entre les paires.

La �gure 9.16 montre la situation du réseau téléphonique. Le NEXT (Near-End Crosstalk) et le

FEXT (Far-End Crosstalk) représentent respe
tivement la para et la télédiaphonie.

NEXT

Paire perturbée

Paire perturbatri
e

Modem

Modem

FEXT

de données

Commutateur

Câble multi-paires

Figure 9.16 � Diaphonie dans le réseau téléphonique.

En raison de la stru
ture du réseau, les 
ara
téristiques lo
ales ne sont pas invariantes dans tout

le réseau. L'appro
he analytique 
onsiste à simpli�er la situation pour aboutir à des 
on
lusions

de prin
ipe. On 
her
hera don
 à établir une fon
tion de transfert de puissan
e entre lignes de

référen
e.

On distingue deux types de modèle pour expliquer les phénomènes de diaphonie :

� le modèle des 
apa
ités non équilibrées et

� le modèle des indu
tan
es non équilibrées.

Nous allons étudier 
es deux modèles.

Modèle des 
apa
ités non équilibrées

Ce modèle 
onsidère deux paires voisines, pla
ées au dessus d'un é
ran. Comme le montre la

�gure 9.17, les quatre �ls sont 
ara
térisés par une impédan
e propre, une admittan
e ave
 les

autres 
ondu
teurs et une 
apa
ité à une masse 
ommune. On supposera raisonnablement que

la 
ondu
tan
e entre �ls est nulle par
e que les 
ondu
teurs sont enrobés d'un isolant.

Notions de 
ir
uit. Pour un système 
onstitué de N + 1 
ondu
teurs, on peut dé�nir N
tensions et N 
ourants ; 
es valeurs 
orrespondent à N 
ir
uits. L'utilisation usuelle d'un 
âble

à N 
ondu
teurs revient à 
onsidérer N/2 paires, elles-mêmes organisées en quarte. Ces paires

servent à transmettre un signal en mode di�érentiel, 
'est-à-dire de type Vi−Vi+1. Pour arriver

à N 
ir
uits au total, il reste un solde théorique de N/2 
ir
uits. Mais 
es derniers sont délaissés

en pratique en raison des e�ets diaphoniques ina

eptables qu'ils induisent.
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V1(x)
I1(x)

I3(x)

V4(x)

V3(x)

V2(x)

Z1∆x

Y12∆x

Z2∆x

Z3∆x

Y34∆x

Z4∆x

Y24∆xY13∆x Y14∆x Y23∆x

Y1G∆x

Y2G∆x

Y3G∆x

Y4G∆x

I2(x)

I4(x)

I1(x+∆x)

I2(x+∆x)

V1(x+∆x)

V2(x+∆x)

I3(x+∆x)

I4(x +∆x)

V3(x+∆x)

V4(x+∆x)

Figure 9.17 � Modèle 
apa
itif de deux paires.

Cal
ul des relations entre 
ourants et tensions. Pour la fa
ilité, on é
rit les 
apa
itan
es


omme des admittan
es : Y = jωC (on admet que G = 0). Pour les 
al
uls, nous utiliserons
des tensions référen
ées par rapport à la masse.

L'appli
ation de la loi des mailles donne les équations suivantes

V1(x+△x) = V1(x)− I1(x)Z1△x (9.30)

V2(x+△x) = V2(x)− I2(x)Z2△x (9.31)

V3(x+△x) = V3(x)− I3(x)Z3△x (9.32)

V4(x+△x) = V4(x)− I4(x)Z4△x (9.33)

et l'appli
ation de la loi des n÷uds fournit les équations suivantes

I1(x+△x) = I1(x)− V1(x+△x)Y1G△x− [V1(x+△x)− V2(x+△x)]Y12△x
−[V1(x+△x)− V3(x+△x)]Y13△x− [V1(x+△x)− V4(x+△x)]Y14△x

I2(x+△x) = I2(x)− V2(x+△x)Y2G△x− [V2(x+△x)− V1(x+△x)]Y12△x
−[V2(x+△x)− V3(x+△x)]Y23△x− [V2(x+△x)− V4(x+△x)]Y24△x

I3(x+△x) = I3(x)− V3(x+△x)Y3G△x− [V3(x+△x)− V1(x+△x)]Y13△x
−[V3(x+△x)− V2(x+△x)]Y23△x− [V3(x+△x)− V4(x+△x)]Y34△x

I4(x+△x) = I4(x)− V4(x+△x)Y4G△x− [V4(x+△x)− V1(x+△x)]Y13△x
−[V4(x+△x)− V2(x+△x)]Y24△x− [V4(x+△x)− V3(x+△x)]Y34△x

Dans toutes 
es équations, on peut passer à la limite△x→ 0 après avoir divisé tous les membres

par △x. Se rappelant que la dérivée est dé�nie par la formule suivante

d

dx
f(x) = lim

△x→0

f(x+△x)− f(x)

△x (9.34)
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Les 8 équations s'expriment alors sous la forme matri
ielle suivante

d

dx




V1
V2
V3
V4
I1
I2
I3
I4




=




0 0 0 0 −Z1 0 0 0
0 0 0 0 0 −Z2 0 0
0 0 0 0 0 0 −Z3 0
0 0 0 0 0 0 0 −Z4

A1 Y12 Y13 Y14 0 0 0 0
Y12 A2 Y23 Y24 0 0 0 0
Y13 Y23 A3 Y34 0 0 0 0
Y14 Y24 Y34 A4 0 0 0 0







V1
V2
V3
V4
I1
I2
I3
I4




= A
−→
S (9.35)

où

A1 = −(Y1G + Y12 + Y13 + Y14) (9.36)

A2 = −(Y2G + Y12 + Y23 + Y24) (9.37)

A3 = −(Y3G + Y13 + Y23 + Y34) (9.38)

A4 = −(Y4G + Y14 + Y24 + Y34) (9.39)

Les tensions utiles s'exprimant 
omme une di�éren
e de tensions, on pro
ède aux 
hangements

de variables suivants

V1M = V1 − V2 (9.40)

V2M = V3 − V4 (9.41)

V1L =
V1 + V2

2
(9.42)

V2L =
V3 + V4

2
(9.43)

I1M =
I1 − I2

2
(9.44)

I2M =
I3 − I4

2
(9.45)

I1L = I1 + I2 (9.46)

I2L = I3 + I4 (9.47)

Ces équations peuvent également être regroupées sous forme matri
ielle

−→
S = T




V1M
V1L
V2M
V2L
I1M
I1L
I2M
I2L




= T
−→
S ′

(9.48)
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où T est une matri
e permettant d'e�e
tuer le 
hangement de variables

T =




1
2

1 0 0 0 0 0 0
−1

2
1 0 0 0 0 0 0

0 0 1
2

1 0 0 0 0
0 0 −1

2
1 0 0 0 0

0 0 0 0 1 1
2

0 0
0 0 0 0 −1 1

2
0 0

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 −1 1
2




(9.49)

Dès lors,

−→
S ′ = T−1−→S (9.50)

L'ensemble s'é
rit �nalement

d

dx

−→
S = A

−→
S (9.51)

d

dx
T−1−→S = T−1A

−→
S (9.52)

d

dx

−→
S ′ = T−1AT

−→
S ′

(9.53)

La 
onséquen
e du 
hangement de variables est le dé
ouplage des équations, 
'est-à-dire qu'il est

possible d'exprimer les 
ourants uniquement en fon
tion des tensions. Dès lors, en remplaçant

Y par jωC, on obtient

d

dx




I1M
I1L
I2M
I2L


 = −jω

4




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44







V1M
V1L
V2M
V2L


 (9.54)

où

a11 = C1G + C2G + 4C12 + C13 + C14 + C23 + C24 (9.55)

a21 = a12 = 2C1G − 2C2G + 2C13 + 2C14 − 2C23 − 2C24 (9.56)

a31 = a13 = −C13 + C14 + C23 − C24 (9.57)

a41 = a14 = −2C13 − 2C14 + 2C23 + 2C34 (9.58)

a22 = 4C1G + 4C2G + 4C13 + 4C14 + 4C23 + 4C24 (9.59)

a23 = a32 = −2C13 + 2C14 − 2C23 + 2C24 (9.60)

a24 = a42 = −4C13 − 4C14 − 4C23 − 4C24 (9.61)

a33 = C3G + C4G + C13 + C14 + C23 + C24 + 4C34 (9.62)

a34 = a43 = 2C3G − 2C4G + 2C13 − 2C14 + 2C23 − 2C24 (9.63)

a44 = 4C3G + 4C4G + 4C13 + 4C14 + 4C23 + 4C24 (9.64)
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Le paramètre a31 de 
es équations détermine le 
ouplage entre la tension sur une paire et le


ourant induit dans l'autre paire. Ce terme serait nul si toutes les 
apa
itan
es étaient égales par


ouple. C'est 
e déséquilibre de 
apa
ités qui est à l'origine d'un e�et diaphonique ; il s'exprime

par

4

d

dx
I2M = −jω

4
CM1M2V1M (9.65)

où CM1M2est égal à a31 (ou a13). Cette équation détermine don
 le 
ourant l'évolution du


ourant perturbateur dans la paire perturbatri
e dû à une tension dans la paire perturbatri
e.

Les termes a12 et a21 sont eux liés au mode 
ommun.

Modèle des indu
tan
es non équilibrées

Le modèles des indu
tan
es non équilibrées est similaire au pré
édent. Les 
ir
uits sont repré-

sentés par une série d'e�ets indu
tifs tels que repris à la �gure 9.18.

V1m

I1m

I2m

V2m

∆xM3

∆xM1

∆xM4

∆xM2

Zc

Zc

Zc

Zc

Figure 9.18 � Modèle indu
tif de deux paires.

L'analyse détaillée de la question montre que la diaphonie se traduit également par l'apparition

d'un 
ourant induit dans une paire dû à une di�éren
e de tension appliquée à l'autre paire.

Plus pré
isément,

d

dx
I2M ≃ jωM

4Z2
c

V1M (9.66)

où M vaut M1 +M2 +M3 +M4.

4. L'équation 9.65 néglige le terme de diaphonie dû à la tension V1L de mode 
ommun 
ar, lors de l'installation

des lignes, l'opérateur s'arrange pour avoir un rapport de mode di�érentiel à mode 
ommun de 35 à 55 [dB].
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Con
lusion

Il apparaît don
 que les e�ets des deux modèles fournissent un 
ourant perturbateur tel que

d

dx
I2M =

(
jωM

4Z2
c

− jω

4
CM1M2

)
V1M (9.67)

que l'on é
rira plus généralement

d

dx
I2M = jωQM1M2V1M (9.68)

où QM1M2 tient 
ompte des e�ets 
apa
itifs et indu
tifs.

9.5.3 Cal
ul du NEXT

Les formules pré
édentes liaient les valeurs lo
ales des 
ourants et des tensions. Pour obtenir

des résultats ma
ros
opiques, il su�t d'intégrer les expressions lo
ales en tenant 
ompte de la

dimension sto
hastique des phénomènes observés.

Le s
héma de prin
ipe est illustré à la �gure 9.19. Prenons une paire perturbatri
e à l'entrée de

laquelle on applique une tension V0. Ce signal de tension par
ourt la ligne jusqu'au point x1.

Modem

Modem

Paire perturbatri
e

Paire perturbée

V0(f) V0(f)e
−γ(f)x1

x1

Câble multi-paires

Commutateur

de données

0 x

NEXT

jωQM1M2
V0(f)e

−γ(f)x1jωQM1M2
V0(f)e

−2γ(f)x1

Figure 9.19 � Paradiaphonie au droit de x1.

Au droit de x1, la tension sur la paire perturbatri
e vaut

V0(f)e
−γ(f)x1

(9.69)

Le 
ourant diaphonique induit sur la paire perturbée s'obtient en exploitant la relation 9.68

d

dx
I2(f, x1) = jωQM1M2V1(f, x1) = jωQM1M2V0(f)e

−γ(f)x1
(9.70)

Pour que 
e signal perturbe la se
onde paire, il faut qu'il parvienne à son extrémité. À l'origine,

le 
ourant induit vaut

d

dx
I2(f, 0) =

d

dx
I2(f, x1)e

−γ(f)x1 = jωQM1M2V0(f)e
−2γ(f)x1

(9.71)
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Pour obtenir la totalité du signal perturbateur sur la se
onde paire, il su�t d'intégrer sur

l'ensemble des positions x1, 
'est-à-dire sur toute la longueur de la zone d'interféren
e L. Dès
lors,

I2(f) =

∫ L

0

jωQM1M2(x)V0(f)e
−2γ(f)xdx (9.72)

Cette expression représente don
 le 
ourant généré dans la paire perturbée dû à une tension

dans la paire perturbatri
e, ramenée à l'entrée du 
âble. En terme de puissan
e, le signal

perturbateur s'exprime par

P2(f) = V2(f)I
∗
2 = ZLI2(f)I

∗
2(f) (9.73)

où ZL est l'impédan
e de la 
harge qui termine la ligne. La résolution de l'intégrale sous forme

analytique n'est malheureusement pas possible 
ar la quantité QM1M2 n'est pas 
onnue ; on

peut don
 la traiter 
omme une variable aléatoire et dès lors re
her
her l'expression d'une

puissan
e moyenne. En supposant que la 
harge ZL est adaptée à l'impédan
e de ligne Zc, il y
a don
 uniquement un transit de puissan
e a
tive. Ainsi, la puissan
e moyenne est donnée par

l'expression suivante

E {P2(f)} = E

{
RLV

2
0 (f)

∫ L

0

jωQM1M2(x)e
−2γ(f)xdx

∫ L

0

−jωQ∗
M1M2(y)e

−2γ∗(f)ydy

}

= RLω
2V 2

0 (f)E

{∫ L

0

∫ L

0

QM1M2(x)Q
∗
M1M2

(y)e−2γ(f)xe−2γ∗(f)ydxdy

}
(9.74)

= RLω
2V 2

0 (f)

∫ L

0

∫ L

0

E
{
QM1M2(x)Q

∗
M1M2

(y)
}
e−2γ(f)xe−2γ∗(f)ydxdy (9.75)

Une hypothèse réaliste 
onsiste à 
onsidérer que QM1M2(x) et Q∗
M1M2

(y) sont deux variables

non 
orrélées, 
e qui implique que la variable aléatoire QM1M2(x)Q
∗
M1M2

(y) n'aura une valeur

non nulle que si x = y d'où

E
{
QM1M2(x)Q

∗
M1M2

(y)
}
= kδ(x− y) (9.76)

Cette hypothèse est un arti�
e de 
al
ul 
ommode mais son interprétation physique est malaisée.

Notons néanmoins que QM1M2(x) peut prendre des valeurs négatives ; l'espéran
e peut don


s'annuler.

Grâ
e à 
ette hypothèse,

E {P2(f)} = RLω
2V 2

0 (f)

∫ L

0

∫ L

0

kδ(x− y)e−2γ(f)xe−2γ∗(f)ydxdy

= RLω
2V 2

0 (f)k

∫ L

0

e−2γ(f)xe−2γ∗(f)xdx (9.77)

= RLω
2V 2

0 (f)k

∫ L

0

e−4α(f)xdx (9.78)

= RLω
2V 2

0 (f)k

[
e−4α(f)x

−4α(f)

]L

0

(9.79)

=
RLω

2V 2
0 (f)k

−4α(f)

(
e−4α(f)L − 1

)
(9.80)

165



Prof. Mar
 Van Droogenbroe
k, tous droits réservés

Pour des lignes su�samment longues,

E {P2(f)} =
RLω

2V 2
0 (f)k

4α(f)
(9.81)

À haute fréquen
e (
e qui est le 
as pour l'ADSL), on sait que α est proportionnel à

√
f . D'où

HNEXT (f) =
RLω

2k

4α(f)
=

k′f 2

α0

√
f
= KNEXTf

3
2

(9.82)

Cette expression représente la fon
tion de transfert en puissan
e de la paradiaphonie (NEXT),

qui permet de 
al
uler la densité spe
trale de puissan
e sur la ligne perturbée due à une densité

spe
trale de puissan
e sur la ligne perturbatri
e. Cette fon
tion de transfert est don
 propor-

tionnelle à la fréquen
e. De plus, l'interféren
e de diaphonie ne dépend pas de la longueur. Ce

résultat, assez inattendu, provient du fait que les e�ets de diaphonie à proximité de l'extrémité

supplantent les 
ontributions diaphoniques des tronçons éloignés, les e�ets à 
ourte distan
e

dominent don
.

9.5.4 Cal
ul du FEXT

Tout 
omme dans le 
as du NEXT, on peut 
al
uler la puissan
e du FEXT à partir de la relation

lo
ale 9.68. Pour aboutir au résultat �nal, on pro
ède par intégration sur base du s
héma de la

�gure 9.20.

Modem

Modem

de données

Paire perturbatri
e

Paire perturbée

V0(f)e
−γ(f)x1

x1

V0(f)

jωQM1M2
V0(f)e

−γ(f)L

FEXT

0

Câble multi-paires

Commutateur

jωQM1M2
V0(f)e

−γ(f)x1

Figure 9.20 � Télédiaphonie au droit de x1.

Les 
al
uls mènent à une fon
tion de transfert en puissan
e d'expression

HFEXT (f) = kFEXTf
2e−2α(f)LL (9.83)

où L est la longueur du tronçon sur lequel agit le FEXT.

Contrairement au NEXT, le FEXT dépend de la longueur de la zone d'interféren
e ; il augmente

également ave
 la fréquen
e.
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9.5.5 Rapport signal sur bruit

Les fon
tions de transfert du NEXT et du FEXT permettent de dériver un rapport signal sur

bruit du 
anal 
onstitué par la paire perturbée.

Dans le 
as du FEXT, la densité spe
trale de puissan
e à la sortie de la paire est la somme de

la densité spe
trale de puissan
e du signal utile et de 
elle du FEXT. Suivant les 
onventions

de la �gure 9.21 et par appli
ation du théorème de Wiener-Kint
hine, on obtient

γR(f) = γE(f) ‖Hc(f)‖2 + γP (f)HFEXT (f) (9.84)

où γE(f) ‖Hc(f)‖2 représente la densité spe
trale de puissan
e du signal utile à la sortie de la

paire et γP (f)HFEXT (f), la densité spe
trale de puissan
e due au FEXT à l'entrée du ré
epteur.

PE PR

FEXT

paire perturbée

paire perturbatri
e

PP

Figure 9.21 � Cal
ul de la densité spe
trale de puissan
e en sortie de la paire en présen
e de

FEXT.

On en déduit l'expression du rapport signal sur bruit

S(f)

N(f)
=

γE(f) ‖Hc(f)‖2
γP (f)HFEXT (f)

(9.85)

=
γE(f) ‖Hc(f)‖2

γP (f)Lf 2kFEXT ‖Hc(f)‖2
(9.86)

=
1

Lf 2kFEXT
(9.87)

=
k′

Lf 2
(9.88)

Une formule identique peut être dérivée dans le 
as du NEXT, 
e qui donne deux expressions

du rapport signal sur bruit. On peut 
onstater que l'expression du 
anal n'intervient pas dans


es formules.

9.5.6 In�uen
e du nombre de perturbateurs

Supposons le 
âble 
onstitué de N lignes perturbatri
es. Une idée simple 
onsiste à sommer

l'e�et individuel des N lignes. Dès lors, la densité spe
trale de puissan
e en sortie est donnée

par

γout(f) =

N∑

i=1

γini
(f)HFEXT/NEXT (f) (9.89)
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Si, en plus, on fait l'hypothèse que tous les signaux perturbateurs ont la même densité spe
trale

de puissan
e,

γout(f) = Nγin(f)HFEXT/NEXT (f) (9.90)

Cette formule surévalue la puissan
e perturbatri
e 
ar les paires très éloignées de la paire

perturbée in�uen
ent peu 
ette dernière. Le fa
teur à 
onsidérer est dès lors inférieur à N . Il

est don
 né
essaire de mener une étude statistique. Unger a proposé la formule empirique

suivante

γout(f) = N0,6γin(f)HFEXT/NEXT (f) (9.91)

9.6 Estimation de la 
apa
ité de 
anal

De manière à établir une formule permettant d'estimer la 
apa
ité de 
anal, 
'est-à-dire le

nombre maximum de bit par se
onde qu'il est possible de transmettre sur un 
anal bruité (une

paire téléphonique dans notre 
as), il est né
essaire de rappeler les prin
ipaux résultats de la

théorie de l'information.

9.6.1 Information, in
ertitude et entropie

Notion d'information

Considérons une sour
e pouvant émettre deux symboles s0 et s1 ave
 les probabilités respe
tives
p0 et p1. Celle-
i peut dès lors être vue 
omme une variable aléatoire dis
rète. Nous 
onsidérons

la sour
e sans mémoire, 
'est-à-dire que le symbole émis à un 
ertain temps est indépendant

des symboles émis pré
édemment.

Supposons que la sour
e émette un symbole. Si une des deux probabilités est unitaire, il n'y a

pas de surprise à la sortie et don
 au
une information (on 
onnaît le symbole qui va être émis).

Dans le 
as où l'émission des symboles est équiprobable (p0 = p1 = 0, 5), une grande in
ertitude
subsiste sur le symbole émis et la ré
eption du symbole émis apporte beau
oup d'information.

On peut ainsi 
ara
tériser l'information par la probabilité d'émission des symboles.

Dé�nition 39 [Information d'un symbole℄ Dès lors, le gain en information apporté par

l'observation de l'événement S = sk, de probabilité pk est donné par l'information de symbole

telle que dé�nie par

i(sk) = log2

(
1

pk

)
= − log2 pk (9.92)

L'information est nulle quand pk vaut 1 �
e que l'on peut interpréter 
omme le fait que la

réalisation d'un événement 
ertain n'apporte au
une information� et elle augmente à mesure

que pk diminue. Cette grandeur s'exprime en bit d'information. Il 
onvient de ne pas 
onfondre

le bit et le bit d'information qui représentent respe
tivement les mesures du débit et du débit

d'information. Ainsi, il est tout à fait possible d'avoir un nombre de bits d'information qui ne

soit pas un nombre entier. En pratique, on ne retrouve guère 
ette nuan
e puisque le terme bit

est utilisé pour les deux notions. Il faudra don
 re
ourir au 
ontexte pour rétablir la distin
tion.
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Notion d'entropie

Soit une sour
e S 
omprenant K symboles. On 
her
he à 
ara
tériser l'information moyenne

fournie par 
haque symbole émis.

Dé�nition 40 Cette grandeur est appelée entropie de la sour
e et notée H(S). Dès lors,

H(S) =
K−1∑

k=0

pk log2

(
1

pk

)
(9.93)

Dans le 
as d'une sour
e binaire, on peut 
onsidérer deux 
as parti
uliers :

1. le 
as où tous les symboles sont équiprobables. On montre alors que H(S) = 1, 
e qui

implique que l'information apportée lors de l'observation du symbole vaut un bit.

2. le 
as où une probabilité pk vaut 1. Alors H(S) = 0 ; l'information apportée lors de

l'observation du symbole est nulle 
ar on sait a priori quel symbole va être émis par la

sour
e.

9.6.2 Canal dis
ret sans mémoire

Dans le 
as où le 
anal n'est pas bruité, lorsque l'on inje
te un symbole dans le 
anal, on

peut prédire la valeur du symbole de sortie ave
 
ertitude. En présen
e de bruit, une 
ertaine

in
ertitude subsiste à la ré
eption du symbole. Cette in
ertitude est liée au fait qu'il existe une


ertaine probabilité d'erreur, le 
anal n'étant plus parfait. Par ailleurs, il se peut fort bien qu'un

alphabet de sortie di�ère sensiblement en taille de l'alphabet d'entrée.

Modèle de 
anal

Considérons un 
anal dis
ret (les alphabets d'entrée et de sortie sont de taille �nie) et sans mé-

moire. L'absen
e de mémoire signi�e que le symbole de sortie 
ourant ne dépend que du symbole

d'entrée 
ourant. Le s
héma du système est alors 
elui fourni à la �gure 9.22. Les probabilités

p(yk|xj) représentent les probabilités de transition d'un symbole de l'alphabet d'entrée vers

un symboles de l'alphabet de sortie. Elles peuvent être regroupées dans une matri
e, appelée

matri
e de 
anal.

x1

x0 y0

y1

YX

xJ−1 yK−1

Canal : p(yk|xj)

Figure 9.22 � Modèle du 
anal dis
ret sans mémoire.

Idéalement, p(yk|xj) = 0 si k 6= j en l'absen
e de bruit ou de tout pré-
odage. En pratique, on

doit toujours tenir 
ompte des probabilités 
roisées.

169



Prof. Mar
 Van Droogenbroe
k, tous droits réservés

9.6.3 Information mutuelle

Pour un 
anal bruité, la question posée est de savoir quelle in
ertitude subsiste sur l'entrée X
après avoir observé la sortie Y = yk. Pour répondre à 
ette question, dé�nissons l'entropie de

X 
onditionnellement à Y , sa
hant que Y = yk de la manière suivante

H(X|Y = yk) =
J−1∑

j=0

p(xj |yk) log2
(

1

p(xj |yk)

)
(9.94)

Cette formule nous donne dès lors l'in
ertitude subsistant sur la valeur de l'entrée 
onnaissant

la valeur yk de la sortie. Il serait intéressant d'avoir une moyenne de 
ette information pour

toutes les valeurs de Y et don
 pour toutes les sorties possibles, 
'est l'entropie 
onditionnelle

H(X|Y ), donnée par

H(X|Y ) =
K−1∑

k=0

H(X|Y = yk)p(yk) (9.95)

=

K−1∑

k=0

J−1∑

j=0

p(xj |yk)p(yk) log2
(

1

p(xj |yk)

)
(9.96)

=

K−1∑

k=0

J−1∑

j=0

p(xj , yk) log2

(
1

p(xj |yk)

)
(9.97)

On dé�nit alors l'information mutuelle moyenne I(X ; Y ) 
omme la quantité d'information, et

don
 d'entropie, que l'on retrouve en sortie du 
anal (et don
 qui n'a pas été a�e
té par le

bruit). Dès lors,

I(X ; Y ) = H(X)−H(X|Y ) (9.98)

On peut illustrer 
ette dé�nition dans deux 
as parti
uliers :

1. le 
as d'un 
anal sans bruit. Alors, H(X|Y ) = 0 
ar 
onnaissant le symbole de sortie, il

est possible de déterminer ave
 
ertitude le symbole d'entrée. Aussi I(X ; Y ) = H(X) : le

anal arrive don
 bien à véhi
uler l'information jusqu'au ré
epteur.

2. le 
as d'un 
anal fortement bruité au point que tous les symboles soient équiprobables.

Alors H(X|Y ) = H(X), 
ar l'analyse de la sortie ne permet pas d'obtenir la moindre

information sur l'entrée. Ainsi don
, I(X ; Y ) est nulle ; le 
anal ne transmet au
une in-

formation.

On peut montrer que l'information mutuelle moyenne possède notamment la propriété d'être

symétrique, dès lors I(X ; Y ) = I(Y ;X), on en déduit que

I(X ; Y ) = H(X)−H(X|Y ) (9.99)

I(Y ;X) = H(Y )−H(Y |X) (9.100)
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9.6.4 Capa
ité de 
anal

La notion d'information mutuelle nous permet d'introduire la notion de 
apa
ité de 
anal.

Dé�nition 41 On dé�nit la 
apa
ité (maximale) d'un 
anal 
omme le maximum de l'informa-

tion mutuelle moyenne où la maximisation se fait sur la distribution de probabilité des symboles

d'entrée

Cs = max{p(xj)}I(X ; Y ) (9.101)

Cette dé�nition représente don
 la meilleure utilisation que l'on peut faire du 
anal et elle est

indépendante de la distribution de probabilités des symboles de l'alphabet d'entrée. Il s'agit

évidemment d'une 
apa
ité théorique que l'on pourra utiliser 
omme référen
e pour la mise au

point de te
hnique de transmission.

Remarquons en�n que la relation 9.101 dé�nit une 
apa
ité de 
anal par symbole. Si le 
anal

est 
apable de traiter s symboles par se
onde, la 
apa
ité par se
onde est donnée par

C = sCs (9.102)

Estimation de la 
apa
ité d'un 
anal binaire symétrique

Considérons le s
héma de la �gure 9.23.

y0 = 0

y1 = 1

X Y

x1 = 1p(x1) = 1− α

p(x0) = α
p

q q

p

x0 = 0

Figure 9.23 � Cal
ul de la 
apa
ité de 
anal d'un 
anal binaire symétrique.

La 
apa
ité du 
anal s'exprime par

Cs = max{p(xj )}I(X ; Y ) (9.103)

= max{p(xj )} [H(X)−H(X|Y )] (9.104)

= max{p(xj )} [H(Y )−H(Y |X)] (9.105)

Cal
ulons l'entropie 
onditionnelle H(Y |X). Pour 
e faire, appliquons la formule 9.96 adaptée.

Pour la paire entrée-sortie (x0, y0), on obtient

H(Y |X)(x0,y0) = −p(x)0p(y0|x0) log2 (p(y0|x0)) (9.106)
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Sa
hant que la probabilité d'émission du symbole x0 vaut α et que la probabilité 
onditionnelle

p(y0|x0) vaut p (
f. �gure 9.23), on obtient

H(Y |X)(x0,y0) = −αp log2 p (9.107)

En e�e
tuant de même pour toutes les 
ombinaisons entrée-sortie ((x1, y0), (x0, y1) et (x1, y1))
et en sommant les di�érentes 
ontributions, on trouve

H(Y |X) =
1∑

i=0

1∑

j=0

H(Y |X)(xi,yj) (9.108)

= −p log2 p− q log2 q (9.109)

On 
onstate don
 que H(Y |X) ne dépend que des 
ara
téristiques du 
anal, on parle d'entropie

de 
anal. Dès lors,

I(X ; Y ) = H(Y ) + p log2 p+ q log2 q (9.110)

Pour maximiser 
ette quantité, on ne peut plus jouer que sur H(Y ). Le maximum que l'on

peut obtenir ave
 un 
anal binaire est une valeur unitaire pour H(Y ). La 
apa
ité maximale

de 
anal est alors

Cs = 1 + p log2 p+ q log2 q (9.111)

Sur le s
héma de la �gure 9.23, q représente la probabilité de prendre une dé
ision erronée ;


'est la probabilité d'erreur. Dans le 
as d'une modulation à deux états, la probabilité d'erreur

est liée au rapport signal à bruit par la relation

q = pe =
1

2
erfc

(√
Eb
N0

)
(9.112)

L'évolution de la 
apa
ité de 
anal en fon
tion du rapport signal sur bruit est représentée à la

�gure 9.24. On 
onstate que, lorsque le rapport signal sur bruit tend vers l'in�ni (
'est-à-dire

que la probabilité d'erreur tend vers 0), la 
apa
ité maximale du 
anal tend vers 1 bit.

In�uen
e du type de modulation

Prenons le 
as d'une modulation à quatre états (4-AM par exemple). La matri
e de 
anal se


omplique 
ar il faut 
al
uler plusieurs probabilités d'erreur pour un symbole d'entrée donné.

Cependant, l'expression de la 
apa
ité de 
anal reste de la forme

Cs = H(Y ) +Hc (9.113)

où la valeur maximale de H(Y ) est de deux, la 
onséquen
e d'une modulation à quatre états

étant que l'on a deux bits par symbole et où Hc est un terme asso
ié aux transitions de 
anal.

Il est alors intuitivement a

eptable que la 
apa
ité de 
anal tende vers deux quand le rapport

signal à bruit tend vers l'in�ni. Le raisonnement peut être répété pour des modulations à 16

voire 64 états. Les résultats sont résumés à la �gure 9.24.
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p = 10−5

(bit/symbole)Cs

Figure 9.24 � Capa
ité de 
anal pour di�érents types de modulation.

Généralisation au 
as 
ontinu et se
ond théorème de Shannon

Dans le 
as où l'on 
onsidère des alphabets d'entrée et de sortie 
ontinus, le 
al
ul de la 
apa
ité

de 
anal s'en trouve très fortement 
ompliqué. Pour un 
anal blan
 additif gaussien de moyenne

nulle et de varian
e σ2
N , la sortie vaut

Y = X +N(0, σ2
N) (9.114)

Pour le 
al
ul de la 
apa
ité de 
anal, on impose en outre une limitation de la puissan
e d'entrée

à σ2
X .

Théorème 42 [Shannon℄ Des 
al
uls montrent que la 
apa
ité d'un 
anal blan
 additif

gaussien de moyenne nulle et de varian
e σ2
N s'exprime par

Cs =
1

2
log2

(
1 +

σ2
X

σ2
N

)
(9.115)

où

σ2X
σ2
N

représente le rapport signal sur bruit.

Cette formule porte le nom de se
ond théorème de Shannon. On 
onstate que, dans le 
as

d'un bruit important (σ2
N ≫ σ2

X), le 
anal ne parvient pas à transmettre de l'information. La

�gure 9.25 
ompare la limite théorique de Shannon ave
 les 
apa
ités maximales atteintes par

les di�érentes te
hniques de modulation. Il est intéressant de noter que la limite théorique de

Shannon 
orrespond au 
as d'une modulation 
omportant un nombre in�ni d'états.
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Figure 9.25 � Se
ond théorème de Shannon.
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Chapitre 10

Ingénierie des radio
ommuni
ations

mobiles terrestres

Ce 
hapitre aborde l'étude de la partie radio des réseaux de radio
ommuni
ations mobiles

terrestres. Les aspe
ts systèmes ne seront pas 
ouverts.

10.1 Introdu
tion

La �gure 10.1 représente les éléments qui interviennent dans le 
al
ul du bilan de puissan
e

d'une liaison sans �l. On distingue les pertes d'émission (LE) et de ré
eption (LR), dues aux
lignes de transmission reliant les équipements aux antennes ainsi qu'à 
ertains équipements in-

termédiaires (duplexeurs, 
onne
teurs, . . .), les gains d'antenne et l'a�aiblissement dans l'espa
e

(Ae).

Émetteur Ré
epteur

LE
LR

GE

GR

Ae

Figure 10.1 � Éléments intervenant dans le 
al
ul du budget de puissan
e d'une liaison sans

�l.

Dès lors, la puissan
e de ré
eption PR, exprimée en [dB], vaut

PR = PE − LE +GE −Ae +GR − LR (10.1)

où PE désigne la puissan
e d'émission. Le terme d'a�aiblissement en espa
e est déli
at s'agissant

de 
ommuni
ations mobiles. En e�et, le modèle de propagation en espa
e libre (
f. relation de
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Friis) 
onvient raisonnablement bien pour des 
ommuni
ations en ligne de vue �on parle

de situation de Line of Sight (LOS) dans la littérature� et dans un espa
e dégagé, mais il

s'avère inadéquat pour des 
ommuni
ations radiomobiles. En e�et, le signal déte
té au ré
epteur


omporte éventuellement l'onde émise en ligne de vue

1

et une série d'ondes di�ra
tées ou

ré�é
hies à la même fréquen
e ; 
'est une situation typique de multitrajet.

Le signal reçu est don
 a�e
té de plusieurs e�ets de distorsion :

� distorsion de la valeur instantanée de l'amplitude, engendrée par le phénomène de multitrajet

ou par la présen
e d'obsta
les. Le terme 
onsa
ré est 
elui d'évanouissement ou fading.

� distorsion de fréquen
e. Cet e�et résulte de l'e�et Doppler dû au dépla
ement du mobile.

� distorsion de phase. Il s'agit d'une 
onséquen
e du multitrajet et de l'e�et Doppler qui

produit une série de versions dé
alées dans le temps du signal émis.

Dans le 
as d'une 
ommuni
ation numérique, 
es e�ets se traduisent par un a

roissement de

l'interféren
e entre symboles et une diminution du débit utile pour une bande de fréquen
es

�xe.

En prin
ipe, il su�t de 
onnaître les trajets pour déterminer la 
orre
tion à apporter au signal

reçu. Cette appro
he déterministe ne 
onvient 
ependant pas puisque l'environnement �u
tue

au 
ours du temps. En 
onséquen
e, on intègre dans les formules donnant le niveau de puissan
e

reçu par un mobile en un point donné des variables aléatoires pour intégrer une in
ertitude sur

les prédi
tions. C'est don
 une démar
he à la fois physique, expérimentale et probabiliste qu'il


onviendra d'adopter pour l'analyse du bilan de liaison.

10.1.1 Sensibilité du mobile et qualité de servi
e

Pour qu'une radio
ommuni
ation s'e�e
tue ave
 un niveau de qualité su�sant, il faut impéra-

tivement satisfaire à deux 
onditions

2

:

1. Le niveau de puissan
e reçu par le mobile doit être supérieur à la sensibilité du mobile,


'est-à-dire au niveau de puissan
e minimal que le mobile est sus
eptible de déte
ter pour

un bruit d'entrée donné.

2. Le 
anal ne présente pas une distorsion et un bruit trop élevés.

Un émetteur est 
ara
térisé par sa puissan
e, un ré
epteur par sa sensibilité. Pour assurer une

ré
eption 
orre
te, le rapport signal à bruit

C
N
, mesuré à un 
ertain point de l'étage de ré
eption

�généralement à l'entrée du ré
epteur, après ampli�
ation�, doit être supérieur à un seuil donné.

Ce rapport s'exprime fréquemment 
omme un rapport d'énergie

Eb

N0
où Eb est l'énergie par bit

transmis et N0 désigne la densité spe
trale de bruit. La valeur de 
e seuil de
Eb

N0
est généralement

�xée par des normes. Par exemple, dans le 
as du GSM, le seuil

Eb

N0
vaut 8 [dB] en présen
e

d'évanouissement.

Pour relier le rapport

Eb

N0
à la sensibilité du mobile, nous e�e
tuons le 
al
ul suivant.

Pour une modulation de largeur de bande W (fréquen
e de Nyquist), la puissan
e de bruit

vaut N0W et la puissan
e du signal EbW . Dès lors,

C

N
=
EbW

N0W
=
Eb
N0

(10.2)

1. En fait, 
ette situation est rare dans le 
ontexte d'une radio
ommuni
ation mobile.

2. En pratique, les opérateurs ajoutent en
ore une marge de qualité.
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Il en résulte que, dans une é
helle logarithmique,

C =
Eb
N0

∣∣∣∣
seuil

+N (10.3)

Comme en GSM, la largeur de modulation est de 271 [kHz], le bruit thermique est égal à

1, 1× 10−12 [mW ], soit −120 [dBm] à une température de 290 [K].

Ce rapport est 
al
ulé au droit de la sortie de l'étage d'entrée (typiquement après démodulation).

Comme l'ampli�
ateur d'entrée ampli�e le bruit d'un fa
teur typique de 10 [dB], le bruit de

fond est borné par −110 [dBm]. Il en dé
oule que la sensibilité du mobile vaut −102 [dBm]. Le
tableau 10.1 reprend les quelques valeurs de sensibilité pour di�érents types de ré
epteurs.

Type de ré
epteur Sensibilité en [dBm]

Station de base -104

Portable 8 [W ] -104

Portable 2 [W ] (GSM 900) -102

GSM bi-bande -102

Table 10.1 � Valeurs typiques de sensibilité (d'après [19℄).

10.2 Modèle général de propagation

10.2.1 Introdu
tion

Une 
ommuni
ation entre une antenne d'émission et un mobile n'est pas symétrique. En e�et,

l'antenne d'émission est généralement pla
ée à une hauteur de plusieurs dizaines de mètres,

ave
 un horizon dégagé, alors que le mobile se dépla
e dans un environnement 
ontenant divers

obsta
les, à un hauteur de 1 à 3 [m]. Une situation typique de liaison est illustrée à la �gure 10.2.

On remarquera l'absen
e d'un trajet dire
t entre l'antenne de la station de base et le mobile,

ainsi que la présen
e de signaux ré�é
his et di�ra
tés

3

venant de toutes les dire
tions. Cette


on�guration est 
ourante en radio
ommuni
ations mobiles terrestres. Un modèle devrait être

en mesure de 
onsidérer 
e type de 
on�guration.

Examinons tout d'abord l'évolution de la puissan
e reçue en fon
tion de la distan
e par rapport

à l'émetteur �xe. La �gure 10.3 montre l'évolution de la puissan
e en fon
tion de la distan
e,

pour une même 
on�guration, prise à deux moments di�érents. En raison de toute une série de

fa
teurs, les deux 
ourbes di�èrent mais elles marquent une dé
roissan
e de la puissan
e ave


l'augmentation de la distan
e.

D'autre part, en pratique, il su�t de par
ourir un autre rayon du 
er
le 
entré sur l'antenne

d'émission pour observer une autre 
ourbe d'a�aiblissement, la 
on�guration de l'environnement

étant di�érente.

10.2.2 Modèle

Dans les 
as les plus 
ourants, le ré
epteur et l'émetteur ne sont pas en visibilité dire
te. On

approxime fréquemment l'a�aiblissement du 
anal par un modèle à 3 étages 
omprenant :

3. À l'intérieur, il faut en
ore ajouter les rayons di�ra
tés.
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(a) Vue de pro�l

(b) Vue aérienne

Figure 10.2 � Vue latérale et vue aérienne d'une liaison entre une antenne d'émission et un

mobile.

1 10 100 1000 10000

d [km℄

(b) Deuxième mesure

(a) Première mesure

1 10 100 1000 10000

d [km℄

P1 [dB℄

P2 [dB℄

35 dB / dé
ade

35 dB / dé
ade

Figure 10.3 � Évolutions de la puissan
e en fon
tion de la distan
e pour une même 
on�gu-

ration apparente.
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1. une atténuation médiane due à la distan
e,

2. un terme aléatoire prenant en 
ompte les e�ets de masque, dus à la présen
e d'obsta
les,

et

3. un autre terme aléatoire dé
rivant les évanouissements.

10.2.3 A�aiblissement de par
ours

Tout 
omme dans le 
as d'une liaison en espa
e libre, si la distan
e d entre l'émetteur et le

ré
epteur augmente la surfa
e apparente de l'antenne de ré
eption diminue, 
e qui se traduit

par un a

roissement de l'atténuation. En ligne de vue et en l'absen
e de ré�exion, l'a�aiblisse-

ment, appelé a�aiblissement de par
ours ou path loss, est proportionnel au 
arré de la distan
e

d2. Comme 
ette hypothèse n'est que rarement véri�ée en pratique, l'a�aiblissement est pro-

portionnel à une puissan
e supérieure de d. On opte, par exemple, pour une valeur médiane de

l'a�aiblissement valant d3,5.

L'a�aiblissement fournit une évolution de la puissan
e qui, lo
alement, peut s'é
arter des valeurs

moyennes observées. En e�et, prenons le 
as d'une 
ommuni
ation GSM à 900 [MHz], entre une
antenne d'émission et un mobile distant de 1 [km]. Suivant la loi d'a�aiblissement en d3,5, s'é
ar-
ter de 1 [m] 
ontribue à une augmentation de l'a�aiblissement de 35× (log10 1001− log10 1000),
soit 0, 015 [dB]. Or, la longueur d'onde 
orrespondant à 900 [MHz] est 0, 33 [m]. Autrement

dit, par
ourir une distan
e de 1 [m] équivaut à 3 longueurs d'onde. À supposer qu'une paroi

ré�é
hisse parfaitement le signal émis, le mobile reçoit le signal dire
t et le signal ré�é
hi ave


des phases respe
tives qui peuvent aller de la 
on
ordan
e de phase à l'opposition de phase,

soit un a�aiblissement supplémentaire allant de −6 [dB] à +∞ [dB]. Ces di�érents 
as de �gure
peuvent don
 se produire plusieurs fois sur une distan
e de 1 [m].

En dé�nitive, 
'est l'allure de l'a�aiblissement que l'on traite ave
 une loi qui serait fon
tion de

la distan
e ; à 
e titre, la valeur fournie par les modèles empiriques est la valeur médiane des

valeurs observées. Il faut ajouter à 
ela des e�ets statistiques de masquage et de phase.

10.2.4 Masquage

Base physique

Le masquage provient de la présen
e d'obsta
les. En première approximation, on peut 
onsidérer

qu'un obsta
le absorbe un 
ertain pour
entage de la puissan
e. Ainsi, la puissan
e transmise

ou di�ra
tée ne représente qu'un 
ertain pour
entage de la puissan
e in
idente. De même, la

présen
e d'une vitre se traduit par une 
ertaine diminution de puissan
e.

Pour modéliser les e�ets de masquage (shadowing en anglais), aussi appelé évanouissement

lent, nous partons de l'hypothèse suivante. Supposons que toutes les 
ontributions de mas-

quage à l'a�aiblissement A, en terme de puissan
e, soient dues à des fa
teurs multipli
atifs

A1, A2, . . . , AN , tous inférieurs à 1, tels que

A = A1 ×A2 × . . .× AN (10.4)

représente l'a�aiblissement de masquage

4

.

4. Cette dé�nition, 
ourante dans la littérature s
ienti�que, peut prêter à 
onfusion. En e�et, en toute rigueur

A représente l'inverse de l'a�aiblissement. Par la suite, nous adopterons néanmoins la dé�nition 10.4.
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Dès lors qu'il y a masquage, la puissan
e reçue PR vaut

PR = (PE × APL)×A1 × A2 × . . .×AN (10.5)

où APL est l'a�aiblissement de par
ours.

En dé
ibels, l'atténuation totale vaut

L
totale

= LPL + L = LPL + L1 + L2 + . . .+ LN (10.6)

Plus spé
i�quement, l'atténuation de masquage L est la somme des N 
ontributions

L = L1 + L2 + . . .+ LN (10.7)

Si toutes les 
ontributions sont des variables aléatoires de mêmes espéran
e et varian
e, L est

une variable aléatoire normale par appli
ation du théorème de la limite 
entrale :

L [dB] = L50% [dB] + σs [dB]×N(0, 1) = N(L50%, σ
2
s ) [dB] (10.8)

tel que L50% est la valeur médiane de l'atténuation et σs [dB] sa varian
e.

En unités naturelles et en é
rivant N(0, 1) = X , l'a�aiblissement vaut

L = 10L[dB]/10 = 10(L50% [dB]+σs [dB]×X)/10
(10.9)

= 10L50% [dB]/10 10σs [dB]×X/10 = LoV (10.10)

où Lo = 10L50% [dB]/10
et

V = 10σs [dB]×X/10
(10.11)

est une loi log-normale.

Densité de probabilité d'une loi log-normale. Pour 
al
uler la densité de probabilité de

la log-normale, on part de l'expression de la gaussienne. SoitX une variable aléatoire gaussienne


entrée, de varian
e unitaire. Sa densité de probabilité vaut, pour x ∈ [−∞,+∞],

fX(x) =
1√
2π
e−

x2

2
(10.12)

On dé�nit ensuite la variable aléatoire log-normale V de la manière suivante

V = 10
σsX
10 = eβσsX (10.13)

où

β =
ln(10)

10
= 0, 23 (10.14)

La fon
tion de répartition de V vaut [21, page 152℄

FV (v) = p(V ≤ v) = p(eβσsX ≤ v) = p(X ≤ ln v

βσs
) (10.15)

=

∫ ln v/βσs

−∞
fX(x)dx =

1√
2π

∫ ln v/βσs

−∞
e−

x2

2 dx (10.16)
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Par dérivation, il en résulte une densité de probabilité

fV (v) =
fX(x)

|∂v/∂x|

∣∣∣∣
x= ln v

βσs

=

1√
2π
e−

x2

2

βσseβσsx

∣∣∣∣∣∣
x= ln v

βσs

(10.17)

=

{
1

βσsv
1√
2π
e
− (ln v)2

2β2σ2
s

si v ≥ 0

0 si v < 0
(10.18)

Cette densité de probabilité est représentée à la �gure 10.4.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

fV (v)

v

σs = 1 [dB]
σs = 2 [dB]
σs = 6 [dB]

Figure 10.4 � Densité de probabilité d'une loi log-normale.

La valeur médiane de V , v50%, est tirée de la valeur médiane de X par v50% = ex50% = 100 = 1
quelle que soit la valeur de σs.

En pratique, tous les termes ne 
ontribuent pas de la même manière à l'a�aiblissement. D'autre

part, on peut montrer que les termes de di�ra
tion n'obéissent pas à une simple loi additive,

en raison d'une dépendan
e entre 
ertains termes. Néanmoins, diverses mesures montrent que

la loi log-normale est généralement su�sante pour modéliser le masquage.

Impa
t sur la zone de 
ouverture en bordure d'une 
ellule

En présen
e d'un e�et de masquage, l'a�aiblissement L est une variable aléatoire normale

N(L50%, σ
2
s ) (
f. équation 10.8) :

L [dB] = N(L50%, σ
2
s ) [dB] (10.19)

On peut en déduire une variable aléatoire normale 
entrée Ls au moyen de l'expression

L [dB] = L50% [dB] + Ls [dB] (10.20)

où
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� L50% est la valeur médiane

5

de l'a�aiblissement de par
ours telle que fournie par les modèles

empiriques résultant de mesures. En e�et, 
es mesures fournissent une valeur médiane qui,

outre l'a�aiblissement de par
ours, englobe un e�et moyen de masquage. C'est la raison pour

laquelle on 
lasse les modèles empiriques en fon
tion de la densité de l'environnement urbain.

� Ls, la variable aléatoire de masquage ; 
'est-à-dire une variable aléatoire gaussienne de

moyenne nulle et d'é
art-type σs.
La densité de probabilité de Ls est don


f(ls) =
1

σs
√
2π
e

−l2s
2σ2

s
(10.21)

Pour des raisons d'e�
a
ité, il est né
essaire de garantir un niveau de puissan
e supérieur à la

valeur médiane ; l'ingénieur de réseau n'a guère le 
hoix que d'ajouter une marge supplémentaire

de puissan
e à l'émission a�n d'augmenter la 
ouverture. À l'ajout de 
ette marge de ms [dB]

orrespond une probabilité de 
ouverture supérieure à 
elle de la puissan
e médiane pour une

même sensibilité de ré
epteur. Cette probabilité se 
al
ule par

p(ls < ms) =

∫ ms

−∞

1

σs
√
2π
e

−l2s
2σ2

s dls (10.22)

=
1

2
+

∫ ms

0

1

σs
√
2π
e

−l2s
2σ2

s dls (10.23)

=
1

2
+

1

2
erf

(
ms√
2σs

)
(10.24)

erf(x) est la fon
tion d'erreur

erf(x) =
2√
π

∫ x

0

e−t
2

dt (10.25)

L'e�et de masque représente une variation sur les 
onditions de propagation, tant�t favorable

(par exemple visibilité dire
te), tant�t défavorable (par exemple lors de la présen
e d'un obsta
le

important entre l'émetteur et le ré
epteur). En environnement urbain, l'é
art type de la loi a

une valeur typique de 6 [dB] (d'après [19℄).

La �gure 10.5 montre la probabilité de 
ouverture (en %) en fon
tion de la marge additionnelle

de puissan
e.

10.2.5 Évanouissement

Pour obtenir la statistique qui dé
rit le phénomène d'évanouissement, il faut distinguer deux


as, suivant qu'il y ait ou non visibilité dire
te �ou du moins, un trajet nettement moins atténué

que les autres� entre l'antenne de la station de base et l'antenne du mobile.

Évanouissement en l'absen
e d'un trajet dire
t

Considérons une série de trajets dus à la di�ra
tion et à la ré�exion (
f. �gure 10.6). Dans un

premier temps, nous 
onsidérons le 
as d'un émetteur et d'un ré
epteur qui ne sont pas en ligne

de vue.

5. La valeur médiane d'une variable aléatoire normale est théoriquement égale à sa moyenne. Pour les me-

sures, le re
ours à la médiane est préférable si l'on ne dispose pas d'un large ensemble de réalisations 
ar elle

élimine l'impa
t des valeurs aberrantes.
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Figure 10.5 � Pour
entage de 
ouverture tel que dé�ni par un seuil de puissan
e.

x(t)A cos(2πfot)

Figure 10.6 � E�et de multitrajet par di�ra
tion et ré�exion.
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L'émetteur envoie un signal 
osinusoïdal A cos(2πfot) ave
 une amplitude et une fréquen
e fo

onstantes. Le signal reçu au droit du ré
epteur X(t) est 
omposé d'une série d'ondes déphasées

et atténuées

X(t) =
∑

i

Ci cos(2πfot + θi) (10.26)

Cette expression peut s'é
rire sous la forme de termes en phase et en quadrature

X(t) =
∑

i

[Ci cos(2πfot) cos θi − Ci sin(2πfot) sin θi] (10.27)

=
∑

i

[Ai cos(2πfot)− Bi sin(2πfot)] (10.28)

= XI(t) cos(2πfot)−XQ(t) sin(2πfot) (10.29)

où l'on a dé�ni

XI(t) =
∑

i

Ai =
∑

i

Ci cos θi et XQ(t) =
∑

i

Bi =
∑

i

Ci sin θi (10.30)

Le 
anal n'étant pas invariant dans le temps (par exemple en raison de dépla
ements), les


omposantes en phase et en quadrature sont des fon
tions temporelles. D'autre part, X(t) est
la réalisation d'un pro
essus sto
hastique qui est la somme de termes indépendants. Dès lors,

en vertu du théorème de la limite 
entrale, XI(t) et XQ(t) représentent des variables aléatoires
gaussiennes.

Si l'on veut déterminer l'intensité de 
hamp éle
trique, il faut analyser l'évolution de l'amplitude

du signal. Cette amplitude est dé�nie par

6

R(t) =
√
X2
I (t) +X2

Q(t), R(t) ≥ 0 (10.31)

quant à la phase, elle vaut

Φ(t) = tan−1 XQ(t)

XI(t)
, Φ(t) ∈ [0, 2π[ (10.32)

et don


X(t) = R(t) cos(2πfot+ Φ(t)) (10.33)

Pour exprimer les densités de probabilité de 
es variables aléatoires à partir de XI(t) et XQ(t),
supposons tout d'abord que les 
omposantes en phase et en quadrature soient des variables

gaussiennes 
entrées, de même varian
e σ2
X et non 
orrélées. Les variables sont 
entrées 
ar

elles résultent de la somme de variables aléatoires de type Ci cos θi. Or, en supposant que les

variables Ci et cos θi soient indépendantes, E {Ci cos θi} = E {C}iE {cos θi} = 0 si l'on 
onsi-

dère un argument uniformément distribué sur l'intervalle [0, 2π]. Physiquement, une moyenne


orrespond à des 
ontributions d'amplitude négative, plus pré
isément à des termes en dé
alage

de phase de 900 à 2700.

6. Les résultats suivants résultent de la dé
omposition en 
omposantes de Ri
e et de la représentation par

un passe-bas équivalent d'un signal passe-bande.
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Densité de probabilité. S'agissant de gaussiennes, la non 
orrélation entraîne l'indépen-

dan
e [6, page 162℄. La densité de probabilité 
onjointe est dès lors égale à

fXI XQ
(xI , xQ) =

1

2πσ2
X

e
−

x2I+x2Q

2σ2
X

(10.34)

Le 
hangement de variables

xI = r cosφ (10.35)

xQ = r sinφ (10.36)

permet de trouver la densité de probabilité 
onjointe fR,Φ(r, φ). En e�et, on sait qu'en toute

généralité, un 
hangement de variables fait intervenir le Ja
obien

7

fR,Φ(r, φ) =

∣∣∣∣∣
∂XI

∂R

∂XQ

∂R
∂XI

∂Φ

∂XQ

∂Φ

∣∣∣∣∣ fXI XQ
(r cosφ, r sin φ) (10.37)

Dès lors,

fR,Φ(r, φ) =

∣∣∣∣
cosφ sinφ

−r sin φ r cosφ

∣∣∣∣ fXI XQ
(r cosφ, r sin φ) (10.38)

=
r

2πσ2
X

e
− r2 cos2 φ+r2 sin2 φ

2σ2
X

(10.39)

=





r
2πσ2

X

e
− r2

2σ2
X , r ≥ 0, φ ∈ [0, 2π[

0 r < 0
(10.40)

Densité de probabilité marginale de l'enveloppe. La densité de probabilité marginale

des amplitudes s'obtient en intégrant la densité 
onjointe sur Φ. Un 
al
ul simple 
onduit à

fR(r) =





r
σ2
X

e
− r2

2σ2
X , r ≥ 0

0 r < 0
(10.41)

C'est la densité de probabilité de Rayleigh. Elle est illustrée, sous forme normalisée, à la

�gure 10.7.

Les moments de 
ette loi valent [24℄

E {r}n =

{
1× 3× . . .× nσnX

√
π/2 pour n = 2k + 1

2kk!σ2k
X pour n = 2k

(10.42)

En parti
ulier,

E {r} =
√
π/2σX ≃ 1, 253× σX (10.43)

σ2
R =

(
2− π

2

)
σ2
X ≃ 0, 429× σ2

X (10.44)

Quant à l'amplitude quadratique moyenne mesurée, elle vaut

R
rms

=

[∫ +∞

0

r2
r

2πσ2
X

e
− r2

2σ2
X dr

]1/2
=

√
2σX ≃ 1, 41× σX (10.45)

On parle généralement d'évanouissement lorsque l'amplitude du signal passe en dessous de

R
rms

[21℄.

7. Voir par exemple Papoulis [24, page 143℄ pour une démonstration.
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Figure 10.7 � Densité de probabilité de Rayleigh.

Densité de probabilité marginale de la phase. Pour obtenir la densité marginale fΦ(φ),
on intègre sur r de 0 à +∞ :

fΦ(φ) =
1

2π
, φ ∈ [0, 2π[ (10.46)


e qui signi�e que Φ est une variable aléatoire uniforme et indépendante de R, d'où

fR,Φ(r, φ) = fR(r)fΦ(φ) (10.47)

Données expérimentales. La �gure 10.8 montre l'histogramme de niveaux de puissan
e

relevés expérimentalement en l'absen
e d'un trajet dire
t. Une approximation de la loi de

Rayleigh est superposée à 
et histogramme.

Évanouissement en présen
e d'un trajet dire
t

En présen
e d'un trajet dire
t, le signal reçu 
ontient le signal transmis en ligne droite, en plus

du bruit et des 
opies dé
alées et atténuées du signal utile

Z(t) = A cos(2πfot+ θ) +X(t) (10.48)

Ce 
as est évidemment plus favorable que le 
as pré
édent puisque le ré
epteur reçoit également

le signal en ligne de vue. L'étude menée 
i-après vise à mesurer l'importan
e de l'ajout du signal

dire
t. Il ne faudrait pas pour autant en déduire des règles de dimensionnement 
ar on doit

tenir 
ompte des 
onditions les plus défavorables pour l'établissement du bilan de puissan
e,


'est-à-dire en l'absen
e d'un trajet dire
t.

Pour un signal Z(t) à bande étroite, il est possible de re
ourir à la dé
omposition de Ri
e

Z(t) = ZI(t) cos(2πfot)− ZQ(t) sin(2πfot) (10.49)

où

ZI(t) = A cos θ +XI(t) (10.50)

ZQ(t) = A sin θ +XQ(t) (10.51)
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Figure 10.8 � Histogramme de niveaux de puissan
e relevés expérimentalement (d'après La-

pierre [20℄).
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En faisant apparaître l'amplitude et la phase,

Z(t) = R(t) cos(2πfot+ Φ(t)) (10.52)

où

R(t) =
√
Z2
I (t) + Z2

Q(t), R(t) ≥ 0 (10.53)

et

Φ(t) = tan−1 ZQ(t)

ZI(t)
, Φ(t) ∈ [0, 2π[ (10.54)

Dès lors,

ZI(t) = R(t) cosΦ(t) (10.55)

ZQ(t) = R(t) sinΦ(t) (10.56)

Pour une valeur donnée de θ, les variables aléatoires gaussiennes XI(t) et XQ(t) étant indépen-
dantes, elles 
onservent 
e 
ara
tère. Il en résulte que

ZI(t) = N(A cos θ, σ2
X) (10.57)

ZQ(t) = N(A sin θ, σ2
X) (10.58)

La probabilité 
onjointe, 
onditionnellement à θ, est don


fZI ZQ
(zI , zQ|θ = θo) =

1

2πσ2
X

e
− (zI−A cos θo)

2+(zQ−A sin θo)
2

2σ2
X

(10.59)

Densité de probabilité. Le même 
hangement de variable fournit le même Ja
obien, d'où

fR,Φ(r, φ|θo) =

∣∣∣∣
cosφ sinφ

−r sinφ r cosφ

∣∣∣∣ fZI ZQ
(r cosφ, r sin φ|θo) (10.60)

=
r

2πσ2
X

e
− (r cosφ−A cos θo)

2+(r sinφ−A sin θo)
2

2σ2
X

(10.61)

=
r

2πσ2
X

e
− r2+A2

−2rA cos(θo−φ)

2σ2
X

(10.62)

Densité de probabilité marginale de l'enveloppe. L'intégration sur la phase donne

fR(r|θo) =

∫ 2π

0

fR,Φ(r, φ|θo)dφ (10.63)

=
r

2πσ2
X

e
− r2+A2

2σ2
X

∫ 2π

0

e
rA cos(θo−φ)

σ2
X dφ (10.64)

=
r

2πσ2
X

e
− r2+A2

2σ2
X 2πI0

(
Ar

σ2
X

)
(10.65)
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où I0(x) est la fon
tion de Bessel modi�ée d'ordre 0 telle que

I0(x) =
+∞∑

n=0

x2n

22n(n!)2
(10.66)

≃
{

1 + x2

4
+ x4

64
, x < 2, 5

e1,1x

1,9x
, 2, 5 < x < 10

(10.67)

La fon
tion I0(x) est représentée à la �gure 10.9.
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Figure 10.9 � Fon
tion de Bessel modi�ée de première espè
e d'ordre 0.

Remarquons que 
ette densité de probabilité est indépendante de la phase initiale θo. On peut

don
 supprimer la 
ondition en θo pour aboutir à

fR(r) =





r
σ2
X

e
− r2+A2

2σ2
X I0

(
Ar
σ2
X

)
, r ≥ 0

0 r < 0
(10.68)

Il s'agit de la densité de probabilité de Ri
e ; elle est illustrée (sous forme normalisée) à la

�gure 10.10. Lorsque A = 0, il s'agit de la loi de Rayleigh.

10.2.6 Autres lois d'a�aiblissement

Les lois log-normale, de Rayleigh et de Ri
e tiennent 
ompte des prin
ipaux e�ets d'éva-

nouissement. Il existe néanmoins d'autres modèles, 
omme les modèles de Nakagami, qui se

révèlent plus appropriés dans 
ertaines situations (voir par exemple [30, 
hapitre 2℄ pour une

dis
ussion des modèles).
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Figure 10.10 � Densité de probabilité de Ri
e (pour di�érentes valeurs de a = A
σX

).

10.2.7 E�et Doppler

Les multitrajets génèrent un e�et d'évanouissement rapide. C'est en fait la somme de phases

distribuées aléatoirement qui modi�e l'amplitude instantanée du signal résultant. Il est un autre

e�et générateur de distorsion de phase : le mouvement du mobile. Prenons le 
as illustré à la

�gure 10.11. Un mobile s'é
arte d'une sour
e stationnaire suivant un ve
teur vitesse (instantané)−→
V .

θo

z z′

−→
V

Figure 10.11 � E�et Doppler.

Considérons que l'onde reçue par le mobile est une onde plane et que le mobile se dépla
e dans

une dire
tion orientée d'un angle θ. Le dépla
ement du mobile par rapport au front d'onde


réée une distorsion de la fréquen
e apparente qui porte le nom d'e�et Doppler. La distorsion

est proportionnelle au dépla
ement dans l'axe perpendi
ulaire au front d'onde.
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Prenons le 
as d'une sour
e qui émet un 
hamp éle
trique sinusoïdal de fréquen
e fc. En l'ab-

sen
e de mouvement, le 
hamp reçu au droit du mobile vaut, suivant la théorie des ondes [25℄,

E(t) = E0e
j(ωct−βz)

(10.69)

ave
 ωc = 2πfc et le nombre d'onde β = 2π
λc
. Si le mobile est animé d'un mouvement à vitesse

−→
V dans la dire
tion θ. Le 
hamp reçu devient

E(t) = E0e
j(ωct−βz−βz′)

(10.70)

= E0e
j(ωct−βz−βV t cos θ)

(10.71)

= E0e
j2π(fc− V

λc
cos θ)t−jβz

(10.72)

Le dépla
ement du mobile entraîne don
 une distorsion de fréquen
e d'amplitude

fD =
V

λc
cos θ = fm cos θ (10.73)

appelée fréquen
e Doppler. Comme V et θ �u
tuent au 
ours du temps, on assiste à une

distorsion de fréquen
e variable �et don
 de phase� pour l'analyse de laquelle il faudra également

re
ourir à des outils statistiques. La modi�
ation de la fréquen
e porteuse dans une pla
e de

fréquen
es porte le nom d'étalement Doppler. La �gure 10.12 montre les spe
tres à l'émission

et à la ré
eption résultant de l'e�et Doppler.

Spe
tre à l'émission Spe
tre à la ré
eption

fc f fc f

Figure 10.12 � Étalement Doppler.

Exemple. Prenons le 
as d'un mobile GSM (900 [MHz]) se déplaçant à 120km/h. La fréquen
e
Doppler maximale intervient lorsque le mobile se dépla
e dans l'axe de propagation de l'onde,


'est-à-dire pour cos θ = 1. Dans 
e 
as, fD = fm = V fc
c

= 1,2×105

3600
× 9×108

3×108
= 100 [Hz]. La

fréquen
e instantanée est don
 
omprise dans un intervalle de largeur 200 [Hz].

Spe
tre Doppler 
lassique

L'allure de l'étalement Doppler a un impa
t signi�
atif sur les statistiques d'évanouissement.

Pour en déterminer l'expression, nous partons d'une hypothèse quant à la distribution des

angles d'arrivée dans le plan horizontal des trajets multiples. Le modèle le plus simple 
onsiste

à 
onsidérer une variable aléatoire d'angle d'arrivée Θ dont la densité de probabilité fΘ(θ) est
uniformément distribuée sur l'intervalle [0, 2π].
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La puissan
e moyenne ré
oltée dans un se
teur angulaire dθ pour une antenne de gain G(θ)
vaut

PR(θ) = G(θ) fΘ(θ) dθ (10.74)

En asso
iant un se
teur angulaire à une 
ontribution spé
i�que de l'étalement Doppler, la

puissan
e 
orrespondante en termes de fréquen
e vaut

PR(f) = γD(f) df (10.75)

On remarquera aisément que deux se
teurs angulaires d'orientation opposée 
ontribuent à une

même fréquen
e. Dès lors,

γD(f) df = G(θ) fΘ(θ) dθ +G(−θ) fΘ(−θ) dθ (10.76)

Ce qui mène à

|γD(f)| =
G(θ)fΘ(θ) +G(−θ)fΘ(−θ)∣∣ df

dθ

∣∣ (10.77)

Par la relation 10.73, ∣∣∣∣
df

dθ

∣∣∣∣ = fm |− sin θ| (10.78)

= fm
√
1− cos2 θ (10.79)

= fm

√
1−

(
f

fm

)2

(10.80)

Finalement, en prenant une antenne de gain symétrique, le spe
tre vaut

|γD(f)| =
G(θ)
2π

+ G(−θ)
2π

fm

√
1−

(
f
fm

)2 =
G(θ)

πfm

√
1−

(
f
fm

)2 pour |f | ≤ fm (10.81)

et 0 pour |f | > fm. Cette forme de spe
tre porte le nom de spe
tre Doppler 
lassique ; elle

est illustrée à la �gure 10.13.

Bien que leur obtention soit mathématiquement 
omplexe, il existe des expressions des densités

spe
trales de la phase du signal, de la fréquen
e instantanée, de l'enveloppe et d'autres quantités

en
ore. En parti
ulier, l'analyse de l'enveloppe montre que sa fon
tion d'auto
orrélation se

resserre lorsque la vitesse augmente, 
e qui signi�e que les enveloppes prises à deux temps

voisins sont moins 
orrélées et don
 que l'évanouissement marque des sauts plus brusques.

10.3 Modèles empiriques

En pratique, les modèles de propagation utilisés ne sont pas des modèles analytiques vu le

nombre élevé de paramètres et la diversité des situations dont il faudrait tenir 
ompte. Plus

que les valeurs des 
hamps en un point, 
'est la 
ouverture géographique qui intéresse les

opérateurs de réseau.

Un 
omplément utile aux modèles analytiques est le re
ours à une base de données topogra-

phique a�n de maîtriser au mieux la 
ouverture. Cette appro
he n'ex
lut en rien le besoin

d'e�e
tuer des mesures en raison de la limitation inhérentes aux di�érents modèles et de l'évo-

lution 
onstante de l'environnement. À défaut de mesures, on peut s'appuyer sur des modèles

empiriques qui fournissent des ordres de grandeur �ables pour toute une série de 
on�gurations

de référen
e.
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Figure 10.13 � Spe
tre Doppler 
lassique (fc = 900 [MHz], V = 100 [km/h] et G = 1).

10.3.1 Types d'environnement

Il existe di�érents types de modèles empiriques. Pour la plupart, on distingue plusieurs types

d'environnements, parmi lesquels :

� l'environnement rural pour lequel l'horizon est prin
ipalement dégagé. La propagation est

alors majoritairement in�uen
ée par le relief plut�t que par les bâtiments ;

� l'environnement urbain désignant de petites villes ne 
omportant pas ou peu de hauts buil-

dings ;

� l'environnement urbain dense englobant la majorité des grandes villes pour lesquelles l'a�ai-

blissement est prin
ipalement régi par l'agen
ement des bâtiments.

La distin
tion entre un urbain et urbain dense est parfois ténue. Néanmoins, la densi�
ation de

l'environnement s'a

ompagne d'une augmentation de la pente de l'a�aiblissement en fon
tion

de la distan
e. Des valeurs typiques de pentes sont résumées dans le tableau 10.2. Un exposant

de 3, 5 implique un a�aiblissement de 35 [dB] par dé
ade.

Environnement exposant

rural 3,2

urbain 3,5

urbain dense 3,8

Table 10.2 � Valeurs de l'exposant de l'a�aiblissement de par
ours en fon
tion de la distan
e

pour di�érents environnements.

10.3.2 Types de 
ellule

On distingue aussi, généralement, quatre types de 
ellules (d'après [18℄) :

1. la ma
ro-
ellule. Il s'agit d'une 
ellule de quelques dizaines de kilomètres de rayon qui


ara
térise les liaisons en milieu suburbain et rural. Les antennes d'émission sont, dans


e 
as parti
ulier, pla
ées sur des positions élevées.
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2. la petite 
ellule de quelques kilomètres de rayon. Elle est parti
ulièrement adaptée à

l'environnement urbain. Les antennes des stations de base sont situées sur des bâtiments

au-dessus du niveau des toits. En milieu urbain dense, la portée des petites 
ellules est

plut�t de l'ordre de 800 [m].

3. la mi
ro-
ellule de quelques 
entaines de mètres de rayon. Elle est adaptée à l'environ-

nement urbain dense. Les antennes des stations de base sont situées sous le niveau des

toits.

4. la pi
o-
ellule. D'une taille de quelques dizaines de mètres de rayon, elle 
onvient pour la

propagation à l'intérieur des bâtiments dans lesquels sont pla
ées les antennes des stations

de base.

10.3.3 In�uen
e de la hauteur des antennes

D'autres paramètres in�uen
ent l'a�aiblissement de par
ours, notamment la hauteur des an-

tennes. Pour le montrer, nous partons de la 
on�guration illustrée à la �gure 10.14.

d

d1

d2

hb

hm

Figure 10.14 � Cal
ul de l'in�uen
e de la ré�exion.

Prenons un trajet dire
t de type Ae−jβd1 (β est le nombre d'onde : β = 2π
λ
).

Que le 
hamp éle
trique soit à polarisation horizontale ou verti
ale, on montre que la ré�exion

sur un 
ondu
teur éle
trique parfait a�e
te le 
hamp d'un 
oe�
ient −1 (
f. par exemple [25℄).

En 
onséquen
e, le 
hamp reçu au droit du ré
epteur vaut

Ae−jβd1 − Ae−jβd2 = Ae−jβd1
(
1− e−jβ(d2−d1)

)
(10.82)

Autrement dit, l'a�aiblissement qui résulterait d'une propagation en espa
e libre est a�e
té

d'un fa
teur

Γ = 1− e−jβ(d2−d1) (10.83)
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Nous 
her
hons à présent à illustrer la dépendan
e en d. Par simple 
al
ul de l'hypoténuse de

triangles re
tangles,

d1 =
√

(hb − hm)2 + d2 (10.84)

d2 =
√

(hb + hm)2 + d2 (10.85)

D'où

d2 − d1 = d



√(

hb + hm
d

)2

+ 1−

√(
hb − hm

d

)2

+ 1




(10.86)

Soit en
ore, après utilisation de l'approximation (1 + x)n ≈ 1 + nx,

d2 − d1 ≈
2hbhm
d

(10.87)

Dès lors, en termes de puissan
e, le fa
teur vaut

Γ2 =
∣∣1− e−jβ(d2−d1)

∣∣2
(10.88)

=
∣∣e−jβ(d2−d1)/2

∣∣2 ∣∣ejβ(d2−d1)/2 − e−jβ(d2−d1)/2
∣∣2

(10.89)

= 4 sin2

(
β
hbhm
d

)
(10.90)

≃ 4

(
β
hbhm
d

)2

≃ 4

(
2π

λ

hbhm
d

)2

=

(
4π

λ

hbhm
d

)2

(10.91)

La puissan
e reçue PR vaut alors

PR ≃ PEGEGR

(
λ

4πd

)2(
4π

λ

hbhm
d

)2

(10.92)

≃ PEGEGR
h2bh

2
m

d4
(10.93)

Ou en
ore, en dé
ibels,

PR [dB] = 10 log10(PEGEGR) + 20 log10 hb + 20 log10 hm − 40 log10 d (10.94)

Cette formule montre que l'a�aiblissement en fon
tion de la distan
e est deux fois plus rapide

qu'en espa
e libre et qu'il ne dépend plus de la fréquen
e, si 
e n'est au travers des gains

d'antenne. En pratique, il apparaît que le modèle simple que nous avons 
hoisi n'est pas très

représentatif des situations réelles. L'analyse montre néanmoins 
ertaines tendan
es que l'on

retrouve dans 
ertains modèles empiriques.

10.3.4 Modèles ma
ro
ellulaires

À partir de nombreuses mesures e�e
tuées dans les environs de Tokyo à di�érentes fréquen
es,

Okumura a 
al
ulé l'a�aiblissement médian en fon
tion de la distan
e. Hata a établi, à partir

de 
es 
ourbes, des formules empiriques qui ont été reprises dans le rapport 567-4 du CCIR.

Ce modèle est souvent désigné sous le terme de formule d'Okumura-Hata ; il sert de base à

une grande variété de modèles plus a�nés. Il s'applique pour des tailles de 
ellules relativement
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grandes (de rayon supérieur ou égal à 1 [km]) et surtout lorsque l'antenne de la station de base

est située au-dessus des niveaux des toits avoisinants. Plut�t que 
ette formule, valable pour des

fréquen
es 
omprises entre 150 et 1000 [MHz], nous fournissons l'expression du modèle COST

231-Hata qui s'applique aux fréquen
es 
omprises entre 1500 [MHz] et 2000 [MHz].

En milieu urbain, l'a�aiblissement Lu vaut, en [dB],

Lu = 46, 33 + 33, 9 log(f)− 13, 82 log(hb)− a(hm) + [44, 9− 6, 55 log(hb)] log d+ Cm (10.95)

ave


� f la fréquen
e, d la distan
e, hb, hm, des hauteurs ; 
es grandeurs sont exprimées respe
tive-

ment en [MHz], [km] et [m].
� a(hm) = (1, 1 log(f) − 0, 7)hm − (1, 56 log(f) − 0, 8) pour une ville de taille moyenne ; 
e

fa
teur de 
orre
tion dépend de la hauteur de l'antenne du mobile mais également du type

d'environnement.

� Cm = 0 [dB] pour les villes de taille moyenne et les banlieues, et Cm = 3 [dB] pour les grands

entres métropolitains.

Nous renvoyons le le
teur à des ouvrages spé
ialisés [19, 21, 32℄ pour les 
onditions d'appli
a-

bilité de la formule et la des
ription d'autre modèles.

10.3.5 Propagation à l'intérieur des bâtiments

À l'intérieur des bâtiments, le 
anal de propagation est sensiblement di�érent d'un milieu

extérieur bien qu'il soit également le lieu d'évanouissements. Il existe deux types de propagation

à l'intérieur des bâtiments �on parle de propagation indoor. Ceux-
i sont brièvement exposés


i-après.

Propagation �extérieur-intérieur�

La propagation extérieur-intérieur est 
ara
térisée par le fait que l'émetteur est 
onstitué d'une

antenne utilisée pour les 
ommuni
ations extérieures et le ré
epteur est situé à l'intérieur du

bâtiment. Dans 
e 
as, l'atténuation est la somme d'un terme d'a�aiblissement du signal prove-

nant de l'environnement extérieur auquel s'ajoute un terme représentant les pertes subies par

le signal lors de sa pénétration dans le bâtiment.

L'estimation de 
es pertes de pénétration est rendue très di�
ile 
ar elle dépend à la fois de

la fréquen
e, de l'angle d'in
iden
e, de la distan
e, du type de façade et de l'environnement et

de l'ar
hite
ture intérieure. Une solution pragmatique se base sur des 
ampagnes de mesures.

Celles-
i ont pour prin
ipal obje
tif de trouver des valeurs d'ingénierie permettant d'e�e
tuer

le dimensionnement du réseau de manière à permettre la 
ommuni
ation pour un mobile se

trouvant à l'intérieur d'un bâtiment.

Pour 
e faire, on dé�nit deux types de valeurs :

1. le soft indoor, représentant l'atténuation en façade, et

2. le deep indoor, représentant l'atténuation dans des endroits re
ulés du bâtiment.

Des valeurs typiques sont de 10 [dB] pour le soft indoor et de 20 [dB] pour le deep indoor à

900 [MHz]. Ces valeurs interviendront lors de l'établissement du bilan de puissan
e. La hauteur

de l'étage où se situe le ré
epteur in�uen
e également 
es pertes : les pertes de pénétration

diminuent approximativement de 1, 5 [dB] par étage.
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Il peut paraître 
urieux de pouvoir 
ommuniquer dans un bâtiment alors qu'il n'existe presque

jamais de trajet dire
t (surtout en deep indoor). Cela s'explique par le fait que les ondes

réussissant à pénétrer dans le bâtiment sont soumises prin
ipalement à trois phénomènes : la

ré�exion, la transmission et la di�ra
tion (
f. �gure 10.15).

Rayons di�ra
tés

Rayon transmis

Rayon ré�é
hi

Figure 10.15 � Transmission, ré�exion et di�ra
tion.

Les ondes peuvent dès lors parvenir au ré
epteur par de multiples ré�exions. Il arrive même que,

par un e�et guide d'ondes 
omme illustré à la �gure 10.16, l'a�aiblissement devienne inférieur

à l'a�aiblissement en espa
e libre.

Ré
epteur

Façade

Émetteur

Figure 10.16 � E�et guide d'ondes.

Propagation �intérieur-intérieur�

Pour la propagation intérieur-intérieur, l'émetteur et le ré
epteur sont tous deux situés dans le

bâtiment, on parle de pi
o-
ellule. La propagation dans 
e type de milieu est déterminée par des

méthodes de lan
é de rayons, l'environnement étant impossible à 
ara
tériser analytiquement

ou empiriquement de manière pré
ise.
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Annexe A

Quelques résultats

A.1 Gain et atténuation

Dé�nition 43 [Gain et atténuation d'un système linéaire℄ Pour un système linéaire, le gain

en puissan
e est le rapport entre la puissan
e de sortie et la puissan
e en entrée, l'atténuation

étant le rapport inverse.

On dé�nit parfois, par le biais de la réponse impulsionnelle, le 
arré du rapport des tensions ou


ourants de sortie et d'entrée en [dB]. Néanmoins, ‖H(f)‖2 n'est pas toujours égal au gain en

puissan
e du 
ir
uit.

A.2 Notation phasorielle

Dans tout 
ir
uit, sans sour
e d'énergie, les 
ourants sont amortis et s'annullent au 
ours du

temps. L'appli
ation de sour
es de tension ou de 
ourant sinusoïdales engendre des 
ourants

qui, après disparition des régimes transitoires, sont sinusoïdaux et de même fréquen
e que 
elle

des sour
es si tous les éléments du 
ir
uit ont des 
ara
téristiques linéaires. C'est le régime

sinusoïdal permanent. Dès lors, la réponse d'un 
ir
uit à l'ex
itation sinusoïdale sera dé
rite,

en fon
tion de la fréquen
e, par sa fon
tion de transfert. La linéarité des équations joue i
i un

r�le essentiel.

À 
haque grandeur physique évoluant sinusoïdalement, on asso
ie une grandeur 
omplexe, dont

la partie réelle sera identi�ée ave
 la grandeur physique à dé
rire, et dont l'amplitude 
omplexe,

qui en regroupe l'amplitude et la phase, sera la grandeur utile.

Dé�nition 44 Considérons une grandeur sinusoïdale x(t) = X cos(ωt− θ). On lui asso
ie le

phaseur

X̂ = Xejθ (A.1)

L'expression temporelle est la partie réelle du phaseur préalablement multiplié par l'exponen-

tielle imaginaire ejωt. En e�et,

x(t) = Re(X̂ejωt) (A.2)

= Re(Xej(ωt + θ)) (A.3)

= X cos(ωt− θ) (A.4)

199



Prof. Mar
 Van Droogenbroe
k, tous droits réservés

Le phaseur est un 
on
ept purement mathématique ; il n'a pas de signi�
ation physique mais

il permet de simpli�er l'expression et le 
al
ul de 
ertaines expressions. Ainsi,

∂(X̂ejωt)

∂t
= jωX̂ejωt (A.5)

et

∫
X̂ejωtdt =

X̂ejωt

jω
(A.6)

A.2.1 Impédan
e 
omplexe

Soit un 
ir
uit formant un dip�le éle
tro
inétique que l'on supposera passif, 
'est-à-dire qu'il

ne 
omporte pas de générateur. Supposons tous ses éléments linéaires ; à toute ex
itation sinu-

soïdale v(t) = V cos(ωt) entre ses bornes, 
orrespond un 
ourant i(t) = I cos(ωt− φ).

En utilisant la notation phasorielle, l'impédan
e 
omplexe est dé�nie par la relation

V̂ = ẐÎ (A.7)

Ẑ est don
 de la forme Zeφ. Son module Z, simplement appelé impédan
e, est égal au rapport

des amplitudes V et I ; il se mesure en ohms [Ω].

A.2.2 Puissan
e en régime sinusoïdal

Soient v(t) = V cos(ωt) la tension aux bornes du dip�le étudié et i(t) = I cos(ωt−φ) l'intensité
qui le par
ourt. Le dip�le reçoit la puissan
e éle
tro
inétique instantanée

v(t)i(t) = V I cos(ωt) cos(ωt− φ) (A.8)

=
V I

2
(cos φ+ cos(2ωt− φ)) (A.9)

Cette puissan
e varie au 
ours du temps de façon sinusoïdale à la fréquen
e angulaire 2ω, autour
d'une valeur Pm, appelée puissan
e moyenne

Pm =
V I

2
cosφ (A.10)

Pm est exa
tement la moyenne de la puissan
e reçue par le 
ir
uit lorsqu'elle est 
al
ulée sur

un nombre entier de périodes.
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En notation phasorielle,

P̂ = Re
(
V̂ ejωt

)
Re
(
Îejωt

)
(A.11)

=

(
V̂ ejωt + V̂ ∗e−jωt

2

)(
Îejωt + Î∗e−jωt

2

)
(A.12)

= Re

(
V̂ Î∗

2

)
+Re

(
V̂ Î∗e2jωt

2

)
(A.13)

Pour un 
ir
uit passif, d'impédan
e 
omplexe Ẑ = R + jS, la puissan
e moyenne vaut alors

Pm = Re

(
(R + jS) ‖I‖2

2

)
=
RI2

2
(A.14)

Seule la partie réelle de l'impédan
e intervient.

A.3 Adaptation d'impédan
e

Considérons une for
e éle
tromotri
e sinusoïdale d'amplitude V et d'impédan
e interne Ẑs.
Relions ses bornes à 
elles d'un 
ir
uit d'utilisation d'impédan
e ẐL, et 
her
hons la valeur de

ẐL pour laquelle la puissan
e moyenne fournie au 
ir
uit est maximale. En posant Ẑs = Rs+jSs
et ẐL = RL + jSL, on montre aisément que la puissan
e moyenne dissipée Pd dans la 
harge

est maximale lorsque Rs = RL et Ss = SL, soit lorsque

ẐL = Ẑ∗
s (A.15)

On dit alors que l'impédan
e du 
ir
uit d'utilisation est adaptée à 
elle du générateur. La

puissan
e fournie est maximale et vaut

Pd =
V 2

8R
(A.16)

Notons qu'une puissan
e égale est dissipée dans le générateur, 
e qui diminue pour de nom-

breuses appli
ations l'intérêt de 
ette adaptation.
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Glossaire

ADSL Asymmetri
 Digital Subs
riber Line. Te
hnologie permettant la transmission de signaux

numériques à haut débit (jusqu'à plusieurs Mégabits par se
onde) sur une paire torsadée.

Le débit est asymétrique ; il est plus important du 
entral vers l'abonné qu'en retour. Le

système ADSL est 
ompatible ave
 le signal téléphonique. . . . . . . . . . . . . 111, 150, 157

BPSK Binary Phase Shift Keying. Modulation numérique de phase à 2 états. Il s'agit d'un 
as

parti
ulier des modulations numériques de phase à plusieurs états (PSK). . . . . . . . . 55

CDMA Code Division Multiple A

ess. Te
hnologie de transmission numérique permettant la

transmission de plusieurs �ux simultanés par répartition de 
ode. Cette te
hnologie permet

une utilisation permanente de la totalité de la bande de fréquen
es allouée à l'ensemble des

utilisateurs. La te
hnologie prévoit un mé
anisme d'a

ès aux ressour
es. . . . . . . . . 112


ellule En radio
ommuni
ations, zone géographique élémentaire d'un réseau radio
ellulaire

à laquelle on a�e
te un ensemble de fréquen
es non réutilisables dans les zones 
ontiguës.

C'est également le nom donné à un paquet ATM qui a une taille de 53 bytes dont 48 sont

destinées à re
evoir les données d'un utilisateur. . . . . . . . . . . . . . . . . . . . . . . . . . . 193

DFT Dis
rete Fourier Transform. La transformée de Fourier dis
rète s'obtient par é
han-

tillonnage de la transformée 
ontinue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Duplex Terme utilisé en télé
ommuni
ations pour désigner une 
ommuni
ation bidire
tion-

nelle. Dans un système audio, le duplex intégral se retrouve par exemple au niveau des

systèmes de téléphonie. La transmission dite �semi-duplex" permet également la 
ommuni-


ation bidire
tionnelle, mais uniquement dans une dire
tion à la fois. C'est par exemple le


as des systèmes walkie-talkie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

FDM Frequen
y Division Multiplexing. Mé
anisme de répartition de ressour
es par multi-

plexage fréquentiel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

FDMA Frequen
y Division Multiple A

ess. Te
hnique de répartition de ressour
es par multi-

plexage fréquentiel. Cette te
hnique prévoit un mé
anisme d'a

ès aux ressour
es. . 112

FEXT Far-End Crosstalk. Interféren
e éle
tromagnétique entre deux paires de 
uivre 
onsidé-

rée à l'extrémité ré
eptri
e. Également appelée télédiaphonie. . . . . . . . . . . . . . . . . 159

GSM Global System for Mobile Communi
ations. Standard de téléphonie mobile adopté en

Europe, en Asie et en Australie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

IS-95 Norme améri
aine de réseau 
ellulaire (dit de se
onde génération ou 2G) basée sur la

méthode d'a

ès CDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

LOS Line Of Sight. Terme qui désigne qu'un émetteur et un ré
epteur sont en ligne de vue,


'est-à-dire que, parmi tous les trajets reliant l'émetteur et le ré
epteur, un trajet est net-

tement moins atténués que les autres. La visibilité en ligne de vue n'ex
lut pas les trajets

multiples, 
ontrairement à la visibilité en espa
e libre. . . . . . . . . . . . . . . . . . . . . . . 176

modem modulateur démodulateur. Appareil transmettant des signaux numériques sur le réseau

téléphonique analogique. O�re les fon
tions de numérotation, de 
onnexion, et éventuelle-

ment de 
ompression et de 
orre
tion d'erreur. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

modulation Te
hnique 
onsistant à modi�er l'amplitude, la phase ou la fréquen
e d'une onde

sinusoïdale, appelée porteuse, au moyen d'un signal à transmettre, appelé signal modulant.

Grâ
e à la modulation, on peut translater le 
ontenu fréquentiel d'un signal modulant ;
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e pro
édé permet de partager le spe
tre de fréquen
es entre plusieurs utilisateurs. Pour

retrouver le signal modulant original, il faut pro
éder à une démodulation. . . . . . . . . 55

MSK Minimum Shift Keying. Te
hnique de modulation numérique 
onsistant à e�e
tuer une

fon
tion XOR entre 2 bits su

essifs préalablement à une modulation de fréquen
e à 2

états. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

multiplexage Terme te
hnique utilisé en télé
ommuni
ations pour désigner un pro
édé qui


onsiste à partager des ressour
es entre plusieurs utilisateurs. Dans un autre 
ontexte et

lorsqu'on parle de signaux, il s'agit d'une manière de 
ombiner plusieurs signaux. . . 111

NEXT Near-End Cross(X) Talk. Mesure de la paradiaphonie d'un 
âble de 
uivre. . . . 159

NRZ Non Return to Zero. Méthode de représentation de signaux numériques. Cette méthode

représente les symboles numériques par des niveaux de tension 
onstants pendant toute la

durée du symbole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 57

OSI Open System Inter
onne
tion. Standard de référen
e d'inter
onnexion de réseaux déve-

loppé par l'OSI. Ce système est di�érent du modèle Internet. . . . . . . . . . . . . . . . . . . 1

PSK Phase Shift Keying. Modulation numérique de phase à plusieurs états. Te
hnique de

modulation 
onsistant à séle
tionner des é
hantillons d'une porteuse à amplitude 
onstante

mais ave
 plusieurs états de phase possibles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

QPSK Quadrature Phase Shift Keying. Te
hnique de modulation numérique 
onsistant à ap-

pliquer une modulation des états de phase tant sur une porteuse en 
osinus que sur la

porteuse en sinus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

RNIS Réseau Numérique à Intégration de Servi
es. Désigne le réseau téléphonique numé-

rique. Au niveau du réseau, les signaux numériques utiles sont transmis à des multiples de

64[kb/s℄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

TDM Time Division Multiplexing. Mé
anisme de répartition de ressour
es par multiplexage

temporel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111, 116

TDMA Time Division Multiple A

ess. Te
hnique de répartition de ressour
es par multiplexage

temporel. Cette te
hnique prévoit un mé
anisme d'a

ès. . . . . . . . . . . . . . . . . . . . 112

UTP Unshielded Twisted Pair. Désigne un 
âble non blindé 
omposé de 4 paires en 
uivre. La

norme EIA-TIA 586 dé�nit 5 
atégories de 
âbles de 
e type. . . . . . . . . . . . . . . . . 154
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