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An example of a longitudinal study in brainimaging

fMRI study of longitudinal
changes in a population
of adolescents at risk for
alcohol abuse linked to
Heitzeg et al. (2010)

I 86 subjects
I 2 groups (Low risk:

47 subj. and High
risk: 39 subj.)

I Missing data (1, 2, 3
or 4 scans/subject)

I Go/No-go task
I No common time

points

2nd-level standard modelling in SPM
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Only valid under Compound Symmetry:

var(yi) = �2

0

BBB@

1 ⇢ . . . ⇢
⇢ 1 . . . ⇢
...

... . . . ...
⇢ ⇢ . . . 1

1

CCCA



Is there an alternative method?

I Gold standard method for longitudinal data in Biostatistics:
Linear Mixed Effects (LME) modelling (Laird and Ware,
1982) :

yi = Xi�|{z}
Fixed effects

+ Zibi|{z}
Random effects

+ei

I Unfortunatly, LME has drawbacks:
I Random effects not easy to specify
I Use of iterative algorithms

I generally slow
I may fail to converge to a solution:

E.g., 12 subjects, 8 visits, Toeplitz (linearly decaying)
correlation struct., LME with unstructured intra-visit
correlation fails to converge 95 % of the time.
E.g., 12 subjects, 8 visits, Compound Symmetry , LME with
random int. and random slope fails to converge 2 % of the
time.



The Sandwich Estimator (SwE) method
I Marginal OLS modelling used:

)

yi = Xi�|{z}
Fixed effects

+ ⇢⇢ZZ�0i|{z}
Subject indicator covariates

+ei

I � estimated by OLS estimate �̂OLS
I var(�̂OLS) estimated by the Sandwich Estimator (Eicker,1963):
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The adjusted Sandwich Estimator (SwE) method

I SwE property:

lim
M!+1

SwE = var(�̂OLS)

! Large sample assumption

I In order to enhance the accuracy of the SwE method in
small samples, we propose to use:

I Small sample bias adjustment (MacKinnon and White,
1985)

I Small sample distributional adjustment of the statistical test
Null distribution (Waldorp, 2009)

I Assumption of a common covariance matrix among
subjects



Assessment method

I Methods accuracy assessed by Null Gaussian Monte
Carlo simulations (10,000 realizations)

I Metric used:

Relative False Positive Rate (rel. FPR) =
E(FPRMethod)

Nominal FPR

I 2 correlation structures tested:

Compound Symmetry

E.g., for subject 1:
0
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E.g., for subject 1:
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Simulation results

I F-test at 0.05 as level of significance
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Summary
I Longitudinal standard methods not really appropriate to

neuroimaging data:
I LME

I Difficult to specify
I generally slow
I Convergence issues

I N-OLS
I Issues when Compound Symmetry does not hold
I Cannot accommodate pure between covariates (e.g.,

gender)
I The SwE method, particularly with small samples

adjustments,
I Accurate in a large range of settings
I Easy to specify
I No iteration needed

I Quite fast
I No convergence issues

I Can accommodate pure between covariates (e.g., gender)
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