Fast and accurate modelling of longitudinal neuroimaging data

B. Guillaume124 L. Waldorp3 T. Nichols1

1Department of Statistics
University of Warwick

2Cyclotron Research center
University of Liège

3Department of Psychological Methods
University of Amsterdam

4GlaxoSmithKline

OHBM, 2012
An example of a longitudinal study in brainimaging

fMRI study of longitudinal changes in a population of adolescents at risk for alcohol abuse linked to Heitzeg et al. (2010)

- 86 subjects
- 2 groups (Low risk: 47 subj. and High risk: 39 subj.)
- Missing data (1, 2, 3 or 4 scans/subject)
- Go/No-go task
- No common time points

2nd-level standard modelling in SPM
An example of a longitudinal study in brainimaging

fMRI study of longitudinal changes in a population of adolescents at risk for alcohol abuse linked to Heitzeg et al. (2010)

- 86 subjects
- 2 groups (Low risk: 47 subj. and High risk: 39 subj.)
- Missing data (1, 2, 3 or 4 scans/subject)
- Go/No-go task
- No common time points

2nd-level standard modelling in SPM
An example of a longitudinal study in brainimaging

fMRI study of longitudinal changes in a population of adolescents at risk for alcohol abuse linked to Heitzeg et al. (2010)

- 86 subjects
- 2 groups (Low risk: 47 subj. and High risk: 39 subj.)
- Missing data (1, 2, 3 or 4 scans/subject)
- Go/No-go task
- No common time points

2nd-level standard modelling in SPM

Only valid under **Compound Symmetry**:

\[
\text{var}(y_i) = \sigma^2 \begin{pmatrix}
1 & \rho & \cdots & \rho \\
\rho & 1 & \cdots & \rho \\
\vdots & \vdots & \ddots & \vdots \\
\rho & \rho & \cdots & 1
\end{pmatrix}
\]
Is there an alternative method?

- Gold standard method for longitudinal data in Biostatistics: Linear Mixed Effects (LME) modelling (Laird and Ware, 1982):

\[y_i = X_i \beta \underbrace{+ Z_i b_i}_{\text{Fixed effects Random effects}} + e_i \]

- Unfortunately, LME has drawbacks:
 - Random effects not easy to specify
 - Use of iterative algorithms
 - generally slow
 - may fail to converge to a solution:
 E.g., 12 subjects, 8 visits, Toeplitz (linearly decaying) correlation struct., LME with unstructured intra-visit correlation fails to converge 95% of the time.
 E.g., 12 subjects, 8 visits, Compound Symmetry, LME with random int. and random slope fails to converge 2% of the time.
The Sandwich Estimator (SwE) method

- Marginal OLS modelling used:

\[
y_i = X_i \beta + \beta_{oi} + e_i
\]

- Fixed effects
- Subject indicator covariates

- \(\beta\) estimated by OLS estimate \(\hat{\beta}_{OLS}\)
- \(\text{var}(\hat{\beta}_{OLS})\) estimated by the Sandwich Estimator (Eicker, 1963):

\[
\text{SwE} = \left(\sum_{i=1}^{M} X_i' X_i \right)^{-1} \left(\sum_{i=1}^{M} X_i' \hat{V}_i X_i \right) \left(\sum_{i=1}^{M} X_i' X_i \right)^{-1}
\]

\[\text{Bread} \quad \text{Meat} \quad \text{Bread}\]

with \(\hat{V}_i = r_i r_i'\) and \(r_i = y_i - X_i \hat{\beta}\)
The adjusted Sandwich Estimator (SwE) method

- **SwE property:**

\[
\lim_{M \to +\infty} \text{SwE} = \text{var}(\hat{\beta}_{OLS})
\]

→ **Large sample assumption**

- In order to enhance the accuracy of the SwE method in **small samples**, we propose to use:
 - Small sample bias adjustment (MacKinnon and White, 1985)
 - Small sample distributional adjustment of the statistical test Null distribution (Waldorp, 2009)
 - Assumption of a common covariance matrix among subjects
Assessment method

- Methods accuracy assessed by Null Gaussian Monte Carlo simulations (10,000 realizations)
- Metric used:

 \[
 \text{Relative False Positive Rate (rel. FPR)} = \frac{\mathbb{E}(\text{FPR}_{\text{Method}})}{\text{Nominal FPR}}
 \]

- 2 correlation structures tested:

 Compound Symmetry

 E.g., for subject 1:

 \[
 \begin{pmatrix}
 1 & 0.8 & 0.8 & 0.8 \\
 0.8 & 1 & 0.8 & 0.8 \\
 0.8 & 0.8 & 1 & 0.8 \\
 0.8 & 0.8 & 0.8 & 1
 \end{pmatrix}
 \]

 Non Compound Symmetry

 E.g., for subject 1:

 \[
 \begin{pmatrix}
 1 & 0.7 & 0.51 & 0.31 \\
 0.7 & 1 & 0.81 & 0.61 \\
 0.51 & 0.81 & 1 & 0.8 \\
 0.31 & 0.61 & 0.8 & 1
 \end{pmatrix}
 \]
Simulation results

- F-test at 0.05 as level of significance

Compound Symmetry
Constant intra–visit correlation of 0.8

- Mean effect
 - High vs. Low
- Linear effect of age
 - High vs. Low
- Quadratic effect of age
 - High vs. Low

N - OLS (SPM)
- LME with random int.
- Unadjusted SwE
- Adjusted SwE

Relative FPR (%)

- 1079%

Non Compound Symmetry
Linear decay of the intra–visit correlation of 0.1/year

- Mean effect
 - High vs. Low
- Linear effect of age
 - High vs. Low
- Quadratic effect of age
 - High vs. Low

N - OLS (SPM)
- LME with random int.
- Unadjusted SwE
- Adjusted SwE

Relative FPR (%)

- 954%
Summary

- Longitudinal standard methods not really appropriate to neuroimaging data:
 - LME
 - Difficult to specify
 - Generally slow
 - Convergence issues
 - N-OLS
 - Issues when Compound Symmetry does not hold
 - Cannot accommodate pure between covariates (e.g., gender)
- The SwE method, particularly with small samples adjustments,
 - Accurate in a large range of settings
 - Easy to specify
 - No iteration needed
 - Quite fast
 - No convergence issues
 - Can accommodate pure between covariates (e.g., gender)
Acknowledgment

- Data
 - M. Heitzeg

- Funding
 - GlaxoSmithKline through the Marie Curie Initial Training Network "Neurophysics"