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Abstract—Distribution system state estimation faces a major
difficulty: the lack of real-time measurements. This imposes to
add information, usually pseudo-measurements from historical
data. This paper proposes a different, novel formulation of state
estimation relying on the classification of loads into compo-
nents (e.g. residential, commercial, etc.) and accounting for dis-
persed generation. The approach “by-passes” the use of pseudo-
measurements by expressing the medium-voltage bus injections
as functions of a small number of active power components
at low-voltage level, treated as additional state variables. The
injections at medium-voltage buses become equality constraints.
A procedure to identify the above functions is detailed, which
takes advantage of data collected by smart meters.

Index Terms—distribution systems, state estimation, load com-
ponents, dispersed generation, smart meters, least squares

I. MOTIVATION AND BACKGROUND

State estimation has become a standard monitoring function
in transmission systems [1]. Nowadays, it is envisaged in
Medium Voltage (MV) distribution systems in support of
active network management [2]. However, Distribution System
State Estimation (DSSE) faces a major difficulty: the relative
scarceness of real-time measurements, leading to low redun-
dancy. It is thus required to add information in the form of
pseudo-measurements. Most of the time, the latter relate to
MV bus injections, i.e. the powers drawn from the distribution
network.

Pseudo-measurements are usually obtained from historical
data such as standardized load profiles, weather and time-of-
day data, customer billing information, etc. [2], [3]. Three
methods to compute the associated variances are: assumed
variance, normal distribution fitting, and correlation model [3].
Gaussian mixture model [2], [4], artificial neural networks [4],
and machine learning algorithms based on automated metering
infrastructure [5] have also been proposed. Once the pseudo-
measurements have been retrieved from the available data, they
are usually treated as statistically independent data.

In fact few approaches acknowledge that a strong correlation
exists among loads within the same area. The early reference
[6] considered aggregation of loads in demand areas defined
as connected sub-networks without real-time measurements,
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connected to other demand areas through branches with real-
time measurements. The central idea was to first estimate
aggregated loads and then share them among individual loads
according to pre-specified scaling factors. The correlation
model in [3] relies on a regression analysis to determine the
degree of dependency of non-measured loads with real-time
measurements.

This paper proposes a novel formulation of DSSE based
on the assumption of a strong correlation among loads of
the same type (e.g. residential, commercial, etc.) within the
same area. It also accounts for distribution generation, which
is important in view of the rapid growth of photo-voltaic
installations connected to Low Voltage (LV) networks. The
approach “by-passes” the use of pseudo-measurements by
expressing the MV bus injections as functions of a small
number of active power components at LV level, treated as
additional state variables. The injections at MV buses become
equality constraints.

The paper is organized as follows. The new state estima-
tion formulation is presented in Section II, followed by an
illustrative example in Section III. A procedure to identify
the relations between MV bus injections and LV active power
components is detailed in Section IV, while simulation results
using data from existing LV networks are given in Section V.
The main points are summarized in Section VI.

II. NEW STATE ESTIMATION FORMULATION

A. Demand and dispersed generation components

For a single connected distribution grid, the whole active
power consumed at LV level is split into cD demand com-
ponents, one for each type of load, e.g. residential, tertiary
sector, industrial, etc.

Similarly, the whole active power generated at LV level is
split into cG dispersed generation components. In today’s LV
networks, the dominant Dispersed Deneration (DG) units are
photo-voltaic installations, but other types can be included.

Let us define c = cD + cG and let L be the number of MV
bus injections corresponding to connections to LV networks.

An illustrative example is given in Fig. 1 for a simple, 8-
bus MV system. L = 4 since there are connections to LV
networks at buses 3, 4, 5 and 7. The LV grid fed by bus 4



Fig. 1. Example of MV grid with real-time measurements, and detailed view
of the LV grid connected to bus 4, corresponding to the injection at this bus

is also sketched. It supplies two types of loads, respectively
residential and tertiary sector, and hosts photo-voltaic units.
The same holds true in the LV networks connected to buses
3, 5 and 7. In this example, cD = 2 and cG = 1.

The demand and dispersed generation components con-
tribute to the L MV bus injections of the distribution system.
Let πi (i = 1, . . . , c) be the active power consumed by
all loads, or produced by all generation units of the same
component, with πi > 0 for a demand component and πi < 0
for a dispersed generation component. These variables are
grouped into: π = [π1, π2, . . . , πc]

T .
It is assumed that the relationship between the active power

injection P` at the `-th MV bus and the πi variables can be
expressed through a general nonlinear model:

P` = ϕ`(π) , ` = 1, . . . , L (1)

and similarly for the reactive power injection:

Q` = ψ`(π) , ` = 1, . . . , L (2)

The simplest forms of the above relations would consist of
linear models of the type:

P` =

c∑
i=1

α`iπi Q` =

c∑
i=1

β`iπi (3)

where each demand or dispersed generation component con-
tributes as a fraction of the total injection. This linear model
does not easily account for losses in LV networks and MV/LV
transformers. A more accurate model can be obtained with the
quadratic formulas:

P` =

c∑
i=1

α`iπi + α`

(
c∑
i=1

πi

)2

(4)

Q` =

c∑
i=1

β`iπi + β`

(
c∑
i=1

πi

)2

(5)

Clearly, two issues have to be addressed: (i) how to identify
the (α`i, α`, β`i, β`) parameters of the above model from LV
network models and data, and (ii) how Eqs. (4,5) can be
handled in the state estimation formulation. Section IV is
devoted to the first aspect, while the second is addressed in
the remaining of this section.

B. New formulation of DSSE

Real-time measurements involving voltage magnitudes, ac-
tive and reactive power flows and injections, and current
magnitudes, are described by the usual model:

z = h(x) + e (6)

where, for an N -bus system, x = [Vx1, Vy1, . . . , VxN , VyN ]T

is the 2N -dimensional state vector of rectangular components
of bus voltages, z is the m-dimensonal measurement vector, h
is the vector of nonlinear functions relating error-free measure-
ments to state variables, and e is the vector of measurements
errors, assumed to obey a Gaussian distribution with zero mean
and known diagonal covariance matrix R = diag(σ2

1 . . . σ
2
m).

In the standard approach of DSSE, pseudo-measurements
are added on the active and reactive powers to the L MV-bus
injections (with larger σi values to reflect the lower accuracy).
In the proposed approach, on the contrary, each of these
injections is replaced by the model (1,2). This leads 2L “exact”
equality constraints. At the same time, the state vector is
extended to include π in addition to x.

The above modelling and formulation yields a higher ratio
of the number of measurements to the number of unknowns,
since c � L in practice. At the same time, the estimate of
π provides valuable real-time information to the Distribution
System Operator (DSO).

The estimates of x and π are obtained by solving the fol-
lowing constrained Weighted Least Squares (WLS) problem:

minx,π,r
1

2
rTR−1r (7)

subject to f0(x) = 0 (8)
fπ(x,π) = 0 (9)
r − z + h(x) = 0 (10)

where r is the vector of measurement residuals.
The equality constraints (8) relate to zero current injections

at transit buses with no load and no generation:

at the j-th bus: Ixj(x) = 0 Iyj(x) = 0 (11)

as well as the voltage phase angle at the reference bus r :

Vyr = 0 (12)

The equality constraints (9) express the active and reactive
power balance at the L buses connected to an LV network,
i.e. Eqs. (1,2) rewritten as:

−ϕ`(π) + P`(x) = 0 ` = 1, . . . , L (13)
−ψ`(π) +Q`(x) = 0 ` = 1, . . . , L (14)



where P`(x) and Q`(x) are the power injections expressed as
functions of the MV bus voltages.

The optimization problem (7 - 10) is solved using Hachtel’s
augmented matrix method, for its high numerical stability [7].
Details of implementation are outside the scope of this paper.

III. ILLUSTRATIVE EXAMPLE OF THE DSSE ALGORITHM

The proposed DSSE algorithm is illustrated on the 8-bus
system detailed in Fig. 1. One DG unit is connected to bus 6.
Buses 1 and 2 have zero current injection.

A reference system loading has been considered by choos-
ing the πi values of residential loads, tertiary-sector loads,
and photo-voltaic production respectively: π1 = 12.4, π2 =
3.9, π3 = −4.7 MW. The linear model (3) has been adopted,
for simplicity. It has been used to determine the P` and
Q` power injections at the L = 4 MV buses. The α`i, β`i
parameters have been set to plausible values, reported in
Table I. A unit power factor has been assumed for photo-
voltaic production, leading to β`3 = 0. It has also been
assumed that no photo-voltaic production is present in the LV
networks connected to buses 4 and 5, and no tertiary-sector
load in the LV network connected to bus 5. Finally, the active
and reactive productions of the DG unit have been chosen. All
these data have been used in a power flow calculation on the
MV grid, providing the “exact” system state.

TABLE I
PARAMETERS OF THE MV BUS INJECTION MODELS

At bus ` = α`1 α`2 α`3 β`1 β`2 β`3
3 0.42 0.37 0.63 0.11 0.21 0
4 0.14 0.54 0 0.16 0.20 0
5 0.23 0 0 0.19 0 0
7 0.26 0.14 0.42 0.08 0.20 0

The set of m = 10 real-time measurements is shown on the
one-line diagram of Fig. 1. Note that this set of real-time data
is not sufficient for a conventional DSSE : the number of state
variables to be estimated, minus the number of constraints (8)
is 16− 5 = 11, which exceeds the number of measurements.
On the other hand, with the addition of the 2L = 8 constraints
(9), the number of real-time measurements is sufficient, and
state estimation can be performed.

The measured values were simulated by adding to the
exact values Gaussian noises with zero mean and standard
deviations representative of the measurement accuracy. Two
“noise levels” were considered, as detailed in Table II.

TABLE II
STANDARD DEVIATIONS OF MEASUREMENT NOISES

Voltage Current P/Q P/Q
magn. magn. power flow power injection
(pu) (pu) (MW) (MW)

Low noise 0.001 0.05 0.01 0.01
High noise 0.005 0.1 0.05 0.05

First, it has been assessed that the DSSE algorithm correctly
converges to the exact πi values when fed with error-free
measurements. The results are shown in Fig. 2(a). The exact
πi values are found, with a good convergence of Hachtel’s

(a) with exact measurements (b) with noisy measurements
Fig. 2. Convergence of π variables (k is the iteration counter)

augmented matrix method. As can be seen in Fig. 2(b), only a
slightly slower convergence is observed in case measurements
are affected by the high noise.

The estimation accuracy has been checked by computing
the following indices for the voltage magnitudes V (in pu),
voltage phase angles θ (in degree), active and reactive power
injections P`, Q` (in MW and Mvar):

Sy =
∑
i

|ŷi − yti| and |∆y|max = max
i
|ŷi − yti| (15)

where ŷi is the estimated and yti the true value. Estimation
errors have also been computed for the πi variables, as well
as for the net active load at LV level: PLV =

∑3
i=1 πi. The

results are gathered in Table III. As expected, the estimation
accuracy is impacted by the quality of the measurements. Al-
though the πi variables are the most affected, it is noteworthy
that the accuracy of PLV is very satisfactory.

TABLE III
ESTIMATION ACCURACY (IN PU, DEG, MW AND MVAR)

SV Sθ |∆V |max |∆θ|max
Low noise 1.6 10−3 0.23 5 10−4 0.07
High noise 7.9 10−3 0.91 2 10−3 0.24

SP`
SQ`

|∆P`|max |∆Q`|max
Low noise 0.86 0.49 0.37 0.31
High noise 1.96 1.60 1.09 1.03

|∆π1| |∆π2| |∆π3| |∆PLV |
Low noise 1.58 1.11 0.6 0.13
High noise 5.33 3.45 2.48 0.60

IV. IDENTIFICATION OF THE MV BUS INJECTION MODELS

The identification of the MV bus injection model (4,5)
relies on a preliminary analysis and classification of LV
loads and generations into the already mentioned c categories.
Furthermore, advantage can be taken from the data collected
by smart meters monitoring some of the loads or generations.
The usual period of this reporting is one quarter of an hour.

The procedure can be decomposed into the four steps de-
scribed hereafter. For simplicity, the description mainly refers
to loads but, unless otherwise mentioned, the same procedure
is applied to the dispersed generations.

A. Characterizing the load dispersion from smart meter data

Let Ni(i = 1, . . . , c) be the set of all LV nodes associated to
πi, and Ji the subset of Ni corresponding to nodes equipped
with smart meters; thus, Ji ⊂ Ni. Note that a bus can belong
to more than one set Ni or Ji, for instance when a domestic
consumer is equipped with a photo-voltaic installation.



Let us consider a given quarter of an hour (though, the
dependence on time is omitted in the notation, for clarity).
For the i-th demand component (i = 1, . . . , c), let us define:
Ni the number of loads in the component (Ni = #Ni)
Nsm
i the number of loads in the component equipped each

with a smart meter (Nsm
i = #Ji)

Ej,i the energy consumed during the quarter of an hour
by the j-th load (j = 1, . . . , Ni)

Etotj,i the total energy consumed annually by the same load.
The objective of the first step is to characterize the statistical

dispersion of the loads pertaining to the same demand com-
ponent, based on the measurements collected by smart meters
every quarter of an hour.

In order to combine the measurements relative to loads of
different “sizes”, the Ej,i values are normalized according to:

Ēj,i =
Ej,i
Etotj,i

j = 1, . . . , Nsm
i ; i = 1, . . . , c (16)

The Nsm
i values Ēj,i are considered to be realizations

of a random variable Ēi that characterizes the dispersion
of the individual loads of the i-th demand component. The
cumulative distribution function of Ēi, denoted F (Ēi), is thus
built from the collected values. It is sketched in Fig. 3, where:

Ēmini = min
j=1,...,Nsm

i

Ēj,i and Ēmaxi = max
j=1,...,Nsm

i

Ēj,i (17)

are respectively the lowest and the highest among the Nsm
i

collected values of Ēj,i. The median of this distribution is
denoted by Ēmedi . Note that there is one function F (Ēi) per
quarter of an hour, and per demand component (i = 1, . . . , c).

0

1

F (Ēi)

Ēmin
i Ēmax

i

0.5

Ēmed
i Ēi

Fig. 3. Cumulative distribution function of normalized energy

The same procedure is applied to the data collected from
photo-voltaic installations. The only difference lies with Etotj,i ,
which is the total energy produced over the whole year.

B. Building a large training set of operating points

The objective of the second step is to build a large number r
of operating points, according to a non-chronological Monte-
Carlo procedure, in which the powers at the various LV buses
are varied in accordance with the information gathered from
the smart meters. Each operating point is obtained as follows.

First, the values of π1, . . . , πc are drawn at random. Each
variable πi is assumed statistically independent of the other
πj’s, and uniformly distributed in some range [0 πmaxi ].
To keep the sample size reasonably small and still have
satisfactory accuracy, a variance reduction sampling is needed.
The Latin Hypercube sampling technique [8] has been chosen
for its simplicity and ease of implementation.

Various choices are possible for πmaxi , for instance:

πmaxi = Ni max
j=1,...,Nsm

i

Ej,i
∆t

(18)

where ∆t is the duration of a quarter of an hour. This formula
assumes that, at the most loaded operating point, all loads have
the maximum power observed from the smart meters, during
the quarter of hour of concern.

Next, it is assumed that all loads pertaining to the same
component obey the same statistical behavior. In other words,
the normalized energy of the k-th load, denoted by Ēk,i (k =
1, . . . , Ni), is considered to be a random variable with the
cumulative distribution function F (Ēi) that has been extracted
at Step A (see also Fig. 3) from the set Ji of loads equipped
with smart meters.

The power Pk,i consumed by the k-th load (k = 1, . . . , Ni)
is obtained from Ēi through the linear mapping:

Pk,i =
Etotk,i∑Ni

j=1E
tot
j,i

πi
Ēi
Ēmedi

(19)

According to this formula, Pk,i is a random variable with

median equal to the fraction Etotk,i/(
Ni∑
j=1

Etotj,i ) of the total power

πi consumed by the i-th demand component. This is coherent
with the assumption that all loads of the same components
behave similarly.

Thus, for each load, a number is drawn at random from a
uniform distribution between 0 and 1. This number is assigned
to F (Ēi) and, from the curve in Fig. 3, the corresponding
value of Ēi is found. The latter is used in Eq. (19) to obtain
the value of Pk,i.

If Ēi was equal to Ēmedi , it is easily seen from Eq. (19)
that the total power consumed in the i-th demand component:

π?i =

Ni∑
k=1

Pk,i (20)

would be equal to the value initially assumed for πi. However,
since each power Pk,i varies around its median, the power π?i
differs from the initially assumed πi, under the effect of the
load power dispersion.

C. Computing the MV bus injections for each operating point
Let N be the whole set of LV nodes with load and/or

generation (N = ∪iNi). Let NLV be the number of nodes in
N (NLV = #N ). For each of the r operating points generated
at Step C, the active powers at the NLV nodes are known by
adding the contributions of the various demand and dispersed
generation components; at the n-th bus (n = 1, . . . , NLV ):

Pn =

c∑
i=1

Pn,i (21)

The reactive power is obtained assuming known power factors
cosϕi for the various components:

Qn =

c∑
i=1

Pn,i tanϕi (22)



Using these nodal powers, a power flow computation is
performed on the LV networks together with their MV/LV
transformers. This yields the active and reactive powers en-
tering the MV/LV transformers, which are the MV bus power
injections P` and Q` (` = 1, . . . , L) considered in Section II.

Three-phase balanced operation is assumed in that power
flow computation, for simplicity.

D. Identifying the load model coefficients

At the `-th MV bus (` = 1, . . . , L), it is assumed that the
active and reactive power injections are related to the π?i values
through the quadratic models (4,5):

P` =

c∑
i=1

α`iπ
?
i + α`

(
c∑
i=1

π?i

)2

(23)

Q` =

c∑
i=1

β`iπ
?
i + β`

(
c∑
i=1

π?i

)2

(24)

At each of the r operating points generated at Step C, Eqs.
(23, 24) can be written with the π?i variables replaced by their
corresponding values. This leaves linear relations between P`
(resp. Q`) and the various α (resp. β) coefficients. The active
power relations can be written in matrix form as:
P

(1)
`

P
(2)
`
...

P
(r)
`

 =



π
?(1)
i . . . π

?(1)
c

(∑c
i=1 π

?(1)
i

)2
π
?(2)
i . . . π

?(2)
c

(∑c
i=1 π

?(2)
i

)2
...

...
...

π
?(r)
i . . . π

?(r)
c

(∑c
i=1 π

?(r)
i

)2




α`1

...
α`c
α`


(25)

where the upper script in parentheses denotes the number of
the operating point. This can be rewritten in compact form as:

p` = Π α` (26)

where p` is a vector of dimension r, Π a matrix of dimensions
r × (c+ 1), and α` the vector of c+ 1 unknowns. The least-
square solution of this overdetermined system is given by:

α̂` =
(
ΠTΠ

)−1
Π p` (27)

The corresponding reactive power relations are:

q` = Π β` (28)

β̂` =
(
ΠTΠ

)−1
Π q` (29)

which involve the same matrix Π as Eqs. (27) and (29).
The procedure is repeated at each MV bus.

V. SIMULATION RESULTS: MV BUS INJECTION MODELS

A. Available data and scenarios

The procedure presented in the previous section has been
applied to a simple but realistic LV system for which data from
smart meters were available. The network is made up of four
non connected LV sub-networks with respectively 35, 27, 21
and 19 nodes. Each of them is connected to an MV bus through
an MV/LV transformer (thus L = 4). The corresponding area

TABLE IV
VALUES OF R2 TO ASSESS THE GOODNESS OF FIT OF THE MODEL

quarter of variant #1 variant #2 variant #3
an hour No

MV-bus active power P1

12 0.8561 0.8703 0.6533
40 0.6165 0.7769 0.7256
60 0.7948 0.8291 0.7976
90 0.7617 0.7669 0.7430

mean 0.7852 0.8341 0.7674
MV-bus reactive power Q1

12 0.8514 0.8680 0.6446
40 0.5901 0.7604 0.7111
60 0.7805 0.8213 0.7924
90 0.7496 0.7545 0.7353

mean 0.7713 0.8253 0.7594

encompasses 97 residential consumers, among which 20 are
equipped with rooftop photo-voltaic units, and five consumers
are from the tertiary sector with an installed peak power much
larger than the residential customers.

The procedure has been applied to three variants, which
differ by the way of splitting the total LV active power.

In variant #1, two demand (cD = 2) and no dispersed
generation (cG = 0) components are considered. The two
associated variables, π1 and π2, represent the net consumptions
of residential households and tertiary sector, respectively.

In variant #2, two demand (cD = 2) and one dispersed
generation (cG = 1) components are considered. The corre-
sponding variables are π1, π2 > 0 and π3 < 0.

Finally, in variant #3, the residential consumption is divided
into two components, based on their annual energy consump-
tions. The corresponding variables are π1 > 0 (for small
loads), π2 > 0 (for large loads), π3 > 0 (for tertiary sector),
and π4 < 0 (for photo-voltaic generation).

The simulations have been performed for a typical day of
the month of July. That month was selected in order to have
an important impact of photo-voltaic generation. A different
model is computed for each of the 96 quarters of an hour.

B. Goodness of fit of models

The goodness of fit of the models (23, 24) has been assessed
through the coefficient of determination [9]:

R2 = 1− SSE
SST

(30)

where SSE is the sum of squared errors between the data and
the fitted function, and SST the sum of squared differences
between the components of p` (resp. q`) and their average. If
there is a good fitting between the data and the model, SSE
is much smaller than SST and R2 is close to one. Conversely,
if the quality of the model worsens, the value of R2 decreases
towards zero.

The values of R2 are shown in Table IV for respectively
the active and reactive power injections at the first MV bus,
whose MV/LV transformer serves 35 LV consumers. Note that
a different model has been fitted to the data of each of the 96
quarters of an hour in the day; only a representative sample



Fig. 4. Time evolution of coefficients α11, α12 and α13 in Eq. (31) and their 95% confidence intervals

Fig. 5. Time evolution of α1 in Eq. (31) and its 95% confidence interval

of four of them is reported in these tables, together with the
mean value of R2 over the whole day.

It can be seen that the best results are given by variant #2.
One could have expected the higher number of components
(i.e. of πi variables) of variant #3 to yield a better model fitting.
On the contrary, the results tend to indicate that the splitting
of the residential consumption contemplated in variant #3 was
not appropriate. Such results also point out the need for a
systematic clustering procedure to define meaningful load and
dispersed generation components.

C. Example of model parameters

For variant #2, and for the first MV bus, Figs. 4 and 5 show
the 96 successive values of the coefficients of the model (23),
which takes on the form:

P1 = α11π1 + α12π2 + α13π3 + α1(π1 + π2 + π3)2 (31)

The plots also show the corresponding 95% confidence
intervals.

A statistical test has been also performed to assess the
significance of the various α`1 . . . α` coefficients [9]. The null
hypothesis is that a coefficient has little or no influence on the
fitted model. This test has been applied to the four coefficients
in Eq. (31) at the 96 quarters of an hour. The probability to
reject the null hypothesis has been found much below 0.1%,
thus indicating a high probability that the coefficients are
important indeed. This is somewhat confirmed by the rather
narrow confidence intervals shown in Figs. 4 and 5.

VI. CONCLUSION

A new formulation of state estimation in distribution net-
works has been proposed, which avoids the use of classical
pseudo-measurements. To that end, MV bus power injections
are expressed as functions of a small number of LV compo-
nents, which are added to the system state vector. This makes
state estimation possible, while providing valuable real-time
information on the LV network state. Hachtel’s method is used
to solve the constrained least-square problem.

A Monte-Carlo procedure which takes advantage of avail-
able LV network smart meter measurements has been de-
scribed for identifying the MV bus injection models. Various
numbers of LV load components have been considered. For the
tested system, the best model was obtained when considering
two types of loads (i.e. households and tertiary sector) in
addition to the photo-voltaic generation.

Future investigations will deal with a systematic clustering
of LV customers in order to improve accuracy. Attention will
be also paid to reducing the high number of MV bus injection
models (presently one for each quarter of an hour of each
typical day).
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