
Noname manuscript No.
(will be inserted by the editor)

Machine Learning to Balance the Load in Parallel

Branch-and-Bound

Alejandro Marcos Alvarez · Louis
Wehenkel · Quentin Louveaux

Received: date / Accepted: date

Abstract We describe in this paper a new approach to parallelize branch-
and-bound on a certain number of processors. We propose to split the opti-
mization of the original problem into the optimization of several subproblems
that can be optimized separately with the goal that the amount of work that
each processor carries out is balanced between the processors, while achiev-
ing interesting speedups. The main innovation of our approach consists in the
use of machine learning to create a function able to estimate the difficulty
(number of nodes) of a subproblem of the original problem. We also present
a set of features that we developed in order to characterize the encountered
subproblems. These features are used as input of the function learned with
machine learning in order to estimate the difficulty of a subproblem. The es-
timates of the numbers of nodes are then used to decide how to partition the
original optimization tree into a given number of subproblems, and to decide
how to distribute them among the available processors. The experiments that
we carry out show that our approach succeeds in balancing the amount of
work between the processors, and that interesting speedups can be achieved
with little effort.

Keywords Parallel branch-and-bound · Hardness estimation · Machine
learning · Unit commitment

Mathematics Subject Classification (2010) 90C57 · 90C27 · 68T20

A. Marcos Alvarez, L. Wehenkel, Q. Louveaux
Department of Electrical Engineering and Computer Science
Université de Liège
Liège, Belgium
E-mail: {amarcos,l.wehenkel,q.louveaux}@ulg.ac.be

2 Marcos Alvarez, Wehenkel, Louveaux

1 Introduction

Branch-and-bound (B&B), and its variants, is probably the most popular algo-
rithm used to solve mixed-integer programming (MIP) problems. Throughout
the years, its internal mechanisms were improved and many additional fea-
tures such as cutting planes, advanced branching strategies and presolve have
been added to the core algorithm. These many improvements made it easy to
solve problems of ever increasing size. However, since B&B is mainly devoted
to solving NP-hard problems, some of them remain nowadays still too difficult
to be solved by a single sequential B&B.

Parallelizing B&B on a large number of computers is a promising way to
solve those problems that remain out of reach of traditional approaches. This
rationale is strongly motivated by two arguments. First, B&B is a natural
candidate for parallelization since it relies on the divide-and-conquer paradigm.
Parallelizing B&B is indeed conceptually quite simple, and mainly consists in
dividing the original optimization tree in several subtrees, or subproblems,
and let each processor, or worker, work on its own part of the global tree. Two
parallel implementations mainly differ in the way the original work is split
among the available workers, and by the amount of communication involved
in the optimization. The second argument in favor of parallel B&B is the
explosion of parallel computing and affordable massively parallel computers
that has been witnessed in the last two to three decades.

Based on these observations, many researchers started developing parallel
B&B algorithms. One of the first reported attempts to parallelize B&B dates
back to 1975 and is summarized in a 1988 paper by Pruul et al (1988). In that
paper, Pruul et al describe a simple approach to parallelize B&B on a shared
memory serial computer. They report a set of experimental results obtained on
the travelling salesman problem and analyze the efficiency of their approach.
One important finding is that the number of explored nodes might be less in
the parallel case than in the serial case. As a consequence, the achieved speedup
computed from the number of explored nodes might be higher than the number
of processors on which the B&B has been parallelized. These findings further
support the idea that parallel B&B is a front-running candidate to solve large
MIP problems. It has to be noted however that there exist special cases where
the parallel version of B&B performs worse than its serial counterpart (see,
e.g., Lai and Sahni 1984).

Very early, balancing the load of each worker of a parallel B&B has be-
come a major concern. Indeed, as for any parallel algorithm, load balance is
a crucial aspect that must addressed in order to achieve interesting speedups.
Throughout the years, several load balancing schemes have been proposed.
For instance, El-Dessouki and Huen (1980) propose a mixed static and dy-
namic balancing scheme that gives each processor the responsibility to com-
pute its own subtree, and allows them to help other processors when their
own workload has been exhausted. Later, Karp and Zhang (1988) proposed a
fully dynamic work distribution method that automatically balances the load
of each worker by sending the newly created children to random processors.

Machine Learning to Balance the Load in Parallel Branch-and-Bound 3

Rao and Kumar (1987) also proposed several load balancing schemes tailored
to different parallel architectures (see also Kumar and Rao 1987).

A common shortcoming of all the dynamic load balancing schemes is that
they imply a large amount of communications. It became very early clear that
the overhead cost induced by communication times was a major concern for
all parallel B&B implementations. On the one hand, communication is desir-
able because it allows to better balance each processor’s load by ensuring that
no processor remains idle while others are working. Moreover, communica-
tion can also reduce the total amount of work to be done by all processors by
sharing information about feasible solutions. But, despite its advantages, com-
munication between processors remains very expensive and should be limited
to its minimum. Laursen (1994) was one of the first to propose a method in
which the processors do not communicate with each other and that allocates
statically the workload to each worker. Of course, the key factor of success
of this approach is to evaluate accurately enough the difficulty of the sub-
tree given to each processor. If the workload is not well balanced between the
workers, the utilization of the processors will not be optimal. One of the ap-
proaches proposed by Laursen consists in finding a function that predicts the
number of nodes of a subtree, i.e., its difficulty, from a set of characteristics
extracted from the subtree. Laursen carried out a series of experiments with
several functions constructed from simple functional forms like the exponen-
tial or the logarithm. Unfortunately, each considered function was not able to
consistently predict the difficulty of several classes of problems. Laursen con-
cluded that it was not trivial to find such a function. Later, the idea proposed
by Laursen (1994) has been further explored in a more principled approach
by Otten and Dechter (2012) who used machine learning techniques to create
a function that can be used to predict the difficulty of a subproblem based
on easily computable features. They reported good results for a given class
of MIP problems represented over graphical models solved by an AND/OR
branch-and-bound.

In a slightly different fashion, Wah and Yu (1985) and Yang and Das (1994)
have developed interesting approaches to evaluate the difficulty of a subprob-
lem. Both approaches are based on probabilistic models that are used to pre-
dict the complexity of a subproblem. Despite the encouraging results that they
report, the assumptions required by the probabilistic models seem very strong
and unrealistic for a wide variety of problems.

The interest in parallel B&B is not limited to the field of optimization.
Indeed, parallelizing B&B has also attracted some attention in the computer
science community that developed several frameworks aimed at easing the im-
plementation of personal specialized parallel B&B algorithms (see, e.g., Eck-
stein et al 2001; Dorta et al 2004). It must be noted that the pieces of work
reported in this paper are by no means exhaustive, and we refer the reader
to Gendron and Crainic (1994)’s paper for a wider, though older, survey of
parallel B&B techniques.

Based on the previously made observations and on previous work, and
further supported by the conclusions drawn by Linderoth (1998, p. 197), we

4 Marcos Alvarez, Wehenkel, Louveaux

propose in this paper a new approach using machine learning to balance the
load between several processors, and apply our approach to a set of unit com-
mitment (UC) problems. The main contribution of this work is the develop-
ment of an approach using machine learning to create and distribute several
subproblems to a given number of processors such that the workloads of each
processor are not too dissimilar. Moreover, we develop a set of new features
that allow to represent a subproblem in order to predict its difficulty, in terms
of the number of nodes. The experimental results show that the approach suc-
ceeds in efficiently balancing the load between several processors, and that it
achieves interesting results with and without communication. It is to be noted
that the developed features do not depend on the class of problems used to
assess our method. They are virtually applicable to any type of MIP problem,
although some adaptation might be necessary to improve the performance on
a given class of problems. Moreover, we must emphasize that machine learn-
ing is mainly useful when the considered problems are related to each other,
otherwise it is in general difficult for the algorithm to learn something from
the available data. Because of these requirements, the proposed approach is
primarily applicable to the situations where similar problems have to be re-
peatedly solved over time. Focusing on unit commitment (UC) problems is
thus a straightforward choice since generation companies, or transmission sys-
tem operators, have to repeatedly solve very similar UC problems again and
again.

In the remainder of the paper, we start first, in Section 2, by giving some
preliminary information about the considered problem and by introducing
important concepts. We then describe the method that we propose in Section 3.
A short theoretical analysis is next carried out in Section 4. Section 5 then
describes a series of experiments that we perform in order to validate our
approach. Finally, Section 6 concludes this paper and draws some lines of
future work.

2 Preliminaries

We first describe here in a more detailed way the problem addressed in this
paper, and give a brief introduction to machine learning for the beginner.

2.1 Problem statement

In this paper, we want to develop an efficient parallel version of a branch-
and-bound algorithm that minimizes the amount of communication and that
achieves high speedups. To do so, we will split the original optimization tree
into several subtrees that cover together the initial tree. Each subtree is then
given to a processor (a processor can be responsible for several subtrees) that
is asked to solve the subproblem defined by each subtree. Communication be-
tween processors is ideally forbidden, but a small amount can still be allowed in

Machine Learning to Balance the Load in Parallel Branch-and-Bound 5

order to benefit from the solutions found by other processors. Because commu-
nication should be maintained at its minimum, the workload of each processor,
i.e., the difficulty of the given set of subtrees, should ideally be balanced be-
tween all processors so that high speedups can be achieved. Balancing the
workload is the problem tackled in this paper.

In the context of optimization, the workload is basically the time a solver
needs to find the optimal solution, but other difficulty measures are also com-
monly used. For instance, in the case of B&B, it is acknowledged that the
number of nodes explored by the algorithm before optimality is proved favor-
ably estimates the difficulty of a problem. In this paper, we focus on the latter
difficulty measure, i.e., the number of nodes, as it is more robust to pertur-
bations during the experiments, and roughly linearly dependent (up to a time
factor) on the optimization time. Consequently, the focus of this paper is to
develop a method that balances the numbers of nodes of the subtrees that
each processor is responsible for.

In this work, we address binaryMixed-Integer Linear Programming (MILP)
problems of the form

min c⊤x (1)

s.t. Ax ≤ b

xj ∈ {0, 1} ∀j ∈ I

xj ∈ R+ ∀j ∈ C,

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m respectively denote the cost coefficients,

the coefficient matrix and the right-hand side. I and C are two sets containing
the indices of the integer and continuous variables respectively. We denote the
solution at a given node of the B&B by x∗ and we will call, with a little abuse,
the variable xi, with i ∈ I, a fractional variable if it has a fractional value in
the current solution x∗.

2.2 Introduction to machine learning

Machine learning (ML) is the field of artificial intelligence that is concerned by
the automatic construction, or learning, of functions from data. Let us assume
we are interested in some task T that maps states s belonging to S, which is
the set of possible input states of the task, to an output space Y. Basically,
ML focuses on the construction of functions f imitating the behavior of T .
More specifically, the functions f map inputs from a space Φ to the output
space Y, i.e., f (·) ∈ F : Φ 7→ Y, where F is the set of possible mappings from
Φ to Y. Formally, a machine learning algorithm A is a procedure of the form

A : (Φ× Y)N 7→ F

that takes as input a dataset D = ((φi, yi))
N

i=1 ∈ (Φ× Y)N , and that outputs
a function f ∈ F that minimizes some loss function L on the dataset D.

6 Marcos Alvarez, Wehenkel, Louveaux

Stated in mathematical terms, the function f∗ resulting from the application
of algorithm A to dataset D is given by

f∗ = A (D) = argmin
f∈F

N
∑

i=1

L (yi, f (φi)) .

Note that the set F of possible output functions depends on the particular
class of machine learning algorithm that is used.

Ideally, the input of function f should be s ∈ S, the input state of T itself.
However, representing the complete state is often a difficult problem, e.g.,
because its dimensionality is too big, or because it contains a lot of irrelevant
information. For this reason, in the machine learning community, the inputs
φ of the functions f are usually ‘features’ representing a simplified version of
the input state. Formally, features are (vectors of) characteristics extracted
heuristically from the input state s ∈ S, i.e.,

C (s) = φ ∈ Φ ⊂ R
d,

such that those features represent part of the current state, ideally the part
that most influences the output. The features often critically condition the
efficiency of learning methods. As they represent only part of the current
state of the task, it is important that the parts described by the features are
indeed correlated to the desired output. For this reason, the features need to
be carefully designed and tailored to the problem of interest.

The strength of machine learning relies on its ability to generalize behav-
iors observed on data with very few assumptions needed. This makes it a
powerful tool when one wants to imitate unknown functions for which no, or
very little, information is available. The main requirement is that the machine
learning procedure needs a dataset containing pairs of inputs and outputs
(φi, yi) obtained from the task T that the ML algorithm is trying to imitate.
Those input-output pairs can be obtained by simulation or through a black-
box function, there is no need to actually know the functional representation
of the real underlying function to be learned.

3 Description of the method

In this section, we describe the method that we devised in order to balance the
load of each individual processor of a parallel branch-and-bound. We first de-
scribe how we generate a set of subproblems that span the entire optimization
tree. We next describe how the subproblems can be allocated to the different
processors.

3.1 Generating a partition of the original optimization tree

The approach that we propose to generate a partition of the optimization
tree is very much alike a traditional branch-and-bound. It is represented in
Algorithm 1.

Machine Learning to Balance the Load in Parallel Branch-and-Bound 7

In this algorithm, we generate a partition of the original optimization tree
containing at most k elements. From now on, the notation p represents a
subproblem of the original problem, i.e., a problem for which a certain number
of binary variables are fixed either to 0 or 1. In particular, p0 designates the
root node, i.e., a version of the original problem in which no binary variable is
fixed. The algorithm first starts with p0 that is added to a queue. Then, the
procedure is as follows. The algorithm retrieves and removes a subproblem p
from the queue and iteratively creates a certain number of children of p by
setting each unfixed binary variable in p to 0 and then to 1. Thus, for each
unfixed binary variable, we create two children by fixing that variable either
to 0 or to 1. A set of features describing each child created in that way is then
computed with a given function C. The computed features are subsequently
used as input of a learned complexity function fnodes that returns an estimate
of the number of nodes required to solve the child subproblem represented by
the features. The predictions of the numbers of nodes of each child are next
used to compute a score according to which the unfixed binary variables in the
subproblem p are ranked. Once every unfixed binary variable has been scored,
the two child subproblems corresponding to the variable that has the lowest
score are added to the queue. The presented procedure is then repeated by
removing from the queue the subproblem whose predicted number of nodes
is the greatest, until the queue fulfills a given stopping criterion or until a
maximum queue size has been reached.

In the end of the procedure, each element of the queue represents the root
node of a subtree forming the sought partition of the original optimization
tree.

The behavior of the proposed partitioning algorithm depends on three main
factors: the function fnodes predicting the number of nodes of a subproblem;
the way the features are computed, i.e., the implementation of function C (·);
and the implementation of the function score (·). The rest of this section details
how these functions were implemented in this work.

3.1.1 Assessing the difficulty of a subproblem

In order to create a partition of the original optimization tree that balances
well the workload of each processor, our procedure requires that a function
able to predict the difficulty of a subproblem is available. As previous research
indicates (Wah and Yu 1985; Yang and Das 1994; Laursen 1994), it is not
trivial to find a simple mathematical formulation for such a function. We thus
decided to resort to machine learning in order to create that function.

There exist several machine learning frameworks that could be used to con-
struct a function. In this work, we apply the supervised learning framework.
In this approach, a dataset containing input-output pairs is needed by the ma-
chine learning algorithm to construct the desired function. The input-output
pairs should be observations of the system that the function is supposed to
imitate. In this work, the inputs consist in feature vectors, i.e., vectors of
scalars, that represent some characteristics of the subproblem. The output of

8 Marcos Alvarez, Wehenkel, Louveaux

Algorithm 1 Optimization tree partitioning algorithm
1: q = p0 ⊲ p0 is the root node
2: while true do

3: if |q| ≥ k then ⊲ k is the maximum number of elements in the partition
4: break

5: else if |q| ≥ 3N then ⊲ N is the number of available processors
6: if maxp∈q fnodes (C (p)) ≤ 3

4N

∑

p∈q fnodes (C (p)) then

7: break

8: end if

9: end if

10: p = argmaxp′∈q fnodes (C (p′))
11: s∗ = +∞
12: for i ∈ Up do ⊲ Up is the set of indices of the unfixed binary variables in p
13: pleft = p with xi set to 0
14: n̂left = fnodes (C (pleft)) ⊲ C is the function that generates the features
15: pright = p with xi set to 1
16: n̂right = fnodes

(

C
(

pright
))

⊲ n̂ is an estimate of the number of nodes of p
17: s = score(n̂left, n̂right)
18: if s < s∗ then

19: s∗ = s
20: p∗

left
= pleft

21: p∗
right

= pright
22: end if

23: end for

24: q = q \ p ∪
{

p∗
left

, p∗
right

}

25: end while

26: return q

the function is the number of nodes the subproblem requires in order to be
solved. The output thus gives an idea of how difficult a subproblem is.

More specifically, the function that we learn is

fnodes : Φ ⊂ R
d 7→ R,

where Φ is the set of possible feature vectors that is included in R
d. In principle,

the output should be an integer, but this is not guaranteed by the machine
learning algorithm. We thus allow the estimated number of nodes to be a
general scalar instead of an integer.

The supervised learning framework requires that a dataset of input-output
pairs observed from the system we are trying to imitate is available for learning.
In our case, such a dataset is not available and we must thus create one so that
our method can be applied. In order to do that, we first select a set of problems.
We next randomly generate, for each problem in this set, a certain number
of subproblems by randomly fixing each variable in a subset of the binary
variables to 0 or 1. For instance, if the problem contains 20 binary variables,
we will select a random subset of them, and randomly fix each variable in this
subset to 0 or 1. The created subproblem is then optimized until optimality
is reached. This gives the number of nodes, and, hence, the difficulty of the
subproblem that will be the output part of a pair of the dataset. The input
part is given by the feature vector that will be computed for the randomly

Machine Learning to Balance the Load in Parallel Branch-and-Bound 9

generated subproblem. This procedure is repeated until enough data has been
generated.

Once the dataset is created, we can apply a supervised machine learning
algorithm in order to learn the function fnodes from the observed data. In this
work, we used the random forests algorithm (Breiman 2001).

3.1.2 Computing the features of a subproblem

As mentioned in the previous section, the input of the function fnodes should
be a vector of scalars. This section describes how these features are computed
for a given subproblem.

A subproblem p is created by fixing a certain amount of binary variables
either to 0 or to 1. We denote by Fp the set of the indices of the fixed binary
variables, and the set of unfixed binary variables by Up. The indices of the
variables fixed to 0 and 1 are respectively contained in the sets Fp0 and Fp1.
Note that we assume that all problems are in the form (1) and that we will
use the same notations.

We denote the LP solution of the root node of the original problem by x∗
0,

and the solution at the root of the subproblem p by x∗
p. Similarly, the value of

the objective function obtained with the solutions x∗
0 and x∗

p are denoted o∗0
and o∗p, respectively. We moreover assume that a heuristic solution is available
from the beginning. The heuristic function h(·) applied to solution x∗

0 gives the
solution xh

0 = h(x∗
0), and the value of the objective function for this solution

is oh0 . This heuristic solution allows us to compute the initial gap gi at the root
node of subproblem p, that is,

gi =
oh0 − o∗p

oh0
.

Note that this gap can be negative since the LP objective of the subproblem
can be greater than the objective of the heuristic solution computed at the
root node of the original problem.

Additionally, we compute, for each subproblem p, a new right hand side bi,
for each constraint i. Indeed, since some variables are fixed in p, the values of
their coefficients in the constraint matrix A, multiplied by their value, can be
subtracted from the initial b. We thus define the new right hand side as

bi = bi −
∑

j∈Fp1

Aij ,

since it is not necessary to subtract the coefficients of the variables fixed to 0.
In order to compute additional features, we also optimize, for a very short

period of time, the subproblem p with a traditional B&B. More specifically,
we allow 5,000 nodes to be explored. Note that the algorithm uses as primal
bound the value of the objective function found by the heuristic at the root
node, i.e., oh0 . When this budget is exhausted, we extract a certain number of
characteristics from the optimization. This phase is called probing. At the end

10 Marcos Alvarez, Wehenkel, Louveaux

of the optimization budget, we retrieve the dual bound oprobingdual and the new

primal bound oprobingprimal . With these values, we can compute the final gap gf at
the end of the probing with

gf =
oprobingprimal − oprobingdual

oprobingprimal

.

Besides the previous values that must be recomputed for each new sub-
problem p, we carry out some preliminary calculations whose results will be
subsequently used to extract characteristics of any subproblem p. More specif-
ically, we compute the relative objective increase observed between the root
node of the original problem and the subproblem created by fixing a specific
binary variable xj , with j ∈ I, to 0 or 1. We thus obtain two vectors oi0 and
oi1, such that

oi0(j) =
o∗pxj=0

− o∗0

|o∗0|
and oi1(j) =

o∗pxj=1
− o∗0

|o∗0|
,

where pxj=0 (respectively pxj=1) is the subproblem created by fixing variable
xj to 0 (respectively 1), and leaving all other variables unfixed. These vectors
are computed once and for all in the beginning, and will be used to compute
some of our features.

The above description merely introduces some notations and some values
used to compute our features describing a subproblem. The complete list that
we use in this work is given in Table 1. In this table, the features are separated
into five categories, each one of which is meant to represent different dynamics
of the problem. The first category of features captures basic characteristics
of the subproblem, as well as some differences between the subproblem and
the original root problem, like the increase of the LP objective between the
roots of both problems. The second category aims at representing the different
interactions that exist between the fixed binary variables of the subproblem
and the other binary variables in the cost function and in the constraints.
Then, the features in the third category model the sparsity of the subprob-
lem with different measures computed from the subproblem and the original
problem. The fourth category is similar to the second one except that its goal
is to evaluate the connections between all variables (fixed, unfixed binary and
continuous variables) in the objective function as well as in the constraints.
Finally, the fifth category contains the features that are computed after the
probing phase. These features give a small glimpse of the optimization of the
subproblem.

3.1.3 Scoring a variable

In the algorithm that we propose, a score is used to determine which variable
it is better to branch on in order to expand the current tree by two newly
created nodes. The way the score is computed influences the behavior of the

Machine Learning to Balance the Load in Parallel Branch-and-Bound 11

Table 1 Features used to describe a subproblem

Feat. # Description

1
∣

∣o∗0 − o∗p
∣

∣ /
∣

∣o∗0
∣

∣

2-3 |Fp0|/|I| and |Fp1|/|I|

4 |Up|/|I|

5
(

∑

j∈Fp0
|0− x∗

0(j)|+
∑

j∈Fp1
|1− x∗

0(j)|
)

/|Fp|

6-9 minj∈Fp0
oi0(j), plus the max, mean and std of those values

10-13 minj∈Fp1
oi1(j), plus the max, mean and std of those values

14-17 minj∈Up
0.5 ∗ oi0(j) + 0.5 ∗ oi1(j), plus the max, mean and std of those

values

18
(

oh0 − o∗p
)

/|oh0 |

19
∑

j∈Fp
cj/

∑

j∈I cj

20
∑

j∈Up
cj/

∑

j∈I cj

21-22 mini=1...m

(

bi −
∑

j∈Fp1
Aij

)

/bi, plus the max of those values

23-24 mini=1...m

∑

j∈Up
Aij/bi, plus the max of those values

25-26 mini=1...m

(

∑

j∈Up
Aij − bi

)

/bi, plus the max of those values

27-28 mini=1...m

∑

j∈Fp
Aij/

∑

j∈I Aij , plus the max of those values

29-30 mini=1...m

∑

j∈Up
Aij/

∑

j∈I Aij , plus the max of those values

31-34 meanj∈Fp
‖A:j‖0 /m, plus the min, max, and std of those values

35-38 meanj∈Up
‖A:j‖0 /m, plus the min, max, and std of those values

39-42 meanj∈C ‖A:j‖0 /m, plus the min, max, and std of those values

43
∑

j∈Fp
cj/

∑n
j=1 cj

44
∑

j∈Up
cj/

∑n
j=1 cj

45
∑

j∈C cj/
∑n

j=1 cj

46-47 mini=1...m

∑

j∈Fp
Aij/

∑n
j=1 Aij , plus the max of those values

48-49 mini=1...m

∑

j∈Up
Aij/

∑n
j=1 Aij , plus the max of those values

50-51 mini=1...m

∑

j∈C Aij/
∑n

j=1 Aij , plus the max of those values

52-53 min
i:bi≥0

(

∑

j∈Up:Aij≥0 Aij +
∑

j∈C:Aij≥0 Aij

)

/bi, plus the max of

those values

54-55 min
i:bi≥0

(

∑

j∈Up:Aij<0 Aij +
∑

j∈C:Aij<0 Aij

)

/bi, plus the max of

those values

56-57 min
i:bi<0

(

∑

j∈Up:Aij≥0 Aij +
∑

j∈C:Aij≥0 Aij

)

/bi, plus the max of

those values

58-59 min
i:bi<0

(

∑

j∈Up:Aij<0 Aij +
∑

j∈C:Aij<0 Aij

)

/bi, plus the max of

those values

60
(

oprobing
dual

− o∗p

)

/oprobing
dual

61
(

oh0 − oprobing
primal

)

/oh0

62 ratio between the number of open nodes left after the probing budget is
exhausted and the number of explored nodes

63 maximum depth of the probing tree

64 depth of the last full level (i.e., the level l such that the numbers of nodes

in the levels l′ = 1 . . . l are 2l
′

) in the probing tree

65 waist of the probing tree (i.e., level l with the largest number of nodes)

66 100 ∗ (gi − gf)/|gi|

12 Marcos Alvarez, Wehenkel, Louveaux

tree partitioning algorithm. The first score that we propose aims at balancing
the difficulty, i.e., the number of nodes, of each newly created children. The
proposed score is as follows:

score(n̂left, n̂right) =
n̂left + n̂right

2
+

∣

∣

∣

∣

n̂right − n̂left

2

∣

∣

∣

∣

+

∣

∣

∣

∣

n̂left − n̂right

2

∣

∣

∣

∣

,

where n̂left and n̂right respectively indicate the predicted size of the left and
right subproblems.

The other proposed scoring criterion is designed such that the total amount
of work is minimized. It is given by

score(n̂left, n̂right) = max (n̂left, n̂right) .

This score does not take into account the difficulty equilibrium between the
two created nodes. It is assumed that the balance can be achieved later when
the generated subproblems are distributed to the workers.

3.2 Distributing nodes to processors

In the case where the number k of generated subproblems is equal to the
number of processors, the distribution of the work is trivial. If the number
of nodes in the partition is greater than the number of processors, one must
find a way to distribute the work evenly between the processors such that the
workload is well balanced between each worker.

There exist several ways this distribution could be done. In this work, we
applied a simple greedy method although other, more formal, approaches are
applicable. The greedy routine that we use is detailed in Algorithm 2. The
output of this algorithm is an array, one element per processor, of queues
specifying which subproblems have to be solved by a given processor.

Algorithm 2 Greedy subproblem allocation
1: let N be the number of processors
2: let h be an array of N scalars
3: let q be an array of N queues
4: let l be a list containing the subproblems of the tree partition
5: h(i) = 0, ∀i
6: q(i) = ∅, ∀i
7: while l 6= ∅ do

8: p = argmaxp′∈l fnodes(p
′) ⊲ select the most difficult remaining subproblem

9: k = argmini=1...N h(i) ⊲ identify the queue whose expected workload is the least
10: h(k) = h(k) + fnodes(p)
11: q(k) = q(k) ∪ p ⊲ add the current subproblem to the chosen queue
12: l = l \ p
13: end while

14: return q

Machine Learning to Balance the Load in Parallel Branch-and-Bound 13

A more formal approach to allocate the subproblems to the workers is to
solve the following problem:

min

N
∑

i=1

zi (2)

s.t.

k
∑

j=1

aij n̂j = wi ∀i = 1 . . .N

N
∑

i=1

aij = 1 ∀j = 1 . . . k

m− wi ≤ zi, m− wi ≥ −zi ∀i = 1 . . .N

aij ∈ {0, 1} , wi, zi ∈ R
+,

where k and N respectively correspond to the number of subproblems to be
allocated and to the number of processors, and n̂j andm respectively represent
the predicted number of nodes of a subproblem and the ideal average load of

each processor, i.e.,
∑

j
n̂j

N
.

4 Theoretical analysis

In this section, we present a short theoretical analysis that can be derived from
our method. Indeed, one of the side advantages of using machine learning is
that it is possible to get in advance, i.e., without performing the optimization,
an estimate of the number of nodes that a subproblem needs in order to be
solved to optimality. Moreover, the error of this estimate can be estimated
as well. In the following, we show how these estimates can be used to get an
approximation of the speedup of the method before the optimization is carried
out.

In general, it is easier to reach an equilibrium between the workloads of each
processor when the chunks that have to be distributed are smaller. For this
reason, it might be better to generate a number of subproblems that is greater
than the number of processors. Each worker j thus has a queue qj containing
the subproblems for which it is responsible. Thanks to machine learning, the
number of nodes ni that a subproblem pi requires can be estimated with the
learned function, i.e., n̂i = fnodes(pi). In practice however, the prediction is
not perfect, and we can assume that the real number of nodes ni required to
solve the subproblem to optimality is a random variable that is distributed
around the predicted value n̂i.

Assuming that the mean of ni is n̂i and that its standard deviation is σ̂i, the
following theorems characterize a given subproblem allocation. We propose two
theorems that characterize, respectively, the speedup obtained with a parallel
work distribution, and its absolute duration, i.e., the maximum number of
nodes over all processors. Both theorems provide information that can be

14 Marcos Alvarez, Wehenkel, Louveaux

used in different situations. Indeed, the speedup is useful when one wants
to characterize whether the processors are efficiently used, while the absolute
duration is of interest when one wants to know how quickly an optimization job
will terminate. Note that, in this context, the speedup has to be understood as
the ratio between the total amount of work carried out by all processors (i.e.,
the sum of the numbers of nodes of all processors), and the largest amount of
work (i.e., the largest number of nodes over all processors).

Theorem 1 (Speedup approximation) Let k be a number of subproblems

that have been generated in such a way that their union covers the entire

original optimization tree, and let each subproblem pi be allocated to one queue

qj of one of the N available workers wj , the speedup SU obtained by this work

distribution is bounded below by lSU and above by uSU with probability ε, i.e.,

lSU ≤ SU ≤ uSU,

where lSU = 1 + l(N−1)
u

and uSU = N , with probability at least

ε =

N
∏

j=1

ρ
(

l, u, µwj
, σwj

)

,

with µwj
=

∑

t:pt∈qj
n̂t, σ

2
wj

=
∑

t:pt∈qj
σ̂2
t , and

ρ
(

l, u, µwj
, σwj

)

=

∫ u

l

1

σwj

√
2π

exp−
(

x− µwj

)2

2σ2
wj

dx.

Proof The main mechanisms of the proof of this theorem are based on the
probability theory. Since we assume that k > N , each worker is responsible
for the optimization of a certain number of subproblems. The total number of
nodes required in order to finish a ‘job’ is thus the sum, over all subproblems pi
optimized by a processor wj , of the number of nodes ni that these subproblems
require in order to be fully optimized. We define a new random variable Gwj

for the worker wj such that

Gwj
=

∑

i:pi∈qj

ni.

Assuming that the central limit theorem applies in this situation, and that the
variables ni are independent of each other, the random variable Gwj

, which
represents the total amount of work the processor carries out, is distributed
according to a normal distribution with parameters

µwj
=

∑

t:pt∈qj

n̂t and σ2
wj

=
∑

t:pt∈qj

σ̂2
t .

Machine Learning to Balance the Load in Parallel Branch-and-Bound 15

Then, arbitrarily choosing two values l and u, we can compute the probability
that the total number of nodes explored by one worker is comprised between
l and u:

ρ
(

l, u, µwj
, σwj

)

=

∫ u

l

1

σwj

√
2π

exp−
(

x− µwj

)2

2σ2
wj

dx.

Given that the variables ni are independent of each other, so are the variables
Gwj

. Thus, the probability ε that the total amount of work carried out by
each worker is comprised between l and u is given by

ε =

N
∏

j=1

ρ
(

l, u, µwj
, σwj

)

.

Finally, the lower and upper bounds lSU and uSU on the speedup can be
computed from the bounds l and u on the number of nodes of each worker by

lSU = 1 +
l (N − 1)

u
and uSU = N,

where lSU and uSU respectively represent the worst and the best case. The best
bound on the speedup uSU corresponds to the case where all workers carry out
the same amount of work. On the other hand, the worst case lSU corresponds
to the case where N −1 workers carry out an amount of work equal to l, while
the remaining worker is responsible for an amount of work equal to u. ⊓⊔

Note that the probability ε given by Theorem 1 is actually a lower bound
on the probability that the speedup falls in the range [lSU, uSU]. Indeed, there
are situations where the amounts of work of the processors are outside the
range [l, u], but still yield a speedup comprised between lSU and uSU.

This theorem can be used to determine beforehand whether the chosen
work distribution would lead to interesting speedups or not. It is to be noted
that the previous analysis is valid when communication between processors
is forbidden. If the workers are given the possibility to communicate, for ex-
ample a primal bound, the expected speedup would be greater than the one
estimated by Theorem 1. Moreover, we must emphasize the fact that this
speedup computation assumes that the serial amount of work, i.e., when a
single subproblem (the root) is optimized by a single processor, is equal to
the sum of the individual amounts of work of each subproblem. This is not
entirely true, but, for the sake of simplicity, this approximation is used in or-
der to compute in advance the speedup for a given work distribution. Thus,
rather than giving a real speedup, the previous theorem might be more useful
to estimate the actual utilization of the processors.

In addition to the speedup, the mechanisms of the previous theorem can
be used to determine the probability that a worker wj explores more than a
given number of nodes.

16 Marcos Alvarez, Wehenkel, Louveaux

Theorem 2 Based on the same assumptions as Theorem 1, the probability ε
that each worker explores no more than a given number t of nodes is given by

ε =
N
∏

j=1

ϕ
(

t, µwj
, σwj

)

,

with

ϕ
(

t, µwj
, σwj

)

=

∫ t

−∞

1

σwj

√
2π

exp−
(

x− µwj

)2

2σ2
wj

dx.

Proof The proof of this theorem follows immediately from the fact that the
random variables Gwj

are normally distributed. The probability that one of
these variables is less than a given value t is directly computable, and the prob-
ability that all variables are less than t is obtained by computing the product
of each individual probability since the Gwj

are assumed to be independent of
each other. ⊓⊔

Given the presented theorems, and provided that the considered learning
algorithm is able to characterize the variance of a prediction, one can easily
evaluate the performance of a given partitioning of the original problem and its
distribution among several processors. In a similar way, the proposed theorems
could be used, with some adaptations, to find the optimal work distribution,
instead of evaluating a given subproblem allocation.

5 Experiments

In this section, we first detail our experimental procedure, and then present
some of the experiments that we carried out to assess our method, together
with their analysis.

5.1 Experimental setting

We describe here the problems that we used to evaluate our approach and the
general experimental procedure that lead to the presented results.

5.1.1 Problem sets

We evaluate our approach on a set of unit commitment (UC) problems. The
problems that we consider are a minimalist version of UC problems. Their

Machine Learning to Balance the Load in Parallel Branch-and-Bound 17

mathematical form is given by

min

nNS
∑

j=1

cNS
j

T
∑

i=1

xNS
ij +

nS
∑

j=1

cSj

T
∑

i=1

xS
ij (3)

+

nNS
∑

j=1

fNS
j

T
∑

i=1

yNS
ij +

nS
∑

j=1

fS
j

T
∑

i=1

ySij +

nS
∑

j=1

uS
j

T
∑

i=2

zij

∀i = 1 . . . T :

nNS
∑

j=1

xNS
ij +

nS
∑

j=1

xS
ij ≥ di

∀i = 1 . . . T, ∀j = 1 . . . nNS : xNS
ij ≤ MNS

j yNS
ij

∀i = 1 . . . T, ∀j = 1 . . . nS : xS
ij ≤ MS

j y
S
ij

∀i = 2 . . . T, ∀j = 1 . . . nS : zij − ySij + ySi−1j ≥ 0

xNS
ij , xS

ij ∈ R
+; yNS

ij , ySij , zij ∈ {0, 1} .

In this formulation, T , nNS , and nS respectively represent the number of time
periods, the number of power plants without startup costs, and the number
of plants with startup costs. The other parameters cj , fj , and uj denote the
variable, fixed and startup costs of each power plant. Finally, the Mj and
di respectively denote the nominal (maximum) power of each plant and the
demands that have to be satisfied at each time period.

In this work, we consider that the number of periods is 12, and that the
number of power plants with and without startup costs is both 5. Moreover,
all the UC problems that we consider differ only by the demand of each period,
i.e., all the parameters are identical except for the demands that are different
for each problem. In order to create our problems, we generate randomly a first
set of parameters including the demands, which will constitute the basis of our
UC problems. Then, the demands for each problem are randomly updated by
adding to the initial vector of demands

[

d1, . . . , dT
]

a unique randomly drawn
term dm, and a random term for each time period d′i. The final demand vectors
are thus of the form

[

dm + d1 + d′1, . . . , dm + dT + d′T
]

, where the dm changes
from problem to problem, and the d′i from problem to problem and from period
to period. We generate one set of 300 problems that constitute a learning set,
and a set of 20 problems to evaluate our approach. Those problem sets will be
made available online and can be sent upon request.

All our experiments are thus performed on our randomly generated sets.
There are two reasons why we decided to use such problems for our exper-
iments. First, machine learning requires that the problems that we use for
learning and for testing are similar enough. If the problems in the learning set
are too dissimilar from those in the test set, nothing useful for the test can be
learned from the provided data. In this first study, we thus decided to focus
only on a single class of problems, with similar characteristics. In principle, the
approach can be extended to take into account different classes of problems
and more dissimilar problems, but this demands more data to be generated

18 Marcos Alvarez, Wehenkel, Louveaux

(and considerably more time). Moreover, the features would probably need to
be adapted to capture a most likely larger set of problems dynamics. Second,
the choice of a set of UC problems with a same cost structure and varying
demands is also motivated by its similarity to practical situations. Indeed, in
the real world, the generation companies, or the transmission system opera-
tors, have to repeatedly solve similar problems with a similar cost structure
(the plants do not change very often), but with a varying demand. Our prob-
lem setting is thus strongly motivated by an obvious similarity with practical
applications.

5.1.2 Experimental procedure

Once the problem sets are at our disposal, our experimental procedure can
be applied. It is composed of three steps: (1) we generate a dataset Dnp of
pairs composed of features of subproblems and the corresponding numbers of
nodes, (2) we learn from Dnp a function able to predict the size of a subprob-
lem, and (3) we apply our partitioning algorithm in order to generate several
subproblems and analyze the results.

Note that, in all experiments, including steps 1 and 3 of our experimental
procedure, we give to B&B an upper (primal) bound on the problem. This
primal bound is very loose, and is computed with a simple heuristic that
merely consists in rounding up each fractional variable in the LP solution of
the root node of the original problem.

Step 1: dataset generation In order to create a dataset of pairs (φl, nl), we first
generate, for each problem in our learning problem set, a certain number (250)
of random subproblems. Each subproblem is created by randomly choosing a
subset of the binary variables and by randomly fixing each variable in this
subset to either 0 or 1. Then, for each subproblem, we compute the features
φl corresponding to this subproblem, and we optimize the subproblem until
optimality. The number of nodes nl required to fully optimize the subproblem
is added, together with the features vector φl, to the dataset Dnp as a pair
(φl, nl). The dataset Dnp contains around 75, 000 learning examples and is
used as input of the learning algorithm to create the function fnodes(·).

Step 2: learning a function predicting the number of nodes We now apply a
supervised machine learning algorithm to the dataset Dnp to learn a function
predicting the number of nodes required to solve a subproblem until optimality.
In this work, we use the random forests algorithm (Breiman 2001). Our choice
is motivated by the computational efficiency and the simple mechanisms of the
random forests. Another advantage is that the performances of the random
forests are very robust against the choice of their parameters. The random
forests actually have two main parameters: N , which is the number of trees
in the ensemble method, and nmin, which is the number of training samples
contained in a node below which that node becomes a leaf. The number of
trees is set to the value of N = 50 in our experiments. The parameter nmin

Machine Learning to Balance the Load in Parallel Branch-and-Bound 19

controls the complexity of the trees and is set to a value of nmin = 10. Because
the experiments show that the parameters values have little impact on the
performances of the method, the values that we give to those parameters
have been chosen based on our experience. The exact understanding of these
parameters is beyond the scope of this paper, and we refer the reader to
Breiman (2001) for a deeper explanation.

Step 3: comparing several partitioning schemes After having generated the
dataset Dnp and applied the learning algorithm, we can compare our learned
partitioning scheme to other schemes. Besides the one proposed in this paper
and due to the lack of clear competitors, we have imagined two extremely
simple approaches that we use to compare our method with. The first one,
that we call ‘random’, consists in generating a certain number of subproblems
partitioning the original optimization tree completely randomly. The proce-
dure is as follows. Imagine that there is a list that stores, such as in B&B, all
open nodes. The list is first initialized with the original root node. While the
number of nodes in the list is less than the desired number of elements in the
partition, the procedure takes one node randomly from the list. That node is
examined and the unfixed binary variables are identified. Then, one unfixed
binary variable is chosen randomly, and two child nodes are created by fixing
the randomly chosen variable to 0 and 1, respectively. This procedure yields a
totally random partitioning of the original tree. The second approach that we
propose is similar to the previous one, except that the next node to split into
two children is not chosen randomly. Indeed, we rather open the nodes in a
breadth-first manner such that the tree resulting from the random partitioning
is balanced. We naturally name this approach ‘balanced’.

When the number of nodes is equal to the number of processors, distribut-
ing the work among the different workers is easy. When the number of elements
in the partition is greater than the number of processors, we must find a way
to distribute the work between them. When the partition is generated with
our learned method, we use Algorithm 2 to distribute the work between all
workers.When the random or balanced schemes generate the partition, we ran-
domly distribute the subproblems to each worker while balancing the number
of subproblems that each processor is responsible for, i.e., we attribute to each
processor a number k/N of subproblems.

Note that the subproblems generated by our approach depend on the scor-
ing function that is used. We proposed two different scoring functions in Sec-
tion 3.1.3. However, our experiments show that the second one, i.e., the max,
is more efficient than the first one. Thus, for the sake of conciseness, we focus,
from now on, on the scoring function score(n̂left, n̂right) = max (n̂left, n̂right).

In order to evaluate the proposed approach, we generate, for each problem
in our test set, several partitions of increasing size with the three proposed
partitioning schemes. We then gather the results and analyze them. Further-
more, we consider a setting without communications and a setting where the
best primal bound is known by each processor (updates of this primal bound
are performed on a regular basis).

20 Marcos Alvarez, Wehenkel, Louveaux

We evaluate our approach on several problems contained in our test set
(20 UC problems). CPLEX 12.2 is used as the main B&B solver. Note that
presolve is applied to each problem at the root node and then is disabled for
the subproblems. Moreover, in order to assess only the performances of the
partitioning strategies, we disable heuristics and cuts in CPLEX.

5.2 Experiments and results

We now give some experimental results obtained through our experiments,
together with their analysis.

5.2.1 Learning to predict the number of nodes

In this section, we report some results regarding the accuracy of the learned
complexity function, i.e., fnodes(·). In order to quantify the precision of the
function, we split the dataset Dnp into two sets: one set is used for learning
the complexity function, and the other set to test the learned function. After
the function is learned, we predict, for each feature vector in the second set,
a number of nodes, which can then be compared to the real value stored in
the test set. Assuming that there are t elements in the test set, the real values
(numbers of nodes) contained in the set are denoted by ni with i = 1 . . . t, and
the corresponding predictions obtained with the learned function are denoted
by n̂i.

In Table 2, we assess the performances of our learned function by computing
the correlation and the mean relative error (MRE) between the predicted and
real values, where the MRE is computed as follows:

1

t

t
∑

i=1

|ni − n̂i|
max(1, ni)

.

In addition to computing the correlation and the MRE, we examine several
cases. Indeed, the distribution of the errors throughout the dataset is not
uniform: the distribution is much denser for smaller errors. For that reason,
we try to evaluate the learned function differently depending on the magnitude
of the errors. In order to do so, we successively consider a larger number of
predictions. More specifically, we set a threshold on the relative error of each
predicted value. Then, the extreme (highest) relative errors that are greater
than the threshold are discarded from the set, and the performance measures
(correlation and MRE) are computed from the remaining values. For instance,
the first line of Table 2 represents the correlation and the MRE computed from
all predictions that differ by no more than 50% from the real value. The last
column of the table indicates the proportion of values that are not discarded
by the threshold, and, hence, the proportion of available values that are taken
into account for computing the performance measures.

The table shows that the learned function is able to catch the most im-
portant dynamics of the subproblems. Indeed, the MRE is maintained at a

Machine Learning to Balance the Load in Parallel Branch-and-Bound 21

Table 2 Performance measures of the learned complexity function. Each line represents a
case where extreme (high) errors are removed from the dataset to compute the correlation,
the mean relative error (MRE), and the proportion of considered elements (elements whose
relative errors are below the given threshold).

Max. relative
error (%)

Correlation MRE (%) Prop. elem. (%)

50 0.95 11.58 59.83
75 0.86 17.76 68.27

100 0.72 21.77 72.53
125 0.71 25.18 75.37
150 0.68 28.60 77.74
+∞ 0.47 188.12 100.00

very acceptable level when the largest errors are removed. For instance, the
table indicates that the absolute relative error is less than 50% for around 60%
of the predictions, and that, for those predictions, the mean relative error is
around 12%. Both the correlation and the MRE get worse when the threshold
on the error increases. Note that, even when we allow errors of up to 150%,
the MRE remains quite low at around 28% for 77% of the predictions. The
last line of the table illustrates the effect of the large errors. The (very) large
errors pollute a lot the analysis of the results. Indeed, despite the fact that
there are only a small amount of them, the large errors have a huge impact on
the MRE and artificially worsen the results.

These results show that there exist some problems for which the predictions
are not accurate enough. This was expected since the dataset that we use is
obviously too small and does not satisfactorily cover the space of considered
problems (especially the largest problems). Consequently, the prediction is
less accurate for those problems that are not well represented in the training
dataset. However, despite the performance decrease, the computed correlation
shows that the predictions remain a good way to assess the difficulty of a
subproblem. Furthermore, it is important to mention that we are not interested
only in quantitative aspects of the predictions, but also in qualitative aspects.
Indeed, being able to tell whether a subproblem will take much longer to solve
than another one is a valuable piece of information that can be as useful as the
accurate prediction of the number of nodes. In order to improve the prediction
quality, more examples coming from other (larger) problems could be added to
the set used to learn the prediction function. This would increase the density
of examples in those regions of the problem space where the accuracy of the
predictions is not high enough.

5.2.2 Important features

Besides the raw prediction accuracy, we have also analyzed the importance of
each feature on the ability of the learned function to predict a correct output.
There are several ways to assess whether a feature matters or not. In this work,
we use two techniques. First, we examine the so-called ‘features importances’,
which are values computed by the random forests at learning time and that

22 Marcos Alvarez, Wehenkel, Louveaux

sum to 1 over all features. The greater the feature importance, the more rele-
vant the feature is. Similarly, we use the cost of omission (COO) (Otten and
Dechter 2012) to estimate the impact of a feature on the prediction ability.
The cost of omission consists in omitting a given feature during the learning
and the testing phases. We can then compute the estimated MRE obtained
without the chosen feature. The difference between the MRE obtained with-
out the feature and the MRE obtained with all features is an image of how
important the feature is. If the value of the COO is positive, this means that
the feature is important for the prediction. On the other hand, when the COO
is negative, it implies that the feature has a negative impact on the prediction
accuracy. Small values of the COO (either positive or negative) indicate that
the feature is not very important and could just be a source of noise in the
prediction. Note that we use in this work the normalized COO which consists
in attributing to the highest COO a value of 100, all other COOs being scaled
accordingly. Given that there exist some large errors than have a huge impact
on the MRE, and, thus, on the COO, we compute the COOs for different
thresholds of the relative errors, just as in the previous section. The results of
the features importances are summarized in Table 3 for the 10 most relevant
features.

The table indicates that feature #66, i.e., the gap decrease at the end of
the probing phase, is very important. Also, and very interestingly, the impact
of each feature seems to depend on the amplitude of the prediction errors.
For instance, feature #18, i.e., the difference between the heuristic objective
value and the LP objective value at the root of the subproblem, seems im-
portant for those values that are predicted quite accurately, but it becomes
less relevant when larger errors are included in the computation of the COO.
The same analysis can be carried out for all 10 features indicating that, al-
though features #63, i.e., the maximum depth of the probing tree, and #66
are clear winners when all predictions are considered, the other features are
important too in different situations. However, it would be very interesting to
further study the impact of some features, like features #14 (the minimum of
the average objective increase for the unfixed variables), #18, and #62 (the
ratio between the number of unexplored and explored nodes after probing),
on the performances of the parallel B&B, since it seems that removing them
has a positive impact on the prediction accuracy when the entire dataset is
considered.

5.2.3 Parallel optimization

We now compare the approach that we propose to the trivial ones in a real par-
allel optimization setting. We apply the three proposed partitioning schemes to
our set of test problems and create increasingly larger partitions of their orig-
inal optimization trees. Note that, in this case, the number of elements in the
partition is equal to the number of processors. We perform two types of exper-
iments: with and without communications. In the case where communications
are allowed, their sole purpose is to render the best primal bound available

Machine Learning to Balance the Load in Parallel Branch-and-Bound 23

Table 3 Features importances as computed by the random forests algorithm and normal-
ized costs of omission for the 10 most important features.

Feat. #
Feat.
imp.

COO with threshold on max. allowed error (%)

50 75 100 125 150 +∞

63 0.6193 31.2 25.0 41.8 42.9 35.7 55.4
66 0.3529 -7.2 2.8 100.0 100.0 100.0 100.0
14 0.0052 9.7 -3.3 -2.3 -4.5 -10.9 -5.6
18 0.0043 100.0 100.0 -24.2 -30.1 -32.6 1.3
1 0.0041 4.6 -6.7 4.4 2.3 -0.7 -0.8

59 0.0031 3.5 -3.5 1.6 -2.6 -6.8 2.8
40 0.0017 4.8 -6.9 1.1 -0.9 -1.8 4.4
62 0.0014 20.1 8.1 12.5 9.2 5.8 -1.8
15 0.0011 5.1 -5.2 -0.7 -6.7 -6.5 1.1
61 0.0011 4.2 -8.9 5.5 9.0 10.9 1.6

to all processes. The communication is thus maintained at its minimum but
remains yet very useful to achieve good performances. The communication
works as follows. There is, in shared memory, a single scalar that stores the
objective value of the best known integral solution. Every 10,000 nodes, each
processor reads the shared primal bound and updates its local primal bound
accordingly. This allows all processors to be aware of the best available so-
lution in order to early prune unpromising branches of the tree. Moreover,
each time a new integral solution is found, the processor responsible for that
discovery updates, if necessary, the shared primal bound. This mechanism is
very useful in reducing the total amount of work carried out by all processors,
while being very light in terms of communications.

In our experiments, we generate a number of subproblems ranging from 2
to 24, each subproblem being optimized by a single processor. At the end of
the experiments, for each problem, the number of nodes explored by each pro-
cessor is stored, and several measures (average, standard deviation, minimum,
maximum, and sum) are computed from the stored values. These measures are
finally averaged over all problems in our test set and reported in Figures 1 and
2 versus the number of generated subproblems. Figures 1 and 2 respectively
report the results without communications between the processors and with
communications. We also report in the results a so-called ‘baseline’ which con-
sists in the normal optimization of a problem, i.e., starting from the root, the
problem is solved to optimality by a single processor. Figures 1 and 2 are just
meant to show the trends of the performance measures. The detailed results
are given in the form of tables in Appendix A.

A first observation that can be made from the reported results is that our
proposed approach, called ‘learned’, always beats the two trivial approaches
in every aspect (considering the same communication setup). The results also
highlight the importance of the communications to achieve good performances
in parallel B&B. Overall, the mean number of nodes per processor decreases
for all partitioning schemes when the number of generated subproblems in-
creases. The same observation can be made for the minimum of the number

24 Marcos Alvarez, Wehenkel, Louveaux

of nodes across all processors. The maximum of the number of nodes tends
to increase when the number of elements in the partition increases, but only
when communications are forbidden. This can be easily understood since the
deeper the subproblem is in the optimization tree, the less likely it is to con-
tain a good feasible solution that can prune unpromising branches. Also note
that the maximum is the most interesting measure because it conditions the
speedup. Indeed, even if the total amount of work required to solve a prob-
lem is not equal between the serial and the parallel case, the times needed
to complete the optimization is conditioned by the processor that takes the
most time. In order to analyze the potential speedups, the maximum number
of nodes must thus be compared with the number of nodes in the serial case,
i.e., the baseline. The speedups obtained when communications are forbidden
are very modest. The situation is otherwise when we allow the processors to
communicate. Indeed, in that case, our approach achieves a very interesting
4.22 speedup in comparison with the serial case when the problem is paral-
lelized on 24 cores. This has to be compared with the speedups of 1.36 and
1.58 obtained with the random and balanced partitioning schemes. In other
words, the approach that we propose indeed achieves speedups that can have
an important impact in practice.

Moreover, it is important to emphasize that the computed speedups are
lower bounds on the attainable speedups. Indeed, in this work, we do not
perform dynamic load balancing since we only distribute the work to each
processor before the optimization starts. If a dynamic load balancing scheme
is used to further improve the work equilibrium between the processors, it is
conceivable that much higher speedups can be achieved. Indeed, in that case,
other measures, such as the mean and the minimum numbers of nodes per
processor, should be used to enrich our analysis. Given that the mean and the
minimum workload per processor are both very low with our method, it is
fair to expect greater gains in computation time if a dynamic load balancing
scheme is used, together with our method, in order to redistribute the work
from the busiest processor to idle ones.

Finally, the last set of experiments that we propose focuses on the paral-
lel optimization of our set of test problems when the number k of generated
subproblems is greater than the number N of processors. In order to do so,
we generate a certain number k of subproblems with each considered parti-
tioning scheme. Then, the subproblems are distributed across the N available
processors, either by randomly attributing k/N subproblems to each processor
(for the random and balanced partitioning schemes), or by using Algorithm 2
(for the learned partitioning scheme). Note that the number of subproblems
generated with the learned partitioning scheme is at most k, but may be less
given that Algorithm 1 provides another stopping criterion that can be used
to stop the generation of subproblems before the limit k is reached. Table 4 re-
ports, in the case where the number of generated subproblems is greater than
the number of processors, the same performance measures as those presented
in Figures 1 and 2. Note that, in this case, the performance measures (aver-
age, standard deviation, etc.) are computed from the total number of nodes

Machine Learning to Balance the Load in Parallel Branch-and-Bound 25

5 10 15 20
N

1.0e5

5.0e5

9.0e5

Mean number of nodes

(a) Mean number of nodes per processor

5 10 15 20
N

0.5e6

1.0e6

1.5e6

Std of the number of nodes

(b) Standard deviation of the number of
nodes per processor

5 10 15 20
N

2.5e5

5.0e5

7.5e5

Minimum number of nodes

(c) Minimum number of nodes per proces-
sor

5 10 15 20
N

1.0e6

3.0e6

5.0e6

Maximum number of nodes

(d) Maximum number of nodes per proces-
sor

5 10 15 20
N

0.2e7

1.0e7

1.8e7

Total number of nodes

(e) Total number of nodes

baseline

random

balanced

learned

(f) Legend

Fig. 1 Parallel optimization without communications results with an increasing number of
generated subproblems (k) and an increasing number of processors (N) (with the number
of subproblems being equal to the number of processors, i.e., k = N). The different figures
report the average, the standard deviation, the minimum, the maximum and the sum of the
numbers of nodes that each processor explores until optimality is reached. The values shown
in the figures are averages over all problems in our set of test problems.

26 Marcos Alvarez, Wehenkel, Louveaux

5 10 15 20
N

2.0e5

5.0e5

8.0e5

Mean number of nodes

(a) Mean number of nodes per processor

5 10 15 20
N

1.5e5

3.0e5

4.5e5

Std of the number of nodes

(b) Standard deviation of the number of
nodes per processor

5 10 15 20
N

3.0e5

6.0e5

9.0e5

Minimum number of nodes

(c) Minimum number of nodes per proces-
sor

5 10 15 20
N

3.0e5

6.0e5

9.0e5

Maximum number of nodes

(d) Maximum number of nodes per proces-
sor

5 10 15 20
N

1.0e6

1.4e6

1.8e6

Total number of nodes

(e) Total number of nodes

baseline

random (c10k)

balanced (c10k)

learned (c10k)

(f) Legend

Fig. 2 Parallel optimization with communications (every 10,000 nodes) results with an
increasing number of generated subproblems (k) and an increasing number of processors
(N) (with the number of subproblems being equal to the number of processors, i.e., k = N).
The different figures report the average, the standard deviation, the minimum, the maximum
and the sum of the numbers of nodes that each processor explores until optimality is reached.
The values shown in the figures are averages over all problems in our set of test problems.

Machine Learning to Balance the Load in Parallel Branch-and-Bound 27

explored by each processor, which corresponds to the sum of the number of
nodes required by each subproblem attributed to the given worker. The total
number of nodes is thus an image of the total amount of work that a processor
carries out.

Table 4 indicates first that the parallel optimization without communica-
tions does not compare very well with the single threaded case. Indeed, the
maximum number of nodes that a processor performs is always greater than
in the single threaded case. This implies that the parallel optimization does
not terminate before the single threaded B&B. However, the approach that
we propose compares favorably with the trivial partitioning schemes. Indeed,
with our method, the mean number of nodes that a processor explores de-
creases, as well as the standard deviation. This implies that, on average, the
number of nodes per processor is less than for a single threaded optimization.
Things are different when communications are allowed between the proces-
sors. Indeed, while the trivial partitioning schemes still perform very poorly
compared to the single threaded optimization, the proposed method, on the
other hand, exhibits very interesting performances. Indeed, in that case, the
obtained speedup between the single threaded baseline and the learned parti-
tioning scheme is equal to 4.07 or 5.61, depending on the number of processors.
Similarly to the case without communications, the mean number of nodes and
the standard deviation per processor are reduced compared to the trivial par-
titioning schemes, which shows that the load is acceptably balanced between
the workers.

Finally, it is interesting to compare the situation where each processor
is assigned only one subproblem, with the situation where each processor is
responsible for multiple subproblems. This analysis can be carried out by com-
paring the results from Table 4 with those from Tables 5-9. Comparing both
sets of results for 12 and 24 processors yields the following observations. First,
the mean and the total number of nodes are roughly equal between both se-
tups. Additionally, we see that the standard deviation per processor decreases
when more subproblems are assigned to a single worker, which is a display of
better load balance. Lastly, we observe that the difference between the max-
imum and the minimum number of nodes decreases when the processors are
assigned more than one subproblem, which tends, again, to show that the work
is better balanced in that case. Overall, the conclusion that can be drawn is
that allocating more than one subproblem to each processor does not increase
the total amount of work to be done, but sensibly reduces the unbalance be-
tween the workers.

6 Conclusions and future work

In this paper, we proposed a new approach to split the optimization of a single
problem into several parallel parts with the goal that the amount of work given
to each processor is well balanced between the workers. The approach consists
in creating a complexity function, with the use of machine learning techniques,

28 Marcos Alvarez, Wehenkel, Louveaux

Table 4 Parallel optimization results when the number of generated subproblems (k) is
greater than the number of processors (N). The table reports the average, the standard
deviation, the minimum, the maximum and the sum (over all processors) of the numbers
of nodes that each processor explores until optimality is reached. The values shown in the
tables are averages over all problems in our set of test problems. Note that, for the learned
partitioning scheme, the k indicates the maximum number of elements in the partition. The
real number of generated subproblems is different for each problem and depends on the
stopping criterion given in Algorithm 1.

N k Mean Std Min Max Sum
Single 1 1 9.81e+05 - 9.81e+05 9.81e+05 9.81e+05

Without communication
random 12 240 7.94e+06 5.70e+06 1.73e+06 1.97e+07 9.53e+07
random 24 480 6.29e+06 5.76e+06 1.00e+06 2.14e+07 1.51e+08

balanced 12 240 1.55e+07 8.81e+06 4.53e+06 3.33e+07 1.86e+08
balanced 24 480 1.25e+07 8.15e+06 3.28e+06 3.79e+07 3.00e+08

learned 12 240 5.96e+05 2.38e+05 1.85e+05 9.89e+05 7.16e+06
learned 24 480 5.54e+05 3.03e+05 1.22e+05 1.18e+06 1.33e+07

With communication (primal bound, every 10,000 nodes)
random 12 240 1.67e+05 1.89e+05 4.22e+04 6.94e+05 2.00e+06
random 24 480 7.98e+04 1.59e+05 1.03e+04 7.60e+05 1.91e+06

balanced 12 240 1.99e+05 1.50e+05 5.22e+04 5.47e+05 2.39e+06
balanced 24 480 1.44e+05 1.27e+05 3.29e+04 5.73e+05 3.46e+06

learned 12 240 9.38e+04 6.14e+04 1.90e+04 2.41e+05 1.12e+06
learned 24 480 4.58e+04 3.95e+04 6.80e+03 1.75e+05 1.10e+06

that is able to estimate the number of nodes, hence the amount of work, that
a subproblem of the original problem requires in order to be fully optimized.
To this end, we develop a set of features that are used to characterize a given
subproblem in the B&B tree, and use these features as input of the learned
complexity function in order to predict the expected number of nodes required
to solve this subproblem to optimality. These estimates are then used to create
a partition of the original optimization tree so that one or several elements of
the partition can be given to each processor. The experiments show that our
approach succeeds in balancing the amount of work between the processors
and that interesting speedups can be achieved with little effort.

Further research orientations include the development of more relevant fea-
tures that would better grasp the dynamics of the considered problems in order
to better predict the subproblem size. Another research direction is to imple-
ment the proposed framework on massively parallel computers to understand
how the speedups and processor utilizations change when the original work is
split into a very large number of independent parts.

Finally, let us emphasize the fact that, although, in this paper, we totally
focus on a single class of MIP problems, the same framework can be transposed
to any class of problems with minor adaptations of the proposed features.

Acknowledgements This work was funded by the Dysco Interuniversity Attraction Pole
(IAP) of the Belgian Science Policy Office and the Pascal2 Network of Excellence of the
European Union. AMA’s thesis is funded by a FRIA scholarship from the Fonds de la

Machine Learning to Balance the Load in Parallel Branch-and-Bound 29

Recherche Scientifique-FNRS (F.R.S.-FNRS). The scientific responsibility rests with the
authors.

References

Breiman L (2001) Random forests. Machine learning 45(1):5–32
Dorta I, Leon C, Rodriguez C (2004) Parallel branch-and-bound skeletons: Message passing

and shared memory implementations. In: Parallel Processing and Applied Mathematics,
Springer, pp 286–291

Eckstein J, Phillips CA, Hart WE (2001) Pico: An object-oriented framework for parallel
branch and bound. Studies in Computational Mathematics 8:219–265

El-Dessouki OI, Huen WH (1980) Distributed enumeration on between computers. IEEE
Transactions on Computers 29(9):818–825

Gendron B, Crainic TG (1994) Parallel branch-and-branch algorithms: Survey and synthesis.
Operations Research 42(6):1042–1066

Karp R, Zhang Y (1988) A randomized parallel branch-and-bound procedure. In: Proceed-
ings of the twentieth annual ACM symposium on Theory of computing, ACM, pp 290–
300

Kumar V, Rao VN (1987) Parallel depth first search. part ii. analysis. International Journal
of Parallel Programming 16(6):501–519

Lai TH, Sahni S (1984) Anomalies in parallel branch-and-bound algorithms. Communica-
tions of the ACM 27(6):594–602

Laursen PS (1994) Can parallel branch and bound without communication be effective?
SIAM Journal on Optimization 4(2):288–296

Linderoth JT (1998) Topics in parallel integer optimization. PhD thesis, Georgia Institute
of Technology

Otten L, Dechter R (2012) A case study in complexity estimation: Towards parallel branch-
and-bound over graphical models. In: Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, pp 665–674

Pruul E, Nemhauser G, Rushmeier R (1988) Branch-and-bound and parallel computation:
A historical note. Operations Research Letters 7(2):65–69

Rao VN, Kumar V (1987) Parallel depth first search. part i. implementation. International
Journal of Parallel Programming 16(6):479–499

Wah B, Yu CF (1985) Stochastic modeling of branch-and-bound algorithms with best-first
search. Software Engineering, IEEE Transactions on SE-11(9):922–934

Yang MK, Das CR (1994) Evaluation of a parallel branch-and-bound algorithm on a class
of multiprocessors. Parallel and Distributed Systems, IEEE Transactions on 5(1):74–86

30 Marcos Alvarez, Wehenkel, Louveaux

A Complete experimental results

This appendix contains the detailed experimental results obtained when our test problems
are optimized by a parallel B&B. We report the mean, standard deviation, minimum, and
maximum numbers of nodes observed on each processor, together with the sum of the number
of nodes of each processor. The results are then averaged for all problems and reported in
the following tables. Note that, in this case, the number k of generated subproblems is equal
to the number N of processors.

Table 5 Mean number of nodes

Without comm. With comm. (every 10k nodes)
N baseline random balanced learned random balanced learned
2 9.81e+05 7.27e+05 1.01e+06 5.62e+05 5.31e+05 5.42e+05 4.82e+05
3 9.81e+05 5.58e+05 8.11e+05 4.03e+05 3.48e+05 3.59e+05 3.30e+05
4 9.81e+05 5.29e+05 8.91e+05 3.27e+05 2.75e+05 2.97e+05 2.39e+05
5 9.81e+05 5.22e+05 8.07e+05 2.86e+05 2.32e+05 2.36e+05 1.78e+05
6 9.81e+05 4.75e+05 7.98e+05 2.56e+05 1.78e+05 2.09e+05 1.66e+05
7 9.81e+05 4.91e+05 9.59e+05 2.28e+05 1.57e+05 2.01e+05 1.48e+05
8 9.81e+05 4.64e+05 1.18e+06 1.96e+05 1.51e+05 1.81e+05 1.32e+05
9 9.81e+05 4.74e+05 1.08e+06 1.93e+05 1.20e+05 1.60e+05 1.16e+05

10 9.81e+05 4.68e+05 1.06e+06 2.14e+05 1.11e+05 1.49e+05 1.09e+05
11 9.81e+05 4.84e+05 1.02e+06 2.02e+05 1.04e+05 1.40e+05 1.04e+05
12 9.81e+05 4.94e+05 1.04e+06 2.22e+05 9.69e+04 1.24e+05 9.57e+04
13 9.81e+05 6.74e+05 1.05e+06 1.53e+05 1.04e+05 1.23e+05 8.86e+04
14 9.81e+05 6.60e+05 1.05e+06 1.45e+05 9.17e+04 1.09e+05 7.99e+04
15 9.81e+05 6.51e+05 1.10e+06 1.36e+05 8.62e+04 1.03e+05 7.60e+04
16 9.81e+05 6.29e+05 1.10e+06 1.28e+05 8.11e+04 1.04e+05 6.46e+04
17 9.81e+05 6.14e+05 1.06e+06 1.24e+05 7.82e+04 9.48e+04 6.40e+04
18 9.81e+05 5.93e+05 1.02e+06 1.96e+05 7.32e+04 9.61e+04 5.82e+04
19 9.81e+05 5.71e+05 1.00e+06 1.92e+05 7.02e+04 9.05e+04 5.70e+04
20 9.81e+05 5.72e+05 9.74e+05 1.87e+05 6.66e+04 8.45e+04 5.12e+04
21 9.81e+05 5.60e+05 7.96e+05 2.06e+05 6.58e+04 8.59e+04 4.67e+04
22 9.81e+05 5.56e+05 7.77e+05 2.06e+05 6.75e+04 8.27e+04 5.14e+04
23 9.81e+05 6.10e+05 5.21e+05 2.06e+05 6.38e+04 7.74e+04 4.54e+04
24 9.81e+05 6.08e+05 3.37e+05 2.06e+05 6.11e+04 7.77e+04 4.61e+04

Machine Learning to Balance the Load in Parallel Branch-and-Bound 31

Table 6 Standard deviation of the number of nodes

Without comm. With comm. (every 10k nodes)
N baseline random balanced learned random balanced learned
2 - 3.50e+05 4.25e+05 4.39e+05 4.89e+05 4.29e+05 3.45e+05
3 - 3.34e+05 5.07e+05 2.87e+05 4.16e+05 3.92e+05 2.86e+05
4 - 3.07e+05 5.39e+05 2.26e+05 3.82e+05 3.47e+05 2.08e+05
5 - 3.21e+05 6.60e+05 2.14e+05 3.26e+05 3.05e+05 1.64e+05
6 - 3.35e+05 7.04e+05 2.01e+05 2.94e+05 2.70e+05 1.62e+05
7 - 3.69e+05 9.24e+05 1.87e+05 2.78e+05 2.56e+05 1.44e+05
8 - 3.86e+05 1.61e+06 1.61e+05 2.76e+05 2.50e+05 1.39e+05
9 - 4.09e+05 1.55e+06 1.62e+05 2.43e+05 2.35e+05 1.31e+05

10 - 3.90e+05 1.48e+06 2.15e+05 2.28e+05 2.37e+05 1.19e+05
11 - 4.32e+05 1.43e+06 1.82e+05 2.15e+05 2.23e+05 1.23e+05
12 - 4.81e+05 1.54e+06 1.96e+05 2.07e+05 2.02e+05 1.11e+05
13 - 1.13e+06 1.50e+06 1.06e+05 2.26e+05 1.96e+05 9.67e+04
14 - 1.10e+06 1.51e+06 1.03e+05 1.99e+05 1.77e+05 8.87e+04
15 - 1.11e+06 1.50e+06 9.69e+04 1.88e+05 1.73e+05 8.06e+04
16 - 1.08e+06 1.48e+06 8.94e+04 1.84e+05 1.74e+05 7.27e+04
17 - 1.06e+06 1.45e+06 8.76e+04 1.79e+05 1.64e+05 7.16e+04
18 - 1.06e+06 1.42e+06 1.83e+05 1.73e+05 1.63e+05 6.42e+04
19 - 1.04e+06 1.41e+06 1.80e+05 1.72e+05 1.58e+05 6.40e+04
20 - 1.08e+06 1.39e+06 1.78e+05 1.64e+05 1.53e+05 5.23e+04
21 - 1.08e+06 1.07e+06 2.03e+05 1.61e+05 1.58e+05 5.23e+04
22 - 1.05e+06 1.05e+06 2.01e+05 1.68e+05 1.54e+05 5.81e+04
23 - 1.29e+06 6.89e+05 1.99e+05 1.64e+05 1.50e+05 5.14e+04
24 - 1.27e+06 4.19e+05 1.95e+05 1.58e+05 1.51e+05 5.79e+04

Table 7 Minimum number of nodes

Without comm. With comm. (every 10k nodes)
N baseline random balanced learned random balanced learned
2 9.81e+05 4.80e+05 7.12e+05 2.52e+05 1.86e+05 2.39e+05 2.38e+05
3 9.81e+05 2.84e+05 3.08e+05 1.74e+05 5.20e+04 6.23e+04 1.19e+05
4 9.81e+05 2.48e+05 2.85e+05 1.19e+05 2.75e+04 2.83e+04 7.11e+04
5 9.81e+05 2.08e+05 1.24e+05 7.58e+04 1.74e+04 2.17e+04 1.60e+04
6 9.81e+05 1.40e+05 1.20e+05 4.45e+04 1.55e+04 9.18e+03 9.09e+03
7 9.81e+05 1.24e+05 1.07e+05 3.61e+04 1.24e+04 6.88e+03 7.27e+03
8 9.81e+05 1.00e+05 9.87e+04 2.86e+04 9.40e+03 6.35e+03 5.87e+03
9 9.81e+05 9.38e+04 9.11e+04 1.67e+04 6.88e+03 7.11e+03 5.32e+03

10 9.81e+05 9.33e+04 7.77e+04 1.61e+04 6.71e+03 5.84e+03 4.73e+03
11 9.81e+05 9.18e+04 7.37e+04 9.23e+03 5.52e+03 4.60e+03 3.53e+03
12 9.81e+05 8.07e+04 7.03e+04 7.70e+03 4.00e+03 4.00e+03 2.67e+03
13 9.81e+05 7.32e+04 6.03e+04 2.53e+04 3.71e+03 3.49e+03 2.58e+03
14 9.81e+05 7.18e+04 5.80e+04 2.52e+04 3.03e+03 2.86e+03 2.52e+03
15 9.81e+05 4.51e+04 4.77e+04 2.32e+04 2.75e+03 2.39e+03 2.49e+03
16 9.81e+05 2.40e+04 3.66e+04 2.31e+04 2.27e+03 2.30e+03 2.53e+03
17 9.81e+05 2.38e+04 3.61e+04 1.96e+04 1.65e+03 2.52e+03 2.44e+03
18 9.81e+05 2.20e+04 3.36e+04 7.06e+03 1.54e+03 2.10e+03 2.49e+03
19 9.81e+05 1.80e+04 2.72e+04 6.91e+03 1.24e+03 2.09e+03 2.30e+03
20 9.81e+05 1.42e+04 2.72e+04 6.66e+03 5.40e+02 2.10e+03 2.02e+03
21 9.81e+05 1.16e+04 1.91e+04 4.77e+03 6.11e+02 1.87e+03 1.99e+03
22 9.81e+05 1.09e+04 1.81e+04 3.74e+03 6.09e+02 1.31e+03 1.71e+03
23 9.81e+05 1.09e+04 1.89e+04 3.74e+03 6.06e+02 1.17e+03 1.79e+03
24 9.81e+05 1.09e+04 7.73e+03 3.69e+03 4.63e+02 3.77e+02 1.62e+03

32 Marcos Alvarez, Wehenkel, Louveaux

Table 8 Maximum number of nodes

Without comm. With comm. (every 10k nodes)
N baseline random balanced learned random balanced learned
2 9.81e+05 9.75e+05 1.31e+06 8.73e+05 8.77e+05 8.46e+05 7.26e+05
3 9.81e+05 9.08e+05 1.30e+06 7.14e+05 8.11e+05 7.94e+05 6.45e+05
4 9.81e+05 9.11e+05 1.47e+06 6.09e+05 8.19e+05 7.69e+05 5.04e+05
5 9.81e+05 9.71e+05 1.69e+06 5.83e+05 7.72e+05 7.38e+05 4.21e+05
6 9.81e+05 9.93e+05 1.93e+06 5.41e+05 7.58e+05 6.76e+05 4.29e+05
7 9.81e+05 1.13e+06 2.58e+06 5.28e+05 7.64e+05 6.99e+05 3.97e+05
8 9.81e+05 1.18e+06 4.69e+06 4.76e+05 7.92e+05 7.11e+05 4.03e+05
9 9.81e+05 1.29e+06 4.70e+06 4.80e+05 7.41e+05 6.71e+05 3.94e+05

10 9.81e+05 1.26e+06 4.66e+06 6.90e+05 7.33e+05 7.12e+05 3.74e+05
11 9.81e+05 1.45e+06 4.68e+06 5.87e+05 7.10e+05 6.96e+05 3.89e+05
12 9.81e+05 1.66e+06 5.03e+06 5.86e+05 7.09e+05 6.51e+05 3.56e+05
13 9.81e+05 4.04e+06 5.05e+06 3.80e+05 7.56e+05 6.55e+05 3.11e+05
14 9.81e+05 4.07e+06 5.33e+06 3.79e+05 7.11e+05 5.94e+05 2.86e+05
15 9.81e+05 4.19e+06 5.15e+06 3.72e+05 6.98e+05 5.89e+05 2.66e+05
16 9.81e+05 4.22e+06 5.22e+06 3.43e+05 7.00e+05 6.17e+05 2.66e+05
17 9.81e+05 4.22e+06 5.22e+06 3.36e+05 7.00e+05 5.95e+05 2.66e+05
18 9.81e+05 4.31e+06 5.22e+06 6.56e+05 6.96e+05 5.93e+05 2.45e+05
19 9.81e+05 4.31e+06 5.27e+06 6.59e+05 7.07e+05 5.87e+05 2.46e+05
20 9.81e+05 4.62e+06 5.26e+06 6.57e+05 6.96e+05 5.83e+05 1.91e+05
21 9.81e+05 4.62e+06 3.98e+06 7.55e+05 6.98e+05 6.21e+05 2.13e+05
22 9.81e+05 4.59e+06 3.98e+06 7.60e+05 7.14e+05 6.09e+05 2.23e+05
23 9.81e+05 5.92e+06 2.68e+06 7.52e+05 7.16e+05 6.20e+05 2.03e+05
24 9.81e+05 5.91e+06 1.62e+06 7.43e+05 7.20e+05 6.19e+05 2.32e+05

Table 9 Total number of nodes

Without comm. With comm. (every 10k nodes)
N baseline random balanced learned random balanced learned
2 9.81e+05 1.45e+06 2.03e+06 1.12e+06 1.06e+06 1.08e+06 9.64e+05
3 9.81e+05 1.67e+06 2.43e+06 1.21e+06 1.04e+06 1.08e+06 9.91e+05
4 9.81e+05 2.12e+06 3.57e+06 1.31e+06 1.10e+06 1.19e+06 9.56e+05
5 9.81e+05 2.61e+06 4.03e+06 1.43e+06 1.16e+06 1.18e+06 8.91e+05
6 9.81e+05 2.85e+06 4.79e+06 1.53e+06 1.07e+06 1.26e+06 9.95e+05
7 9.81e+05 3.44e+06 6.71e+06 1.60e+06 1.10e+06 1.41e+06 1.04e+06
8 9.81e+05 3.71e+06 9.44e+06 1.53e+06 1.21e+06 1.45e+06 1.02e+06
9 9.81e+05 4.26e+06 9.76e+06 1.69e+06 1.08e+06 1.44e+06 1.02e+06

10 9.81e+05 4.68e+06 1.06e+07 2.06e+06 1.11e+06 1.49e+06 1.07e+06
11 9.81e+05 5.32e+06 1.12e+07 2.14e+06 1.15e+06 1.54e+06 1.12e+06
12 9.81e+05 5.93e+06 1.25e+07 2.56e+06 1.16e+06 1.48e+06 1.12e+06
13 9.81e+05 8.77e+06 1.36e+07 1.99e+06 1.36e+06 1.60e+06 1.12e+06
14 9.81e+05 9.25e+06 1.47e+07 2.03e+06 1.28e+06 1.53e+06 1.10e+06
15 9.81e+05 9.77e+06 1.66e+07 2.04e+06 1.29e+06 1.55e+06 1.11e+06
16 9.81e+05 1.01e+07 1.76e+07 2.04e+06 1.30e+06 1.67e+06 1.02e+06
17 9.81e+05 1.04e+07 1.81e+07 2.11e+06 1.33e+06 1.61e+06 1.07e+06
18 9.81e+05 1.07e+07 1.83e+07 3.43e+06 1.32e+06 1.73e+06 1.03e+06
19 9.81e+05 1.08e+07 1.90e+07 3.56e+06 1.33e+06 1.72e+06 1.07e+06
20 9.81e+05 1.14e+07 1.95e+07 3.57e+06 1.33e+06 1.69e+06 1.00e+06
21 9.81e+05 1.18e+07 1.67e+07 4.12e+06 1.38e+06 1.80e+06 9.57e+05
22 9.81e+05 1.22e+07 1.71e+07 4.33e+06 1.49e+06 1.82e+06 1.10e+06
23 9.81e+05 1.40e+07 1.20e+07 4.45e+06 1.47e+06 1.78e+06 1.01e+06
24 9.81e+05 1.46e+07 8.09e+06 4.65e+06 1.47e+06 1.87e+06 1.07e+06

