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Abstract

We study the one-dimensional (1D) transport properties of
an ultracold gas of Bose-Einstein condensed atoms through
Aharonov-Bohm (AB) rings. Our system consists of a Bose-
Einstein condensate (BEC) that is outcoupled from a mag-
netic trap into a 1D waveguide which is made of two semi-
infinite leads that join a ring geometry exposed to a mag-
netic flux φ. We specifically investigate the effects of a small
atom-atom contact interaction strength on the AB oscilla-
tions. The main numerical tools that we use for this purpose
are a mean-field Gross-Pitaevskii (GP) description and the
truncated Wigner (tW) method. The latter allows for the de-
scription of incoherent transport and corresponds to a classical
sampling of the evolution of the quantum bosonic many-body
state through effective GP trajectories. We find that reso-
nant transmission peaks move with an increasing interaction
strength and can be suppressed for sufficiently strong interac-
tion. We also observe that the coherent transmission blockade
due to destructive interference at the AB flux φ = π is very
robust with respect to the interaction strength.

Aharonov-Bohm rings
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• Intersection of two red-detuned beams
• Connection to two waveguides

Theoretical description

• Ring geometry connected to two semi-infinite
homogeneous leads

• Perfect condensation of the reservoir (T = 0K)
• Discretisation of 1D space
• Bose-Hubbard system [3]
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+ κ(t)â†αS b̂ + κ∗(t)âαS b̂
† + µb̂†b̂

with :

•Jαα′ = −Eδ

2

{

1 if site α next to site α′

0 otherwise
,

• âα and â†α the annihilation and creation
operators at site α,

• b̂ and b̂† the annihilation and creation operators
of the source with chemical potential µ,

•N → ∞ the number of Bose-Einstein
condensed atoms within the source,

•κ(t) → 0 the coupling strength, which tends to
zero such that N |κ(t)|2 remains finite,

• gα =

{

g if site α within the ring

0 otherwise
.
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Aharonov-Bohm effect

• Potentials act on charged particles even if all
fields vanish [4]
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• Additional phase shift of the electron
wavefunction due to the vector potential A
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A · dl
︸ ︷︷ ︸

φ

= k∆l + 2π
φ
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with φ0 = h/e ≈ 4.13566727 · 10−15 Wb the
magnetic flux quantum

• Interference pattern shifted when a shielded
magnet is added

• Same effect within a two-arm ring
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• Oscillations in transport properties due to
interferences of partial waves crossing each arm
of the ring

• Transmission periodic w.r.t. the AB flux φ

T = |t1 + t2|2 = |t1|2 + |t2|2 + 2|t1| · |t2| cos∆ϕ
with period φ0

Truncated Wigner Method

• Sampling of the initial quantum state by
classical field {ψα(t0)}α∈{S,0,±1,±2,...}.

• Time propagation according to classical
(slightly modified) GP equation.

• Sampling the initial quantum state at t0 [3]
◦ Empty waveguide

WG({ψα, ψ∗
α}, t0) =

∏

α

(
2

π

)

e−2|ψα|2

•ψα(t = t0) =
1

2
(Aα + iBα)

•Aα and Bα: real gaussian random variables

Aα = Bα = Aα′Bα = 0

Aα′Aα = Bα′Bα = δα′,α

◦ Source populated with |ψ0
S|2 = N ≫ 1 atoms

WS(ψS, ψ
∗
S, t0) =

(
2

π

)

e−2|ψS−ψ0
S|2

•Relative uncertainty negligible
•ψS(t = t0) =

√
N ≈ ψS(t) for |κ| → 0

• Equation of propagation for the classical field

i~
∂ψα
∂t

= (Eδ − µ)ψα +
∑

α′

Jαα′ψα′

+ gα
(
|ψα|2−1

)
ψα + κ(t)

√
Nδα,αS

• Compute mean values of observables by
average over GP trajectories

◦ total density nα = |ψα|2 −
1

2
◦ coherent density ncohα =

∣
∣ψα
∣
∣
2

◦ incoherent density nincohα = nα − ncohα
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Aharonov-Bohm oscillations

• Interferences induced by the AB flux φ [6].
• Periodic transmission oscillation with φ.
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• Clear signature of the AB effect.
• No atom-atom interaction so far.

Interaction effects

• Incoherent transmission even at φ = π
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GP

• Inhibition of perfect transmission (see [3])
• Suspension of transmission blockade at φ = π
due to incoherent atoms created within the ring

Total density
Incoherent density

φ = π/2

φ = π

µ/Eδ = 1, g/µ = 0.1

• Resonant transmission peaks move with g and
disappear if g is strong enough
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• Destructive interferences at φ = π, which is
robust on the variations of g.

• More incoherent particles created within the
ring as g increases.

• Transmission totally incoherent at φ = π, for
all g > 0.

Perspectives

• Disorder within the ring
• Continuous limit δ → 0
• Finite temperature for the reservoirs

φ
Interaction

• Boson sampling
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