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Abstract

We study the one-dimensional (1D) transport properties of
an ultracold gas of Bose-Einstein condensed atoms through
Aharonov-Bohm (AB) rings. Our system consists of a Bose-
Finstein condensate (BEC) that is outcoupled from a mag-
netic trap into a 1D waveguide which is made of two semi-
infinite leads that join a ring geometry exposed to a mag-
netic flux ¢. We specifically investigate the effects ot a small
atom-atom contact interaction strength on the AB oscilla-
tions. The main numerical tools that we use for this purpose
are a mean-field Gross-Pitaevskii (GP) description and the
truncated Wigner (tW) method. The latter allows for the de-
scription of incoherent transport and corresponds to a classical
sampling of the evolution of the quantum bosonic many-body
state through effective GP trajectories. We find that reso-
nant transmission peaks move with an increasing interaction
strength and can be suppressed for sufficiently strong interac-
tion. We also observe that the coherent transmission blockade
due to destructive interference at the AB flux ¢ = 7 is very
robust with respect to the interaction strength.

Aharonov-Bohm rings

e Toroidal optical dipole trap
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Sheet beam

e Intersection of two red-detuned beams
e Connection to two waveguides

Theoretical description

e Ring geometry connected to two semi-infinite
homogeneous leads

e Perfect condensation of the reservoir (1" = 0 K)

e Discretisation of 1D space
e Bose-Hubbard system |[3]

Interaction

e Hamiltonian
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e 4o and a! the annihilation and creation
operators at site «,

o b and bt the annihilation and creation operators
of the source with chemical potential p,

« N — oo the number of Bose-Einstein
condensed atoms within the source,

o k(t) — 0 the coupling strength, which tends to
zero such that N|k(t)|* remains finite,

g if site o within the ring

"o 0 otherwise

A haronov-Bohm eflfect

e Potentials act on charged particles even if all

fields vanish [4]
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e Additional phase shift of the electron
wavefunction due to the vector potential A
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magnetic flux quantum

e Interference pattern shifted when a shielded
magnet 1s added

e Same effect within a two-arm ring
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e Oscillations 1n transport properties due to

interferences of partial waves crossing each arm
of the ring

e Transmission periodic w.r.t. the AB flux ¢
T = |ti 4+ to* = [L]F + [tao|* 4 2|t1] - |t2] cos Ay
with period ¢y

A haronov-Bohm oscillations

e Interferences induced by the AB flux ¢ [6].

e Periodic transmission oscillation with ¢.
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e Clear signature of the AB effect.
e No atom-atom interaction so far.
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Truncated Wigner Method

e Sampling of the initial quantum state by

classical field {a(t0) faefs0.4£1.42. 3
e Time propagation according to classical
(slightly modified) GP equation.

e Sampling the initial quantum state at ¢, |3]
o Empty waveguide
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- A, and B,: real gaussian random variables
Ay =By = AyB, =0
Av Ao = Bl = 044
o Source populated with [13]° = N > 1 atoms

2 02
WS(¢S; w;) t()) _ (}) Q—QW«S‘_@DS‘

 Relative uncertainty negligible
cths(t =ty) = VN =~ g(t) for || — 0
e Fquation of propagation for the classical field
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e Compute mean values of observables by
average over GP trajectories
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o total density ny, = |1,]* — 5
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o coherent density nf®" = W@‘
o incoherent density n"" = n, — n™"

Interaction effects

e Incoherent transmission even at ¢ = 7
p/Es=1,9/u=0.1
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e Inhibition of perfect transmission (see [3|)

e Suspension of transmission blockade at ¢ = 7
due to incoherent atoms created within the ring
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e Resonant transmission peaks move with g and
disappear if g is strong enough
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e Destructive interferences at ¢ = 7, which is
robust on the variations of g.

e More incoherent particles created within the
ring as ¢ 1ncreases.

e Transmission totally incoherent at ¢ = m, for
all g > 0.
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Perspectives

e Disorder within the ring
e Continuous limit 0 — 0
e Finite temperature for the reservoirs
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U~V Interaction

e Boson sampling

http://www.pgs.ulg.ac.be

rchretien@ulg.ac.be




