

<u>B. Franco</u>¹, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Abstract (1/3)

Next 🖒

Ethane (C_2H_6) has a large impact on tropospheric composition and air quality because of its involvement in the global chemistry responsible for generating and destroying tropospheric ozone. The abundance of C_2H_6 influences the atmospheric content of carbon monoxide and impacts the lifetime of methane. It is an important source of PAN, a thermally unstable reservoir for NO_x radicals.

On a global scale, the main sources of C_2H_6 are **leakage from the production, transport** of natural gas loss, biofuel consumption and biomass burning, mainly located in the Northern Hemisphere. Due to its relatively long lifetime of approximately two months, C_2H_6 is a sensitive indicator of tropospheric pollution and transport.

C₂H₆ from FTIR at Jungfraujoch: Recent burden increase Click on these links to obtain more information

C₂H₆ in the Southern Hemisphere: No recent upturn

Cause of the C₂H₆ renewal: Shale gas exploitation? Comparison with GEOS-Chem: Underestimation in the inventories

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Previous

Abstract (2/3)

Using an optimized retrieval strategy (Franco et al., 2015, *JQSRT*), we present here a 20-year long-term time series of C_2H_6 column abundance retrieved from ground-based Fourier Transform InfraRed (FTIR) solar spectra recorded from 1994 onwards at the high-altitude station of Jungfraujoch (Swiss Alps, 3580m), part of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org).

After a regular 1994-2008 decrease of the C_2H_6 amounts, which is very consistent with prior major studies (e.g., Aydin et al., 2011, *Nature*; Simpson et al., 2012, *Nature*) and our understanding of global C_2H_6 emissions, trend analysis using a bootstrap resampling tool reveals a <u>C₂H₆ upturn</u> and a statistically-significant <u>sharp burden increase from 2009 onwards</u>.

C₂H₆ from FTIR at Jungfraujoch: Recent burden increase Click on these links to obtain more information

C₂H₆ in the Southern Hemisphere: No recent upturn

Cause of the C₂H₆ renewal: Shale gas exploitation? Comparison with GEOS-Chem: Underestimation in the inventories

<u>B. Franco</u>¹, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Previous

Abstract (3/3)

We hypothesize that the C_2H_6 increase could affect the whole Northern Hemisphere and may be related to the recent massive growth in the <u>exploitation of shale gas and tight oil reservoirs</u>. This hypothesis is supported by measurements derived from solar occultation observations performed from space by the ACE-FTS instrument and at other NDACC sites. The recent rates of changes characterizing these data sets are consistent in magnitude and sign with the one derived at Jungfraujoch. In contrast, the atmospheric C_2H_6 burden in the Southern Hemisphere shows a monotonic decrease over the last two decades.

An ongoing work focuses on combining an analysis of C_2H_6 measurements from ground-based FTIR and ACE-FTS observations with dedicated GEOS-Chem simulations with updated inventories to identify the cause of the C_2H_6 renewal.

C₂H₆ from FTIR at Jungfraujoch: Recent burden increase

al contraction

Click on these links to obtain more information

C₂H₆ in the Southern Hemisphere: No recent upturn

Cause of the C₂H₆ renewal: Shale gas exploitation? Comparison with GEOS-Chem: Underestimation in the inventories

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Regular decrease of atmospheric C₂**H**₆ **burden** consistent with the global decline of fugitive emissions from fossil fuel sources from the mid-1980s (Aydin et al., 2011, *Nature*; Simpson et al., 2012, *Nature*)

<u>B. Franco</u>¹, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

But since 2009, the atmospheric C_2H_6 burden is increasing at a rate of 5 % yr⁻¹

Main

menu

<u>B. Franco</u>¹, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

- Two independent partial columns may be deduced from the FTIR retrievals (DOFS \approx 2.1)
- <u>Vertically-homogeneous</u> increase of C₂H₆ throughout the troposphere and lower stratosphere

<u>B. Franco</u>¹, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Cause of the C₂H₆ renewal since 2009?

- Sharp fluctuations of OH concentration in the atmosphere?
 - ✓ The gobal OH levels have not exhibited large interannual variability since the end of the 20th century (Montzka et al., 2011, Science)
 - Neither CO nor other species that have oxidation by OH as their major removal pathway such as HCN and C₂H₂, do not present an upturn in their retrieved columns

=> hence this hypothesis should be rejected

Main menu

Next

B. Franco¹, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7} ¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Cause of the C₂H₆ renewal since 2009?

Previous

Product of enhanced fugitive emissions?

- May be linked to the recent massive growth in the exploitation of shale gas and tight oil reservoirs, especially in North America
- ✓ Increases of hydrocarbons related to oil and gas industries are detected over North American regions where the drilling productivity began to grow rapidly after 2009
- \checkmark Could represent a change in C₂H₆ throughout the Northern Hemisphere
- FTIR and ACE-FTS measurements over North America support this hypothesis

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Note: the same a priori and variability profiles as Jungfraujoch are used for all ground-based FTIR retrievals

Main menu

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Note: the same a priori and variability profiles as Jungfraujoch are used for all ground-based FTIR retrievals

menu

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Note: the same a priori and variability profiles as Jungfraujoch are used for all ground-based FTIR retrievals

menu

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

menu

Note: the same a priori and variability profiles as Jungfraujoch are used for all ground-based FTIR retrievals

EGU General Assembly 2015, April 13th, Vienna, Austria

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

- FTIR and ACE-FTS observations in the Southern Hemisphere do not reveal any recent increase
- Latitudinal exchange of C₂H₆ between both hemispheres is weak
- The observed renewal of C₂H₆ seems to be currently limited to the Northern Hemisphere

Main

menu

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

- FTIR and ACE-FTS observations in the Southern Hemisphere do not reveal any recent increase
- Latitudinal exchange of C₂H₆ between both hemispheres is weak

Previous

The observed renewal of C₂H₆ seems to be currently limited to the Northern Hemisphere

<u>B. Franco¹</u>, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

- <u>Underestimation of C₂H₆ emissions</u> in the current inventories implemented by GEOS-Chem
- Incorporating updated inventories to reproduce the observed changes is part of an ongoing work

<u>B. Franco</u>¹, W. Bader¹, B. Bovy¹, E. Mahieu¹, E. V. Fischer², K. Strong³, S. Conway³, J. W. Hannigan⁴, E. Nussbaumer⁴, P. F. Bernath^{5,6,7}, C. D. Boone⁷ & K. A. Walker^{3,7}
¹University of Liège (<u>bruno.franco@ulg.ac.be</u>), ²Colorado State University, ³University of Toronto, ⁴NCAR Boulder, ⁵Old Dominion University, ⁶University of York, ⁷University of Waterloo

Acknowledgments:

The University of Liège contribution to the present work has mainly been supported by the AGACC-II project of the Science for Sustainable Development (SSD) program of the Belgian Science Policy Office (BELSPO, Brussels). Additional support was provided by MeteoSwiss (Global Atmospheric Watch), the Fédération Wallonie–Bruxelles and the F.R.S. – FNRS. We thank the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG, Bern). E. Mahieu is Research Associate with F.R.S. – FNRS. We are grateful to the many colleagues who have contributed to FTIR data acquisition at the Jungfraujoch station. The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, is a Canadian-led mission mainly supported by the Canadian Space Agency and the Natural Sciences and Engineering Research Council of Canada. We thank D. Smale from NIWA Lauder for producing and making public the ethane time series of Lauder in the framework of NDACC. We warmly thank Jeremy Harrison and colleagues for their high quality lab measurements of C₂H₆.

Main menu