Control of phytoplankton bloom by winter conditions in a Mediterranean coastal area: results from a long-term study (1979-2011)

Anne GOFFART1,3, Jean-Henri HECQ1, Louis LEGENDRE2

1University of Liège, Belgium & STARESO, Calvi, France; 2Sorbonne Universités Paris 06 & CNRS, Villefranche-sur-Mer, France; 3A.Goffart@ulg.ac.be

CONTEXT
The occurrence of a late-winter (February-March) phytoplankton bloom is one of the most unifying features of Mediterranean pelagic ecosystems. However, very little is known about the mechanisms that regulate the interannual variability of this phytoplankton bloom in coastal areas.

OBJECTIVE
Through the analysis of a long-term time series of observations (32 years, 1979-2011), the objective of the present study is to show how winter physical forcing control the interannual variability of nutrient availability and winter-spring phytoplankton dynamics in a Mediterranean coastal zone unbiased by local anthropogenic activities (Bay of Calvi, Corsica, northwestern Mediterranean).

TIME SERIES (1979-2011)
- Location: PHYTOCLY station (Fig. 1), maximum depth: 40m;
- Data: water temperature, wind, phytoplankton from 1979, nutrients from 1988;
- High sampling frequency during the winter-spring period (1-7 times per week).

ENVIRONMENTAL CHARACTERISTICS
In the Bay of Calvi,
- wind-induced vertical mixing is the major mechanism of nutrient enrichment [1];
- the 13.5°C threshold can be used as a proxy for the vertical structure of the water column, i.e. subsurface water temperature <13.5°C indicates a vertically homogenous water column, and subsurface water temperature ≥13.5°C a (slightly) stratified and more stable vertical [2].

HIGH INTERANNUAL VARIABILITY
- NITRATE showed two contrasted patterns, which occurred repeatedly over the years although with high interannual variability. In the first pattern, nitrate was very low and quite constant throughout the year, and in the second, there was a large difference between the winter maximum and the following summer minimum. The high nitrate concentrations clearly occurred during cold-water periods (subsurface water < 13.5°C).
- PHYTOPLANKTON phenology showed large interannual variability, and a succession of years with and without a winter-spring phytoplankton bloom (Fig. 2). The latter are years with overall low phytoplankton biomass (e.g. 1997, 2007). During blooming years (e.g. 1979, 1999, 2009), increases in biomass were always observed during the cold-water period (subsurface water < 13.5°C).

PHYTOPLANKTON BLOOMS IN A HOMOGENOUS WATER COLUMN
- A detailed survey performed in a blooming year (1999) showed that the bloom at the PHYTOCLY station developed in a vertically homogenous water column <13.5°C and was homogeneously distributed down to the bottom. During the bloom, diatoms and nanoflagellates were the most abundant groups, while cyanobacteria developed later (Fig. 3).
- As the phytoplankton bloom at station PHYTOCLY always occurred within the cold-water period over 32 years, this leads us to hypothesize that, in years when it when occurs, the phytoplankton bloom at station PHYTOCLY develops recurrently in a homogenous water column, with temperature <13.5°C.

INTERANNUAL CONTROL OF NUTRIENT AVAILABILITY AND PHYTOPLANKTON DEVELOPMENT BY WINTER INTENSITY
In order to assess the intensity of winter vertical mixing that could affect subsurface nutrient enrichment and subsequent phytoplankton development, the following Winter Intensity Index (WII) was defined [2]:

\[
\text{WII} = \frac{(\text{CW} \times \text{WE})}{1000},
\]

where CW is the duration (number of days) of the cold-water period (subsurface water < 13.5°C), and WE is the number of wind events during the cold-water period (mean daily wind speed > 5 m s⁻¹).

It follows from the relationships in Fig. 4 that, at the interannal scale,
- nutrient enrichment of surface waters, although variable interannually in intensity, was driven every year by wind forcing during the cold-water period,
- much of the interannual variability of phytoplankton bloom dynamics at the PHYTOCLY station can be interpreted as responses to interannual differences in WII during winter.

REFERENCES