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1. STRUCTURES PRECONTRAINTES

Nous appelons structure préconirainte une structure dont Pétat de référence n’est pas relaxé. L’état
de contrainte existant dans cet &tat sera appelé précontrainte.

Selon lorigine de la précontrainte, il y a lien de distinguer :

- les structures eztérieurement préconirainies dans lesquelles la précontrainte résulte de charges
mortes inamovibles, comme la pesanteur.

- les structures intérieurement précontraintes dans lesquelles la précontrainte résulte du processus
de mise & forme ou de ’assemblage. Il s’agit alors d’un systéme de contraintes aunto-équilibrées, que

"T’on peut encore appeler coniraintes résiduelles. Qutre les structures précontraintes par forgeage,
on peut citer I'arc tendu par sa corde, le tambour précontraint par la tension de sa membrane, la
raquette de tennis dont le cordage est fortement tendu, et enfin, les poutres en béton précontraint du
génie civil,

Il va de soi que la distinction dépend du choix du systéme considéré. Ainsi, une toile de tableau
tendue sur son cadre est extérieurement précontrainte ; par contre, si l'on considére le systéme (toile +
cadre), il est intérieurement précontraint. Il s’agit cependant d’une distinction essentielle car dans les
mouvements de corps rigide, les contraintes résiduelles ne peuvent jouer aucun rdle, puisqu’il s’agit de
forces iniérieures.

La formulation de I’étude linéarisée des structures précontraintes est loin d’gtre neuve. Mais son
application pratique a mené i tant de déconvenues, notamment en ce qui concerne leur comportement
dans le cas de modes rigides, qu’il nous a paru utile d’essayer de faire le point & ce sujet. C’est Pobjet du
présent rapport ol, aprés avoir rappelé les principes de la formulation, on porte 'attention sur l’influence
des nombreuses simplifications que P'on fait généralement, soit par habitude, soit par nécessité. Nous nous
sommes efforcé d’étayer cette étude par un certain nombre d’exemples qui, nous I’espérons, aideront 4 la
compréhension physique du probléme.




2. EQUILIBRE DE LA PRECONTRAINTE

Le champ de précontrainte ¢j; est naturellement en equlhbre avec la sollicitation qui Vinduit, i
savoir, les forces de précontrainte volurmques f, dV et surfaciques £;dS (rappelons que dans le cas d’une
précontrainte intérieure , f; = 0 et £; = 0). Nous expnmerons cette condition i Vaide des travaux

virtuels :

/O’iij5U,'dV:/ f,&u,dv—{-—/t‘;&u,ds (1)

quel que soit le champ de déplacement virtuel du;. Notons deux cas particuliers :

ste

a) Pour un mode rigide de translation, éu; = da; = ¢**¢ , on obtient

§a;R; =0 soit R;=0 | )

ol R est 1 a résultante des io;:cés de précontrainte :

R; = /V f,-dv+ /,; £:dS e ®)

b) Pour un mode rigide de rotation,

Su; = dwijz; buwiy = —6wij

v / a','ij(SU{dV = / Uij5wjidv =0
Il en découle les conditions : ' , , ,
6w,-jM,-j =0 soit A{f;j = ij; ) , o (4)
" avec

M,‘j‘—‘-‘/ fj:l:;dV-i-/t;‘:z:;dS (5)
v 5

Il s>agit de 1’équilibre des moments exprimé, certes, d’une manitre un peu inhabituelle. Nous retrou-
verons ces grandeurs M,'j plus loin.

3. LINEARISATION DE I’ENERGIE DE DEFORMATION DANS LE CAS
D’UNE STRUCTURE PRECONTRAINTE

La densité d’énergie de déformation est une fonction des déformations de Green

1
Tij = E(Diuj + Dju; + D;uijum)

Tant que ces déformations restent petites, on peut 'identifier & son développement taylorien limité au
second ordre :

oW 1 W
W(y) =W+ ('5'_—.)0%1' + ‘2‘(W)07ij7k1 +0(7%)

Le terme Wy peut &tre fixé arbitrairement & zéro, car seules importent les variaiions d’énergie. Les
contraintes sont les dérivées de W par ra.pport aux déformations. A partir du développement ci-dessus,
on trouve

ow (

omij )° (67 07w Jor
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2
ce qui permet d’interpréter (“g%)u comme la précontrainte oj; et (5772-5—6%)0 comme les modules
1 3
d’élasticité Cyjrr. I vient en définitive '
1
W = aijvij + -2-C;jk1 i TH (5)

La linéarisation géométrigue revient & admettre que tous les gradients D;u; sont petits et & ne garder
dans I’expression (6) que les termes contenant au plus du second ordre en J;u;. Notant

. ,
& = 5(Dij + Djui) - (7)
on obtient alors ‘ '
W = Wi + W, + W, + O(Diul) (8)
avec
VV}_ = 0Oij€ij
We = '%Cijkleijfkl )
Wg = :l-a';jD;uij Um
L’énergie de la structure est alors
U=U+U.+U, (10)
ol apparaissent
U, = [, WidV (terme linéaire d'énergie)
Ue = [, WdV (énergie élastique) (11)
Uy = [, WedV (énergie de précontrainte)

Supposons que I’on soumette la structure i des forces supplémentaires A f;dV et Af;dS. Son équilibre
sera régi par le principe de variation des déplacements :

S(U+P)=0
ol Pénergie potentielle des charges P se décompose en
P=P+ 5 (12)
Py étant relatif & la précontrainte
Py = —-/ fiugdV — / tiu;dS (13)
\'4 S
tandis que P; représente la contribution des charges supplémentaires :
P = —-/ AfiudV — / At;u;dS (14)
v S

Mals il résulte de I’équilibre de la précontrainte que
1
§Uy = LU{jE(D;5Uj + Djbu;)dV = LU;ij5u;dV = —§P,
Bien plus, en cheisissant §u; = u;, on obtiendrait
U4+ Py=0
1l en résulte que Vénergie totale se réduit &



En conclusion, le calcul d’une structure précontrainte se fait en denx étapes :
a) On détermine 1'état de précontrainte oy;

b) On calcule I’équilibre final en ajoutant le terme U, & I’énergie de déformation élastique; par contre,
il ne faut plus appliquer que les charges supplémentaires.

De la méme fagon, les études dynamiqﬁes de structures précontraintes se font i 1’aide du principe de
Hamilton :

12 ta
§ [ (T—U.—-U)dt+ | 6rdi=0 (16)

173 1y

oll 47 est le travail virtuel des forces appliquées.



4. LE PENDULE

Un exemple simple de structure extérieurement précontrainte est donné par le pendule (fig. 1). Au
Tepos, le pendule est soumis & la pesanteur, ce qui induit des contraintes o = —"—;1 , S étant la section du
fil. Pour un déplacement latéral de la forme v(z) = v-’{-, on obtient une énergie de précontrainte

1 2 v 1mg
= =aSl(=)? = =2,2
Comme il s’agit en I’occurence d’un mouvement de corps rigide, ’énergie élastique U, estnulle et U = U,.

Cherchons & déterminer la période du pendule.

L’énergie cinétique vaut :

1
T = =mp?
2
ce qui permet d’écrire I’équation de Lagrange
d 6’T 6(/’
( =0
51}

sous la forme mg
mi -+ —TU =0

On obtient immédiatement la solution :
v =A cos( —sllt) + B sin( -glzt)

qui est de pulsation

g
Q=.4/=
[
soit de période
27 !
T= o =27 -5 '

C’est bien le résultat classique. Mais on notera le fait suivant : dans notre approche linéarisée, le mou-
vement de la masse est horizontal et non pas circulaire. On peut donc s’étonner de voir apparaitre une
énergie potentielle. Cest que la force pesante mg en se déplagant latéralement de v, acquiert un moment
autour du point de suspension égal &

M = —-mgv
L’énergie de ce moment a pour variation
Sv §
§U = —M68 = -M-T = mgv~—lg
ce qui conduit bien &
: U=t v?
2™



5. MODES RIGIDES DES STRUCTURES PRECONTRAINTES

_L’étude du pendule en tant que structure précontrainte donne donc satisfaction. Mais il subsiste une
question fondamentale : physiquement, dans le cas d’une structure intérieurement précontrainte, un mode
rigide ne peut produire de ’énergie, car les forces intérieures ne travaillent pas. Cette propriété est-elle

respectée dans notre formulation linéarisée ?

1l suffit bien sir d’examiner le comportement de ’énergie de précontrainte Uy car, par définition, un
mode rigide est solution de U, = 0. L’expression générale d’un mode rigide est

U = a; + WiT; ' (17)
avec
a; = C'"c Wij = C"n Wiy = —Wj; (18)
On a donc 1
Ug = -'—/ a'._'jw,'mwjmdv - - o '(1‘9)
2 Jy _
Il est plus parlant d’utiliser le psendo-vecteur rotation t; défini par
Wij = eijrWk (20)
eijk étant le symbole alternateur. On a alors
WimWim = €imk€imiWEl]
= (6ij6r1 — 6116k )Wy (21)

= wkwka;j — Witd;

ce qui permet d’écrire

Uy = % ,/V aij[wrwr iy — wiws]dV (22)

Or cette expression est de la forme

U, ::/ oij Djéu;dV
v

i condition de poser

by = ‘% (wrwz; — wiwjzs) , (23)

on peut donc appliquer le théoréme des travaux virtuels (1), ce qui donne la forme eztérieure de I'énergie
de préconirainie pour un mode rigide :

1 = - 1 - -
Uy = —-wkwk[/ f;zidv-l-/t,'x;dS] — -w;w_,-[/ f;zjdV-}-/t;:z:de]
2 v s 2 v s
soit en termes des moments définis en (3),
U, = 3 [J\ff,-,-wkwk - A/I,-J-w,-w_,-] (24)
En particulier, si la précontrainte est intérieure, les moments M;; sont tous nuls, et V’énergie de

précontrainte est nulle pour un mode rigide, en bon accord avec la physique du probléme. Rappelons du
teste que 1’équilibre de rotation exige la symétrie des M;;.



6. IN TER.PRETATION

L’équation (24) s’écrit explicitement :
2Ug = Mu(w22+w32)+1\/Igg(w12+w32)+M33(w12+w22)——2M12w1wg—21\/]13w1w3-—21¥123wgw3 (25)

On notera d’ailleurs que les moments M;; ont une valeur indépendante de la position de Porigine des axes,
car

444444 / (:B,' -+ a,')fjdV + -/.(:E,' -+ a,-)t'de = ]\’f,'j +a; R
° v S ‘
et I’équilibre de translation exige R; = 0. Les termes directs en My, Moy et M3g s’interprétent comme
des énergies pendulaires ; ainsi lors d’une rotation wg, la force F située & une abscisse = acquiert un
moment
M3 = —-:81F1w3 = ——1\/[110.13

Un accroissement éwgz méne donc & une variation d’énergie

]
W

32
2

§U = —Mjbws = M wibwg = Mll‘s(

)

Pour les termes croisés, notons d’abord quune force F appliquée en z; doit toujours &tre associée & une
force F; appliquée en z3, de telle sorte que (fig. 4)

1Py = Min= My = 22/
Cela étant; la force Fy acquiert, lors d’une rotation wo (fig. 5), un moment
My = waz1 Fy = Myaw,
auquel correspond une variation d’éne:gie
U = —M;b6wy = ~Myowabtuy (26)
De son cdté, la force Fy acquiert, lors d’une rotation wy (fig. 6), un moment
My = wl:c-gFl = Qngl '
qui fournit, pour un éwy, une énergie
U = '-l‘/fg&dg = —]\/[21w16w2 (27)
Sommant les résultats (26) et (27), on obtient, puisque Mys = Moy,

85U = —Mlg(w15w2 +w26w1) = -—Mm&(wlwz)

7. CADRE CIRCULAIRE TENDANT UNE MEMBRANE

La forme intérieure (22) de I'énergie de précontrainte s’écrit explicitement

QUg = / [0‘11(&)22 +w32) -+ 0’22(&)12 +w32) -+ 0'33(&)12 +w22) — 2019w e — 2015w1w3 — 20'33wgw3]dV
v N
(28)




En coordonnées cylindriques, elle se transforme en

2Ug = / [‘Trr (wﬁz +w:2) + 0'86(“’1'2 +w.‘.'2) + a'::(wrz +w02) — 20 gwrg — 200 Wrls; — QUezwawz]dV
_p v

\ (29)
‘Considérons (fig. 7) un cadre circulaire de section {2 sur lequel une membrane est tendue d’une contrainte
uniforme ¢ = oy = 0. Il s’agit d’un cas de précontrainte intérieure.

La contrainte circonférentielle dans le cadre s’obtient par des considérations de statique élémentaire;
la figure 8 montre en effet que

. 20,04 2Rot =0
soit n
a

L’énergie de précontrainte de la membrane vaut, pour un mode rigide
y glde,

1 2, 2
Upm =35 / [o2(wy® +w:?) + 0y (w2® +w:?)]dV
2 4™ b o
= —2-a(w,2 + wy2 -+ QC:J,,Z)‘/TRZt

Quant & celle du cadre, elle est donnée par

' 2ir
Uge = —21-/‘,0'5((0,2 +w,2)dV = %QRUC/O (we? 4w, ?)do

Notant que (fig. 9) w, = wzcosd + wysind
il vient ) .
Uje = -2-QRac7r(w,,2 Fwy? + 2w, ?)

Soit en tenant compte de (éO),
Uge = —--%'IFO'th(wxz + ‘-')3/2 + 2“22) (32)

On s’apergoit que ’on a bien

Ug=Ujn +Use=0

Par contre, il est clair que si 'on avait étudié le cadre seul ou la membrane seule en tenant compte de la
précontrainte, celle-ci serait devenue extérieure, et on aurait obtenn U, # 0.

8. APPROXIMATIONS CONSISTANTES DE L’ENERGIE DE PRECON-
TRAINTE

Les conclusions qui précédent, et qui sont parfaitement rassurantes sur le plan physique, sont remises
en cause par un certain nombre d’approximations que 1’on fait dans les calculs pratiques :

a) Tout d’abord, il est rare que ’on connaisse précisément le champ de précontraintes. Le plus souvent,
sa connaissance procéde elle-méme d’une étude par éléments finis.

b) Bien plus, il est d’usage courant. de faire le calcul de ’énergie de précontrainte avec la précontrainte
moyenne dans chaque élément. -



¢} On se sert souvent d’expressions simplifiées de U;. Alinsi, pour une plaque de surface S, on ne tient
compte que des précontraintes membranaires, et on écrit avec BRYAN [4]

Ug = —;- L[Nll(D1U3)2 -+ Ngg(DgU3)2 -+ 21V12D1U3D2‘U3]d5 (33)

d} Il y a enfin des approximations géométriques, parfois implicites. A titre d’exemple, la figure 10 illustre
I’approximation implicitement admise sur la géométrie d’un croisement de poutres : on ne peut parler
de continuité de la matitre au voisinage du point A.

¢) On utilise parfois des éléments non conformes

Le critére minimal que ’on puisse adopter est que, dans le cas d’une précontrainte intérieure, I'énergie
s’annule pour un mode rigide. Nous dirons donc qu'une approzimation de ’énergic de précontrainte
est consistante si elle fournit la valeur ezacte de Uy pour un mode rigide. Clest dans ce cadre que
nous étudierons les diverses approximations courantes.

9. UNE APPROXIMATION CONSISTANTE D’USAGE GENERAL

Remarquons tout d’abord que dans U'expression générale développée

20U, = /V{O'n[(Dlul)z + (Dyuz)? + (Drus)?] + o22[(Dau1)? + (Daua)? + (Dauz)?]

+033[(Dau1)? + (Dsuz)® + (Dsua)?] + 2012[ D14y Doy + Dyua Daug + Dyug Dyus) _
+20'i3[D1U1D3u1+D1UzD3u2+D1U3D3U3]+2623[Dzu1D3u1+D2U2D3U2+D2U3D3U3]}dV

on peut, sans nuire & la consistance, omettre tous les termes contenant les déformations D1u1 , Daus,
Daus qui's annulent lors d’un mode rigide. Ceci méne & P’expression simplifiée :

20, = / {Uu (Dluz) + (D1us)?] + 022[(D2u1)? + (Daus)?] + o33[(D3u1)? + (Daus)?]
; +20‘12D1U3D2U3 -+ 20’13D1UQD3U2 o+ 20‘03.D2U1D3111}dv ' : (34)

- qui nous servira constamment de référence.

10. APPROXIMATION DU CHAMP DE PRECONTRAINTE

Lorsque le champ de précontrainte a lui-méme été calculé par éléments finis, que se passe-t-il 7 Nous
supposerons que, lors du calcul de la précontrainte, Je maillage utilisé est identigue au maillage de ’analyse
finale. Dans ce cas, les contraintes calculées 7;; vérifient le théortme des travaux virtuels pour tout champ
de déplacement §u; conlenu dans le modéle. En se reportant & la démonstration du paragraphe 5, on
constate qu’elle utilise seulement le fait que, parmi les champs du modtle, se trouve le champ particulier

1
u; = §(wkwkx,- —~ WiWiT;)

Or, cette condition est vérifie pour tous les éléments finis représentant les modes de déformation
constante. Méme les éléments non conformes habituels contiennent ces déplacements, sans discontinuité.
On peut donc affirmer que, généralement, lors d’un mode rigide, U = Uy, c'est & dire que l'utilisation
des contrainies calculées par éléments finis ne nuit pas d la conszstance

9



11. UTILISATION DE CONTRAINTES MOYENNES D’ELEMENTS

Trés souvent, on pousse I’approximation plus loin en remplacant les contraintes locales par des con-
traintes moyennes d’éléments, c’est & dire que P’on pose

o~ 1 .

U, = _— :dV Diupm Diup,dV 35
U, E(Ve./vao-] )/Vc Um L jUm (35)
Lors d’un mode rigide, on a ,par ’expression exacte,

2Uy = / OijWimWimdV = wimwjm/ 0i5dV = WimWim Z/ odV

v v —Jv.

et par (35)

Qﬁg = Z(% /;, G'gjdV) Vcw;mwjm = WimWim ZL a'gjdV
& < e e

Ces deux expressions étant identiques, on peut affirmer que lutilisation, dans chaque élément, des
moyennes volumiques de contrainie ne nuil pas & la consistancet.

12. ENERGIE DE PRECONTRAINTE D'UNE PLAQUE

Les plaques et les poutres nécessitent une etude spec1ale, en ralson des hypothéses partlcuheres qui
régissent leurs contraintes et déplacements.

Commencons par analyser une plaque avec effet des efforts tranchants ( théorie de HENCKY-
REISS’\IER) en nous limitant au cas d’une vraie plaque. Nous excluons donc les assemblages tridimen-
sionnels, pour lesquels se pose un probleme supplémentaire de non-conformité géométrique (fig. 10).

Suivant 'usage, ’axe e3 sera pns perpendiculaire au plan de la plaque. Les deplacements ont alors
la forme

{ua(zl,xg, z3) = vo(Z1,22) + z3pa(z1,22) a=1,2 . (36)
‘U3($81,172,:L’3) = w(xlsz)

En outre, la contrainte oaz est supposée nulle partout. Les déformations linéaires étant

, 1 o o
€ap = 5[(Davp +Dﬂva) + mS(DaSDﬁ +D,3(79a)]

1
€a3 = 5(9’5’& + Daw)

€33 =0

le principe des travaux virtuels s’écrit ici ¢’

/ [Map Dabpe + Qa(Spa + Dabts) + NapDpbvaldS = r(5u) 37)
: .

1 On prendra garde au fait que dans certains éléments axisymétriques de SAMCEF, on calcule, pour
des raisons de facilité d’interprétation, non pas les moyennes volumiques, mais les moyennes sur le
plan méridien:[1,2,3]

10
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ol
L

Mus = /2 Z3048dT3

W gl

ou

Nap-“—‘/ oapdzs (38)

"“‘u

Qo= / Ta3dzs

2

et 7(6u) représente le travail des forces extérieures pour le déplacement virtuel 6u.

L’expression exacte de ’énergie de précontrainte est
20U, = /V[craﬁ(D,,u.,D,gu., + DougDgug) + 2043(Daug Daug + Dau3D3u3)]dV

soit, en tenant compte de la structure (36) des déplacements,

2Uy = L{Vaﬁ[(Davaﬁvv + DowDpw) + 23(Daty Dgpy + Dapy Dpty) + 23> Dapy Dptpy)]
+20a3(ps Davp + z3pp Datpp)] }dV (39)

Un mode rigide est de la forme
Ug = Qo +Wgalg T W3aT3
Uz = a3 + Wa3Ta

soit
Vo = Qo + WhaZg

Pa = W3y

W= a3 + Wa3Za

11 en découle en particulier Datog = 0, ce qui permet de se limiter & I’expression :

U, = /[Naﬁ(Davaﬁ”'r + DowDpw) + 2Qapp DavpldS
s

ol n’apparaissent que les efforts membranaires et les efforts tranchants. Lozs d’un mode rigide, il vient

1
Ug = -2- L[Naﬂ (wa.,wﬁ,, -+ waawﬁs) -+ QQawsﬂwaﬁ]dS

qui se raméne au premier membre de (37) en posant

1
§va = 5 (Waylpy + wastpa)zp

bpg = W3gWag (40)
Sw=20
On a dong, dans ce cas,
Uy = 7(6u) du = (40)

ce qui signifie que le critére de consistance est respecté, Une dernitre simplification consistante peut
étre obtenue en notant que, dans ’expression développée,

2, = /S{Nu[(Dlvl)z + (D192)? + (D1)?] + Noa(Da01)? + (Dav2)? + (Daw)?]

+2N12[D1v1 Davy + DyveDava + DywDou]
+2Q1[p1 D1v1 + 92 D1va] + 2Q2[p1 Davy + 2 Dava]}dS

11



on peut omettre tous les termes contenant les déformations membranaires DDyvy et Davy. Il vient ainsi

2Ug = /{Nn[(Dlvg)z -+ (Dlw)2] + N'm[(ngl) + (Dzw) ] + 2N1->D1wD2w
)
+2Q1p2D1v; + QQ"GDID"Ul}dS (41)

Cette approximation est plus compléte que 'expression classique (32) de BRYAN, qui n’est consistante
que si Pon pose v1 = vs = 0, comme c’est le cas dans les problémes les plus simples de voilement.

Le méme raisonnement vaut pour une plaque de Kirchhoff. En effet, une telle plaque est également
justiciable des conditions d’équilibre (37), & condition de considérer les efforts tranchants Qo comme les
multiplicateurs de Lagrange associés aux conditions de Kirchhoff :

Gat+Daw=0 | (42)

ce qui revient 4 les définir par les conditions d’ equmbre Qa = Dp]pra L mtroducuon ues concutlons (42)
permet alors de donner 4 Uy la forme suivante : '

20, = / {N11[(D192)? -+ (D1w)?] + Naa[(Dav1)? + (Daw)?] + 2N12 Dy wDaw
S
—-QQlDzle‘Uz - 2Q2D1ngv1}dS’ (43)

13. ENERGIE DE PRECONTRAINTE D'UNE POUTRE

Ici encore, nous nous limitons au cas d’une poutre simple, en excluant provisoirement les treillis de
poutres. Nous prendrons pour axe des 2, la fibre moyvenne de la poutre. La section sera décrite par les
axes £ et y. Il est généralement suffisant de donner aux déplacements la structure qui suit :

u; =w(z)+za(z) +yB(z) +8'(2)¢(z,y) (= -fz-) R
ur = u(s)— 0(2)(y— v) (24
= v(2) + 8(z)(z — zT)

olt @ et B sont les rotations de la section, 6 ’angle de rotation autour de I’axe z, zp et Yy, les coordonnées
du centre de torsion et 1, le gauchissement de torsion. Les contraintes 0zz,0zy, Oyy sont supposées nulles.
La condition d’équilibre est ici

, :
/0 [N6w' + Mzb6c' + Myép’ + B66" + Qz6(a+ u') + Qy8(8 + v') + My68']dz = 7(6u)  (45)

en définissant les résultantes de poutre suivantes :
- Peffort normal : N = fn 0;.dQ)

- les moments de flexdon :

M:n':/za'zzdﬂ
Q

Myzfya,zdﬂ
) 0

- les efforts tranchants :

Qx 5'/0':::(10
QO

Qy ::/a'y,dﬂ
0
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- le moment de torsion : My = fn(zay, — Yozz)dS2
- le bimorent de VLASOV : B = Jq o::9dQ

En partant de (34), oﬁ obtient
2U, = / {o2:[(Dsuz)? + (Dsuy)?] + 202: Douy Doy + 20y, Dyuy Dyug YAV
\4

soit, en tenant compte de la structure (44),

W, = / {200 + ) + 87 ((z — or)* + (v — yr)?)] + 200 [0 + 06'(z — z7)]
v \
—20,.[0u' — 08" (y — y7)] — 2000 (y — yr) + 20,:0'0(z — z) }dV (46)
On peut apporter des simplifications en notant qu’un mode rigide est de la forme :

Uy = 0; + W T+ Wy Y
Uz = Qp + Wy Y + Wor 2

Uy = Oy + WeyT + WyyZ
ce qui implique visiblement § = —wy; = Wy, = C***

On préserve donc la consistance en négligeant les termes en &', ce qui donne

2U, = _/:[N(u'z +v'%) + 2Q.6v — 2Q,0u']dz (47)
Pour un mode rigide, on a
U = ws = wy , vV =Wy = —wg , f=wzy =w,
et, par conséquent, |
2U, = /0 [N(w2 +w]) — 2Qswzw; — 2Qywyw;]dz
Or, cette expression est de la forme du premier membre de (45}, avec

fw =3(w?+wd)z

fo = —w_w,
6 = —wyw; (48)
Su =6v=2680=0
On a done, pour un mode rigide,
Uy = 7(6u) - 8(u) = (48)

ce qui prouve la consistance.
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14. POTENCE PRECONTRAINTE

Le cas des treillis de poutres se présente moins bien, ainsi que le montre 'exemple suivant. Il s’agit
(fig. 11) d’une potence précontrainte par un tendeur ayant une tension F' (effort). Soient Oz, Qy et Q. les
trois composantes de la rotation dans un systéme structural (x,y,z). Le bilan des énergies de précontrainte

s’établit comme suit :

a) Fil (Fig. 12) Nep om0 0o
= . y =
Wy = Q_:ﬁfl;_ wy =1, w, =10
longueur : 2

"FLLL

Ugac = 72 [‘2‘(93 +02) - Q:0Q: + Q]

b) Poutre AB (Fig. 13) - .
1V=~7—; Q,:—% Qy=0

we = Q. wy = Qy w; = 8,
longueur : |
FI ]. 9
UQAB = "'\/—5- [—-E(Qi + Q;) -+ Q,;Qz]

c) Poutre BC (Fig. 14) .
N = ) Q: = % Qy =0

Wy = —§1, wy =8y  w;=0Q;
longueur : |
Fl o1 a
Uspe = 75 ["'2‘(91'f + Q) + Q0]

d) Bilan | I
Us=Usac+Ussp+Uspc = Egrﬂz #0

On constate que le bilan n’est pas nul. L’approzimation n'est donc pas consistante.

15. DES RAISONS DE I’INCONSISTANCE DU CALCUL CI-DESSUS

Nous allons montrer que I'inconsistance du calcul ci-dessus résulte de ’approximation consentie sur
Passemblage des poutres. A cette fin, partons de I’expression (24) de ’énergie de précontrainte en mode
rigide, et appliquons la & deux sous-structures (fig. 15).

Nous affecterons :
. ® de Pindice I, les forces appliquées & la sous structure I
e de Vindice II/I, les forces appliquées par la sous-structure Il & la éous structure I
@ de l'indice I/II, les forces appliquées par la sous-structure I & la sous structure II

o de l'indice 11, les forces appliquées 3 la sous structure II

14



On a alors, pour un mode rigide,
1
Ugr = §(M;j1 + Miirr ) (wrwibi; — wiw;)

1
Ustr = 5(Mijrz + Mijrprr)(wrwrbiy — wiw;)

soit, en notant IW;J-' = M;;r + M;jrr,

1
Uy = 5 (Mij + Mijryr + M) (wrwebi; — wiw;)

Ce résultat ne sera correct que si

M+ Mirr =0
soit

/ zitirryrdS + _/ zitirrrdS =0
SII/I SI/IT

Ceci est réalisé s'il existe une interface géométrique commune S* = Syyyr = Spyrr auquel cas comme
tirrgr +tjr1r =0, il vient bien

/5. zi(tirryr +t10r)dS =0

Mais dans le cas d’'un assemblage de poutres, rien de semblable. En se repérant a la fig. 16, avec I'origine
des axes au point de concours des feuillets moyens, on a

Miarryr = ~M Mayrr=0
Mioryrr =0 Moy =-M

On constate qu’il n’y a pas annulation séparée de Mg et Moy, Ceci est dit & la discontinuité géométrique.
En fait, ’idéalisation classique suppose implicitement qu’il existe entre les deux poutres un intermédiaire
que nous appelerons noeud qui transforme les moments M2 en moment My;. Dans la configuration de
la figure 17, le noeud est soumis & ‘

Mis = /zltgdS =M
A’fgl = /zztldS =M
ce qui lui donne une énergie de précontrainte
Ug = —-1\/[12011012 = —-Mwlwz (49)
Réexaminons le probléme de la section 14 dans cette optique.

a) Poutre AB (Fig. 18)

Mu=0 Mp=-5 M= ~% My = —%
Fl o1
Usap = 7 [’5(‘”% + w3) + wiws]

b) Poutre BC (Fig. 19)

M11 = - £l A’feg =0 Mm = —-% M21 = ——%

) 4

Fl 1 ”
Uspe = 75 ["5("’% + w3) + wyws]
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¢) Noeud B (Fig. 20)
1"f11 =0 Myp=0 1’\/1’12‘ = % {‘4[21 = %

Fl
UgB = *ﬁwlwg
d) Tendeur AC (Fig. 21)

My = '\% My = % My

I
Sz
=

Fl 9
UﬂAC Wk [ (wv Fwd) + (wf + w3) — wywa)

On constate qu’en com tant Vénergie du noeud, on a bien
q ’4 g

Ug=Usap+Uspc +Usp +Ugac =0

Cette propriété lide i la discontinuité géométrique d’un assemblage de poutres rend ce type d’idéalisations
inconsistantes pour ’étude de la précontrainte. Le méme probléme se pose pour les assemblages spa-
tiaux de plaques . La seule parade consiste & placer systématiquement un objet assurant la continuité

de la structure (fig. 22). Il va de soi, d’autre part, que cette difficulté n apparalt pas dans une
idéalistion par éléments tridimensionnels.

~16. STRUCTURE A GEOMETRIE DE REVOLUTION

. Pour la plus grande 51mp11c1te nous travaillerons avec les composantes dltes physzques Le procédé
qui suit peut s’appliquer & tout systéme de coordonnées curvilignes oxthogonales

Soient €1, €2, &3 les trois coordonnées. La variation du vecteur position s a la forme
ds =) hse;dt;
. i
ol €; est un vecteur unitaire. On a donc
ds® = " hlde}
i
Le vecteur déplacement étant u, on définit alors les composantes physiques du tenseur de Green par

d(s + u).d(s + u) 2(5,1 + 27i;)hidEihiE; (50)

i

Développant le premier membzre, on obtient

227.,/5 dg;h;de; = ds.du+ du.ds 4 du.du (51)

ij

Or, on peut écrire, avec D; = 'a%-
13

du= Z(%Diu)‘hid‘fi

16



Il en découle

ds.du = Z( —D;u).ejh;dt;hide; = du.ds

ij

du.du = E(-}%D;u).(-ﬁl;Dju)h;ds,-khjdf;'j
ij ¢ N ‘

Introduisons les dérivées physiques

1
uJ|,~ = 85.(-];1);11) (52)

On a donc

D ju) = Z“kltek

ce Fqui permet d’écrire
ds.du = Euj'gh;df;hjdfj
ij
dudu =Y uyug;hidéih; dg,
ij

résultat qui introduit dans (51), donne

Tij = %("iu + uj); + kg Urly) (53)
On déduit )
W, = Cuklfu €kl (54)
avec
€ij = '%(qu + uj5) (55)
et 1 .
Wy = 501 uk)ity; (56)

Les dérivées physiqﬁes (50) se calculent & partir du développement u = ) . urej en se rappelant que
Diex £ 0

Les structures 3 géométrie de révolution se calculent & Paide des coordonnées éjiiix&riqﬁes (r, g ,z) ;
On a
ds = dre, + rdfe; + dze,

soit
he=1, hg=r, h;=1
Par ailleurs, on vérifie aisément (fig. 23) que
Dye. =0 Dieg=0 Dpe,=0

Dger = ey Dyesy = —e. Dse, =0
D;e,=0 D,ey=0 D,e,=0

Par conséquent,

Dru= Dr(urer + ugep + u:ez) = Deurer + Deugeg + Dyuze,

1 1 1

1Dgu = Do (urer + ugep + usez) = (F Dpup — 2 )er + (FDoug + %)eg + L Dsuce,
D.u= D:(urer +ugeg + uze;) = D urer + D;useq + D:uze,

ce qui revient & dire . .
Urlr = Dru. Urle = %Deu" - y;& Upjz = Du,
ugl = Drug  ugpe = %Doue + = uglz = Dzug (57)
Uszlr = Dy, Uzjg = '}Deuz Uy = D.u,
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les déformations sont donc

€rr = Upfp = Dru,

€59 = Ugjg =. lDoug +-u,.'~ .

€zz = Uz|; = Dzuz

2p; = Upjz + Uz|r = Dyu; + D;u, (58)
2¢r9 = Upjg + Uglr = "Daur - y"‘ + Druyg

2¢5; = ug|; + Uzjp = Dzug + Dgu,

Nous nous limiterons au cas d’une précontrainte axisymétrique, caractérisée par

.

Orr,089, 032,07z £ 0
org,06: =0 (39)
Dyorr = Dgogg = Dgo:z = Dyor; =0

L’énergie de précontrainte est alors

1 S a a
Ug= 5 L{Urr[ur[rz +L’6[r2 T Usjr ]’L O'aa["rla + 1—'516 +u J

2. : 2 2 [} g
02z [ur]: T Ug|z” + Uzz ] + 20, [Ur|rur|: + Ug[rUg|z + u:|ruz|z]}dx’

On peut évidemment ometire tous les termes contenant une des déformations u,|., ugjg, Uz|z, ce qui
donne

1
Ug = 5’ /;{o'rr [u91r2 + uz[rzl + Uﬁg[urlaz + ‘Uz(ez] + 0, [ur[:2 + u&(zZ] + 20'rzu0[ru0[:}dv (60)
soit explicitement :
Orr Ug riz 099 gy — = gUz
{ [(Drue)? + (Druz)? + [(D )2+(D )]

+02:[(D: u,) + (D, ug) 1+ 20, Drug D; ug}clV | (61)

Examinons dans quelles conditions ’énergie de précontrainte sera nulle pour une précontrainte intérieure.
Le théoréme des travaux virtuels s’écrit ici, pour la précontrainte, (§us = 0)

/ [o'err‘Sur + 0'90‘{5—:_‘_1-' + 0. D 0u; + a'rz(Dr‘Suz + Dz5ur)]dv
\Z
= / (F.6ur + F.6u,)dV + / (£obu, +£.6u,)dS (62)
v S

Appelons A la section méridienne de la structure. On a alors

dV = 2ardA

et, en notant JA la frontitre de A,
21/ [rorrDrbu, + oggbu, + 10, D 6u; + ro. (D, 6u; >+ D 6u.)|dA
A
= 21r/ (rf,-&u,. + rfzguz)dA + 27:'/ (ri bu, + ré.6u,)dOA
A a4

Par ailleurs, un mode rigide 2 la forme générale

Uy = @) — W3Tp + Wy = a; — warsind + wyz
Up = dp + W3T] — WiZ3 = Qg + Wwarcosfd — wyz
Uz = a3z — WeTs +wiTs = a3 — worcosfd 4+ wirsinf

18
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et comme (fig. 24)
U, = uy cosf + ussinf  ug = —uysind 4+ uy cosd
on obtient : . ;
: U, = aycosf + azsinf + z(wacos§ —wysinf)
up = —ay sin 8 + a3 cos § + war — z(wa sin f + wy cos §)
u; = ag — 7wy cos § — w; sin f)

et ) : . ‘
Uglr = Drug =wz Uslr = Dru: = wysing —wa cosd
Ul = %Dgur - = s Usjp = %—Dau; = Wy sin g 4wy cos
Upye = DU, = —wysinf 4 wacosd g, = D;uy = —wasinf — w, cosd

On obtient donc
Uy = % / {orr (w3 + wisin® 8 + w3 cos? § — 2wywosin  cos 6)
2Jv
+ogg(wd + wsin® 8 + wf cos? 8 + 2wywa sin § cos §)
+a'z,(wf + w%) + 20, ;w3(—wa sin § — w; cos §)}dV

soit encore, aprés intégration par rapport & 8,
v 9 2 2 ) 2 2 9
Uy = 3 /A[ro'"(wf + w4 2d) + roge(wi + w4+ 2wh) + 2ro (Wi 4 w3)]dA

Cette expression peut se mettre sous la forme du premier membre de (63) & condition de poser

Su; = $(wi +wi)z

il

bup = i(wf +wd + 2wi)r (64)
2

II vient donc, pour un mode rigide,

4!

Ug =

C ]

/ (@2 + w2+ 202)r2fs + 2(wd +wd)zrf,]dA
A .
+% / [(w? + wi + 2w3)r?E; + 2(wi + wi)rt. 2]ddA
JOA

ce qui signifie que le modéle est consistant pourvu que les éléments finis utilisés représentent les
déplacements lindaires §u, = ki1, du, = kaz.

On vérifie d’ailleurs que les contraintes moyennes & prendre en compte sont les moyennes volumiques

du type
1
1% /A 2arodA

1
1 /A cijdA

que P’on utilise souvent pour leur plus grande simplicité d’interprétation.

et non les moyennes sur le plan méridien

17. CONCLUSIONS

Il ressort de notre analyse que la formulation linéarisée des structures précontraintes est fondamentale-
ment saine, en ce sens qu’elle permet, d’une part, de tenir compte de ’effet pendulaire et que, d’autre part,
elle préserve en principe cette propriété fondamentale que, pour une structure intérieurement précontrainte,
les modes rigides sont dépourvus d’énergie.
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Les diverses simplifications habituelles ont été subdivisées en approximations consistantes ou non,
selon le comportement qu’elles induisent lors de modes rigides. En particulier, nous avons montré qu’il
est parfaitement licite d’utiliser des contraintes calculées par éléments finis et méme d’en prendre les
moyennes d’éléments. Cependant, on néglige souvent les termes relatifs aux efforts tranchants, ce qui n'est
pas consistant. ‘

Malheureusement, il ressort de notre analyse qu’aucune approximation géométrique ne peut étre
admise, sous peine d’inconsistance. C’est 13 la limitation la plus sévére, car elle interdit en pratique tous
les assemblages pratiques de poutres et de plaques, ot ’on transmet des moments de nature différente.
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