#### Implementation of the blade element theory to investigate the aerodynamic performance of a ducted fan UAV

<u>A. Guissart</u>, D. Arendt, V. Terrapon & T. Andrianne

**University of Liege** 

March 19, 2015

1<sup>st</sup> Workshop of Belgian OpenFOAM users

### **Motivation**

#### FLEYE: micro UAV intended for safe aerial photography



- Study aerodynamics
- Increase generated thrust
- Optimize geometry

Use of CFD to test quickly different geometries

## How to model the propeller ?



# What is **BET**?

 $\mathrm{d}A = 2\pi r \mathrm{d}r$ 





$$c_{l} = a \left( \beta - \frac{V_{n}}{\Omega r} - \alpha_{L_{0}} \right)$$

$$dT \approx \frac{1}{2} c_{l} \rho N (\Omega r)^{2} dS$$
$$\Delta \rho (r) = \frac{dT}{dA} = \frac{\rho Nac}{4\pi} \left( \left[ \beta - \alpha_{L_{0}} \right] \Omega^{2} r - V_{n} \Omega \right)$$

### **BET in OF framework**

$$\Delta p(r) = \frac{\rho Nac}{4\pi} \left( \left[ \beta - \alpha_{L_0} \right] \Omega^2 r - V_n \Omega \right)$$

#### New boundary condition based on fan

- $\Rightarrow$  Blade characteristics are input given as  $\sum a_i r^i$
- $\Rightarrow$  Normal velocity  $V_n$  is computed by the solver
- $\Rightarrow \Delta p = 0$  if negative or in recirculation

# Modelization of the UAV



# **Experimental setup**







#### Validation of CFD

- Total forces
- Pressure along duct
- Pressure along hub









#### **Model validity**





#### Zone near root of the propeller

- Low  $V_n$  due to incidence
- High  $\Delta p$  due to recirculation
  - $\Rightarrow$  BET fails in this zone

## Conclusions

#### **BET** leads to discrepancies

- In recirculation zone
- With absolute thurst

#### However BET is able to

- Provide a good estimation of pressure
- Determine evolution of relative thrust with RPM

#### This implementation of BET enables

- Fast simulations with physical parameters
- Optimization of the UAV geometry