Implementation of the blade element theory to investigate the aerodynamic performance of a ducted fan UAV

A. Guissart, D. Arendt, V. Terrapon & T. Andrianne

University of Liege

March 19, 2015

1st Workshop of Belgian OpenFOAM users
Motivation

FLEYE: micro UAV intended for safe aerial photography

- Study aerodynamics
- Increase generated thrust
- Optimize geometry

Use of CFD to test quickly different geometries

\[\approx 20 \text{cm} \]
How to model the propeller?

Should be easy and fast

\[\Delta p \]

Fan is modelized using \(\Delta p \)

\(\Delta p \) should be linked to blades characteristics:

- geometry: \(c, \beta, N \)
- aerodynamics: \(a, \alpha_{L0} \)

\(\Rightarrow \) Use Blade Element Theory
What is BET?

\[dA = 2\pi r dr \]

\[dT \approx N dL \]

\[c_l = a \left(\beta - \frac{V_n}{\Omega r} - \alpha L_0 \right) \]

\[
\begin{align*}
\frac{dT}{dA} & \approx \frac{1}{2} c_l \rho N (\Omega r)^2 dS \\
\Delta p(r) &= \frac{dT}{dA} = \frac{\rho N ac}{4\pi} \left([\beta - \alpha L_0] \Omega^2 r - V_n \Omega \right)
\end{align*}
\]
BET in OF framework

\[\Delta p(r) = \frac{\rho N_{ac}}{4\pi} \left([\beta - \alpha_{L_0}] \Omega^2 r - V_n \Omega \right) \]

New boundary condition based on fan

⇒ Blade characteristics are input given as \(\sum a_i r^i \)

⇒ Normal velocity \(V_n \) is computed by the solver

⇒ \(\Delta p = 0 \) if negative or in recirculation
Modelization of the UAV

CFD model
- Use of axisymmetry
- Steady solver `simpleFoam`
- Turbulence model $k - \omega$ SST

Model for propeller
- c, a and α_{L0} constant along r
- $\beta (r)$ determined from pitch
- Different RPM are tested
Experimental setup

Validation of CFD

- Total forces
- Pressure along duct
- Pressure along hub
Comparison CFD-experiments

Relative pressure along the duct
Comparison CFD-experiments

Relative pressure along the hub

![Graph showing relative pressure along the hub for different RPMs: 7000 RPM, 8000 RPM, and 9000 RPM. The graph plots Δp against ξ (dimensionless axial location). The data points and lines indicate the pressure distribution at various RPM values.]
Comparison CFD-experiments

Total thrust

Conclusions of validation

Pressure along the duct and hub
- Well approximated < 15%
- Variation with RPM
- Discrepancies at tip clearance
- Differences near the motor

Total forces
- Variation with RPM
- Higher error < 30%
- Should come from propeller
Comparison CFD-experiments

Model validity

\[\Delta p(r) = \frac{\rho NaC}{4\pi} \left([\beta - \alpha_{L0}] \Omega^2 r - V_n \Omega \right) \]

Zone near root of the propeller
- Low \(V_n \) due to incidence
- High \(\Delta p \) due to recirculation
\[\Rightarrow \text{BET fails in this zone} \]
Conclusions

BET leads to discrepancies
- In recirculation zone
- With absolute thrust

However BET is able to
- Provide a good estimation of pressure
- Determine evolution of relative thrust with RPM

This implementation of BET enables
- Fast simulations with physical parameters
- Optimization of the UAV geometry