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Abstract

Introduction: Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer,
indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes,
including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of
associations between common germline variants in the TP53 pathway and bladder cancer risk.

Material and Methods: We investigated 184 tagSNPs from 18 genes in 1,058 cases and 1,138 controls from the Spanish
Bladder Cancer/EPICURO Study. Cases were newly-diagnosed bladder cancer patients during 1998–2001. Hospital controls
were age-gender, and area matched to cases. SNPs were genotyped in blood DNA using Illumina Golden Gate and TaqMan
assays. Cases were subphenotyped according to stage/grade and tumor p53 expression. We applied classical tests to assess
individual SNP associations and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized logistic regression
analysis to assess multiple SNPs simultaneously.

Results: Based on classical analyses, SNPs in BAK1 (1), IGF1R (5), P53AIP1 (1), PMAIP1 (2), SERINPB5 (3), TP63 (3), and TP73 (1)
showed significant associations at p-value#0.05. However, no evidence of association, either with overall risk or with
specific disease subtypes, was observed after correction for multiple testing (p-value$0.8). LASSO selected the SNP
rs6567355 in SERPINB5 with 83% of reproducibility. This SNP provided an OR = 1.21, 95%CI 1.05–1.38, p-value = 0.006, and a
corrected p-value = 0.5 when controlling for over-estimation.

Discussion: We found no strong evidence that common variants in the TP53 pathway are associated with bladder cancer
susceptibility. Our study suggests that it is unlikely that TP53 Arg72Pro is implicated in the UCB in white Europeans.
SERPINB5 and TP63 variation deserve further exploration in extended studies.
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Introduction

In more developed countries, urothelial carcinoma of the

bladder (UCB) is the fourth most common cancer in men and the

seventeenth in women, the overall male:female ratio being 3:1.

This ratio is greater (6:1) in Spain, where the disease presents one

of the highest incidence rates among men (51 per 100,000 man-

year) [1]. Tobacco smoking and occupational exposure to

aromatic amines have been established as the strongest risk

factors, among others [2]. While no high-penetrance allele/gene

has been identified to date as associated with UCB, there is well-

established evidence that UCB risk is influenced by common

genetic variants [3,4].
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Previous studies characterizing UCB are consistent with the

existence of, at least, two disease subtypes based on their

morphological and genetic features. The first subtype includes

low-risk, papillary, non-muscle invasive tumors (NMIT, 60–65%

of all UCB) and the second type includes both high-risk NMIT

(15–20% of all UCB) and muscle invasive tumors (MIT, 20%–

30% of all UCB). Supporting these morphological subtypes,

differential genetic pathways were described and were associated

with distinct UCB evolution. Somatic mutations in FGFR3 are

more frequent in low-risk NMIT, while mutations in TP53 and RB

are mainly involved in high-risk NMIT and MIT [5,6]; mutations

in PIK3CA and HRAS occur similarly in the two tumor subtypes.

Interestingly, an exploratory analysis has shown that some

germline genetic variants might be differentially associated with

the risk of developing distinct UCB subphenotypes defined

according to tumor stage (T) and grade (G) [7].

TP53 is the most important human tumor suppressor gene and

its implications in UCB have been extensively studied [8]. TP53 is

located in17p13, a region that is frequently deleted in human

cancers, and it encodes the p53 protein. p53 is a transcription

factor controlling cell proliferation, cell cycle, cell survival, and

genomic integrity and - therefore - it regulates a large number of

genes. Under normal cellular conditions, p53 is rapidly degraded

due to the activity of MDM2, a negative p53 regulator that is also a

p53 target gene. Upon DNA damage or other stresses, p53 is

stabilized and regulates the expression of many genes involved in

cell cycle arrest, apoptosis, and DNA repair among others.

Somatic alterations in TP53/p53 are one of the most frequent

alterations associated with UCB, especially with the more

aggressive tumors [9].

Germline TP53 mutations predispose to a wide spectrum of

early-onset cancers and cause Li-Fraumeni and related syndromes

[10,11]. These mutations are usually single-base substitutions.

Over 200 germline single nucleotide polymorphisms (SNPs) in

TP53 have been identified at present [12]. SNP rs1042522

(Arg72Pro) has been assessed in association with several cancers,

among them UCB. However, the results of these studies are

inconsistent [13,14,15,16,17,18]. In contrast, an association

between SNP rs710521 in TP63, a TP53 family member, and

risk of UCB has been convincingly replicated, pointing to the

involvement of TP53 pathway members in UCB susceptibility [4].

The aim of this study was to comprehensively investigate

whether germline SNPs in genes involved in the TP53 pathway are

associated with risk of UCB. To this end, a total of 184 tagSNPs in

18 key genes were assessed using data from the Spanish Bladder

Cancer/EPICURO study.

Materials and Methods

Study Subjects
The Spanish Bladder Cancer/EPICURO Study is a case-

control study carried out in 18 hospitals from five areas in Spain

and described elsewhere [2,4,7]. Briefly, cases were patients

diagnosed with primary UCB at age 21–80 years between 1998

and 2001. All participants were of self-reported white European

ancestry. Diagnostic slides from each patient were reviewed by a

panel of expert pathologists to confirm the diagnosis and to ensure

that uniform classification criteria were applied based on the 1999

World Health Organization and International Society of Urolog-

ical Pathology systems [19].

Controls were patients admitted to participating hospitals for

conditions thought to be unrelated to the UCB risk factors. The

main reasons for hospital admission were: hernia (37%), other

abdominal surgery (11%), fracture (23%), other orthopaedic

problem (7%), hydrocoele (12%), circulatory disorder (4%),

dermatological disorder (2%), ophthalmological disorder (1%),

and other diseases (3%). Controls were individually matched to the

cases on age within 5-year categories, gender, ethnic origin and

region of residence.

Information on sociodemographics, smoking habits, occupa-

tional and environmental exposures, and past medical and familial

history of cancer was collected by trained study monitors who

conducted a comprehensive computer- assisted personal interview

with the study participants during their hospital stay. Of 1,457

eligible cases and 1,465 controls, 1,219 (84%) and 1,271 (87%),

were interviewed, respectively.

All subjects gave written informed consent to participate in the

study, which was approved by the ethics committees of the

participating centers.

Genotyping
A total of 184 tagSNPs from 18 genes participating in the TP53

pathway were selected using the Select Your SNPs (SYSNPs)

program [20]. SYSNP used information from dbSNP b25, hg17

and HapMap Release #21. Haploview’s Tagger algorithm (v3.32)

was applied with default parameter values. The tool considers all

available information for each SNP and implements algorithms

that provide the status of each SNP as a tagSNP, a captured SNP

or a non-captured SNP. According to this information tagSNPs

were selected. The following groups of genes were considered: 1)

TP53 family members (TP53, TP63 and TP73) and 2) genes

known to be targets of p53 or regulators of p53 function [BAK1,

BAX, BBC3, BIRC5, CDKN1A, FAS, GADD45A, IGF1R, MDM2,

PCNA, PMAIP1, SERPINB5, SFN (Stratifin, 14-3-3sigma),

TP53AIP1), and 3) c-MYC, a major oncogene involved in a broad

range of human cancers that regulates p53 pro-apoptotic activity

(See Table S1 in File S1). SNPs were genotyped using Illumina

Golden Gate and TaqMan (Applied Biosystems) assays at the

Spanish Core Genotyping Facility at the CNIO (CEGEN- CNIO).

Genotyping was successful for 1,058 cases and 1,138 controls. We

calculated the coverage for each gene using Haploview 4.2 by

selecting the SNPs within a gene with a MAF$0.05 from the 1000

genomes project, as reference, and obtained the number of SNPs

captured with the SNPs genotyped at r2$0.8 within each gene.

Statistical Analysis
Departure from Hardy-Weinberg equilibrium was assessed in

controls using Pearson’s chi-squared test. Missing genotypes were

imputed for the multi-SNP model using the BEAGLE 3.0 method

[21]. Associations between UCB and the SNPs considered were

assessed using two approaches: classical logistic and polytomous

regression analyses applied to each SNP individually, and the

Least Absolute Shrinkage and Selection Operator (LASSO)-

penalized logistic regression to assess all SNPs simultaneously.

All models were adjusted for age at diagnosis (cases) or interview

(controls), gender, region, and smoking status. Smoking status was

coded in four categories (never: ,100 cigarettes in their lifetime;

occasional: at least one per day for $6 months; former: if they had

smoked regularly, but stopped at least 1 year before the study

inclusion date; and current: if they had smoked regularly within a

year of the inclusion date [2].

With the ‘‘classical’’ statistical approaches we assessed SNP

main effects for the whole disease and for different subtypes of

UCB, as well as SNP*SNP and SNP*smoking interactions. Disease

subtypes were defined in two ways. First, according to established

criteria based on tumor stage (T) and grade (G) as low-risk NMIT

(TaG1 and TaG2), high-risk NMIT (TaG3, T1G2, T1G3, and

Tis), and MIT (T2, T3, and T4); and second, according to the
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tumor expression of p53 determined using DO7 antibody. We

applied the histoscore as z~
P3

i~1

i � pos%cellsi, where pos%cellsi

was the percentage of cells with intensity i(i~1,2,3). We then

classified cases as having low or high p53 expression relative to the

median histoscore.

To assess overall main effects, the four modes of inheritance

were considered: co- dominant, dominant, recessive, and additive.

The statistical significance of associations was determined using

the Likelihood Ratio Test (LRT). We evaluated associations

between individual SNPs and subtypes of UCB using polytomous

logistic regression. Heterogeneity by disease subtype was tested by

a LRT comparing this model to that with the ln(OR) restricted to

be equal across subtypes. We also evaluated all two-way

interactions between SNPs by a LRT comparing logistic regression

models with the two SNPs (additive model) and covariates

described above, with and without a single interaction term for

multiplicative, per-allele effects. Interactions between each SNP

and cigarette use (never vs. ever) were assessed using a similar

method. Multiple testing was accounted for by applying a

permutation test with 1,000 replicates. We applied Quanto

(http://hydra.usc.edu/gxe/) to assess statistical power considering

the available sample size.

We also assessed combined SNP effects using LASSO. The

method has been described in detail by [22]. Briefly, the log-

likelihood function applied in classical logistic regression

Ln bð Þ
Xn

i~1

yi logp X ’ibð Þz 1{yið Þlog 1{p X ’ibð Þð Þ½ �, ð1Þ

where n is the number of observations, is reconstructed incorpo-

rating a penalty so that

g(b; l)~Ln(b)zl
Xp

j~1

bj

�� ��, ð2Þ

where p is the number of SNPs and l is the lasso penalty. The

Newton-Raphson algorithm is applied to equation (2) to estimate

b’s in an iterative way.

The LASSO method is based on the idea of removing irrelevant

predictor variables (b= 0) via the penalty parameter, thereby

selecting only the most relevant SNPs as the subset of markers

most associated with the disease. The application of the penalty

parameter also avoids overfitting due to both high-dimensionality

and collinearity between covariates. We only considered additive

genetic mode of inheritance.

This technique gives biased estimators to reduce their variance.

Because of this, the implemented package in R does not provide

estimates p-values for the regression beta coefficients, since

standard errors are not meaningful under a biased estimator.

We therefore evaluated the results by first applying the LASSO

using a 5-fold cross-validation (CV) method [23] to choose the

optimal l as that giving the minimum Akaike information

criterion (AIC); we then selected the subset of SNPs that were

most informative with that l. We assessed the robustness of each

SNP selected in the optimal model by calculating the reproduc-

ibility as the proportion of times each SNP was selected to be in

the multivariate model from 1,000 bootstrap subsamples [24].

To evaluate the association with UCB risk of that subset of

SNPs, we tested them by the LRT in a multivariate regression

Table 1. Demographics and smoking status of patients included in the study.

Cases (n = 1058) Controls (n = 1138) 1p-value

Gender

Male 920 (87%) 991 (87%)

Female 138 (13%) 147 (13%) 0.9

Age

,55 149 (14%) 181 (16%)

55–64 222 (21%) 278 (24%)

65–69 241 (23%) 263 (23%)

70–74 225 (21%) 222 (20%)

75+ 221 (21%) 194 (17%) 0.06

Region

1-Barcelona 214 (20%) 233 (21%)

2-Valles 173 (16%) 181 (16%)

3-Elche 83 (8%) 80 (7%)

4-Tenerife 195 (19%) 207 (18%)

5-Asturias 393 (37%) 437 (38%) 0.9

Smoking

Never 147 (14%) 334 (29%)

Occasional 43 (4%) 81 (7%)

Former 409 (38%) 429 (38%)

Current 454 (43%) 283 (25%) ,0.001

Missing 5 (1%) 11 (1%)

1p-value from Pearson’s x2 test for association.
doi:10.1371/journal.pone.0089952.t001
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model with all the SNPs in comparison to the null model. To

correct for the over-estimation due the pre-selection of the best

SNPs, we performed a permutation test with 10,000 replicates.

STATA 10 was used to run the classical logistic and

multinomial regression analyses. All other statistical analyses were

run in R (http://www.R-project.org), using the penalized library

[25] for LASSO penalized logistic regression.

Results

Table 1 shows the distribution of the study subjects included in

the analysis: 1,058 cases and 1,138 controls. Most individuals

(87%) were male and cases were more likely to be current smokers

than controls (43% vs. 25%, respectively, p-value,0.001).

No evidence of departure from Hardy-Weinberg equilibrium

was observed for any SNPs after consideration of multiple testing

(unadjusted p-value.1024). Polymorphisms in TP53 were not

individually associated with UCB risk, even at a nominal,

uncorrected 5% significance level (uncorrected p-value.0.4).

The percentage of reproducibility from the LASSO model using

1,000 bootstrap subsamples was ,50%, indicating a poor

robustness of the models. Results for the additive and co-dominant

models are summarized in Table 2.

Using classical logistic regression, SNPs in BAK1 (1), IGF1R (5),

P53AIP1 (1), PMAIP1 (2), SERPINB5 (3), TP63 (3), and TP73 (1)

showed significant results, at a non-corrected p-value#0.05, with

overall UCB risk (Table 3). However, no evidence of association

with risk was observed for any individual SNPs after correcting for

multiple testing (permutation test p-value.0.8). This was also the

case for the associations with the established disease subtypes

defined according to stage/grade or by p53 expression (Figure 1).

Of note, SNPs rs3758483 and rs983751 in FAS were differentially

and inversely associated with MIT and high p53 expressing

tumors in uncorrected analyses (Tables S2 and S3 in File S1). We

also observed no evidence of SNP*SNP interactions or interactions

between SNPs and smoking status (data not shown).

When all 184 SNPs were simultaneously assessed using LASSO,

the method selected rs6567355 in SERPINB5 with a reproducibil-

ity = 83%. This SNP provided an OR = 1.21, 95%CI 1.05–1.38,

p-value = 0.006 in the main effect logistic regression model and a

corrected p-value = 0.5 when controlling for over-estimation

(Table 3). While not selected by LASSO in the last model under

the stringent criteria applied, IGF1R-rs1058696 (OR = 0.63,

95%CI 0.44–0.90, p-value = 0.010) and TP63-rs13321831

(OR = 1.36, 95%CI 1.06–1.73, p-value = 0.014) showed a per-

centage of reproducibility .80%.

Discussion

We genotyped common variants in genes in the TP53 pathway

in 1,058 cases and 1,138 controls of white European ancestry and

found no strong evidence of association with risk of UCB overall,

or with subtypes of the disease defined by stage and grade or by

p53 expression.

A key gene in the pathway is TP53, and the most commonly

studied variant in this particular gene is Arg72Pro (rs1042522). Its

implication in susceptibility to various cancers has been reported

in Asian populations, but not in white Europeans. A meta- analysis

of 49 cervical cancer studies contributing a total of 7,946 cases and

7,888 controls found that the Arg allele was associated with an

increased risk of cervix cancer [14]. However, another meta-

analysis of 39 studies (26,041 cases and 29,679 controls) found

weak evidence for an association of the same variant with reduced

breast cancer risk [18]. Regarding gastric cancer, a combined

analysis of 6,859 cases and 9,277 controls from 28 studies found a
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stronger inverse association only among Asians [26]. For lung

cancer, a marginally significant increased risk was in a combined

analysis of data with 15,647 cases and 14,391 controls from 36

studies, though the association seemed to be also confined to the

Asian population [27].

The association between TP53 Arg72Pro and UCB risk has

been assessed by two meta-analyses. Overall, no association was

observed by Jiang et al. when comparing 1,601 cases and 1,948

controls from 10 studies, although a marginally significant

association was seen among Asians (OR = 0.77, 95%CI 0.59–

1.00, for ArgArg/ArgPro vs. ProPro) [13]. Discordant results have

been recently reported combining data from 14 studies contrib-

uting with 2,176 cases and 2,798 controls (OR = 1.268, 95%CI

1.003–1.602, for ArgArg/ArgPro vs. ProPro among the Asian

population) [17]. A large number of studies overlap between the

two meta-analyses. The lack of information on gene-gene and

gene-environment interactions, as well as on the concomitant

effect of TP53 somatic mutations may explain the discordant

results [28].

The findings from our study confirm the lack of association of

Arg72Pro in TP53 with risk of UCB in white Europeans

(OR = 0.98, 95%CI 0.77–1.26, for ArgPro vs. ArgArg and

OR = 0.91, 95%CI 0.75–1.09, for ProPro vs. ArgArg, p-

value = 0.5 for overall effects) [13,17]. However, we cannot rule

out that lack of statistical power may hamper identification of a

small effect association: even with its large sample size, the present

study sample size could detect an OR$1.3 per-allele for this SNP

with 90% statistical power and at a significance level of 5%.

Regarding other SNPs in TP53, Lin et al reported an

association with rs9895829 and rs1788227 (p-value = 0.003 and

0.027, respectively) in a smaller study with 201 cases and 311

controls in an Asian population [29]. We did not genotype these

SNPs, though they are in high LD with two SNPs considered here:

rs8079544 (LD = 1.0) and rs12951053 (LD = 0.7), respectively.

Nonetheless, none of the assessed additional SNPs in TP53

appeared to be associated with UCB risk. The partial coverage of

the gene with the assessed SNPs (38%) does not allow us to dismiss

the role of TP53 in UCB susceptibility.

TP63 is another key member of the studied pathway. One SNP

(rs710521) located in this gene has been reported to be associated

with risk of UCB by a GWAS (per-allele OR = 1.19, 95%CI 1.12–

1.27, p-value = 1.1561027) [30]. This association was convinc-

ingly replicated in a combined analysis of data from different

studies (allele-specific OR = 1.18, 95%CI 1.12–1.24, p-val-

ue = 1.8610210), including ours, for which it was genotyped as

part of a separate initiative [4]. Of note, this particular SNP did

not show significant results in our study (OR = 0.95, 95%CI 0.83–

1.10, p-value = 0.5), a fact that can be explained by the different

geographical location related exposures of the participating

studies, being UCB an environmental driven disease [31]. The

present study assessed 32 SNPs in TP63, providing 24% of the

gene coverage. Three of them showed uncorrected significant

results in the overall UCB association analysis with a percentage of

reproducibility .70% from LASSO. These results warrant an

extended UCB study on this region.

Regarding other SNPs in the selected genes, we did not find any

strong evidence of association after correcting for multiple testing

(permutation test p-value$0.8 for overall main effects and p-

value$0.3 for subtype effects). The top (uncorrected) significant

SNPs were located in BAK1, IGF1R, P53AIP1, PMAIP1,

SERPINB5, and TP73. Common variants in these genes have

not previously been reported as associated with UCB risk, though

an altered expression of BAK1 and IGF1R has been described in

bladder tumors.

Many complex diseases, such as UCB, are likely due to the

combined effects of multiple loci [32] and most traditional

association studies assessing main effects for one SNP at a time

are underpowered to detect small effects [33]. Therefore, the

implication of common genetic variants may be better assessed by

a method that both selects a far-reduced set of potentially

associated SNPs and tests for association globally. This has been

a challenge due to the high-dimensionality and collinearity

Figure 1. Main effect p-values for bladder cancer risk (overall and for each subphenotype) for each tag-SNP under the additive
mode of inheritance. A SNP p-value above the red line is considered as associated with the phenotype after multiple testing correction by
Bonferroni (4.2 for main effects and 3.6 for subtypes). All models are adjusted for age, gender, region and cigarette smoking status.
doi:10.1371/journal.pone.0089952.g001
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between SNPs. Nevertheless, penalized techniques can deal with

these problems and they are starting to emerge in genetic

association studies. Wu et al used penalized logistic regression in

a genome-wide association study applied to coeliac disease data

and Zhou et al extended this work to the assessment of association

for common and rare variants applied to family cancer registry

data [34] [35]. In the present study, we applied the LASSO

algorithm to account for the combination effects of the SNPs in the

TP53 pathway and UCB risk. Under the criteria applied, this

method selected one SNP (rs6567355) that showed a non-

corrected p-value = 0.006 for the additive mode of inheritance

with a percentage of reproducibility = 83%. This is a frequent G.

A SNP (MAF = 0.29) located in the intron region of SERPINB5. As

mentioned before, no evidences of previous association between

this SNP and any disease have been reported at present.

SERPINB5 is a tumor suppressor (Table S1 in File S1). The

expression levels of this gene has been correlated with those of

DBC1 (Deleted in bladder cancer 1) in UCB specimens, suggesting

its involvement in the urokinase-plasminogen pathway [36].

SERPINB5 would deserve of further exploration in extended

studies, as well.

A limitation of our study is the incomplete tagging of the

selected genes due to the use of an earlier HapMap release to

select tag SNPs, prior to the availability of data from the 1000

genomes project. The median coverage of the 18 genes considered

in the pathway is, according to the updated HapMap releases,

44%, ranging from 21% to 86%. Therefore, we cannot rule out

completely the implication of common variation in these genes in

UCB susceptibility.

For common SNPs (MAF.0.05), our study is powered (90%) to

detect ORs$1.4 at a significance level of 0.05, assuming an

additive mode of inheritance. Therefore, the study is not

conclusive with OR,1.4. While this study represents one of the

largest assessments conducted till present, much larger studies will

be required to rule out smaller main effects associated with

common variants in the genes of this pathway. This is even more

important when subphenotype analyses are considered. We also

found no evidence of SNP-SNP interactions (permutation test p-

value$0.3) and SNP-smoking interactions (permutation test p-

value$0.07), although the power was even more limited to detect

these. According to the candidate pathway, the studied SNPs were

selected as tags; therefore, they were not correlated showing a low

LD. This fact, let us overcome a potential limitation affecting the

percentage of reproducibility when SNPs are high correlated.

Credit should also be given to this study, not only regarding its

large sample size, but also for its prospective nature and disease

representativeness, for the homogeneous methods applied to

collect information and biosamples by the participating centers,

for the integration of different type of information (sociodemo-

graphics, epidemiological, genetic, clinical and pathological, and

molecular), and for the comprehensive and innovative statistical

approaches applied to assess UCB susceptibility associated with a

highly candidate pathway.

In conclusion, using a comprehensive analysis accounting

different models and different approaches, we found no strong

evidence that common variants in the TP53 pathway are

associated with UCB risk. However, specific members of the

pathway, TP63 and SERPINB5 deserve of further exploration in

extended studies. On the other hand, our study suggests that it is

unlikely that TP53 Arg72Pro is implicated in the UCB in white

Europeans.

While biological sound, candidate pathway analysis have throw

limited acknowledge in the genetic susceptibility field of many

diseases. The reasons of this relative poor efficiency may be,

among others, the still lack of knowledge of all key components of

a given pathway, the introduction of noise by considering many

genes/variants without showing association, and the lack of

coverage of rare variants not tagged through this approach, in

addition to methodological explanations such as an impaired

statistical power. Scientists should review whether it is time to

dismiss this approach towards a more comprehensive strategy such

whole genome/exome sequencing in dissecting the genetic

architecture of complex diseases.

Supporting Information

File S1 Combined Supporting Information file containing:

Table S1, Location and function of the selected genes. Table

S2, Heterogeneity in single nucleotide polymorphism (SNP) risk

estimates among bladder cancer subphenotypes defined according

to stage and grade in the Spanish Bladder Cancer Study. Table

S3, Heterogeneity in single nucleotide polymorphism (SNP) risk

estimates among bladder cancer subphenotypes defined by p53

expression in the Spanish Bladder Cancer Study.

(DOCX)
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