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Abstract: This paper describes a novel design methodology using non-linear models for 

complex closed loop electro-mechanical sigma-delta modulators (EMΣΔM) that is based 

on genetic algorithms and statistical variation analysis. The proposed methodology is 

capable of quickly and efficiently designing high performance, high order, closed loop, 

near-optimal systems that are robust to sensor fabrication tolerances and electronic 

component variation. The use of full non-linear system models allows significant higher 

order non-ideal effects to be taken into account, improving accuracy and confidence in the 

results. To demonstrate the effectiveness of the approach, two design examples are 

presented including a 5th order low-pass EMΣΔM for a MEMS accelerometer, and a 6th 

order band-pass EMΣΔM for the sense mode of a MEMS gyroscope. Each example was 

designed using the system in less than one day, with very little manual intervention. The 

strength of the approach is verified by SNR performances of 109.2 dB and 92.4 dB for the 

low-pass and band-pass system respectively, coupled with excellent immunities to 

fabrication tolerances and parameter mismatch. 

Keywords: genetic algorithm (GA); sigma delta modulator (ΣΔM); micro-electro-mechanical 

systems (MEMS); gyroscope; accelerometer 
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1. Introduction  

Embedding a micromachined sensing element in a closed loop, force feedback system is a 

technique commonly used to realise high performance MEMS (micro-electro-mechanical systems) 

sensors due to the many advantages attainable in terms of better linearity, increased dynamic range and 

bandwidth, and reduced parameter sensitivity to fabrication tolerances. In particular, MEMS inertial 

sensors employing a capacitive sensing element incorporated in sigma-delta modulator (ΣΔM) control 

systems with electrostatic feedback have gained popularity in the past due to their direct digital output 

signal, and avoidance of potential electro-static instability (due to the ‘pull-in’ effect). Earlier work 

used the micro-machined sensing element as the sole loop filter, and, since the sensing element is 

typically a second order mass-damper-spring low-pass filter, this resulted in a second order  

electro-mechanical ΣΔM (EMΣΔM) [1-3]. It is well known from purely electronic ΣΔM, used for 

analogue-to-digital conversion that such a second order system suffers from relatively high 

quantisation noise, idle tones and deadzones [4]; additionally, the micromachined sensing element 

represents two leaky integrators with low steady-state gain further reducing the noise shaping ability. It is 

therefore difficult to attenuate the quantization noise level below other noise sources originating from the 

electronic pick-off circuitry and the sensing element itself (Brownian noise). To address these 

shortcomings, recently, several research groups have designed and implemented EMΣΔM in which the 

sensing element is cascaded with an electronic filter comprising several integrators (or resonators, for 

band-pass EMΣΔMs); this has been successfully applied to MEMS accelerometers [5-8], and to 

control the sense mode of MEMS gyroscopes [9-12] resulting in far superior noise shaping abilities. 

The architectures are inspired by high order electronic analogue-to-digital ΣΔMs but these cannot be 

simply transferred to EMΣΔM due to the nature of the micromachined sensing element, which has an 

inaccessible internal node. In the past we have investigated several such architectures for MEMS 

accelerometers and gyroscopes [13,14].  

Linearized analytical models for ΣΔMs are described in for example [15] and employed extensively 

in the design of analogue-to-digital ΣΔMs [16] to accurately predict performance. However, they have 

limited use in predicting the performance and stability of realistic EMΣΔMs systems for two reasons. 

Firstly, due to already having a second order sensor in the loop, high performance EMΣΔMs require a 

high overall loop order for which stability becomes a greater concern and the linearisation of the 

quantizer a less reasonable assumption [17]. Secondly, in contrast to purely electronic ΣΔMs, a strong 

non-linear term is introduced in EMΣΔMs due to the dependence of the feedback force on the sensor 

mass position and this has serious implications on stability and performance, which cannot be 

predicted with a linear model [8]. The solution is to use non-linear analysis for the design of EMΣΔMs 

but to date there has been no satisfactory analytical approach. 

In this work we present a novel design methodology for EMΣΔM based on genetic algorithms (GA) 

and Monte Carlo simulations, both using accurate non-linear models. Genetic algorithms are based on 

the mechanics of natural selection and genetics combining the fittest individuals in the population in 

order to search for the best solution [18]. These evolutionary based techniques are excellent for 

particularly complex problems where they are capable of finding good solutions in a short period of 

time [19]. A typical GA consists of several stages including chromosome representation, initial 

population generation, evaluation of a fitness function followed by crossover and mutation. Once an 
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initial population consisting of a number of individuals (parameter sets) has been randomly chosen, 

based on the fitness function the fittest individuals are selected and combined to produce a new 

offspring. As in real organisms, combination of two individuals will often produce offspring that are 

better adapted to the environment, thus having a better fitness score. A small mutation probability is 

then added to the new offspring, again copying nature and ensuring a diverse search of the gene space. 

The process is repeated over the whole population for a large number of generations and the result is a 

final population with a high fitness score. An elite preservation strategy can also be employed which 

ensures that a certain number of elite individuals are carried forth in each generation. In this way, good 

solutions found early on in the process will never be lost unless replaced by a better solution.  

In this work the genetic algorithm used is the gamultiobj() function in Matlab which is variant on 

the Non-dominated Sorting Genetic Algorithm-II (NGSA-II) [20]. Numerous parameters governing the 

operation of this function can be tailored to its particular use. In the examples in this paper, the 

‘EliteCount’ parameter was set to ‘2’ meaning that the best two individuals would always be carried 

forward. Mutation options specify the small random changes that the GA makes in the individuals to 

allow a broader search space, and in this work the ‘MutationFcn’ was set to ‘mutationuniform’. 

Uniform mutation involves first selecting a fraction of the design parameters for mutation and then 

replacing each designated parameter by a random number selected uniformly from the range for that 

entry. Crossover options specify how the GA combines two individuals, or parents, to form a next 

generation child individual. In this work the ‘CrossoverFunction’ was set to ‘crossoverscattered’ 

resulting in the parameter crossover being defined by a random binary vector. In this case, if the vector 

bit is set to ‘1’ the child gene (i.e., parameter) comes from the first parent and vice versa. An initial 

population function was written and used to randomly generate the first population with a uniform 

distribution within the specified constraints. 

As part of the overall design methodology, the GA facilitates multi-objective optimisation for the 

design of low-pass or band-pass EMΣΔM with a wide range of orders and with any architecture. Since 

the result of the optimisation is a large number of equally optimal solutions the design procedure 

subsequently carries out a robustness analysis based on statistical simulations to ensure stability of the 

design in the presence of fabrication tolerances, which can be substantial for micromachined sensing 

elements. Although numerous methods exist for output variation estimation, e.g., [21], in this work a 

Monte Carlo approach has been used due to its popularity and ease of implementation. The robustness 

analysis is a key contribution of this work, and helps ensure manufacturability and hence improve the 

yield of realised designs. 

This paper is organised as follows: Section 2 describes the developed GA process in general; 

Section 3 gives an example for the design of a 5th order EMΣΔM MEMS accelerometer; Section 4 

gives a second example of a band-pass EMΣΔM for a MEMS gyroscope; in Section 5 the design 

approach is discussed and in Section 6 conclusions are drawn. 

2. Genetic Algorithm for High Order Electro-Mechanical Sigma Delta Modulators  

An EMΣΔM consists of the following building blocks: (i) the micromachined sensing element;  

(ii) the pick-off circuit that capacitively measures the displacement of the proof mass in response to an 

inertial force and converts it to a voltage; (iii) a phase compensator (which may not be required if the 
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sensing element is overdamped); (iv) an electronic loop filter comprising several integrators and minor 

feedback or feedforward loops; (v) a clocked one bit quantizer; (vi) a feedback block that converts the 

feedback voltage into an electrostatic force acting on the proof mass and counterbalancing the inertial 

force. Figure 1 shows a generic EMΣΔM as a block diagram. Stability and performance are mainly 

dependent on the chosen architecture and the choice of the various gains in the pick-off circuitry and 

signal paths.  

Figure 1. Block diagram of an electro-mechanical sigma-delta modulator. 

 
 

For our design methodology the user must first choose an architecture and the order, which can 

either be taken from the literature on EMΣΔM, an architecture for a purely electronic A/D ΣΔM, or a 

novel architecture developed by the user. The next step is to develop a Simulink model. The model can 

be as simple or as complex as deemed necessary by the user. Second order effects may be included. A 

few examples include: (i) the pick-off circuit can be modelled simply as a gain constant, or the 

nonlinear relationship between displacement and differential change in capacitance may be included; 

(ii) The micromachined sensing element may be simply modelled as a second order lumped parameter 

system with mass, damping and mechanical spring constant as the only parameters, or higher order 

modes e.g., from the dynamics of the sense fingers can be included [22]; (iii) The modulation of the 

electrostatic force by the residual motion of the proof mass [8] can be included. In principle, there is no 

limitation on the complexity of the Simulink model, however there is obviously a trade-off between 

simulation time and model complexity. 

The proposed methodology is represented by the flow-chart in Figure 2. Besides a parameterized 

Simulink model, the user is required to specify one or several goals for the GA to optimize as an 

objective. For closed loop MEMS sensors with a digital output typical objectives are: (i) the SNR, 

which should be maximized and is calculated based on the power spectral density of the output 

bitstream; (ii) the residual motion of the proof mass, which should be significantly smaller when 

compared to an open loop sensor. An unstable system can be determined from a negative or very low 

SNR so optimising towards high SNR solutions ensures that stability is addressed as part of the 

process. The ratio between open loop and closed loop proof mass deflection provides a measure of 

how well the sensing element is controlled by the electrostatic feedback force, and gives insight into 

the improvement in dynamic range compared to the open loop case. Furthermore, the GA requires a 

list of parameters it can change within user specified boundaries.  
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Figure 2. Generic process flow for the GA-based design algorithm. 

 

The GA is then initialized with a user specified number, NR of, within the constraints, randomly 

chosen parameter sets; which is termed a population. Each parameter set is termed an individual. This 

initial population represents generation 1. The system then runs NR simulations (one for each 

individual) and records the performance objectives for each individual, for example SNR and proof 

mass displacement as previously discussed. Once the first generation has been simulated, the result is 

stored as a table where each row consists of the parameter set for one individual and its performance. 

As explained in the previous section, the GA sorts the results and then performs a number of functions 

including picking the very best individuals (elite preservation), generating a certain number of new 

random individuals (mutation) and cross fertilising good individuals to create new offspring. This last 

step actually involves taking different parameters from different good individuals and combining them 

to create a new individual (child). These three steps create generation 2, which again consists of NR 

individuals. The whole process continues until either a specified maximum number of generations has 

been reached or the user monitoring the evolution determines that sufficient convergence has been 

achieved. Although it would be possible to automate the convergence detection, for example by 

calculating bit string affinity, we have found in practice that the insight gained from making this an 

interactive decision is very valuable. 

Simulation length is an important consideration during the GA process and introduces a trade-off 

between accuracy and total optimisation time. Often systems can appear initially stable, only to lose 

stability a short time later and therefore it is possible to unwittingly promote unstable systems forward 

in the evolutionary process if the simulation time is too short. However, long simulation times can 

result in excessively time-consuming optimisation periods, given the large number of simulations 

involved. This issue has been addressed in this work by typically running a small number of 

simulations initially to establish a ‘quick’ simulation period that represents a reasonable trade-off 

between the chance of missed instability and computation time. When the final solution is chosen at 

the end of the whole process, a more extensive simulation is performed with a ‘long’ simulation period 

to verify stability beyond doubt. Values for the ‘quick’ simulation periods will depend strongly on the 

type of architecture being designed but typically lie in the region of a few seconds, and the ‘long’ 

simulation period is typically 8 times longer than the ‘quick’ period. Both of these parameters are 

defined alongside all the goals, parameters and constraints in the system file. 

The next step in the methodology is to consider robustness, which is an important measure of how 

parameter variation will affect performance or stability and a key contribution of this work. It cannot 

be assumed that the individuals in the final population of the GA step are the most robust, since they 

have only been optimized for SNR and RMS displacement, not tolerance to variation. For example, an 

individual in one of the earlier populations may have only slightly lower performance than one in the 
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final population but may be far more robust. For this reason, the robustness stage of the process must 

consider the full history of individuals, which we refer to as a census. Theoretically, Monte Carlo 

simulations could be performed on every individual in the census, however, with hundreds of 

simulations per individual required for the robustness analysis this would be too time consuming.  

Therefore, before Monte Carlo robustness analysis is performed, the census needs to be filtered to 

discard all individuals that do not meet the objectives (i.e., the goals). After this filtering process, there 

may still exist a very large number of acceptable individuals, many of which may be close to each 

other in the design space. To run Monte Carlo simulations on two individuals which are themselves 

very similar would be inefficient. For this reason a thinning algorithm has been implemented which 

thins out the filtered set to give a smaller, more unique, and dispersed set of fit individuals. The 

thinning algorithm works by considering each individual in turn and adding an adjustable margin 

either side of the parameters for that solution. Any other individuals in the census whose parameters all 

lie within the margin of the individual under consideration are removed. After the census is traversed a 

smaller number of distinct design points are left. The algorithm repeats this whole process, whilst 

adjusting the separation margin, until the desired number of solutions remains. Monte Carlo 

simulations are then performed on each remaining individual using user specified standard deviation 

values for all electrical and mechanical parameters of the system model. The results from these 

statistical simulations are analysed to determine how many of the Monte Carlo simulations passed the 

goals for that individual, and from this a yield is calculated. After the robustness process is complete, 

the result is therefore a list of all feasible and optimal individuals and their simulated yields, and from 

this list the user can choose the final design solution. 

3. Example 1: A 5th Order Low-Pass EMΣΔM for a MEMs Accelerometer 

3.1. System Setup and Initialization 

To demonstrate the design procedure we present a 5th order low-pass ΣΔM for a MEMS 

accelerometer with a sensing element fabricated in SOI (Silicon on Insulator). The main specifications 

of the sensor are listed in Table 1 and represent typical values for a high performance MEMS 

accelerometer. The Simulink model, shown in Figure 3, is a 5th order EMΣΔM with distributed 

feedback architecture described in [13] albeit for a sensing element with different parameters. The 

model consists of a second order lumped parameter representation of the sensing element (which is 

duplicated to compare the open loop and closed loop proof mass deflection), an ideal capacitive 

position measurement circuit with pick-off gain kpo and associated white noise of the first amplifier 

(1/f noise is neglected here, but could easily be included), a boost gain kbst, a lead-lag compensator 

with a zero and a pole frequency as design parameters, three integrators with associated gains k1, k2 

and k3, three feedback gains kf1, kf2 and kf3, a zero-order-hold, a 1 bit quantizer and the feedback 

arrangement in which an electrostatic force is acting on the proof mass in either positive or negative 

direction, depending on the quantizer state. During definition of the system architecture the designer 

must choose the level of model abstraction to implement for the individual blocks. For example, in the 

simplest case, gain blocks can be modelled as a multiplying constant, whereas a more complete 

approach may model bandwidth limitations in the form of a pole, and dynamic range limitations in the 
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form of limiting functions. This represents another trade-off in the process, since an increase in model 

complexity clearly results in increased simulation times. In practice the authors have found that a high 

level of abstraction is sufficient for many system architectures.  

Table 1. MEMS Accelerometer Parameters. 

Parameter Value 
Mass [kg] 1.7e−6 
Damping coefficient [N/ms] 3.5e−4
Spring constant [N/m] 5.5 
Nominal capacitance [pF] 5.5 
Nominal electrode gap [um] 6 
Bandwidth [kHz] 1 
Max. acceleration [G] +/−2.5 G 

Figure 3. Simulink model of a 5th order EMΣΔM for a MEMS accelerometer.  

 
 

In this example the ten parameters shown in Table 2 are assumed as design parameters which the 

GA will work on. The table also shows the range over which the parameters are varied. The lower and 

upper boundary need to be specified by the user and should be chosen by circuit implementation 

considerations; for example, typical values for the gain from proof mass displacement to voltage can 

be taken from the literature [8]. In fact, here we choose to vary the boost gain kbst, whereas the pick-off 

gain, kpo, representing the gain of the first amplifier, is assumed fixed at 400 kV/m. 

Table 2. Design Parameters for the Genetic Algorithm. 

GA design parameter Parameter range 
Boost gain kbst [V/V] 20–400 
Minor feedback loop gain kf1 [V/V] 0.1–2
Minor feedback loop gain kf2 [V/V] 0.1–2 
Minor feedback loop gain kf3 [V/V] 0.1–2 
Integrator gain k1 [V/V] 0.1–2 
Integrator gain k2 [V/V] 0.1–2 
Integrator gain k3 [V/V] 0.1–2 
Feedback voltage [V] 10–30 
Compensator zero frequency [kHz] 0.5–50 
Compensator pole frequency [kHz] 10–1,000 
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For the ΣΔM the oversampling ratio (OSR) needs to be specified. The OSR is related to the sensor 

bandwidth, BW and the sampling frequency fs by OSR = fs/(2 × BW). Here, we choose OSR = 64 

resulting in a sampling frequency of 128 kHz. Furthermore, the criteria (i.e., the goal values) for the 

GA to optimize need to be defined; in this example these are the SNR (to be maximized) and the root 

mean square (RMS) value of the proof mass deflection (to be minimized). Here, we choose pass goal 

values of a SNR > 100 dB and the RMS proof mass deflection <40 nm. Finally, the GA needs to have 

values for the number of individuals in each generation, and the number of generations; we choose 

here 200 and 15, respectively. The choice of population size and number of generations is a trade-off 

between simulation time, and the degree of design space exploration and individual diversity that will 

be achieved during the GA evolution process. In practice we have found that a population size in the 

order of 20 times the number of design parameters represents a good trade-off. Progress of the 

evolution can be monitored in real time since the program streams text results to the Matlab command 

window. When the SNR performance changes very little from generation to generation, this is a good 

indicator that peak performance has been achieved. Therefore, a large number of generations are often 

specified and the GA process halted when it is visually clear that peak fitness has been reached. 

Following this method can significantly reduce overall simulation time. 

3.2. Genetic Algorithm 

The GA is then run using 200 individuals, which are, within the specified range, randomly chosen 

parameter sets; for each individual a simulation is carried out and the SNR is calculated. This 

calculation is performed by a function ‘calcSNR’ available through the Delta Sigma Toolbox for 

Matlab [16]. For each simulation a row of values is recorded and displayed in the Matlab command 

window representing the design parameters and goal function values. Table 3 shows three blocks  

of 10 individuals each; the first block for generation 1, the second for generation 8, and the third for 

generation 15, which is the last one in this example. 

Table 3. Example Individuals in the Evolutionary Process. 

Individual/ 
generation 

Genetic algorithm design parameters Goal functions 
kbst 
(V/V) 

kf1 
(V/V) 

kf2 
(V/V) 

kf3 
(V/V) 

k1  
(V/V) 

k2  
(V/V) 

k3  
(V/V) 

Zero 
(Hz) 

Pole 
(Hz) 

kf1 
(V/V) 

SNR 
(dB) 

Disp. 
(m) 

B
lo

ck
 1

: 
 

In
d

iv
id

u
al

s 
50

–5
9 

of
 G

en
er

at
io

n
 1

 

50/1 234.49 0.96328 0.97271 1.13 1.97 1.21 0.70887 14.42 9,160 200,632 −19.21 326.20

51/1 94.01 0.85257 1.91 1.33 1.1 0.68428 1.17 25.96 8,819 163,056 −19.11 920.04

52/1 155.32 1.37 1.8 0.43793 1.22 1.23 1.47 22.28 27,150 139,900 −22.79 846.42

53/1 96.58 1.84 1.52 0.71009 0.57052 1.19 0.52997 25.5 46,26 391,552 −25.01 852.42

54/1 109.55 1.76 1.88 0.33214 0.72423 1.86 1.21 16.43 10,567 497,281 −22.71 1,030.00

55/1 195.72 0.4096 0.69417 0.17444 0.90656 1.49 1.63 13.92 24,260 230,138 −20.5 856.28

56/1 109.55 1.76 1.88 0.33214 0.72423 1.86 1.21 16.43 10,567 497,281 −22.71 1,030.00

57/1 51.13 0.54297 1.93 0.86304 1.28 1.08 1.64 15.49 1,664 98,432 −30.21 234.18

58/1 114.42 1.94 1.15 1.79 0.74525 1.77 1.72 25.95 11,089 503,748 −22.29 451.83

59/1 173.05 1.61 0.42045 1.75 1.37 1.81 0.99297 12.17 9,593 860,350 −26.48 634.67
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Table 3. Cont. 

B
lo

ck
 2

: 
 

In
d

iv
id

u
al

s 
50

–5
9 

of
 G

en
er

at
io

n
 8

 

50/8 189.17 0.87123 1.61 0.28068 0.7491 0.65026 1.31 20.68 2,301 130,096 −29.06 321.07

51/8 183.63 1.07 1.36 1.32 0.96871 0.70766 0.96289 23.03 4,139 51,573 −20.11 66.59

52/8 205.03 1.15 1.2 1.75 0.36596 0.78318 0.87712 23.05 5,466 96,872 104.63 0.0342

53/8 205.03 1.15 1.2 1.75 0.36596 0.78318 0.87712 23.05 5,466 96,872 104.63 0.0342

54/8 205.03 1.15 1.2 1.75 0.36596 0.78318 0.87712 23.05 5,466 96,872 104.63 0.0342

55/8 185.93 0.56781 0.72001 1.92 0.64756 0.8026 1.16 13.05 13,159 412,664 −16 82.72

56/8 22.41 0.59207 0.20479 1.59 0.25323 1.62 1.47 10.09 5,441 242,054 −23.79 11.16

57/8 27.41 0.7697 0.47903 1.58 0.32926 0.4721 1.44 13.98 5,234 251,351 60.91 0.8161

58/8 92.89 0.8883 1.49 1.7 0.58791 0.61525 0.67127 18.02 4,174 309,443 −1.46 193.27

59/8 148.94 0.9982 1.53 0.55979 1.66 0.57027 1.41 20.18 4,478 50,853 −16.32 63.21

B
lo

ck
 3

: 
 

In
d

iv
id

u
al

s 
50

–5
9 

of
 G

en
er

at
io

n
 1

5 

50/15 205.03 1.15 1.2 1.75 0.36596 0.78318 0.87712 23.05 4,442 78,727 109.24 0.03086

51/15 205.03 1.15 1.2 1.75 0.36596 0.78318 0.87712 23.05 4,423 78,390 109.21 0.03096

52/15 205.03 1.15 1.2 1.75 0.36596 0.9726 0.87712 23.05 4,508 79,906 −16.5 57.76

53/15 203.02 1.13 1.2 1.75 0.37593 0.77241 0.87096 23.05 4,404 78,053 109.15 0.03076

54/15 203.02 1.13 1.2 1.75 0.37593 0.77241 0.87096 23.05 4,551 80,664 108.15 0.03076

55/15 203.02 1.13 1.2 1.75 0.37593 0.77241 0.87096 23.05 4,551 80,664 108.15 0.03076

56/15 203.78 1.14 1.2 1.75 0.3703 0.78191 0.87604 23.05 4,162 73,759 107.81 0.03092

57/15 203.78 1.14 1.2 1.75 0.3703 0.78191 0.87604 23.05 4,162 73,759 107.81 0.03092

58/15 205.03 1.15 1.2 1.75 0.36596 0.78318 0.87477 23.05 5,252 93,083 107.18 0.03228

59/15 205.03 1.15 1.2 1.75 0.36596 0.78318 0.87712 23.05 4,420 78,348 109.19 0.03096

Examining the SNR column (2nd from the right), it can be seen that some SNR values are  

negative in the first block; this indicates an unstable system, as the SNR is a good indicator for system 

stability [13]. The last column is the proof mass deflection which in all cases of block 1 is higher  

than the specified goal value (<40 nm); in fact the values are physically impossible as they are larger 

than the electrode gap. Such large deflections are possible due to the output signal of the sensor block 

in the Simulink model not being limited to the physical constraints. Although model refinement could 

easily be added, in practice it is not necessary since the goal of minimising RMS displacement halts 

the evolution of these solutions. Not surprisingly, none of the randomly chosen individuals of 

generation 1 yields a working system. When examining the second block of 10 individuals belonging 

to generation 8, it can be seen that about half are still unstable, but there are now also some solutions 

which meet the specified SNR value and maximum allowed proof mass deflection. In the final block 

(generation 15) all but one individual meet the specified goal values, but there is still one which 

represents an unstable system as it has a negative SNR. 

3.3. Robustness Analysis 

The next step in the design process is robustness analysis which starts with a thinning and filtering 

algorithm. All individuals of all generations are stored in a matrix with 200 × 15 rows (number of 

individuals times number of generations). For the robustness analysis the same goal function values (a 

minimum SNR of 100 dB and a maximum RMS deflection of 40 nm) are chosen; if required these 

values can be modified at this point. The filtering algorithm simply discards the individuals that have a 

SNR < 100 dB or an RMS proof mass deflection >40 nm. The thinning algorithm now finds the most 

distinct individuals in the remaining design space, as explained in Section 2. Figures 4 and 5 show 
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scatter plots of the design parameters (for brevity only four gain constants are shown) before and after 

the filtering and thinning algorithm, respectively.  

Figure 4. Scatter plot for the EMΣΔM gain constants (k1–k2 and kf1–kf2) from the entire 

GA set of individuals including unfeasible designs. 

 

Figure 5. Scatter plot for the EMΣΔM gain constants (k1–k2 and kf1–kf2) of  

the 40 individuals remaining after thinning and filtering. 
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The number of individuals to be considered for the robustness analysis is specified as a user defined 

parameter, and is set to 40 here. Another user defined parameter sets the number of Monte Carlo 

simulations that will be performed for each individual; in this example 100. For each design parameter 

the user specifies a standard deviation providing a measure of parameter variation. The robustness 

analysis typically varies more design parameters than those explored by GA; for example the parameters 

of the sensing elements (its mass, damping coefficient and spring constant) were considered as fixed for 

the GA, but for the robustness analysis were varied by 2%, 25% and 5%, respectively, whereas the 

electronic gain constants optimized by the GA were varied only by 2%. This reflects the considerable 

fabrication tolerances that a micromachined sensing element typically exhibits. A function in the 

program generates 100 Gaussian distributed parameter sets based on a particular individual’s parameters 

(as the means) and the user supplied standard deviations. For each individual therefore, 100 simulations 

are run and the SNR and RMS displacement performance recorded. A yield value is calculated 

representing the percentage of the simulations for each individual that exceed the specified goal values. 

The user can then review the yield and performance of the investigated individuals and choose one as 

the final design. Here, the final parameter set is shown in Table 4; it has a SNR of 109.21 dB, an RMS 

proof mass displacement of 31 nm and a yield of 68%. Figure 6 shows the PSD of the output bitstream 

for these design parameters. 

Table 4. Final Design Parameters. 

GA design parameter Parameter value 
Boost gain kbst [V/V] 204.92 
Minor feedback loop gain kf1 [V/V] 1.14 
Minor feedback loop gain kf2 [V/V] 1.2 
Minor feedback loop gain kf3 [V/V] 1.75 
Integrator gain k1 [V/V] 0.37 
Integrator gain k2 [V/V] 0.78 
Integrator gain k3 [V/V] 0.87 
Feedback voltage [V] 23.05 
Compensator zero frequency [kHz] 4.413 
Compensator pole frequency [kHz] 78.22 

Figure 6. Power spectral density of the individual chosen as final solution. 
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4. Example 2: A 6th Order Band-Pass EMΣΔM for a MEMs Gyroscope 

A further example of the proposed design methodology is now presented for a continuous time,  

6th order band-pass EMΣΔM for a vibratory rate MEMS gyroscope fabricated in SOI technology,  

as described in [23]. Continuous time, band-pass EMΣΔM are a relatively recent development and  

are particularly difficult to design as the electrical filter part consists of resonators requiring both 

return-to-zero (RZ) and half-delay return-to-zero (HZ) digital to analogue conversion [14,24]. The 

mechanical parameters of the gyroscope are listed in Table 5 along with the main ΣΔM specifications.  

Table 5. Gyroscope and ΣΔM Parameters. 

Parameter Drive mode Sense mode 
Mass of proof mass [kg] 2e−6 2e−6 
Mechanical spring constant [N/m] 1,268 1,328 
Resonant frequency [Hz] 4,027 4,073 
Quality factor 216 85 
Pick-off gain [V/m] - 1e6 
Sampling frequency [Hz] - 32,768 
Oversampling ratio - 256 
Frequency of input angular rate [Hz] - 32 
Max. input angular rate [º/s] - 200 

The Simulink model is shown in Figure 7 and consists of a second order lumped model of the 

sensor, which is again duplicated to compare the open loop and closed loop proof mass deflection. The 

model includes an ideal pickoff circuit with gain kpo and associated white noise, a boost gain kbst, a 

lead-lag compensator, a zero-order-hold and 1 bit quantizer, four local feedback gains kf1 to kf4, and 

an electrostatic force feedback arrangement which acts on the proof mass in a direction depending on 

the quantizer output state. 

Figure 7. Simulink model of a six order continuous time, band-pass EMΣΔM for the sense 

mode of a MEMS gyroscope. 
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The genetic algorithm is then executed, which again creates and simulates an initial population of 

individuals, determining their fitness by combining their SNR and sense mode proof mass 

displacement. A combination of cross fertilisation, mutation, and elite preservation is used to create a 

new population and the evolution continues. After the specified number of generations, the algorithm 

halts, storing the entire multi generation census for the next step. Filtering and thinning is performed 

on the census results to ignore individuals which do not pass the specified goal values of 70 dB SNR 

and 20 nm RMS displacement, or are too close to one another. The individuals remaining after the 

thinning algorithm are feasible and distinct solutions, and are then used as the input to the Monte Carlo 

based robustness analysis of the next stage. A total of 200 Monte Carlo simulations are performed on 

each of these solutions using realistic standard deviations for all electrical and mechanical parameters, 

and from this a simulated yield is calculated and documented against the solution point. The designer 

then has the opportunity to choose a solution from this final list, trading off performance against yield 

for their particular application. In this case the parameters for the chosen design are shown in Table 6. 

A lengthy transient simulation is then performed to obtain the PSD of the output signal, which is 

shown in Figure 8. The solution performs well with a SNR of 92.4 dB within the 64 Hz signal 

bandwidth and as we expect, there is a pronounced band-pass noise shaping around the signal band. 

Table 6. Design Parameters for the Genetic Algorithm. 

GA design parameter Parameter range 
Boost gain, kbst [V/V] 834.08 
Minor feedback loop gain kf1 [V/V] 2.38 
Minor feedback loop gain kf2 [V/V] 0.819 
Minor feedback loop gain kf3 [V/V] 3.45 
Minor feedback loop gain kf4 [V/V] 1.37 
Feedback voltage [V] 11.61 
Compensator zero frequency [Hz] 769 
Compensator pole frequency [Hz] 29,970 

Figure 8. Power spectral density of the final gyroscope solution. 
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5. Discussion 

The two examples presented illustrate the usefulness of the methodology for the design of 

arbitrarily complex EMΣΔM. To the best of the authors’ knowledge this is the first time such a design 

methodology has been presented based on non-linear models. The design methodology for the majority 

of EMΣΔM presented in the literature is not described, which is an indication that a manual process 

relying on trial and error was used. This requires a considerable experience in ΣΔM and MEMS sensor 

design and hence has a high initial knowledge threshold. Even after sufficient knowledge has been 

gained it can often take weeks to develop a satisfactory system design, with no real certainty that the 

system is robust or even optimal. The proposed approach greatly expedites the design process and 

gives much greater confidence that the results are both optimal and robust. In some literature sources a 

design methodology for EMΣΔM is described based on root locus techniques [13] or directly on the 

transfer function [25]. However, this approach has two disadvantages: (i) it relies on a linearized model 

of the quantizer consisting of white quantisation noise and a quantizer gain which has limited validity 

since it does not consider the non-linear term introduced due to the dependence of the feedback force 

on the sensor mass position; and (ii) the linearized model is typically used to predict only the 

performance of the EMΣΔM, rather than its stability. The systematic approach proposed in [11] is also 

based on linear system analysis so suffers the same drawbacks and also does not consider tolerance to 

parameter variation which can easily lead to an unstable system. The designer is therefore left with an 

uncertainty as to how close the chosen parameter set is to the optimum solution that is robust  

in practice.  

The design methodology described here circumvents both drawbacks: it is based on a full non-linear 

system model and it yields a design solution that is very close to the optimum, as it takes into account 

both SNR and proof mass displacement as performance measures. Additional performance parameters, 

such as dynamic range and maximum input signal could be additionally included as optimization 

metrics as required. Another advantage is the designer’s total freedom in the initial choice of the 

control system architecture; whereas the EMΣΔM described in the literature to date all are adapted 

architectures of ΣΔM analogue to digital converters. Therefore, our methodology facilitates the 

exploration of novel architectures for EMΣΔM; one example is to have a two-channel ΣΔM for the 

sense mode of a gyroscope, one channel for the signal, the other for the quadrature error. Furthermore, 

the GA design parameter set could be extended such that different architectures, or loop orders could 

be available as part of the GA evolution, allowing extremely diverse design space exploration.  

The robustness analysis performed following the GA is a key contribution of the work, giving 

confidence in a design and ensuring manufacturability. Without this it is possible to design a system 

which may easily become unstable due to inevitable fabrication tolerances. As with any multi objective 

optimisation, there is no single optimal solution but instead a range of equally optimal solutions, which 

is why it is important for the designer to choose the final design solution based on a performance 

versus yield trade-off in the final step. This final solution can then be implemented in hardware, using 

standard circuit techniques, and hence is not discussed here; the reader is referred to e.g., [6,7,9,10]. 

Many design flows have been performed by the authors for a wide range of EMΣΔM architectures 

and they are confident to claim that the GA explores the design space well and finds an excellent 

design solution even for complex and non-linear design spaces with multiple objectives. A side benefit 
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of the approach is the insight gained from its use by those who have little experience in the area. With 

typical design times of a single day for complex architectures, the approach offers an extremely 

efficient alternative to manual design procedures which often take weeks.  

6. Conclusions 

The presented methodology allows the system level design of arbitrarily complex EMΣΔM with 

ease and in a short period of time. The design process relies on a GA that varies a set of system 

parameters and records the performance for each set. After a filtering and thinning step a robustness 

analysis is carried out to ensure system stability in the presence of fabrication tolerances, which can be 

considerable especially for micromachined sensors. The usefulness of the approach has been illustrated 

through two design examples including a 5th order low-pass EMΣΔM for a MEMS accelerometer, and 

a 6th order band-pass EMΣΔM for the sense mode of a MEMS gyroscope. In both cases the described 

methodology delivers near optimum system level design parameters. Compared with previously 

described design of EMΣΔM our methodology provides the users with greater confidence that the final 

design solution is near optimum and robust, ensuring stability in the presence of fabrication tolerances. 
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