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summary

The work aims to characterize the guasi-static mechanical behavior of the Ti6Al4V titanium
alloy at room temperature and to describe it by a phenomenological model.

The thesis is divided in four parts. The first one presents a literature review of the basic prop-
erties of titanium and its alloys (crystal structure, classification, deformation mechanisms),
then it focuses on the specific mechanical features of Ti6Al4V. It also proposes a state of art
in the field of the phenomenological constitutive laws used to model the mechanical behav-
iors of metals.

The second part deals with the experimental campaign conducted on a 0.6 mm thick Ti6Al4V
sheet. The devices and the tests are first described before giving the test results. The campaign
includes experiments with monotonic and complex strain paths (tension, compression, simple
shear, plane strain, Bauschinger tests, deep-drawing processes, layer compression tests). The
experimental results show that the material displays anisotropy in yield stress, r-ratios and
hardening, as well as a strength differential effect between tension and compression.

The third part describes the implementation of the yield criteria CPB06exn in the non-linear
finite element code LAGAMINE developed in MSM team. These criteria are selected to
model the yield locus of Ti6AI4V since they are able to take into account both the anisotropy
and the tension-compression asymmetry exhibited by the alloy. Several parameter identifica-
tions are performed using the classical simulated annealing algorithm. They determine that
CPBO06ex2 is required to represent the yield surface. The criterion is next associated to differ-
ent hardening formulations: (1) Voce isotropic law; (2) mixed Voce isotropic — Armstrong-
Frederick kinematic law; (3) model taking into account the evolution of the yield locus shape
with the deformation. The identification of the hardening parameters is achieved from the
monotonic and Bauschinger tests either by inverse method, or by the simulated annealing
method.

The last part of the thesis proposed a validation of the different modelings in the case of the
layer compression tests and the deep-drawing processes.
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Introduction

Chapter 1 Introduction

1.1. General context of the thesis

Nowadays, Ti6Al4V titanium alloy is widely used in various industrial sectors (Figure 1-1)
for its high strength-to-weight ratio, its good corrosion resistance and its biocompatibility.
Many applications can be found in aerospace (turbine engine, airframe applications), medical
(surgical implants), luxury automotive (valves, valve springs, connecting rods, rocker arms)
and petrochemical industries (heat exchangers, reactors), see Boyer et al. (1994), Lutjering
and Williams (2007). For example, recent investigations have been conducted to replace steel
in aircraft engine parts by Ti6Al4V and to reduce by 10% the mass of the structure (Wallon
Region project Winnomat 2 Fabulous, see Tuninetti (2014)).

a b

~~ | Titail plug

Ti manifold

Ti compressor spool
front part)

<

Ti booster spool

Ti booster case

Driling Deftick~—
[
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Catan
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Drilling Riser

/-Blaw out Preventor
Subsea Well Head

Figure 1-1 Examples of applications using Ti6Al4V titanium alloy in (a) aerospace, (b) defense,
(c) petrochemical industry, (d) medical industry.




The alloy consists of an « -phase which is hexagonal closed-packed (hcp) and a S -phase

which is body centered cubic (bcc). The volume fractions may be different, depending on heat
treatment and interstitial content. The microstructure is also affected by the mechanical treat-
ment and can show different geometrical arrangements of both phases (see Chapter 2). The
material exhibits a pronounced anisotropy and a strength asymmetry between tension and
compression.

Several studies have been performed to understand the mechanical behavior of Ti6AlI4V and
to model it, in moderate as well as in high strain rates and temperatures (see for instance Khan
et al. (2004), Khan et al. (2007), Peirs (2012), Picu and Majorell (2002), Salem and Semiatin
(2009)). However the development of phenomenological yield criteria for hcp metals is not
very significant. Indeed anisotropic formulations developed for materials with cubic structure
(Hill (1948), Karafillis and Boyce (1993), Ferron et al. (1994), Cazacu and Barlat (2003),
Rabahallah et al. (2009)) are still used in FEM simulations involving hcp metals. However
studies such as Kuwabara et al. (2001) show that classic plasticity models (J,-flow theory,
Hill (1948)) are not able to capture the observed response. In order to overcome this lack of
phenomenological formulations adapted to hcp metals, new criteria which are able to take into
account both plastic anisotropy and tension-compression asymmetry have recently been de-
veloped (Cazacu et al. (2006), Plunkett et al. (2008), Nixon et al. (2010)).

Based on this context, the present thesis which has been performed at the MS?F division from
the ArGEnCo department of the University of Liege proposes a comprehensive experimental
and theoretical investigation of the quasi-static mechanical behavior of Ti6Al4V at room tem-
perature. In order to complete this work successfully, several collaborations were led with
different scientific teams:

e Prof. O. Cazacu (University of Florida — REEF, USA) who helped in the development
and the implementation of the phenomenological constitutive law used into the finite
element code LAGAMINE to model hcp materials;

e Prof. T. Kuwabara (Tokyo University of Agriculture and Technology, Japan), Prof. S.
Thuillier (Université de Bretagne-Sud — LIMATB, France), Prof. G. Ferron
(Université Paul Verlaine-Metz — LPMM, France) and Prof. T. Balan (Arts et Métiers
ParisTech — LEM3, France) who helped in the achievement of some experimental
tests.

The thesis was also incorporated within the framework of the IAP project P6/24 (Physics
based multilevel mechanics of metals) which lasted from 2007 to 2011. Further interactions
held in the on-going IAP project P7/21 (INTEMATE — Multiscale mechanics of interface
dominated materials, 2012-2017).

1.2. Objectives of the thesis

The main objectives of the thesis are the following ones:

1. The achievement of a large experimental campaign in order to characterize the me-
chanical behavior of Ti6Al4V under monotonic and complex strain paths;
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2. The implementation of a phenomenological model adapted to describe the mechanical
behavior of Ti6AI4V into the finite element code LAGAMINE;

3. The identification of the parameters included in the proposed phenomenological mod-
eling based on the experimental tests conducted on the material;

4. The validation of the phenomenological model by comparing the finite element results
with the experimental data obtained from the tests under complex strain paths.

1.3. Contributions of the thesis

Three main original contributions provided by this thesis can be highlighted:

1. Generation of a large data base on the mechanical behavior of a 0.6 mm thick
Ti6Al4V sheet. This set of experimental data allowed a better understanding and a
quantification of the plastic anisotropy and the tension-compression asymmetry dis-
played by the material. In addition the results from layer compression tests (developed
from the works of Tuninetti (2014)) and deep-drawing processes were used to study
the ability of the modeling to predict the response of Ti6AI4V. It has to be noted that,
in order to acquire skills in the practice of laboratory work, | conducted the tensile,
plane strain, simple shear, Bauschinger and layer compression tests at the Materials
and Structures Mechanics Laboratory, and | participated in the achievement of the
deep-drawing tests by Prof. T. Balan at LEM3.

2. Implementation of the CPB06exn yield criteria family associated to a hardening for-
mulation taking into account the evolution of the yield locus shape into LAGAMINE
code. Since the experimental tests conducted on Ti6Al4V revealed anisotropy in hard-
ening, a model considering a dependence of the parameters with the plastic defor-
mation was developed with the help of Prof. O. Cazacu.

3. Development of a procedure to identify the material parameters based on the simulat-
ed annealing method. The formulation of the yield criteria CPB06exn does not enable
to easily determine the parameters from the experimental data (yield stresses and ten-
sile r-ratios). For this reason, the classical simulated annealing algorithm was selected
and adapted to fit the theoretical yield locus using the experimental one.

1.4. Content of the thesis

The thesis is divided into eight chapters. The first one is the present introduction which de-
scribes the context, the objectives and the contributions of the thesis.

Chapter 2 reviews some physical and metallurgical properties of titanium alloys, then focuses
on the specific features of Ti6AI4V.




Chapter 3 presents a state of the art in the field of the phenomenological yield criteria and the
hardening laws used to model the mechanical behavior of materials. A particular attention is
given to the yield criteria adapted to metals with a hcp crystal structure and to hardening for-
mulations taking into account the evolution of the yield locus shape with the plastic defor-
mation.

Chapter 4 lists the different devices which enabled the achievement of the experiments con-
ducted on Ti6Al4V sheet. The methodology used to analyse the results is then described for
the different tests (tension, compression, plane strain, simple shear, compression of a layer
stack, deep-drawing).

Chapter 5 deals with the results of the experimental campaign. The material characterization
reveals the anisotropy in vyield stresses, r-ratios and hardening exhibited by the studied
Ti6AIl4V sheet, as well as the strength differential effect between tension and compression.

Chapter 6 describes the implementation of the CPB06 yield criterion and its extensions
(CPBO06exn family) into the finite element code LAGAMINE. These criteria are associated to
two hardening formulations. The first one considers Voce isotropic hardening law combined
to Armstrong-Fredericks kinematic law, while the second model takes into account the evolu-
tion of the parameters included in the yield criteria with the plastic work.

Chapter 7 presents the parameter identification. The principle of different optimization meth-
ods is first explained. The identification of the initial and subsequent yield loci is then per-
formed using the classical simulated annealing algorithm, while the hardening parameters
involved in Voce and Armstrong-Frederick laws are determined by inverse method.

In Chapter 8, the validation of the different models proposed in this work is investigated in
the case of the layer compression tests and the deep-drawing processes by comparing the fi-
nite element predictions with the experimental results.

Finally, Chapter 9 proposes conclusions about the thesis and suggests further studies.

Five appendices can be found after Chapter 9. Three of these appendices concern the CPB06
yield criterion and particularly its convexity (appendix A), its insensitivity to hydrostatic pres-
sure (appendix B) and the computation of the associated stress potential gradient (appendix
E). The appendices C and D detail the determination of the stress-strain curves relative to the
plane strain tests and the computation of the yield stresses for different strain paths, respec-
tively.

The references are listed at the end of the manuscript.




Titanium and titanium based alloys

Chapter 2 Titanium and titanium
based alloys

A large part of this study concerns the experimental characterization of the quasi-static me-
chanical response displayed by Ti6Al4V titanium alloy under different loading conditions.
For any material, the observed behavior is intimately related to the physical properties and the
deformation mechanisms which can be activated. Thereby it seemed interesting to review
some basic characteristics of titanium and its alloys firstly, then to describe the specific fea-
tures of Ti6AI4V. This chapter provides physical and metallurgical data from literature which
enable to understand the macroscopic mechanical behavior of titanium alloys, especially the
investigated material.

2.1. Crystal structure

In Table 2-1 are shown some basic properties of titanium (Lutjering and Williams (2007)).
Pure titanium displays a hexagonal close-packed structure (a-phase) below 882°C (see Figure
2-1 and Figure 2-2). At temperatures higher than this limit called the g-transus, an allotropic
phase transformation occurs, changing the hexagonal structure to a body-centered cubic struc-
ture (p-phase). Titanium enters the liquid phase when reaching the melting temperature at
1670°C.

Melting temperature [°C] 1670
Allotropic transformation  — « [°C] 882
Young modulus at room temperature [GPa] 115
Yield stress level [MPa] 1000
Density [kg/m?3] 4500

Table 2-1 Important properties of titanium
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Figure 2-1 Unit cell and lattice parameters of the a-phase at room temperature and the g-phase at 900°C

1670°C

Figure 2-2 Allotropic transformation of titanium

Alloying elements can influence the f-transus of pure titanium and are usually classified into
three different types:

- The a-stabilizing elements increase the f-transus with increasing solute content (see
Figure 2-3). Aluminum is the most widely used alloying element in titanium alloys
owing to its large solubility in both the o- and S-phases. Oxygen (used to modify the
strength level), carbon and nitrogen are other examples of a-stabilizers.

- The B-stabilizing elements decreases the S-transus with increasing solute content (see
Figure 2-3). They are divided into two categories:

o f-isomorphous elements (V, Mo, Nb, ...) which make possible the stabiliza-
tion of the S-phase to room temperature when used in sufficient concentra-
tions.

o f-eutectoid elements (Cr, Fe, Si, ...) which can lead to the formation of inter-
metallic compounds TixAy.

- The neutral elements (Zr, Sn) which have no or a weak influence on the g-transus.

-
|
B "
osBN/ B+ TixAy
/ o+ TixAy *

T

g T
%p T %p T % neutral
« stabilizer 3 stabilizer neutral
3 isomorphous | eutectoid
(AlLO,N,C) (V,Mo,Nb, Ta) (Fe,Mn,Cr,Ni,Cu,Si.H) (Zr,Sn)

Figure 2-3 Schematic phase diagrams showing the effect of alloying elements (LUtjering and Williams
(2007))




Titanium and titanium based alloys

Several binary phase diagrams, as illustrated in Figure 2-4, can be found in Boyer et al.
(1994) and Lutjering and Williams (2007). Generally, it is to be noted that most commercial
titanium alloys include more than two elements. In principle, ternary or quaternary phase dia-
grams (see Figure 2-5) should be used. In practice, only binary diagrams are used as a qualita-

tive guideline.
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Figure 2-4 Ti-Al phase diagram (LUtjering and Williams (2007))
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Figure 2-5 Isothermal sections of the ternary Ti-Al-V phase diagram at different temperatures (Boyer et al.
(1994)); the black dot corresponds to Ti6AIl4V titanium alloy




2.2. Alloy classification

According to their position in a pseudo-binary section through a g-isomorphous phase dia-
gram (Figure 2-6), commercial titanium alloys are generally classified as follows:

- a-alloys are characterized by satisfactory strength, toughness, creep resistance and
weldability. They are suitable for cryogenic applications owing to the absence of a
ductile-brittle transformation. The S-phase volume fraction is low (2-5%).

- at+pB-alloys are widely used. They generally display high strength at room and moder-
ate temperatures. Their properties can be controlled by heat treatments. The group of
o+ f-alloys has a range from the o/ a+f phase boundary up to the intersection of the
Ms-line with room temperature happens. The Ms-line represents the boundary from
which a martensitic transformation occurs when fast cooling from the S-phase domain
to room temperature. The S-phase volume fraction may vary from 10 to 50% at room
temperature.

- PBalloys are actually metastable p-alloys owing to their location in the equilibrium
o+ phase region®. They are interesting for their extreme formability, but are unsuita-
ble for low temperature applications. A characteristic feature of these alloys is that
they do not transform martensitically upon fast cooling from the S-phase domain.

|
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I \ o
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Figure 2-6 Schematic pseudo-binary section through a S-isomorphous phase diagram (Lutjering and
Williams (2007))

! Actually the stable S-alloys do not exist as commercial materials. This is the reason why the expression /-
alloys” is commonly used to refer to metastable S-alloys.
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2.3. Deformation mechanisms

The plastic deformation of crystalline materials is related to the slip of some crystallographic
planes which is due to the motion of dislocations. Usually, the slip planes and the slip direc-
tions are those with the highest packing density. In the case of single crystals, slip systems are
activated when the applied stress o reaches a critical value depending on the critical resolved

shear stress (CRSS) 7, the angle ¢ between the loading direction and the normal to the slip
plane n, and the angle A between the loading direction and the slip direction m (see Figure
2-7). This condition is given by Schmid’s law for each slip system characterized by m and n:

L 2.1)
COS¢@.CoS A

where cosg.cos A is called the Schmid factor and ranges from 0 to 0.5.

()

N~ -
slip
plane

e)
Figure 2-7 Determination of the CRSS

In the case of polycrystals, the conventional dislocation glide on slip systems remains the
main source of plastic deformation, but the behavior significantly differs from the one of sin-
gle crystals. Indeed, polycrystalline materials include numerous crystals with different orien-
tations and having common boundaries. In order to satisfy the stress and strain continuity
across the grain boundaries, several slip systems are activated and the geometrically necessary
dislocations appear due to strain gradient.

In the following sections, the main slip systems which can be activated in titanium and its
alloys are introduced. In addition, some details are given about twinning which may play an
important role in the response of these materials.
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2.3.1. Slip systems

Before detailing the different slip systems in titanium, it is advisable to give a brief summary
of the Miller index notation.

In crystallography, the lattice planes are defined by their Miller indices, i.e. three integers
related to the intersections between the plane and the coordinate axes (Figure 2-8). If &, a,,
a, denote these intersections, the Miller indices h, k, | are respectively given by:

=3 1-4 2.2)
&,

8,

hd
El
where d is the smallest common denominator of a, a,, a,. A lattice plane is designated by
(hk I) while the notation {h k I} denotes the set of the equivalent planes.

(0,a,,0)

(a,,0,0)

Figure 2-8 Miller indices

In a similar way, the lattice directions are expressed by three integers u, v, w proportional to
the components of the directional unit vector. A lattice direction is expressed by [uvw]

while the set of the equivalent directions is denoted by (u v wy).

In the case of a hexagonal system, it is convenient to use four coordinate axes, as shown in
Figure 2-9. Thereby it is possible to use a four-digit set of Miller-Bravais indices (h,k, i, 1)

where i is a redundant index defined by:
i=—h-k (2.3)

The advantage of this notation for labeling planes and directions in a hexagonal lattice is to
make the permutation symmetries apparent.

12
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The main slip directions observed in the hexagonal a-phase of titanium and titanium alloys
are those of the type (1120)? also named (a)-direction. Three different categories of slip

planes are associated to this direction:

- The basal planes (0002)
- The prismatic planes {1010}
- The pyramidal planes {1011}

It is also observed the presence of (c+a) dislocations ((1123) direction) which is explained
by the fact that, when the c-axis of a grain is oriented along the direction of the applied stress,
(a) dislocations cannot be activated owing to the null value of their Schmid factor. From the
possible slip planes, {1011{(1123) and {1122}(1123) slip systems are feasible. The second

one is more likely to be activated because of its high Schmid factor when the loading direc-
tion coincides with the c-axis. A schematic view of the different slip planes and slip directions
IS given in Figure 2-9. Table 2-2 lists the main slip systems and their number.

Concerning the bce S-phase, the main slip systems are {110}(111) and {112}(111) (see Table
2-2). Some studies (e.g. Gil Sevillano et al. (1980), Turkmen et al. (2002)) include other slip
systems such as {123}(111).

<c +a> = <1123> {1011} = pyramidal plane
{1122} — il . o
) 1 UL~ {1010} = prismatic plane
=
==
]
1
a, : é
\\ ' é \ <1120>
N é I
—=c" f b P 4
= a
basal plane = (0002) = >
-~

a4

Figure 2-9 Representation of the different slip planes and slip directions in the hexagonal a-phase (Lutjering
and Williams (2007))

2 In Miller notation, a negative index is written with a bar above the corresponding integer.
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Slip direction  Slip plane :l_i:;?er Otr?:jigpseﬁjgrﬂs
hep a-phase | (1120) (0002) 3 2
(1120) {1010} 3 2
(1120) {1012} 6 4
(1123) {1122} 6 5
bee S-phase (111) {110} 12
(111) {112} 12

Table 2-2 Main slip systems in the hcp e-phase and bee S-phase

2.3.2. Twinning

Twinning is a deformation mechanism characterized by a re-orientation of the crystal lattice
(Figure 2-10). The atoms move in such a way that the initial lattice and the twinned part are
symmetric with respect to a plane called twin plane. This mechanism has the effect of chang-
ing the orientation of the crystal lattice and consequently the possible slip planes with respect
to the external loading. Therefore, owing to this re-orientation, some dislocations can be acti-
vated in the twinned part.

U P 0V
:\\1\\\\.‘.\\\\\\\
HIAA NN NN NN
A W Y Y Y W O W L W WL
A VR LRV VTR
] -

. n
."—'r
- _K1

Figure 2-10 Re-orientation of the crystal lattice owing to twinning (Marketz et al. (2003)): K, and 7, are the
twinning plane and shear direction, respectively

Twinning is a significant deformation mechanism in commercially pure (CP) titanium and
some ¢ titanium alloys, but is almost inhibited in o+/ alloys due to the small phase dimen-
sions (see Section 2.4.2), high solute content and presence of TizAl precipitates.

The main twinning systems observed in pure o titanium are {1012}(1011), {1121}(1126)
and {1152} (11§§>. Under tension loading parallel to the c-axis, the first two modes are acti-
vated, the most frequent being {1012} (1011) twin mode. In the case of a compression along

the c-axis, {1152} (11§§> twins are activated. As said previously, twinning plays a major role

in pure titanium or CP titanium with low oxygen concentrations. Indeed, the occurrence of
twins decreases when increasing the solute atom concentrations in « titanium, such as oxygen
or aluminum.

14
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2.4. Features of Ti6AI4V titanium alloy

Ti6Al4V, also named TAGV or Ti64, is the most widely used titanium alloy. One of its usages
is found in the aerospace industry. The following list gives several applications in this field
(Boyer et al. (1994)):

- engine components (blades, discs, wheels) ;

- complex housings ;

- airframe components (cargo-handling equipment, flow diverters, torque tubes for
brakes, helicopter rotor hubs);

- missile and space components (wings, missile bodies, optical sensor housings, ord-
nance).

This work focusing on the mechanical characterization of Ti6Al4V, specific features of the
alloy are given in the next sections.

2.4.1. Chemical composition

As suggested by the designation of the alloy, Ti6AlI4V contains about 6% of aluminum and
4% of vanadium. The other important alloying elements are oxygen, nitrogen and iron. These
elements, in particular oxygen and nitrogen, increase the strength when increasing their con-
tent. Conversely, it is possible to improve the ductility thanks to lower additions of oxygen,
nitrogen and aluminum. Table 2-3 lists the chemical composition of this alloy in different
studies.

Elements Ti [%] Al [%] V [%] O[%] N[ppm] Clppm] HIppm] Fe [%]
Follansbee and Gray
(1989) Bal. 6.4 4.0 0.18 10 650 - 0.13
Philippe et al. (1995) Bal. 6.08 3.87 0.1474 71 231 - 0.15
Medina Perilla and 6.03- 3.83- 0.10- 0.13-
Gil Sevillano (1995) Bal. 6.11 3.90 0.11 40-50 30-80 <5 0.16
Fundenberger et al.
(1997) Bal. 6.08 3.87 0.147 71 230 11 0.15
Nemat-Nasser et al. 6.21- 3.61- 0.19-
(2001) Bal. 6.33 413 0.19-0.2  80-100  100-200 6-20 021
Majorell et al. (2002) Bal. 6.31 4.06 0.18 80 160 9-14 1.16
Khan et al. (2004) Bal. 5.97 4.09 0.174 80 430 41 0.15
. 6.22- 3.93- 0.19- 80.0- 86.0-
Gilles et al. (2011) Bal. 6.27 400 0.20 60.0 90.0 100.0 0.16

Table 2-3 Chemical composition of Ti6Al4V found in the literature
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2.4.2. Microstructure

As shown in Figure 2-5 and Figure 2-11, Ti6Al4V is an o+f alloy at room and higher tem-
peratures (the p-transus is ~995°C or 1268 K). The volume fractions of both « and S-phases
and their geometrical arrangements may be different, depending on the thermomechanical
treatment (Figure 2-11) and the interstitial content (mainly oxygen). Usually, the S-phase vol-
ume fraction does not exceed 10% (see Philippe et al. (1995), Medina Perilla and Gil
Sevillano (1995), Fundenberger et al. (1997), Bridier et al. (2005)).

In general, three different microstructures can be distinguished (Boyer et al. (1994)):

- Lamellar structures are readily obtained by slow cooling into the two-phase domain
from above the S-transus. The nucleation and the growth of the a-phase in plate form
starting from fS-grain boundaries mainly depend on the cooling rate.

- Equiaxed microstructures can be produced by extensive mechanical working in the
o+ domain. This process causes the breakup of lamellar a-grains into equiaxed a-
grains. The so-called mill-annealed microstructure is obtained by subsequent anneal-
ing at about 700°C. Another technique to produce equiaxed microstructures involves a
recrystallization annealing of 4h at 925°C followed by slow cooling, which results in
coarse a-grains.

- Bimodal type microstructures consist of isolated primary a-grains in a transformed
S-matrix. They can be produced by a 1h annealing at 955°C followed by water
guenching or air cooling, and aging at 600°C.

Material: RN A M Y ., Thermal treatment with three
Ti-6A-4V ZIPFNET . o Sox7%  different cooling rates.
NENR T BN 24 b g \(

1050°C

850°C

~ 100x ~ 500x

Figure 2-11 Influence of thermal treatment and cooling rate on the microstructure of Ti6Al4V (Boyer et al.
(1994))
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2.4.3. Mechanical properties

2.4.3.1. Elastic properties

According to the literature, Young modulus of Ti6Al4V varies from 100 to 130 GPa while
Poisson ratio ranges from 0.26 to 0.36 at room temperature (Boyer et al. (1994); Fukuhara
and Sanpei (1993); Bruno and Dunn (1997)). The elastic coefficients are influenced by:

- the volume fraction of the phases and thus the thermomechanical treatment
- the specimen orientation in textured rolled sheet

- the interstitial and substitutional elements

- ageing

2.4.3.2. Slip systems and twinning

Owing to the reduced number of available slip systems compared to bcc and fcc crystal lattic-
es, hcp metals generally display a pronounced anisotropic behavior. This anisotropy is also
influenced by the initial texture of the material, as observed in Lowden and Hutchinson
(1975) in the case of Ti6Al4V (Figure 2-12). In general, the experimental analysis of active
slip systems by EBSD or TEM reveals the following decreasing order of contribution
(Philippe et al. (1995); Fundenberger et al. (1997); Bridier et al. (2005)):

- Prismatic slip {1010} (11§0>
- Basal slip (0002)(1120)
- Pyramidal slip {1071}(1123)

Another specific feature exhibited by hcp materials is the strength asymmetry between tension
and compression as shown in Figure 2-13 (Graff et al. (2007); Lee et al. (2008); Kim et al.
(2008); Medina Perilla and Gil Sevillano (1995); Fundenberger et al. (1997)). For most of
them, this strength differential (SD) effect is due to the directionality of twinning. However,
because of its high aluminum content, Ti6Al4V displays few twins (Lowden and Hutchinson
(1975); Philippe et al. (1995); Medina Perilla and Gil Sevillano (1995); Fundenberger et al.

(1997)). Recently, Tirry et al. (2010) have shown that only the {1012} twin mode seems to be

activated for monotonic deformations, moderate strains and strain rates, but a very low vol-
ume fraction is measured (less than 1%). Later Coghe et al. (2012) have investigated the im-
portance of twinning in a Ti6AI4V titanium alloy subjected to static and dynamic compres-
sion tests. Depending on the orientation of the loading direction with respect to the initial tex-
ture, the twin fraction can reach a value of 4.8% in the static case and 8.9% in the dynamic

case. Lowden and Hutchinson (1975) suggested that the (c+a) dislocations play a significant

role in plasticity of Ti6Al4V at room temperature and can explain the SD effect. It was ob-
served that their motion is asymmetric, i.e. the CRSS is different in the forward and backward
directions, and unusually sensitive to hydrostatic pressure. Later, Jones and Hutchinson

(1981) showed the occurrence of cross-slip when the <C+a> dislocations move on {10i1}
planes in uniaxial compression along the c-axis, while cross-slip is not active in uniaxial ten-
sion. This results in asymmetry in the CRSS of (c+a) slip systems and thus also contributes
to the occurrence of SD effects.
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Figure 2-12 Initial texture ((0002) pole figure) and yield loci at different equivalent strains of two batches of
Ti6Al4V in sheet form: (a) material with high density of basal poles along ND; (b) material with strong max-
imum along TD (Lowden and Hutchinson (1975))
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Figure 2-13 Anisotropy in tensile and compressive yield stresses for Ti6Al4V after Fundenberger et al.
(1997): a significant tension-compression asymmetry in yielding is observed along TD
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2.4.3.3. Effect of temperature and strain rate

Although this subject is not developed in this work, it has to be noted that Ti6AI4V is very
sensitive to temperature and strain rate (see Figure 2-14). Several studies have been devoted
to understand and model its mechanical behavior at high strain rates and high temperatures
(Khan et al. (2004); Khan et al. (2007); Macdougall and Harding (1999); Majorell et al.
(2002); Picu and Majorell (2002); etc.). In Figure 2-14, it can be noticed that:

- the yield stress and the work-hardening respectively increases and decreases when in-
creasing the strain rate;
- the flow stress decreases when increasing the temperature.
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Figure 2-14 Influence of the temperature and the strain rate on the mechanical behavior of Ti6Al4V and
correlations with Khan-Huang-Liang (KHL) and Johnson-Cook (JC) models: (a) compression tests at differ-
ent temperatures and 10° s™; (b) compression tests at room temperature and different strain rates (Khan et al.

(2004))

In addition, Majorell et al. (2002) showed that the decrease in flow stress with temperature is
significant up to 1255 K. Above this value, the flow stress becomes almost insensitive to tem-
perature. This marked difference in the mechanical behavior is due to the change in micro-
structure. Indeed, the S-phase volume fraction increases above 950 K until the S-transus. At
1230 K, the amount of S-phase is larger than 50% and begins to play a sizeable role on the
material response.

2.5. Conclusion

This chapter defines the main physical and metallurgical properties of titanium alloys and
especially Ti6Al4V. The microstructure and its evolution during the deformation of the mate-
rial allow understanding and predicting the mechanical behavior at the macroscale. For in-
stance, they can explain the dependence of the hardening with the strain path. However, in
this work, it is proposed to use a phenomenological analysis which has to be able to model the
macroscopic behavior of the material without modeling the microstructure evolution.
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Chapter 3 Constitutive modeling of
sheet metal mechanical behavior

The plastic mechanical behavior exhibited by materials can be described by different ap-
proaches. In the industrial simulations, phenomenological formulations (e.g. Hill (1948),
Barlat et al. (1991), Karafillis and Boyce (1993)) are often used owing to their simplicity to
be implemented in a finite element code, their reasonable accuracy and moderate CPU time.
On the other hand, micro-macro approaches (e.g. Sachs (1928), Taylor (1938), Delannay et
al. (2002), Van Houtte et al. (2005)) take into account the physical mechanisms at the micro-
scopic level during the plastic deformation in relation with the metallurgical texture of the
material, which explains their enhanced predictability of the mechanical behavior. Neverthe-
less, as the microscopic models are not the subject of this work, they will not be discussed
since they are not the subject of the thesis.

Phenomenological models are based on experimental observations. The onset of plasticity is
described by an analytical yield function while the hardening is characterized by a flow rule.
Both the yield function and the hardening law allow the subsequent plastic deformations to be
computed for any loading and geometry. Depending on the specific mechanical properties
which can be displayed by materials, phenomenological yield criterions can be sorted in dif-
ferent ways: isotropic or anisotropic formulations; symmetric or asymmetric functions; pres-
sure sensitive or insensitive criteria; ...

This chapter is divided into 3 sections. The first one introduces the notion of stress and strain
rate potentials, while the second section deals with formulations for the description of the
hardening. The last section gives some conclusions concerning the constitutive models.
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3.1. Stress and strain rate potentials

The onset of plastic flow is generally described by a continuous yield function ¢(O'ij), also

called stress potential and depending on the components o; of the Cauchy stress tensor. The
yield locus is defined by the following relationship:

go(aij ) =0, (3.1)

where o, is a reference stress (for instance the uniaxial yield stress in tension along a specific

direction). Based on the postulate stated by Drucker (1950) which gives a general definition
of the stable work-hardening materials, it can be shown that this function must be convex in
the space of the stress components. Another consequence is the normality of the strain rate
vector to the yield surface, which induces that the flow rule is associated:

p_/ia_go

P =
! 6(7”

3.2)

A isa positive scalar factor called plastic multiplier while 5”" are the components of the plas-

tic strain rate tensor. In most materials, the associated flow rule is a valid assumption. How-
ever, it can be violated, especially in soil mechanics. In this case, a plastic potential function
@, different from the yield surface, must be defined. The non-associated flow rule is then
expressed as:

& =A— (3.3)

Another feature of most yield criterions, mainly for metals with low porosity, is the hydrostat-
ic pressure insensitivity. Mathematically, it means that the yield function ¢ is independent of

the first invariant of the stress tensor |, = tr(o) =0;.

Based on the plastic work equivalence principle, Ziegler (1983) and Hill (1987) proved that it
is possible to associate a strain rate potential y(£!) with any convex stress potential ¢(oy; ).

This strain rate potential is defined by:

w(&))=A' (3.4)
with the following associated flow rule:
, Oy
o, =0y E (3.5)

It has to be noted that o, =0, and A =A' when the stress potential ¢ and the dual strain rate
potential y are homogeneous of degree 1. In this section, some isotropic formulations are
first presented. Next, a review of few anisotropic formulations, defined in the material
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Constitutive modeling of sheet metal mechanical behavior

orthotropy axes, is proposed by choosing the following convention: direction 1 = rolling di-
rection (RD), direction 2 = transverse direction (TD), direction 3 = normal direction (ND). It
is worth noting that a particular attention is given to criterions adapted to describe the yield
locus of hexagonal closed-packed materials (e.g. Cazacu et al. (2006); Plunkett et al. (2008);

L)
3.1.1. Isotropic formulations

The two best-known isotropic yield criterions were developed by Von Mises and Tresca. The
first one assumes that the yield limit is independent of the third invariant of the stress deviator

J, = %tr (s*)- The Von Mises criterion is of the form:

1
p= \/E[(O'n —Op )2 Jr(Gzz _(733)2 Jr(0-33 _0'11)2 +6(0122 +0}, +O'223)J =o' (3.6)

o' being the yield stress under uniaxial tension. It can be formulated in the following way:

p=,/3),=0" (3.7)

1
where J, = Etr(sz) is the second invariant of the stress deviator s = c—%tr(c)l , | denoting

the second-order identity tensor. It can be defined a dual potential which is written as:

2000\ (02 . ()2 )2 )2 o] 2
v +len) +(an) va(aa) +2(an) v2es) | = e 69

which is the definition of the Von Mises equivalent plastic strain rate.

In the Tresca yield criterion, the yield limit is linked to the maximal shear stress:

(pzsup(‘ai —O'J-DIZZ'Y (3.9)

i#]

where o; is the i-th eigenvalue of the stress tensor (1=1,2,3) and 7, is the yield stress in
pure shear . It can also be written as:

=433 -273% -367.J2 +967,J, = 647, (3.10)
where J, = %tr(sﬁ) is the third invariant of the stress deviator.
The shape of the Von Mises yield locus in the section o, =0 is an ellipse centered in the

origin whose major axis is inclined at 45° to the o, axis. The Tresca yield locus is a hexagon
inscribed in this ellipse (Figure 3-1).
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Drucker (1949) proposed the following yield criterion:
9=32—cdZ =K (3.11)

T
o

6
where ¢ is a constant and k* =27( 3 j . This criterion was introduced to model pressure-

dependent materials such as rock, concrete and so on. The convexity of the yield surface is

ensured when —% <c<2.25.

Later, Hosford (1972) suggested the following formulation:
(p:|02—03|a+|0'3—0'1|a+|01—0'2|a:2(O'T) (3.12)

where a is an integer > 1and o,, o,, o, are the principal stresses. This criterion is reduced

to the Von Mises criterion for a=2 and to the Tresca criterion for a —oo. The yield locus
for any intermediate value of a is located between the first two surfaces introduced previously
(see some examples in Figure 3-1).

1.5
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‘6 B | y’
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normalized o,

Figure 3-1 Comparison between Von Mises, Tresca and Hosford (1972) yield loci in the biaxial plane o, =0

The yield loci described by the Von Mises, Tresca and Hosford (1972) criteria are symmetric,
i.e. the uniaxial yield stresses in tension and compression along a same direction are identical.
Nevertheless some materials such as hcp metals display an asymmetry between tension and
compression due to deformation mechanisms such as twinning or directional slip (Hosford
(1993)). In order to take into account this strength differential effect, Cazacu and Barlat
(2004) proposed the following criterion:

p=(3,)"-c), =% (3.13)
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where ¢ is a material parameter which depends on the uniaxial yield stresses in tension (o)
and compression (o ):

3o} ()]
2| (") +(o°) |

It is worth noting that the Von Mises yield criterion is recovered when ¢=0,i.e. ' =c°. In
order to ensure the convexity of the function, the range of ¢ must be [—Sﬁ/ 2,331 4] :

(3.14)

Cazacu et al. (2006) introduced another criterion of the form:
@ =(|s,|-ks,)" +(|s;|—ks,) +(]ss]—ks;) (3.15)
where s, S,, S, are the eigenvalues of the stress deviator while a is the degree of homogene-

ity and k is the strength differential parameter. Similarly to the constant ¢ defined previous-
ly, k can be expressed in terms of the uniaxial yield stresses in tension and compression:

14{{}
k =;:T (3.16)
1+h[o_cj

with

_ \o (3.17)

=0
7\
q
3
N—
N
Qo
|
N
7\
JE
O d
N——
Qo
Qo

It can be shown that the convexity is ensured when a>1 and k € [—1.0,1.0] (see Appendix A

for the proof). The Von Mises yield criterion is recovered when k =0 (o' =o°, i.e. no ten-
sion-compression asymmetry) and a =2. Figure 3-2 shows the shape of the yield locus in the
biaxial plane (o, =0) for different values of the parameter k (a is fixed to 2). It can actually

be noticed that, higher k is in absolute value, higher the strength asymmetry is. Moreover, it
can be observed that, for the upper and lower bound values of k, the yield function (3.15)
corresponds to a triangle with rounded vertices.
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Figure 3-2 Influence of the parameter k on the yield locus shape (section o, =0 in the biaxial plane)

3.1.2. Anisotropic formulations

Generally, sheet metals display anisotropy owing to the texture developed in the rolling pro-
cesses. Two ways can be used to take into account the plastic anisotropy:

e the generalized invariants approach which consists in constructing generalizations of
the invariants to anisotropic conditions;

e the linear transformation approach which consists in applying a fourth-order symmet-
ric and orthotropic tensor on the stress tensor (or its deviator) or on the plastic strain
rate tensor.

The most famous anisotropic yield criterion was developed by Hill (1948). It is used in many
finite element codes due to its simplicity to implement. This criterion is an extension of the
Von Mises criterion to anisotropy. The yield function is of the form:

¢7=\/%[F(0'22 —0'33)2 +G (o —0'11)2 +H(oy —0'22)2 +2Lo% +2Mo’ +2No-122] =0, (3.18)

where F, G, H, L, M, N are material parameters while o is the yield stress under uni-

axial tension in a reference direction (in general the rolling direction). In the case of a sheet,
the identification of the parameters can readily be achieved with three experimental tensile
tests along RD, TD and 45° from RD. It can be shown that the exact dual potential is given

by:

v \/%(g-;;)z +%(g';2 y +%(g';3)2 PR e (s 2 (an) (3.19)

where A=FH + FG + HG .

Barlat et al. (1991) proposed an anisotropic extension of the Hosford (1972) isotropic yield
criterion to a general stress state. The anisotropy is introduced by applying a fourth-order
symmetric and orthotropic tensor L on the stress tensor:
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s=L:o (3.20)

where “:” denotes the double contracted product between a fourth-order tensor and a second-
order tensor:

(L:o), = Loy (3.21)

In (3.12), the principal stresses are substituted by the eigenvalues s,, s,, s, of the trans-
formed tensor s:

p=|s, 5 +|s; =8, +]s,— s, =2(o" )a (3.22)

Relative to the orthotropy axes (RD,TD,ND), the tensor L is represented by:

GG G G g g g
3 3 3

- R
3 3

L=| & 4 oare o4 (3.23)

3 3 3

0 0 0 ¢ 00

0 0 0¢ 0

0 0 0 0 0 ¢

where ¢, (i=1,2,...,6) are material parameters.

Karafillis and Boyce (1993) used the same principle as Barlat et al. (1991) to suggest the fol-
lowing yield function:

p=(1-c)g+ch =2(c") (3.24)

where b is the degree of homogeneity while ¢ and ¢, are given by:

¢1=|sl—sz|b+|sz—53|b+|sa—sl|b (3.25)
3b
b= (8 +1s." +Is) (3.26)

Cazacu and Barlat (2001) extended Drucker (1949) yield criterion to orthotropy by replacing
the invariants J, and J, by JJ and J, respectively:

p=(3) ~c(39) = 27["—;} (3.27)
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where:

a
‘Jg = %(0'11 _0'22)2 +E2(522 _0'33)2 +%(O'11 _0'33)2

2 2 2
+ 8,07, +07; 1850,

(3.28)

1 1 1

3 = E(bl+b2)afl+5(b3+b4)a§2+§[2(b1+b4)—b2—bsja;
1 1

- 5 (blo-zz +b,04 ) O-121 - 5 (b30-33 + b40-11) 0-222

1 2
- 5[(b1_b2+b4)o'11+(b1_b3+b4)022]033 (3.29)

2 2
+ §(b1 +b4)0'110'220'33 _%I:Zbgo-zg —byo, —(2b9 —bS)O'M]
2 2
%[mea% =050, = (20 ~b5) 0, ]_%[(bfi +b,) oy, — b0, — b70'33:|

+  20,01,030,
This criterion involves 18 material parameters in 3D analysis (6 for JS and 11 for J3°).

As explained in Chapter 2 and the previous section, hcp materials exhibit both anisotropy and
asymmetry in yielding. In order to take into account these features, Cazacu and Barlat (2004)
proposed to extend the yield function (3.13) as follows:

p=(39)" -ca2 =7 (3.30)

with JJ and J; defined hereabove by Equations (3.28) and (3.29), respectively.

In Cazacu et al. (2006), the isotropic yield criterion (3.15) is extended to orthotropy by apply-
ing a fourth-order symmetric and orthotropic tensor C on the stress deviator, i.e. S;, S,, S,

are substituted by the principal values X, , X, , 2, of a transformed tensor X defined as:
X=C:s (3.31)
In the orthotropy axes, C is represented in VVoigt notation by:

Cll C12 ClS 0
ClZ C22 C23 0
Co Cp Gy O
0 0 0 C,
0 0 0 Cg
0 0 0 0 C,

0
0
0

3.32
0 (3.32)

0
0
0
0
0

The resulting anisotropic yield criterion, called CPBO6, is of the form:
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Constitutive modeling of sheet metal mechanical behavior

0= (|2 k=) + (15| K=, ) +(|Z5] - k=, ) (3.33)

As the isotropic formulation (Equation (3.15)), CPB06 vyield function is convex when
-1<k<land a>1 (see Appendix A).

Cazacu et al. (2010) developed an anisotropic strain rate potential for hcp metals which is the
exact dual of CPBO06 yield criterion with a=2. This potential is called SRP09 and is written
as (m denotes a scaling factor defined by the uniaxial tensile curve in RD chosen as refer-
ence):

LJBZ+BZ+'3k2—10k+3’BZ " B, (3 +2+3)
ok L2k VB +B] 4B\ [6(k? +3)(3Kk +1)
i\/Bz+Bz+'3k2+10k+3'Bz ” B, (3 -2+3)
Lk a2k [0 BB B o(k+3)(3K7 +1)
L\/BZ+BZ+'3KZ—10|<+3‘BZ " B (%43
) 1-k\ % 7 |3k +2k+3 " \/Blz+BZZ+B32 \/6(k2+3)(3k2+1) .
my = _ _ .
1 | oo [3K2+10k+3],, . B, (3k* -2k +3)
—_ [B2+B2 4| TR0 R >
Lk L2310 VB +B] 4B\ [6(k? +3)(3Kk +1)
1 BZ+BZ+'3k2—10k+3'BZ ” B, 3 —(3k* + 2k +3)
A N ) N R
1 Bz+BZ+'3k2+10|<+3'B2 . B, N (3k* - 2k +3)
Lok 0 e -2ke3 [0 BT eBieB] \fB(ke+3)(3k7 +1)

where B, B,, B, are the principal values of the transformed strain rate tensor B=H:£". H is

a fourth-order orthotropic tensor associated with plastic anisotropy tensor C involved in
Equation (3.32). Denoting K the fourth-order symmetric deviatoric unit tensor defined by:

K. — é}kgjl +5i|5jk _ é}jékl
ikl =
2 3

(3.35)

it can be proved that H is the inverse of the tensor L =CK.

Plunkett et al. (2008) have shown that by incorporating into the isotropic criterion given by
(3.15) additional linear transformations, an improved representation of the anisotropy can be
obtained. If n linear transformations operating on the stress deviator are considered, the gen-
eral form of the anisotropic criterion, called CPB0O6exn, is:

p=> f (z§‘>,zg‘),zg‘), k<‘),a) (3.36)
i=1
where

e e I R I R B

2 1743
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In (3.36) and (3.37), k® (i=1,2,...,n) are material parameters that allow for the description
of strength differential effects, a is the degree of homogeneity, while (ZY),ZS),ZS)) are the
principal values of the i-th transformed tensor:

¥ =5 (3.38)

It is worth noting that, although the transformed stress tensors defined in (3.31) or (3.38) are
not deviatoric, the yield function is pressure insensitive (see Appendix B for the proof).

Recently, Lou et al. (2013) suggested a simple approach to take into account the strength dif-
ferential effect into symmetric yield functions by adding a weighted pressure term for incom-
pressible sheet metals in plane stress state. The yield criterion is of the form:

p=B(bl,+35,) (3.39)

where &, is the equivalent yield stress associated to a symmetric yield function while b and
B are two material constants: the former modulates the strength differential effect and the
latter is a scaling factor determined by the reference stress-strain curve. The convexity of
Equation (3.39) is satisfied if the symmetric yield function &, is convex since the Hessian

matrix of ¢ is identical to the one of &,. It can be shown that the range of bis [—l,l], corre-

sponding to a wide range of the ratio o' /6° (0<c'/c® <).

Equation (3.39) can be extended to take into account an anisotropic sensitivity to pressure.
The parameter b is replaced by two constants h, and h, as follows:

p=B (hxa11 +h,o,, + 55) (3.40)

The effect of these two parameters is to modulate the ratios of the tensile flow stress to the
compressive flow stress in RD and TD, respectively.

3.2. Hardening models

Hardening is related to the evolution of the yield surface in the stress space with the plastic
deformation. From a phenomenological point of view, the two classical ways of dealing with
hardening are isotropic and kinematic hardening models. Isotropic hardening models assume
a uniform size evolution of the yield locus without displacement of its center in the stress
space (Figure 3-3 (a)). Conversely, kinematic hardening models describe the translation of the
yield locus without taking into account its expansion (Figure 3-3 (b)). They are adapted to
depict the Bauschinger effect, i.e. the decreasing of the flow stress after a strain reversal. In
both cases, the shape of the yield surface remains unchanged. Mixed hardening models, con-
sisting in a combination of both isotropic and kinematic formulations, also exist and are very
often used in practice.
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In this work, it is assumed that yielding is described as follows:
p(6-X,2°2%)=5(c-X,2",£°)-Y(2",2") (3.41)

where:

e G Is the effective stress according to the given yield criterion (see Section 3.1);

e 2" and £" are respectively the effective strain and strain rate associated to & using
the work-equivalence principle (Hill (1987)):

dW, =o,def =ode® (3.42)

The kinematic hardening is introduced through the back-stress tensor X and Y denotes a
threshold function whose evolution describes the size of the yield surface during the plastic
deformation (isotropic hardening). The next sections introduce some examples of hardening
plasticity and viscoplasticity models, respectively.

Figure 3-3 Schematic of the yield locus evolution and the associated stress-strain curve under a tension-
compression loading sequence when considering (a) an isotropic hardening and (b) a kinematic hardening,
respectively.
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3.2.1. Hardening plasticity laws

3.2.1.1. Isotropic hardening formulations

Swift

Swift (Swift (1952)) proposed a power law which is suitable for describing the mechanical
response of materials whose behavior does not display saturation:

Y(5")=K(g+&") (3.43)
K, & and n are material parameters which must be determined for each material.

Voce

Voce law (VVoce (1948)) is expressed as:
Y(2°)=R,+R (3.44)
where:
dR=c (s —R)d&" (3.45)
R, is the initial yield stress while c, and s, are respectively the isotropic hardening satura-

tion rate and value.

Other isotropic hardening formulations exist and can be found in the literature (see for in-
stance Lemaitre et al. (2009)). Depending on the scope of application, one or another of these
laws is more suitable to describe the hardening behavior.

3.2.1.2. Kinematic hardening formulations

Prager

Prager (Prager (1955)) proposed a formulation assuming that the yield surface moves in the
direction of the plastic strain rates:

dX=cde’ (3.46)
where ¢ is a material constant.

Prager hardening law is very simple to implement into a finite element code and make the
computational algorithms more stable and less time-consuming. However, although the
Bauschinger effect is qualitatively represented, the model is unable to fit the experimental
behavior, especially the ratcheting effects.

Ziegler

According to Ziegler (Ziegler (1959)), one shortcoming of Prager linear kinematic law is that
it provides results which are not consistent for 2D and 3D cases. Indeed, if the yield locus in a
3D space moves in the direction of its normal at the loading point, it can be shown that the
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movement of the yield surface in a 2D space takes place in another direction. In addition, in
the case of a uniaxial tension, Prager law predicts that the yield locus moves towards the posi-
tive direction of loading causing kinematic hardening of the material, but also towards the
other directions causing a transverse softening, which is not observed in the experiments.

Ziegler suggested to modify Prager model as follows:

dX=(e—-X)du (3.47)

This formulation implies that the yield locus is translated along the (G—X) direction. 4 isa
proportional scalar determined by the consistency condition.

Armstrong-Frederick

Armstrong-Frederick law (Armstrong and Frederick (1966)) is a non-linear formulation de-
fined as follows:

dX =c, (s, de” -Xdz") (3.48)

where ¢, and s, are the kinematic hardening saturation rate and value, respectively. The

first term in Equation (3.48) expresses a linear evolution of the back-stress with the plastic
strain rates, as in Prager model, while the second one is a recall term called dynamic recovery.

Depending on the applications, kinematic hardening can be described by other formulations,
such as the approach proposed by Chaboche (Lemaitre et al. (2009)) which consists in intro-
ducing different back-stress terms with different saturation values and rates. Nevertheless the
three laws presented hereabove are sufficient in this study.

3.2.1.3. Mixed and distortional hardening formulations

In order to take into account both the expansion of the yield surface in the stress space and the
Bauschinger effect, isotropic and kinematic hardening laws are very often coupled (e.g. Swift
and Ziegler, Voce and Armstrong-Frederick, ...). This coupling is denoted as "mixed harden-
ing model”. Nevertheless, these formulations may be inappropriate to describe other macro-
scopic effects such as the work-hardening stagnation and the work-softening exhibited by
some polycrystalline metals under strain-path change. This section introduces some examples
of distortional hardening laws.

Based on transmission electron microscopy observations, Teodosiu and Hu (1995) proposed a
model in the framework of continuum mechanics able to capture the strain-path dependent
hardening. This model was first developed for bcc monocrystals (Hu (1992)). Later it was
successfully applied to IF steel sheets (Hoferlin (2001), Li et al. (2003)), dual phase steels and
aluminum (Bouvier et al. (2002)).

The model is based on a set of four internal variables:

e R isotropic contribution to hardening, described by Swift or Voce laws (see Section
3.2.1.1);

e X: kinematic contribution to hardening (back-stress tensor);

e §: fourth-order tensor which accounts for the directional strength of planar persistent
dislocation structures
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e P:second-order tensor which takes into account the polarity.

Denoting by & the equivalent effective stress associated to a stress potential, the yield criteri-
on is written as:

p=5-R,-R—f|s|=0 (3.49)
where f isa material parameter such that 0< f <1.

The term f||$| represents the contribution of the persistent dislocation structures to the iso-

tropic hardening while R; is the initial yield stress. The evolution law for the polarity tensor
P is written as:

dP=c,(N-P)de® (3.50)

C, Characterizes the polarization rate of the persistent dislocation structures while N is the
current direction of the plastic strain rate tensor:

DP
N=—— (3.51)
Io°l
The back-stress tensor evolves as follows:
s—X' _
dX'=c, {Xsat — —X'}dg P (3.52)
(o3
where ¢, represents the saturation rate of the back-stress deviator X’ and X, is a material
parameter characterizing the saturation value of ||X’ . This latter parameter is given by:
2 2
X = Xo +(1= )18 +(1-r)S2 (3.53)

where X, is the initial value of X_, while r is a material parameter. S, =N:&:N repre-

sents the strength of the dislocation structures associated with the currently active slip sys-
tems. When a strong path-change occurs, dislocation structures associated with the subse-
quent strain-rate direction can significantly evolve from the rest of the persistent structures. In
order to describe such processes, § is split as follows:

S=S,N:N+§, (3.54)

with §_ being the part of § associated with the latent part of the persistent dislocation struc-
tures. S, and &, are ruled by the following equations:

ds, =—cg [”Sg—L”] s dg’

dS, :CSDI:g(Ssat _SD)_hSD]dEp

(3.55)

sat
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where C,, and Cy represent the saturation rate of S, and §, , respectively, while S_, de-

sat

notes the saturation value of S,. h describes the slight loss of S, at the beginning of a re-
versed deformation. Its value is significant only during a microplastic stage and is determined
by:

1 X":N
h==|1- o 3.56
2[ Xsat(s—x'):Na] (3:56)

The function g describes the work-hardening stagnation and the resumption of work-
hardening after a reversed deformation. Using the projection P, =P :N of the polarity tensor
on N, it is defined by:

Co
Cop +Cp

S _p
Ssat

if P,>0

(3.57)

(1+P,)" (1— Ce S—D] otherwise
CSD +CP Ssat

where n, is a positive material parameter.

From Equation (3.49) to Equation (3.57), it can be noticed that Teodosiu-Hu hardening model
involves 13 material parameters, i.e. Ry, (Cz,Sq) or (&.n), f, ¢, Xy, Co, Cspy Ses Mo,

sat !
Cy , I and n, . The model has already proved its ability to describe the behavior of a large

diversity of polycrystalline materials, e.g. aluminum alloys, ferritic steels, DP steels, TRIP
steels, HSLA steels, etc. (see for instance Flores (2005), Haddadi et al. (2006), Flores et al.
(2007))

Based on Teodosiu-Hu model, Wang et al. (2008) proposed an alternative formulation for
cross-hardening. It is assumed that the dislocation structures developing during loading can
also result in latent hardening during continuous strain-path changes. The evolution of the
fourth-order tensor & is described as follows:

s |\"
48 =Cq {9(Se —Sp)—hSp }dEP N:N—cy (”S—L”] s d&® (3.58)
sat
Using Equations (3.55) and (3.58), it can be shown that:
ds’ —ds" :SD(dN:N+N:dN) (3.59)

where §" and §" are the tensor S associated to Teodosiu-Hu and Wang models, respective-
ly. The result of Equation (3.59) means that both models agree only for loading histories in
which the current direction N is constant.

Noman et al. (2010) introduced another approach based on an evolution relation able to cap-
ture the effects of an evolving dislocation microstructure on the hardening behavior and the
shape of the yield surface. The yield function is of the form:
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9=\/(M=X)3(M-X)-R,~R=5-R,-R (3.60)

where M denotes the Mandel stress tensor. The effective stress & depends on a fourth-order
tensor IC evolving as follows:

dC=c, {h*'N:N-3(, }dz® +c {W* (K-N:N)-3}dz® (3.61)

with:
I, =(NIN)N:N=h,N:N (3.62)

and
I =FH—h,N:N (3.63)

where K is the deviatoric part of the fourth-order identity tensor (see Equation (3.35)). I,
and I, represent the "dynamic" and "latent" parts of the tensor JC, respectively. The parame-
ters hi* and c, (resp. h'™ and c,) are respectively the saturation value and the saturation rate

associated to JC, (resp. IC ). It can be noticed that Equation (3.61) is analogous to Equation

(3.58). This model, unlike those of Teodosiu-Hu and Wang, allows the shape of the yield sur-
face to change with cross-hardening. However the additional effects such as the hardening
stagnation after a reversed strain-path are not taken into account.

The vyield locus of most hcp materials does not uniformly evolve. Indeed the hardening re-
sponse is very dependent on the strain path, as it will be shown in the case of Ti6AI4V in
Chapter 5. Nevertheless the distortional hardening formulations introduced above are not
convenient for physically describing the mechanical behavior of hcp materials since these
models were developed on the basis of the intragranular deformation mechanisms involved in
bce and fcc metals. In addition the latter are less prone to twinning than hcp metals. A first
approach to take into account the distortion of the yield surface shape with plastic defor-
mation consists in assuming that the parameters p; (i=1...N, N being the total number of
parameters) associated to the yield criterion are functions of the accumulated equivalent strain
g", for instance as follows:

p=a+f(1-e7") (3.64)
where ¢, S, and y; are constants. This approach was applied by Nebebe et al. (2009) using

the yield criterion (3.30) and by Ghaffari Tari et al. (2014) (see Figure 3-4) using the CPB06
yield criterion and its extensions (Equations (3.33) and (3.36)).
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Figure 3-4 Yield surface evolution of AZ31B magnesium alloy with accumulated plastic strain up to 8%
(Ghaffari Tari et al. (2014))

Another modeling is proposed by Plunkett et al. (2006) in order to describe the anisotropic
hardening behavior exhibited by hcp metals. The parameters are considered to evolve as a

function of the equivalent plastic strain £°. They are determined for several levels of £°,
namely 2" <...<z"™ <. <"™ k=1...m, where £"® corresponds to initial yielding

and ™" corresponds to the highest level of equivalent plastic strain attainable in all me-

chanical tests. Next, for each of the individual level & P(K) , the equivalent stress ¢ associated
to the yield criterion used for the modeling is computed. To determine the yield surface corre-
sponding to an intermediate level (Ep*(") <zP< E"'(k*l)) , a linear interpolation is used:

0_-277(§p)6(k)+<l—77(§p))o_'(k+l) (365)
where 77 is a weighting factor defined as:
_ g &
1(2°) == (3.66)

such that 77(5"'“)):1 and 77(5"'(“1))=0.

Instead of the equivalent plastic strain, the plastic work per unit volume W can be used to

define the different levels (see e.g. Gilles et al. (2011)). The equivalent stress is then deter-
mined by:

&=n(W,)z" +<1—77(Wp ))5‘“1) (3.67)
with
W(k+1) —W
7o )=yt i (3.68)
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Yoon et al. (2011) proposed to apply the linear interpolation to calculate the anisotropy coef-
ficients involved in the CPBO6 yield criterion or its extensions:

C; =n(W, )i +(1-n(w, ))ci (3.69)
If only one mechanism exists to account for the evolution of the yield locus shape, Equation
(3.64) is likely enough to describe the distortional hardening. If several mechanisms take
place simultaneously, Equations (3.65)-(3.66) or (3.67)-(3.68) are more adapted. Nevertheless
the identification of these models is based on monotonic tests. Actually, the evolution of the
texture depends on the strain path, which means that the experimental results obtained from
different mechanical tests correspond to different states of the material. It could be interesting
to use a reliable microscopic model able to perform texture updates and to rebuild the yield
locus during finite element simulations (see for instance VVan Houtte et al. (2011)). However
such a model is difficult to develop in the case of hcp metals. VPSC could maybe serve this
purpose if twinning is well modeled.

3.2.2. Hardening viscoplasticity laws

3.2.2.1. Johnson-Cook

Johnson-Cook (JC) model (Johnson and Cook (1983)) is a phenomenological law which is
written as follows:

Y(gp,ép){m B(E")HJ(lJrCIni;—:][l(%jm] (3.70)

melt ~ " room

where A, B, C, m and n are material parameters. T, T__and T

room melt

are respectively the

current, room and melting temperatures, while &, is an arbitrary reference plastic strain rate.
In Equation (3.70), the flow stress is described as the product of three factors:

e A+B (Ep )n represents the link with the plastic strain (hardening);
=P
o 1+CInZ- is linked to the strain rate sensitivity;

&

T

melt — 'room

m
1—[@j takes into account the thermal effects.

It has to be noted that the law as expressed in Equation (3.70) presents two drawbacks:

1. if £° <&,, the viscosity term induces a reduction of the yield stress ;
2. ifT<T

room !

a numerical error will occur when the exponent m is lower than 1.

In order to avoid these problems, it is required to rewrite JC model as:

Y(EP,EP):[M B(Ep)n}(l+CIn§*p)[l—T*m] (3.71)
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Constitutive modeling of sheet metal mechanical behavior

with the following conditions:

e == if EP2EP
eP=:% (3.72)
1 if gP<g
R ELELE SRV FE
T = Tmelt_Troom (373)
0 if T<T

room

Since it is numerically robust and easy to incorporate into finite element codes, JC model was
used in many studies to describe the plastic behavior of hcp materials such as magnesium
(Altenhof et al. (2004); Duc-Toan et al. (2010); Ulacia et al. (2011)) or titanium
(Jeunechamps (2008); Khan et al. (2004); Lee and Lin (1998b); Meyer Jr and Kleponis
(2001); Milani et al. (2009); Peirs (2012); Seo et al. (2005)).

3.2.2.2. Zerilli-Armstrong

Zerilli-Armstrong (ZA) model (Zerilli and Armstrong (1987)) is expressed in two forms:

1. the first one is addressed to fcc materials:

Y(8%.8%)=C,+C, (27) el < (3.74)
2. the second one is addressed to bcc materials:
Y(2°,5°)=C,+C, e T (2 (3.75)

where C,, C,, C,, C,, C. and n are constant parameters. Unlike JC model, this law has a
physical sense because it is based on dislocation mechanics.

According to Meyer Jr and Kleponis (2001), ZA model used as empirical model since it does
not explicitly include hcp crystal structures can be better to describe the strain rate hardening
behavior of Ti6Al4V than JC model. However, it is not recommended for temperatures above
about one-half of the absolute melting temperature.

3.3. Conclusions

In this chapter, some phenomenological yield functions as well as hardening laws used to de-
scribe the mechanical behavior of materials were introduced. In the framework of this thesis,
CPBO06 vyield function and its extensions will be used to model the yield locus of Ti6AI4V
owing to their ability to take into account both the anisotropy and the tension-compression
asymmetry displayed by the alloy. Concerning the hardening behavior, it will be shown in the
experimental characterization of Ti6Al4V (Chapter 5) that the material response is sensitive
to the strain path and then the yield surface shape evolves with the plastic deformation. The
degree of anisotropy in hardening will be studied by comparing the experimental curves with
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FE results obtained when an isotropic hardening is used. Next the evolution of the yield locus
shape will be modeled with the approach previously described by Equations (3.67) and (3.68).
The models proposed in this work to describe the mechanical behavior of Ti6Al4V have been
implemented into the non-linear finite element code LAGAMINE developed by the depart-
ment ArGEnCo of ULg.

It has to be noted that, as Ti6AI4V is very sensitive to temperature and strain rate, it is also
essential to consider its viscous behavior in the modeling. However it was decided to focus
this thesis on the anisotropy and the tension-compression asymmetry exhibited by the material
since viscoplastic investigations would increase a lot the number of tests in the experimental
campaign. In addition, research conducted by Tuninetti and Habraken (2014) confirmed that,
at low strain rates (10 s to 10 s™) and medium temperatures (room temperature, 150°C
and 400°C), the anisotropy effects are dominant.
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Description of the experimental devices and the mechanical tests

Chapter 4 Description of the experi-
mental devices and the mechanical
tests

The characterization of a material needs to carry out some experimental tests depending on
the number and the nature of the parameters involved in the model used to describe its me-
chanical behavior. This chapter introduces all the devices which enabled the achievement of
the experiments on the studied Ti6Al4V titanium alloy. The methodology followed for the
different tests as well as the geometry of the specimens are described in the next sections. The
experimental results and their analysis will be given in Chapter 5.

4.1. Equipment

4.1.1. Testing machines

4.1.1.1. Zwick 100 kN

A very simple way to characterize the mechanical behavior of a material is to carry out uniax-
ial tensile or compressive tests. In the case of compression, care must be taken in the choice
and the design of the specimens as well as in the experimental procedure. Indeed, flat speci-
mens have to be avoided unless solid plates are used in order to prevent buckling (see for in-
stance Section 4.1.1.2). A cylinder shape is usually preferred but it requires lubrication be-
tween the tools and the samples to reduce barreling.

A Zwick 100 KN machine (see Figure 4-1 (a)), available at the Materials and Structures Me-
chanics Laboratory, was used to perform uniaxial tensile tests on Ti6Al4V. The main features
of the machine are listed in Table 4-1. The device is provided with a mechanical extensometer
(Zwick Multisens Light model — see Figure 4-1 (b)) which measures the current length of the
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specimen. In addition, the acquisition system is able to record the applied force, the crosshead
displacement and the standard stroke.

S A ™Sensor
N\ 2 arms

Sbecimen

.

Figure 4-1 Experimental device used for tensile tests: (a) Zwick 100kN machine, (b) detailed view of the grips
and the extensometer

Nominal load capacity +/- 100 kN

. Compression (between supports) 0 to 1500 mm
Nominal stroke Tension 0to 1700 mm
Crosshead velocity 0.1 to 400 mm/min

100 kN hydraulic grips

Table 4-1 Features of the Zwick 100kN machine

4.1.1.2. Comb-shaped dies apparatus

As specified in Section 2.4.3.2, hcp metals display a strength asymmetry between tension and
compression. In order to quantify this asymmetry in the case of Ti6AI4V, compression tests
were required. Since the Materials and Structures Mechanics Laboratory has no device
adapted to perform in-plane compression on sheet specimens, the tests were conducted at
TUAT (Japan) using the method and the comb-shaped dies apparatus developed by Pr. T.
Kuwabara (Kuwabara et al. (2009)). Additional tensile tests were also performed and com-
pared with the results obtained in compression.

A schematic of the recently developed tension/compression testing device is depicted in Fig-
ure 4-2. The lower die 1 is fixed and the lower die 2 is on a slide rail that enables it to move
smoothly in a horizontal direction. The sheet specimen is set on the lower dies and attached
by chucking plates. The upper dies are placed on the specimen in such a way that the four
holes are aligned with the pins fixed to the lower dies, which enables a synchronized move-
ment. The lower die 2 is actuated in the horizontal direction by a servo-controlled hydraulic
cylinder A. The hydraulic cylinder B applies a constant blank-holding force on the specimen
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Description of the experimental devices and the mechanical tests

in order to prevent buckling. The blank-holding pressure is about 12 MPa. The specimen is
lubricated on both sides with Vaseline and Teflon sheets (0.05 mm thickness), thus reducing
the friction coefficient to 0.02. The longitudinal strain was recorded using a strain gauge (To-
kyo Sokki Co., FCA-1-11-1L) glued on the specimen. The compression force applied to the
specimen is measured using a load cell connected to the right part of the lower die 2. The out-
puts of the measured force and strain are monitored every second using A/D data acquisition
and a personal computer.

a

Upper d‘i_e

Teflon sheet

Figure 4-2 Schematic diagram of the comb-shaped apparatus: (a) configuration of the dies, (b) overview of
the apparatus (after Kuwabara et al. (2009))

4.1.1.3. Biaxial machine

The mechanical behavior of a material can be better characterized by testing it under multi-
axial and non-proportional loads. A series of experiments were carried out with a biaxial ma-
chine designed by P. Florés (Florés (2003); Flores (2005)) at the Materials and Structures
Mechanics Laboratory (Figure 4-3). This machine uses a vertical (A1) and a horizontal (A2)
actuators which enable the displacement of the grips (G). These actuators are controlled by a
computer either in force or in displacement.

Different tests can be performed with the biaxial machine:

- plane strain tests;

- simple shear tests;

- Bauschinger tests (simple shear in one direction, followed by simple shear in the re-
versed direction);

- orthogonal test (plane strain in the vertical direction, followed by simple shear in the
horizontal direction);

- simultaneous plane strain and simple shear tests.

The current mechanical features of the system control are listed in Table 4-2. These character-
istics are essential in the design of the samples, in particular in the choice of the specimen
thickness.
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Figure 4-3 Overview of the biaxial machine

Max/min Max/min displacement | Max/min displacement Max/min speed
force [kN] (sensor 1) [mm] (sensor 2) [mm] [mm/s]
Vertical motion +/- 100 +/- 10 +/- 25 5x107/5x10”
Horizontal motion +/- 100 +/- 25 5x10°%/5x10”
Table 4-2 Main features of the system control

4.1.1.4. SCHENK Hydropuls 400 kN press

The study of the mechanical behavior under a biaxial state can be carried out using other test-
ing techniques and specimen geometries (Kuwabara (2007)):
1. Hydraulic bulge test: a circular blank is bulged by applying a pressurized fluid with

an electric pump (see Figure 4-4). This technique is used in several investigations, e.g.
Lazarescu et al. (2011), Lemoine et al. (2011), Li et al. (2003), Thuillier (2008).

(a)

ND

Die ho ) riz Die
o~ ) Blank Py A P
1 N
LY I3 WY
Blankholder P ! Blankholder

i
$150
$190
$250

Figure 4-4 Schematic view of a bulge test (example from Li et al. (2003))
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2. Biaxial tension test using cruciform specimens: different geometries are proposed in
the literature. A review of them can be found in Kuwabara (2007).
3. Uniaxial/biaxial compression test using a stack of sheets.

This last technigue enables to study the behavior of the material under different stress states
(see Figure 4-5). Biaxial compression tests require an experimental device which is not very
common, while uniaxial compression can be performed with any press. However two difficul-
ties can be encountered when compressing along RD and TD: (1) failure can occur by delam-
ination of the stack; (2) owing to the low thickness of the layers, delamination can also arise
by buckling. For these reasons, uniaxial compression is usually carried out along ND. It has to
be noted that, if the friction between the specimen and the dies of the machine is low and if it
Is assumed that the material response is insensitive to the hydrostatic pressure, the layer com-
pression test is similar to a balanced biaxial tensile test (Coppieters (2012)).

In order to determine the behavior of Ti6AI4V alloy under a biaxial stress state, a SCHENCK
Hydropuls 400 kN press (Figure 4-6) was used to compress stacks composed of several
Ti6Al4V sheet layers. The machine can be controlled in force, in displacement or in constant
strain rate. Its mechanical features are given in Table 4-3.

Figure 4-5 Stress directions on the z-plane in the (RD,TD,ND) reference frame
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Figure 4-6 Overview of the uniaxial SCHENK Hydropuls 400 kN machine

Maximum capacity of the dynamometer +/- 400 KN
Maximum displacement of the punch +/- 125 mm
Machine deflection 1.4 mm to 350 kN
Speed 0.001 mm/s ... 2 m/s
Strain rate range 0.0001/s to 0.1/s

Table 4-3 Characteristics of the SCHENCK Hydropuls 400 kN press

4.1.1.5. Zwick-Roell 1200 kN

When trying to validate a constitutive modeling, it is interesting to simulate a forming process
in which different stress states are encountered and to compare the numerical predictions with
the experiment. In this context, cup deep-drawing tests were conducted on Ti6Al4V at LEM3
(Arts et Métiers ParisTech, Metz, France). The deep-drawing process was carried out using a
Zwick-Roell 1200 kN machine (Figure 4-7 (a)) and the experimental setup shown in Figure

4-7 (b). The characteristics of the device are listed in Table 4-4.

Maximum crosshead speed 400 mm/min
Crosshead position resolution 1um
Displacement sensor resolution 0.5 um

Table 4-4 Characteristics of the experimental device used in the deep-drawing process
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a b

Figure 4-7 Experimental device used for deep-drawing tests: (a) Zwick-Roell 1200kN machine, (b) test setup

4.1.2. Optical measurement systems

For some experimental tests, an optical measurement system was used in addition to sensors
in order to determine the displacement and strain fields by DIC. This technique is a full-field
image analysis method which offers several benefits:

e It affords to visualize the strain gradients and hot spots which can occur when testing
non-homogeneous and anisotropic materials.

e Some measurements, unrealizable with other techniques (strain gauges, extensometer,
etc.) are made possible.

e As it is a non-contact system, some measurement errors (e.g. deflection of the testing
machine, slip of the specimen under the grips, ...) are prevented.

Owing to the increasing development of high resolution digital cameras, compact mechanical
design and computer technology, DIC has widely expanded in industry applications (devel-
opment and design tools, production inspection) and proved its efficiency in numerous inves-
tigations on material characterization (Knockaert (2001), Florés (2005), Duflou et al. (2008),
Thuillier (2008), Hogstrom et al. (2009), Merklein and Kuppert (2009), Flores et al. (2010),
Libertiaux et al. (2011), Tuninetti et al. (2012)).

4.1.2.1. Principles of DIC

DIC requires two digital cameras to locate a point in 3D space by triangulation (Figure 4-8).
One camera can be enough in the case of a 2D analysis, but it is then required to maintain the
tracked surface planar and at a constant distance from the camera. In 3D analysis, the deter-
mination of the object point position needs to know the orientations of the cameras with re-
spect to each other (distance and angle) and some additional parameters relative to systematic
image errors (translation of the principal point, lens distortions).
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Figure 4-8 Principle of a 3D measuring arrangement: the rectangular planes represent the cameras' chips,
0; and O, are the perspectives centers while x; and y; (respectively x, and y,) are the coordinates of the point
P relative to the first (respectively second) camera (GOM (2001)).

In order to track the displacement of points, a stochastic pattern with good contrast, as shown
in Figure 4-9, is painted on the surface of the test object. Different methods exist to apply the
stochastic pattern: colored spray paint, airbrush, printing, etc. It is worth noting that the speck-
le size distribution is very important since it affects the accuracy on the displacement field
measurements (Lecompte et al. (2006)).

Figure 4-9 Examples of stochastic patterns

Before carrying out an experimental test, a picture (or more) of the undeformed state is taken
in order to define a reference and to divide the specimen’s surface into facets characterized by
their grey level distribution. Then the optical system tries to track these facets on the images
corresponding to every deformed configuration. The correlation is performed by applying a
transformation consisting in a combination of a translation, a rotation and a distortion. The
dimensions of the facets in the deformed configuration can be determined by several methods,
e.g. Gaussian least squares adjustment, tangential model, spline-model, etc. Once the de-
formed configuration is known, the deformation gradient tensor F and therefore the strain
field can be computed. Depending on the post-processing software, different definitions of the
strain tensor for large deformations are proposed. All these definitions are based on the de-
composition of the deformation gradient tensor into an orthogonal rotation tensor R and a
symmetric stretch tensor U (polar decomposition):

F=RU (4.1)

If 1 denotes the second-order identity tensor, the main strain tensors are defined as follows:
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- Biot or engineering strain tensor: £® =U -1

; c.e Lo _ 1
- Green(-Lagrange) strain tensor: ¢ _E(U _I)_E(F F-I)

- Hencky or logarithmic or natural or true strain tensor: £" =InU

4.1.2.2. Systems used for the experimental tests

The biaxial machine (see Section 4.1.1.3) was equipped with the Aramis® optical measure-
ment system developed by GOM (Figure 4-10). One camera was used to determine the dis-
placement and strain fields evolving on the surface of the samples since the latter are flat.
Aramis® has already proved its efficiency as measurement system in previous works (see
Knockaert (2001), Flores (2003) and Flores (2005)) and especially in experiments carried out
on the biaxial machine.

Figure 4-10 Aramis® system: (a) camera, (b) computer hardware for the post-processing

During the layer compression tests performed on the SCHENK press (see Section 4.1.1.4), the
displacements and the strains of the specimens were determined with the LIMESS optical
system (Figure 4-11) and the VIC-3D software. The setting up, pointing, focusing and calibra-
tion of the cameras were previously achieved by Victor Tuninetti in the framework of the
FABULOUS project (the details can be found in Tuninetti and Habraken (2011)).

Figure 4-11 Cameras of the system LIMESS
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4.2. Mechanical experiments

4.2.1. Definition of the reference systems

As the studied material is in sheet form (see Chapter 5), two reference frames are generally
considered:

- orthotropy or material axes (Xl,Xz,Xs) which coincide with RD, TD and ND re-
spectively;
- local axes (X, %, X;).

X, and X, are chosen in the plane of the sheet depending on the specimen and the loading
conditions (see next sections) while X, coincides with ND. The angle « defines the orienta-
tion of X, with respect to RD (see Figure 4-12).

sheet

Figure 4-12 Definition of the global and material axes

If T isa 2" order tensor, its components in the orthotropic and local frames are linked in the
following way:

T| =RT R’ 4.2)

(X1,X2,X3) |(X1»X2vxa)
where R is a rotation matrix defined as:

cosa —sina O
R=|sina cosa O (4.3)
0 0 1
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4.2.2. Uniaxial tests

4.2.2.1. Tension

Introduction

Tensile tests are the most simple to perform and widely used to study the material mechanical
behavior (anisotropy, hardening, ...). If the loading direction is chosen along the X, -axis, the
general stress state in the local frame is expressed by:

e (44

o o Q9
o O O
o O O

with o =% >0. F is the force applied to the specimen while A is the current area of the

cross section. The latter can be deduced from the strain state:

g 0 O
|(X1’X21X3) =0 ¢ O (4.5)
0 0 &

&, &, & are respectively the axial, width and thickness logarithmic or true strains, i.e.:

g =In- (4.6)
ly

g, =l 4.7)
WO
t

g, =In— (4.8)
tO

where |, w and t are respectively the gage length, the width and the thickness of the sample
(the subscript “0” refers to the initial values). As long as there is no necking, the current area
of the cross section (Figure 4-13) is given by:

A=wt =wyt,exp(s, +¢&;) (4.9)

Assuming an elasto-plastic regime, isotropic elasticity and volume conservation during plastic
deformation, it leads to:

A=wt, exp(e; +&;)exples + &) =Wt exp(—2ve; — &) (4.10)

where v is the Poisson ratio.
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It can be noticed that this relationship requires the knowledge of the elastic constants. An ap-
proximation can be made by considering volume conservation during all the deformation, i.e.

& +é&,+&;,=0.The current area is then assessed as follows:

A" =wyt, exp(—¢,) (4.11)

The ratio between the exact and estimated areas is:

_A_o _ PR
P exp((1-2v)&;) (4.12)

with ¢" = %. For & =1% (the elastic strain hardly exceeds this value in Ti6AI4V titanium

alloy) and 0.28<v <0.35, p ranges from 1.003 to 1.0044, i.e. a relative error lower than
1%, which proves the validity of the approximation.

" ey
R e 21

X,

/x

Figure 4-13 Cross section of the specimen: w is the width while t is the thickness
In the material frame, the stress and strain tensors are expressed as follows:
ocos’a  osinacosa 0

=|osinacosa  osinfa 0 (4.13)
0 0 0

(%, %,.%s)

gcos’a+eg,sina (g—¢,)sinacosa 0
(&,—¢,)sinacosa  &sina+eg,c08’a 0 (4.14)
0 0 &

8(X1,X2,X3) -

In order to characterize the anisotropy of Ti6Al4V in tension, tests are performed on the
Zwick 100kN machine (see Section 4.1.1.1) at room temperature and at a constant strain rate
of 3x10™ s along eleven directions in the plane of the sheet (« ranging from 0° to 90° by
steps of 10° and a =45°). The specimens are cut by milling and have an overall length of
299.6 mm, a gage length of 105 mm and a gage width of 15 mm (Figure 4-14).
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299.6 mm
105 mm 80 mm
N 3
15 mm | 35 mm
/ 1773\n§m
10 mm
20 mm

Figure 4-14 Geometry and dimensions of tensile specimens
For each loading direction, the tests are duplicated four times as follows:

- two tests up to failure;
- one test up to a strain of 5%;
- one test up to a strain of 10% (when failure occurs beyond this value).

The specimens deformed at 5% and 10% of strain level are used to achieve texture measure-
ments.

The applied force is recorded by a load cell and the longitudinal strain &, is measured with
the mechanical extensometer. The stress is then computed using:

o~ F (4.15)

*

A

A" is computed from Equation (4.11) with & being &, .

In addition to the measurements performed by the extensometer, the strain field in the gage
zone is determined by the Aramis® system in order to assess the tensile Lankford coefficient
or r-ratio. The latter is defined as the plastic width strain rate divided by the plastic thickness
strain rate. Because the thickness change involves large relative measurement uncertainty, the

axial strain (&, ) and the width strain (¢&,,) are used with assumed volume constancy to infer
the thickness strain (&, ). Thus, the Lankford coefficient is given by:

~P s P
Sw o Ew (4.16)

~ P ~P ~ P
& & +6‘W

3

r

where the superscript p refers to plastic strain, and the subscripts |, w and t refer to length,
width and thickness, respectively.

The effect of the strain rate on the mechanical behavior in tension is also investigated. Exper-
iments are carried out along RD at 10 s, 10° s, 102 s and 10 s™. In order to check the
reproducibility, each test is reproduced at least two times.

Equipment validation
Before performing the tensile tests, it must be checked that:

- the strain rate is actually maintained constant;
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- the data provided by Aramis® are in good agreement with the measurements of the
extensometer.

Strain rate constancy

The (logarithmic) strain rate along the length direction is given by:

dl
¢ =i(|n'—j=ﬁ (4.17)
atl 1)

This relationship can be written as follows:

$=d(|n|):édt (4.18)

Since the machine is controlled in displacement, solving Equation (4.18) shows that a con-
stant strain rate is obtained when the length evolves with time in an exponential way, namely:

I(t)=1,exp(Ct) (4.19)

where C is the value of the desired strain rate. In order to achieve this requirement, the cur-
rent length of the specimen is regulated by a PID controller.
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Figure 4-15 Evolution of the axial strain with time for a test at 3x10™ s™

Figure 4-15 shows the axial strain as a function of time for a test at 3x10™ s™. It can be ob-
served that the evolution is linear and the slope of the line is in agreement with the prescribed
strain rate.

Comparison of data recorded by the optical and mechanical
measurement systems

As explained previously, images of the specimen are snapped by the camera and compared in
order to compute the displacement and strain fields. Aramis® is able to export data along a
section defined by the user. An example is given in Figure 4-16 which shows the axial and
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transversal strain fields along the gage length of the sample and at different stages of the de-
formation. The strain peak is due to necking.
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Figure 4-16 Axial and transversal strain fields along the gage length of the specimen (x;-direction, x, = 0) at
different stages

As the extensometer measures the length between the sensor arms (see Figure 4-17), the axial
strain determined by Eq. (4.6) corresponds to an average value.

COMPARISON

A
v

EXTENSOMETER I CAMERA | » £(x)) » Sufj; e(x,) dx./l

[

Figure 4-17 Comparison of the axial strains computed from the data of both measurement systems

Based on the axial strain field g(xl) computed by Aramis® along the X, -axis (loading direc-

tion), it is possible to assess the average strain &, by:

(4.20)

and to compare the results obtained with the two measurement systems (Figure 4-17).
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Figure 4-18 shows the evolution of the average strain with time according to the extensometer
and Aramis®. It can be observed that both systems are in very good agreement.
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Figure 4-18 Evolution of the average axial strain according to the extensometer and the Aramis® optical
system (test at 3x 10 s™)

4.2.2.2. Compression

In order to investigate the effect of the loading orientation on the mechanical response and
quantify the tension-compression asymmetry of Ti6Al4V, compression tests are required.
Using the same local frame as for tensile tests, the general stress state is:

- 0 0
oy =| 0 00 (4.21)
0 00
with o >0. In the material frame, the stress tensor is given by:
—ocos’a -osinacosa 0
G|(x1,x2,><3)= —osinacosa  —osina 0 (4.22)
0 0 0

The axial, width and thickness strains are computed as previously (Equations (4.6), (4.7) and

(4.8)).

The material uniaxial response in tension and compression in three in-plane orientations,
namely in RD, 45° and TD, respectively, was measured by Pr T. Kuwabara and his team from
TUAT. The tests were carried out on the comb-shaped dies apparatus described in Section
4.1.1.2 and repeated three times to check the experimental reproducibility. The sample dimen-
sions are shown in Figure 4-19.
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E
=

Unit : mm

Figure 4-19 Geometry and dimensions of the specimens used at TUAT

It has to be specified that the experimental device used at TUAT does not allow the control of
the strain rate. Nevertheless, it is possible to keep the mean strain rate nearly constant. The
latter was fixed to 3x10™ s™.

4.2.3. Biaxial tests

4.2.3.1. Tests carried out on the biaxial machine

Plane strain
Considering the configuration in Figure 4-13, the plane strain state assumes that:
& =0 (4.23)

and the strain tensor in the local frame is then of the form:

g 0 0
|(X1’X2'X3) =0 0 O (4.24)
0 &

Consequently, the general stress state displays two non-zero components:

oo 0 0
oy =| O @2 O (4.25)
0 00

In the material frame, the stress and strain tensors are respectively given by:

o,c08’ a+o,sin"a (o,-0,)sinacosa 0

— _ H -2 2
ol ) =| (0107 )siN@COS@  0ysin’a+o,cos’a 0 (4.26)
0 0 0
gcos’a  gsinacosa O
J— H - 2
& xxy) = | EaSIN@COSE &sin“« 0 (4.27)

0 0 &
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In practice, plane strain tests are performed by applying tension to a piece of sheet metal with
a high width to length ratio. The drawback of this simple technique is that the stress in the

transverse direction o, cannot be determined experimentally.

The tensile plane strain tests were carried out with the biaxial machine designed by P. Florés
(see Section 4.1.1.3). Two computers are used during these tests. The first one (Figure 4-10
(b) at the left) enables the control of the actuators. The computation of the displacement and
the strain fields is achieved thanks to the Aramis® measurement system which is installed on
the second computer (Figure 4-10 (b) at the right). The latter is connected to the camera
(Figure 4-10 (a)) used to snap pictures of the deformed sample.

The first plane strain tensile tests were performed with the specimen geometry used in Flores
(2005) (Figure 4-20 (a)). The velocity of the vertical actuator was 5x10° mm/s while the hor-
izontal actuator is maintained fixed. The samples are placed in the grips as shown in Figure
4-20 (b). In order to determine the strain field by image correlation, a stochastic pattern is
beforehand painted on the gage zone located at mid-length (30 mm x 3 mm).

a
//J00i]A] b
30
F}fm’::a.'i.'tz;'
de——-
REETHE (Lot Upper clamping ;i ]
zone
e d
Tl R I =3 mm "1 Maasurabls zones
&) e ol
Lower clamping
Zone i
1*5'3.'!7’(&:’

Figure 4-20 (a) Geometry and dimensions (in mm) of the specimens used for the first plane strain tests, (b)
configuration of a specimen inside the grips

60



Description of the experimental devices and the mechanical tests
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Figure 4-21 Axial and transversal strain distributions along the width of the gage zone at different stages of
the deformation (rectangular shape specimen)

Before proceeding the stress computation, it is required to check the homogeneity of the strain
distribution. Figure 4-21 depicts an example of the axial ( X, -direction) and transversal ( X, -

direction) strain fields along the width of the gage zone. It is noticed that a significant strain
concentration is present at the center of the specimen, making complex the analysis of the
results. An observation of the frames at different stages of the deformation (Figure 4-22)
shows that the specimen glides inside the grips, which explains the heterogeneity of the strain
distribution. This gliding is due to the fact that the clamping force is not uniformly applied, its
magnitude being slightly lower near to the gage zone than at the center of the clamping zone.
Thereby, given this defect in the machine and the mechanical properties of titanium (high
yield limit), it is very difficult to prevent the specimen from gliding.

Stage 000 Stage 040

Stage 080 Stage 120

Figure 4-22 Images of the gage zone at different stages of a plane strain test with a rectangular shape speci-
men
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Based on the work of Pijiman (2002) and Flores et al. (2010), a new geometry (Figure 4-23)
was designed and experimented while controlling the occurrence of gliding. The specimens
have a rectangular shape as previously, but with notches at mid-length. The gage zone is 25
mm wide and 3 mm high.

120
3
&
()

64

Figure 4-23 Geometry and dimensions (in mm) of the specimens used for the second plane strain tests

Tests were performed at a velocity of the actuators of 5x10° mm/s. The axial and transversal
strain fields along the width of the gage zone were provided by Aramis®. Figure 4-24 shows
a typical distribution where two different areas can be distinguished:

e a homogeneous central zone in plane strain state (the transversal strain is low com-
pared to the axial strain) whose size decreases as long as the specimen is being de-
formed;

e a heterogeneous zone at the edges of the specimen where strains evolve faster than
strains at the central zone.
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Figure 4-24 Axial and transversal strain distributions along the width of the gage zone at different stages of
the deformation (specimen with notches)
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Since the strain field is not uniform, the edge effects must be taken into account in the stress
computation. A methodology similar to the one proposed by Florés et al. (2010) was used. It
consists firstly in identifying the homogeneous strain field zone at the different stages of the
deformation process. Theoretically the strain distribution is uniform when:

98y _ (4.28)
OX,

where &, denotes the axial strain. In practice, a range [—¢ ; ] inside which the strain field is

considered homogeneous is defined at each stage of the deformation. The condition (4.28) is
then expressed as:

< %2y _ & (4.29)
0X,

P
“u from zero at a

The boundary & is chosen as the average deviation of the strain gradient

X,

d =5 mm wide central zone of the specimen, i.e.:

(4.30)
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Figure 4-25 Determination of the homogeneous zone width Wy: the red symbols represent the experimental
strain gradient which is fitted by a 7" order polynomial (blue curve), while d and 2& are respectively the cen-
tral zone of the specimen and the domain inside which the strain field is assumed uniform

The strain gradient is then fitted by using a 7" order polynomial (Figure 4-25) and the homo-
geneous strain field width W,, is computed as follows:

W, = x> —x" (4.31)
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with

- o0&, o0&,
min __ 11 _ max __ 11
X5 _XZ{GX —_5 » X =X ox
fitted 2

2

- 5} (4.32)

If W, denotes the total width of the gage zone, the evolution of the ratio W, /W, can be
drawn as a function of the average strain at the center of the specimen & defined as follows:

. 1
=5 [ & 0%, (4.33)

Figure 4-26 displays an example for a plane strain test along RD.
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Figure 4-26 Evolution of the homogeneous zone width to total width ratio with the average strain at the center
of the gage zone (plane strain test along RD)

With the previous results, the cross section A, of the homogeneous zone can be determined
as follows:

A =Wyt (4.34)
where t,, is the actual thickness of the homogeneous zone. The latter is computed by:
ty =t exp(-z;) (4.35)

In Equation (4.35), t, is the initial thickness of the specimen. In addition, the plane strain
condition (&,, =0) and the volume conservation ( &;; =—¢&,, — &,, = —&;) are assumed.

The computation of the normal stress o, under a plane strain state requires the determination
of the actual force acting on the homogeneous zone F :
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1= 4.36
o A, (4.36)

Based on the study of An et al. (2004), Flores et al. (2010) suggests to express F, in terms of

the total force F; applied to the specimen (measured experimentally by the biaxial machine)
and the width of the homogeneous zone, i.e.:

F,=F, (FT W, ) (4.37)

A numerical analysis, based on experimental data obtained for the studied Ti6Al4V alloy, was
performed in order to study the evolution of F, and define a relationship with the experi-

mental data. It is shown in Appendix C that the force applied to the homogeneous zone can be
expressed as follows:

Fo W,
Fu oW g 4.38
Py, ) (4.38)

where « is a coefficient, and thus the stress component o, is given by:

oy :i:ai+(1—a)

A, Wity

The coefficient « is determined by linear regression. The result of the numerical analysis is
a =1.0154.

I:T
W, t,,

(4.39)

Equation (4.39) is then used to compute the stress-strain response of Ti6AI4V in plane strain
in RD, 45°-direction and TD (see Figure 4-27).

=) RD —> loading
direction

ot C D & C DO =» C
| | !

plane strain RD plane strain 45° plane strain TD

Figure 4-27 Schematic of the plane strain tests in RD, 45°-direction and TD

Simple shear and Bauschinger tests
Compared to uniaxial tension or compression, simple shear tests offer several advantages:

e the specimens do not require complex shapes (a rectangular one as shown in Figure
4-20 (a) can be suitable for materials less stiff than the studied Ti6Al4V);

e plastic instabilities existing in tension (localization, necking) or in compression (bar-
reling) do not occur in simple shear;

¢ alarge range of homogeneous strains can be achieved.
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Nevertheless, some problems can be encountered during the experiments. Indeed, as it will be
shown further, a part of the specimen clamped zones deforms, involving a sliding movement
under the grips. The extent of this sliding depends on the material and the quality of the grips.
Moreover, as depicted in Figure 4-28, two opposite corners of the gage zone are subjected to
transverse tension or compression, causing premature failure and initiation of buckling re-
spectively. More details about the advantages and drawbacks of simple shear tests can be
found in Bouvier et al. (2006).

) clamped zone
compression

tension gage zone tension

compression
clamped zone

&

Figure 4-28 Area of the sample in transverse tension and compression during a simple shear test

Figure 4-29 shows the initial and deformed configurations of a facet in simple shear state. The
deformation gradient tensor F is expressed by:

1 O
F=/0 1 O (4.40)
0 01
where
d
y=tanfd = 5 (4.41)

d represents the relative displacement of the facet while b is its height which is maintained
constant. It has to be noted that detF =1 (see Equation (4.40)), which means that the volume
Is conserved.

xl
A
| d
b initial 0 deformed
state state
Ixz
y=tan06=d/b

Figure 4-29 Schematic representation of simple shear
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In the local frame, the general forms of the stress and strain tensors in simple shear are given
by:

oo 7 0

) =| T O 0 (4.42)
0O 0 O
&y &, O

|(X1VX2’X3)= &, &y O (4.43)
0O 0 O

with |&,|=|e,,| (volume conservation).
In the material frame, Equation (4.2) yields to:

0,008’ a+0,sina—rsin2a (o,—o0,)sinacosa+rcos2a 0
=|(0,-0,)sinacosa+7rcos2a o,sin*a+o,c0s’a+rsin2a 0| (4.44)
0 0 0

ot )

£,C08° a+&,8iN° a—&,s5iN2a (&, —&,)sinacosa+&,c0s2a 0

=| (&, —&5)siNacosa+&,C052a  &,sin’ a+¢, 08" a+¢,sin2a 0 |(4.45)
0 0 &3

S(lexpxs)

In the case of small strains (elastic domain), the stress state can be considered as pure shear:

0 O
|(x Xy, %3) =z 00 (446)
0 0O

The simple shear tests on Ti6Al4V were first carried out on specimens with a rectangular
shape (Figure 4-20 (a)). The velocity of the horizontal actuator was 5x10° mm/s while the
vertical actuator was fixed.

The homogeneity of the strain field along the width of the gage zone was studied before de-
termining the stress-strain curves. An example of distribution, provided by Aramis®, is given
in Figure 4-30. It can be noticed that the edge effect is very significant, making difficult the
stress computation. As for plane strain tensile tests, the heterogeneity of the strain field is due
to a significant sliding movement of the specimen inside the grips, as observed in Figure 4-31.

In order to prevent gliding, a new specimen geometry (Figure 4-32) was designed and tested.
Compared to the previous ones, the length of the samples is shorter in order that the clamping
force applies on a smaller surface, increasing in this way the indentation of the grips in the
material. In addition, notches are machined at mid-length, decreasing the size of the gage
zone.
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Figure 4-31 Gage zone of a specimen subjected to simple shear
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Figure 4-32 Geometry and dimensions of the specimens used for the second simple shear tests
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Figure 4-33 shows the strain field at different stages of the deformation process when the new
specimen geometry is used. It can be observed that a wide zone of homogeneous strain is ob-
tained.
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Figure 4-33 Shear strain ) distribution along the width of the gage zone at different stages of the defor-
mation (specimen with notches)

In order to check that the specimen is actually in simple shear state, the different components
of the deformation gradient tensor in the sheet plane were exported with Aramis® at the cen-
ter of the gage zone and compared with the corresponding shear strain y (Figure 4-34 (a)).

For each stage of the deformation, the following results are obtained:

e the components F, and F,, are equal to 1 while F,, =0;
e F, =y (seelinear fitting in Figure 4-34(a)).

These observations are in good agreements with the theoretical form of the deformation gra-
dient tensor given in Equation (4.40).

Figure 4-34 (b) compared the absolute values of the major and minor strains®, respectively
denoted &, and ¢,, at the specimen’s center. As specified previously, volume conservation is
assumed in simple shear, which involves that:

| =&, (4.47)

The results in Figure 4-34 (b) show a good correlation with Equation (4.47).

It is worth noting that, although it is possible to reach large strains (Figure 4-33), the tests has
to be stopped when premature failure occurs at the areas subjected to tension (see Figure
4-35). The initiation of cracks can be detected by observing the force-strain curve. Indeed, as
shown in Figure 4-36, the force applied to the specimen progressively decreases when failure
begins.

® The major and minor strains are defined as the maximal and minimal eigenvalues of the strain tensor in the
sheet plane.
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Figure 4-35 Cracks at the corners subjected to transverse tension
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Figure 4-36 Evolution of the force applied to the specimen as a function of the strain at its center during a
simple shear test: the force gradually decreases from 16% of strain, when failure starts at the areas in tension

Simple shear tests are performed in three in-plane orientations (see Figure 4-37). For each
loading direction, the tests are repeated four times in order to check the experimental repro-
ducibility. It has to be noted that the experiments in the 45°-orientation are carried out in both
the forward and backward directions in order to observe a possible asymmetry in the mechan-
ical response. The shear stress 7 is computed by assuming the homogeneity of the strain field
over the whole gage zone width and the volume conservation:

3 (4.48)

where F; is the total force measured by the load cell of the horizontal actuator and A, is the
initial area of the cross section. The shear strain y is determined by calculating the average of
the strain field distribution at the center of the gage zone.

=) RD —> loading
direction

J = C J # C 1 ¢ C

simple shear RD simple shear 45° simple shear TD

Figure 4-37 Schematic of the simple shear tests in RD, 45°-direction and TD

In addition to simple shear, Bauschinger tests were carried out on Ti6Al4V in order to study
the influence of a strain path change on the material behavior. Bauschinger tests are obtained
by reversing the loading direction during a simple shear test after the specimen has reached a
certain amount of shear strain in the forward direction. These tests were performed with a
horizontal actuator speed of 5x10™° mm/s in RD with 10% pre-strain. The specimens have the
same geometry and dimensions as those used in simple shear experiments (Figure 4-32).
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4.2.3.2. Layer compression tests

In order to assess the mechanical behavior of Ti6Al4V under a biaxial state, layer compres-
sion tests were performed using the SCHENK Hydropuls 400 kN press described in Section
4.1.1.4. The specimens were composed with 23 elliptic layers which were stacked in order to
form a cylinder (see Figure 4-38 (a)). The elliptic shape was chosen in order that the material
axes (i.e. RD and TD) are not randomly oriented when assembling the layers. Indeed the latter
were cut in such a way that the major and minor axes of the ellipses, respectively denoted 2a
and 2b (Figure 4-38 (b)), coincide with RD and TD, respectively. The cutting of the layers
was performed by WEDM which consists in using a thin metal wire constantly fed from a
spool. During the process, the sheet is being watered by a dielectric fluid which flushes the
cut debris away. WEDM enables a good surface roughness and does not alter the properties of
the material, excepted in fatigue.

ra

2
3 layers >

y

=P RD
(a) (b)

Figure 4-38 (a) shape of the specimens; (b) geometry of the cross-section: 2a and 2b denote the major and
minor axes of the ellipse, respectively

During the compression of a stack, the out-of-plane displacement and strain fields were de-
termined using three systems of two cameras placed around the specimen (see Figure 4-39). A
stochastic pattern was painted on the free surface of the stack (Figure 4-40) in order to track
the displacement of different points and to compute the strains by DIC.
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bf° =
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Figure 4-39 Experimental setup: (a) schematic view; (b) actual configuration
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Figure 4-40 Specimen with a stochastic pattern on the lateral free surface

In order to maintain a constant strain rate during the deformation of the specimen, a procedure
developed by Tuninetti et al. (2011) and taking into account the deflection of the machine was

used. The average true compression strain &, is given by:

£ =In (hﬂj (4.49)

where h, and h are respectively the initial and current height of the specimen. The strain rate
is then written as:

£ =— (4.50)

A constant strain rate is obtained when the height evolves with time in an exponential way,
ie.

h(t)=h, e (4.51)

where C denotes the value of the constant. Theoretically, if the dies are assumed rigid, the
reduction in height of the specimen is given by the displacement z of the punch, which leads
to:

z=h,(1-e%) (4.52)
In practice, z includes two terms:

e the reduction in height of the stack (Z,), as previously mentioned;
o the deflection of the machine since the dies are actually deformable pieces.

It results that the strain rate applied to the specimen is different in the elastic domain. Indeed,
during the elastic regime, the load increases at a high rate, producing high deflections of the
machine. However, at larger strains, the strain rate is close to the targeted one since the in-
crease rate of the force applied to the specimen is lower, inducing less deflections.

Figure 4-41 shows an example of the average axial strain evolution with time. The computa-
tion of the average axial strain is based on the data determined along the middle cross-section
of the specimen, i.e. at mid-height of the stack. It can be observed that the strain rate is kept
quasi-constant (~9.10 s™* on average) during all the deformation.
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Figure 4-41 Evolution of the average axial strain with time during a layer compression test

Table 4-5 lists some features of the different layer compression tests performed on Ti6Al4V,
namely:

the identification number of the test and the specimen;

the main dimensions of the specimen measured before and after the test (major and
minor axes of the middle cross-section, height of the stack);

the thickness of the paint layer placed on the lateral surface of the specimen and used
for DIC.

In addition, it is specified if the test was performed or not at a constant strain rate.

The initial and final lengths of the major and minor axes were measured with a microscope (in
the case of the final dimensions, the central layer of the stack was used since the geometry of
the middle cross-section is studied) while the initial and final heights of the specimens were
determined with the help of a micrometer. Regarding the thickness of the paint layer, the lat-
ter was also assessed using the micrometer as follows:

after painting the stochastic pattern on the lateral surface of the stack, the dimensions
of the cross-section were again measured three times in RD (major axis) and TD (mi-
nor axis);

if the indices 0 and p denote the measurements without and with taking into account
the paint layer respectively, the average thickness of the latter can be assessed by
t,=a,—-a, inRDand t,=b,—b; inTD;

the average thickness around the cross-section, given in Table 4-5, is then calculated

t, +t
by t=2—2.
Y 2

Finally, it has to be noted that the first five experiments only helped to adjust the displace-
ment of the punch in order to obtain a constant strain rate and to check that the optical meas-
urement system was in good working order.
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Description of the experimental devices and the mechanical tests

Test number 1 2 3 4 5 6 7 8 9 10
Srf)jrcrilrbneern 2 3 5 7 8 4 6 9 10 11
s?r?;\?it?;:e no no yes yes no yes yes yes yes yes
Initi[?:]miight 13.85 | 13.83 | 13.81 | 13.81 | 13.92 | 14.07 | 14.10 | 13,55 | 14.16 | 14.16
Initial length

of the major 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
axis [mm]

Initial length
of the minor 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

axis [mm]

Final height

- 12.65 | 12.80 | 12.80 - 13.00 | 12,93 | 12.43 | 12.99 | 12.99
[mm]

Final length of
the major axis - - 20.67 | 20.65 | 20.67 | 20.67 | 20.64 | 20.65 | 20.63 | 20.72

[mm]

Final length of
the minor axis - - 10.66 10.65 10.66 10.69 10.75 10.70 10.69 10.77
[mm]

Paint layer
thickness 0.15 0.125 0.20 0.17 0.17 0.125 0.15 0.14 0.125 0.18
[mm]

Table 4-5 Features of the different layer compression tests

4.2.4, Deep-drawing tests

Figure 4-42 shows a schematic view of the device which is used in LEM3 (Arts et Métiers
ParisTech — Metz Campus, France) during a deep-drawing process. The latter consists in
drawing a sheet metal into a forming die with a punch. A blank-holder is used to maintain the
sheet during the process in order to prevent wrinkling which can occur near the edges of the
blank if the blank-holder force is non-existent or too low. On the other hand, a too high force
can cause a failure of the sheet. Finally a lubricant is placed between the specimen and the
tools in order to reduce friction (u ~ 0.04).

Deep-drawing was performed by Prof. T. Balan and his team on five Ti6Al4V circular blanks
with a diameter of 180 mm, i.e. a radius R, =90 mm. Table 4-6 provides the geometries of

the tools and the lubricant used for each experimental test. It can be noticed that just the inter-
nal and profile radii of the matrix, as well as the lubricant, were changed from one experiment
to another. The speed of the punch was fixed to 1 mm/s. During each drawing, the force and
the displacement of the punch were measured. Then the earing profile of the deformed cup
was manually determined (see Figure 4-43). Since failure occurs before the complete drawn
of the sheet for all the tests, the earing profile corresponds to the radius of the cup as a func-
tion of the orientation with respect to RD.
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Figure 4-42 Schematic view of the experimental device used for deep-drawing

Test 1 Test 2 Test 3 Test 4 Test5

Radius of the punch R, 49.25 49.25 49.25 49.25 49.25
[mm]
Profile radius of the
punch r, [mm] 10 10 10 10 10
Internal radius of the
blank-holder Ry, [mm] 50 50 50 50 50
Internal radius of the
matrix R, [mm] 55 55 50 50 50
Profile radius of the ma-
trix r, [mm] 10 10 8 8 12

. . Oil + . Oil + Oil +
Lubricant Oil Teflon oil Teflon Teflon
Blank-holder force [kN] 75 75 75 75 75

Table 4-6 Features of the different deep-drawing tests: dimensions of the tools and lubricant
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Description of the experimental devices and the mechanical tests

radius r [mm)]

angle 6 [°]
Earing profile of each
quarter + average

test 4] |

= -
.
o
rm o0
723 o o
= ooo GDQ:
E 62 o 1st quarter %o 5 '{ ™
= 0 2nd quarter! o
o 3rd quarter b0
60 O 4th quarter
i — average
58 1 1 1 1 ' l 1 i 1 1 1

0 10 20 30 40 50 60 70 80 90

orientation with respect to RD [°]

Figure 4-43 Determination of the earing profile (test 4)
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Experimental campaign

Chapter 5 Experimental campaign

In order to understand the mechanical behavior of Ti6Al4V titanium alloy, several studies
have been conducted as well in moderate than in high strain rates and temperatures. Here is
given a non exhaustive list of these investigations: Lowden and Hutchinson (1975) performed
tensile, compression and plane strain compression tests on six batches of material with differ-
ent textures and observed a large strength differential effect for conditions where the c-axis
deformation is involved; Follansbee and Gray (1989) carried out compression tests at temper-
atures between 76 and 495 K, and strain rates between 0.001 and 3000 s"l; Fukuhara and
Sanpei (1993) studied the evolution of the elastic moduli (Young modulus, shear modulus,
Poisson ratio, ...) with the temperature; Medina Perilla and Gil Sevillano (1995) tested the
material under different quasi-static stress states (tension, compression, simple shear); Bruno
and Dunn (1997) measured the elastic constants for Ti6Al4V by means of neutron diffraction;
Lee and Lin (1998b) and Lee and Lin (1998a) studied the effects of the strain rate (500 s

<£< 3000 s™) and the temperature (T, <T < 1100 °C) on the plastic deformation behav-

ior; Macdougall and Harding (1999) carried out torsional tests over a wide range of strain
rates (between 300 and 1000 s™) on thin-walled tubular specimens; Majorell et al. (2002) in-
vestigated the mechanical response under low and moderate strain rates (0.001 — 10 s7) as
well as various temperature conditions (650 — 1340 K); Khan ef al. (2004) and later Khan et
al. (2007) studied the quasi-static, dynamic, multiaxial and non-proportional loading respons-
es of Ti6Al4V at different strain rates and temperatures; Peirs (2012) characterized the impact
dynamic behavior of the material (strain rates between 100 and 1000 s™) under tension, shear
and torsion; ...

In this chapter, a comprehensive experimental investigation of the mechanical response of
Ti6Al4V is presented. The studied material is first introduced. Next the anisotropy exhibited
by the alloy at room temperature is examined under different quasi-static strain loading condi-
tions and then for different strain rates in tension.
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5.1. Description of the material

The Ti6AI4V titanium alloy studied in this work is in 0.6 mm thick sheet form designated as
“TIMETAL® 6-4 Titanium To6le Aéro SQ” and produced by TIMET. The chemical composi-
tion is listed in Table 5-1. The sheet was mill annealed one hour at 760°C.

Ti [%] Al [%] Vv [%] Of%] Nfppm] Clppm] H[ppm] Fe [%]

TOP Bal. 6.22 3.93 0.19 60 80 100 0.16
BOTTOM Bal. 6.27 4.00 0.20 60 90 86 0.16

Table 5-1 Chemical composition of the Ti6AI4V alloy investigated (data provided by TIMET)

The microstructure and the initial texture of the as-received material were determined by
EBSD and XRD. It is observed that the a-phase and S-phase volume fractions are respective-
ly of ~90% and ~10% (Figure 5-1). The average grain size is of ~7.5 um for the a-phase (see
grain size distribution in Figure 5-2) while it is of ~1 um for the S-phase. The analysis of the
(0002) pole figure shows that the material is initially anisotropic (see Figure 5-3). Indeed, the
texture displays two density peaks (between 5 and 6 m.r.d.) at +/- 13° from the plate normal
direction (ND) as well as a peak along TD (~3 m.r.d.).

TD

RD

Gray Scale Map Type: Image Quality
30.236..88. 482 (30.236..88.482)

Color Coded Map Type: Phase
Total Partition
FPhase Fraction Fraction
I Titanium (Alpha) 0882 0882
[ Titanium (Betay 0093 0093

Boundaries: =none=

Figure 5-1 Initial microstructure of Ti6Al4V (EBSD scan): the a-grains and S-grains are respectively colored
inred and in green

80



Experimental campaign

area fraction []

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
grain size (diameter) [um]

Figure 5-2 Grain size distribution of the a-phase

8 10 13 16 20

Figure 5-3 Initial texture of Ti6Al4V ((0002) pole figure) measured by XRD; the scale is giv-
enin m.r.d.

5.2.  Study of the anisotropy

5.2.1. Anisotropy in tension

Figure 5-4 shows the axial force — longitudinal displacement curves obtained in uniaxial ten-
sion for eleven loading directions with respect to RD, i.e. from 0° to 90° by steps of 10° and
45°, The force is measured by the load cell while the displacement is given by the mechanical
extensometer. It can already be noticed that the material displays an anisotropic behavior.

It has to be noted the small oscillations which are due to the regulation parameter adjustment.
In order to maintain a constant strain rate, the machine crosshead undergoes a series of accel-
erations and decelerations, causing fluctuations which may be significant when choosing a
wrong set of regulation parameters. Table 5-2 lists the values used to inhibit as much as pos-
sible the amplitude of these oscillations.
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Elongation control 0.005
Force control 0.2
Position control 0
Deceleration 10

Table 5-2 Regulation parameters used in tensile tests

Each curve plotted in Figure 5-4 corresponds to an average of the four tests performed for
each loading direction. An example showing the experimental and average curves for the 30°-
loading direction is given in Figure 5-5. The standard deviation is also computed in order to
assess the experimental errors (Figure 5-6).
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Figure 5-4 Force-displacement curves in uniaxial tension along eleven loading directions in the plane of the

sheet
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Figure 5-5 Experimental and average force-displacement curves in tension along the 30°-direction
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Figure 5-6 Average force-displacement curves with error bars for each loading direction
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Based on the measured force and displacement, the true stress and the logarithmic strain are
determined by using Eq. (4.15) and (4.6) respectively. The average stress-strain curves for
each loading direction are depicted in Figure 5-7. The same experimental results with error
bars are given in Figure 5-9. The stress-strain curves exhibit the standard concave-down ap-
pearance (i.e. steadily decreasing hardening rate). In all tests, shear type fracture is observed
(see Figure 5-8).
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Figure 5-7 Stress-strain curves in uniaxial tension along eleven loading directions

Figure 5-8 Fracture of a tensile specimen
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Figure 5-9 Average stress-strain curves with error bars for each loading direction
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Elastic anisotropy

Young modulus is determined by linear regression on the elastic part of each tensile stress-
strain curve. Figure 5-10 shows the average values as well as the standard deviations comput-
ed for each loading direction. It can be noticed a low anisotropy, the largest and smallest
moduli (respectively 113 GPa and 105 GPa) being observed in the transverse direction and
the 50°-direction. Nevertheless, it will be assumed in this study that the material is isotropic

elastic with a Young modulus E given by the average over all the tested directions, i.e.:

E, + 2E, +2E,, + 2E,, + 2E,, + 2E . + 2E,, + 2E, + 2E,, + 2E;, + E,,

E= 5.1
2 (5.1)
which leads to E =109 GPa.
3
120x10°[ —r——
g TA6V
= 115} 1
E I 1
o 110§ |-
3 j
= I % [
g 105] L3
= [ |
3 i |
> :
100— - - - -

0 10 20 30 40 50 60 70 80 90
loading direction [°]

Figure 5-10 Young modulus as a function of the specimen orientation: the bold symbols are the average val-
ues while the bars represent the standard deviation

Plastic anisotropy

The observation of the tensile stress — strain curves shows the plastic anisotropy displayed by
Ti6AI4V. In order to characterize this anisotropy, the uniaxial tensile yield stress o in each
direction o with respect to RD is assessed. The rolling direction yield stress is defined by the
offset method (see Figure 5-11). The choice of the offset is fixed to a plastic strain value &/,

usually 0.2%, corresponding to a plastic work W, given by:

Wy =" oydef =" o de’ (5.2)

where o and &° are the axial stress and plastic strain, respectively.
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Figure 5-11 Determination of the tensile yield stress along RD (o, = ag ) by the offset method (Flores (2005))

For the other orientations, the work-equivalence principle (Hill (1987)) is used to determine
the yield stress (see Appendix D). It has to be noted that this technique will next be applied to
define the initial yield limit for other stress states (see Figure 5-12).

O 40 Plane strain test
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Figure 5-12 Determination of the yield stress for different stress states using the work-equivalence principle
(Flores (2005))

The material anisotropy can also be characterized by the r-ratios. The average axial and trans-
versal plastic strains along the gage length are determined by using the data provided by
Aramis®. In all the tests, it is observed that the evolution of the plastic strains with time is
almost linear as long as necking does not occur (see example on Figure 5-13). The r-ratio can
thereby be considered as being constant. For each test, the following procedure is performed:

- atrend line is fitted on the linear part of each plastic strain-time curve;
- the axial and transversal plastic strain rates are given by the slope of the trend lines;
- the r-ratio is computed by using Eq. (4.16).
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Figure 5-13 Evolution of the axial and transversal plastic strains with time (test along 20°-direction)

Figure 5-14 and Figure 5-15 respectively show the anisotropy of the tensile yield stresses and
r-ratios as a function of the loading direction. It can be noticed that the in-plane anisotropy in
initial yield stresses is moderate. An anisotropy ratio for the tensile yield stresses defined by
the ratio of the yield stress in the transverse direction (the largest one measured) to that in the
50°-direction (the smallest one measured) is 1.094. However, the anisotropy in r-values is
very strong, the r-ratio in the 60°-direction (the largest one) being more than double the r-
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Figure 5-14 Anisotropy in tensile yield stresses: the bold symbols are the average values while the bars repre-
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Figure 5-15 Anisotropy in r-ratios: the bold symbols are the average values while the bars represent the
standard deviation

The results of Figure 5-15 are compared with the data from Fundenberger et al. (1997) and
Medina Perilla and Gil Sevillano (1995) on Ti6Al4V, see Figure 5-16. The r-values deter-
mined in this work are higher than those of both studies, likely due to a different
thermomechanical treatment in the production of the sheets. However, it has to be noted a
very similar trend between the three sets of data.

3.0
05 [ []
“t } ¢ "
L -
2.0} |
T L A ]
! ] . ]
2 15 :
= [ [ - i
5 I 3 a ]
3 -
1.0" !E u
[ ]
- I e ULg i
05 A m Fundenberger et al. (1997)
“r u A Medina Perilla and E
§ = Gil Sevillano (1995)
0.0L— . . . N N N .
0 10 20 30 40 50 60 70 80 90

loading direction [°]

Figure 5-16 Comparison of the measured r-ratios with the data from Fundenberger et al. (1997) and Medina
Perilla and Gil Sevillano (1995)

From Figure 5-7, it can be observed that the hardening rate ® =do/0¢ is different from one
loading direction to another. However the oscillations exhibited in the stress-strain curves
make its computation rather difficult. Although different smoothing techniques were used
with the software IGOR Pro, it was not possible to determine with sufficient accuracy the
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evolution of ® during the deformation and then the different hardening stages. Nevertheless,
in order to assess the influence of the loading direction on the hardening rate, a simple proce-
dure was performed and consisted in fitting a trend line on each stress-strain curve in a delim-
ited strain range, namely between 1% and 6% in the present case (see Figure 5-17). The aver-
age hardening rate © is then provided by the slope of the line. The results (see Figure 5-18)

show that, when uniaxial tension is applied, ® is maximal along RD and TD while it is min-
imal along the 45°-direction, pointing out again the anisotropic behavior of Ti6GAI4V.
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Figure 5-17 Example of linear fitting on a stress-strain curve in the strain range between 1% and 6% (test
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Figure 5-18 Influence of the loading direction on the hardening rate when Ti6AIl4V is subjected to uniaxial
tension
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5.2.2. Anisotropy in compression

The average experimental curves in compression obtained by TUAT along RD, 45°-direction
and TD are shown in Figure 5-19 and Figure 5-20 while the yield stresses in each direction,
determined by the work-equivalence principle, are given in Figure 5-21 (a). As previously, the
average hardening rate was also computed by fitting a straight line on each experimental
curve in the strain range from 1% to 6% for tensile tests and from 1% to 9% for compression
tests. The results are given in Figure 5-21 (b). Regardless of the loading orientation, the mate-
rial is strongest in TD (see Figure 5-19), the material anisotropy in tension being more pro-
nounced than in compression. Comparison between the tensile and compressive responses
along each of these loading directions show that the material displays tension-compression
asymmetry in yielding and hardening (Figure 5-20 and Figure 5-21).

a
B e e e o o e LI B m e p s 1300777
3 3 | |— tension RD TA6V/| ]
1200_ I | — tension 45° -
— 1000 g — 1200~ — tension TD 7
o T L
o o
= 800 1 =
o @ 1100 —
] 600 b 4
@ 400H —— tension RD| 4 @
—— tension 45° 10001 7
200 —— tension TD |
D L 1 1 1 1 1 1 1 L 1 1 1 900
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
strain [-] strain [-]
1400 ] 1400'l'l'l'l'|'l'l'l'll T T T T
1200-_ 3 | | — compression RD TABV| ]
L ] I | —— compression 45° 1
— 1000 _ —_ 1300_‘ —— compression TD T
& : E c
= 800 = =
[} 9 ] @ 1200 -
g 600_ 3 8
® 400 —— compression RD ‘ e 1100-_ il
200 —— compression 45°| 3
—— compression TD | § i
[ S 1 [P B B | IR B R . 1000 L 1 Ll 1 I B | | I Il

0.00

0.05

0.10
strain [-]

0.15

0.00

0.05

strain [-]

0.10

Figure 5-19 Uniaxial test results (left panel: average curves; right panel: average curves with error bars) in
three in-plane orientations showing the material’s anisotropy in (a) tension and (b) compression, respectively

(tests performed at TUAT)
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Figure 5-21 Anisotropy in (a) yield stresses and (b) hardening rates in tension and compression for Ti6AI4V
based on the tests conducted at TUAT and ULg

Comparison of the results in tension from ULg and TUAT

By comparing the tensile yield stresses based on the tests conducted at TUAT with those
measured at ULg (see Figure 5-21), it can be noticed that the values are different. Neverthe-
less if the yield stresses are normalized as follows:

.
o
s = ? (5.3)

where o and o, represent respectively the tensile yield stress in the « -direction and RD,
the results (see Figure 5-22 (a)) show a good agreement between the measurements of both
laboratories. In the same way, the average hardening rates are compared in Figure 5-22 (b),
showing a similar trend.
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Figure 5-22 Comparison of (a) the tensile yield stresses and (b) the average hardening rates based on the tests
carried out at ULg (blue symbols) and TUAT (red symbols)

The discrepancy between tensile test results obtained at ULg and TUAT could be attributed to
the strain rate sensitivity of the material, since the strain rate cannot be maintained constant
with the experimental device used at TUAT. Nevertheless it will be shown in Section 5.3 that
the effect of the strain rate in the range 10™ — 10 s is not significant. Other reasons could be
related to ageing of the alloy, to the difference in experimental setup and specimen geometry,
or to the position of the samples with respect to the width direction of the sheet.

5.2.3. Anisotropy in plane strain

The resulting stress-strain curves in plane strain along RD, 45° and TD are shown in Figure
5-23. The axial stress o;, and the axial strain &, were determined using the methodology

described in Section 4.2.3.1. It can be observed that the material exhibits moderate anisotropy
in plane strain, the strongest behavior being in TD.
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Figure 5-23 Plane strain test results (Upper panel: average curves; lower panel: zoom and average curves
with error bars) in three in-plane directions (RD, 45°, TD) determined using Equation (4.39) and « =1.0154

5.2.4, Anisotropy in simple shear

Figure 5-24 compares the stress-strain curves in simple shear along RD, 45° and TD. The
stress component 7, denoted “shear stress”, was computed using Equation (4.48) while y,
denoted "shear strain” was determined by Equation (4.41). It can be observed that the me-
chanical behavior is identical in RD and TD, while the flow stress is higher in the 45°-
direction. Nevertheless the material displays a moderate anisotropy in yielding while the
hardening behavior is almost the same in each loading orientation.

It has to be noted that no discrepancy has been observed in the material response depending
on whether the simple shear tests in 45° with respect to RD are performed in the forward di-
rection or the backward direction.
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Figure 5-24 Simple shear test results in three in-plane directions (RD, 45°, TD)

Bauschinger tests in RD with 10% pre-strain were also carried out in order to study the effect
of a strain path change on the mechanical behavior. The average stress-strain curve is given in

Figure 5-25.
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Figure 5-25 Bauschinger simple shear test result in RD with 10% pre-strain
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In order to compare the material response with the one observed in monotonic shear, the ex-
perimental curve is plotted using the absolute value of the shear stress and the accumulated
shear strain in Figure 5-26. It can immediately be noticed a significant Bauschinger effect, i.e.
a decrease of the flow stress upon strain reversal.
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Figure 5-26 Comparison between simple shear and Bauschinger test results in RD

5.2.5. Observations about the yield locus and the hard-
ening

Figure 5-27 compares in the biaxial plane (o, =0) the theoretical yield locus according to

Von Mises criterion (Equation (3.6)) with the experimental data obtained for the monotonic
tests (tension, compression, plane strain and simple shear) and determined at four levels of
plastic work per unit of volume using the work-equivalence principle (see Figure 5-12). It has
to be noted that the data are normalized, i.e. for a same level of plastic work, each value is
divided by the corresponding stress in tension along RD. Two remarks must be reported con-
cerning the data in plane strain and simple shear:

The plane strain tests only allow the experimental determination of the stress compo-
nent along the loading direction. For the first level of plastic work corresponding to
the initial yield locus, the second component can approximately be determined using
Hooke's law. Denoting by o, and o,, the stress components along the loading and

transverse directions respectively, and assuming that the elasticity of the material is
isotropic, it can be determined that:

Oy =VOy (5.4)

where v is the Poisson ratio. For the higher levels of plastic work, only a straight line
to which the yield locus must be tangent can be plotted to represent the plane strain
state.

In simple shear, the determination of the complete stress state is not possible. Indeed,
as in the case of the plane strain tests, one stress component cannot be identified. Nev-
ertheless, at the onset of plasticity, it can be assumed that the stress state is close to
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pure shear. For this reason, only the shear data in the initial yield locus are shown in

Figure 5-27.
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The comparison of the experimental results with the theoretical yield locus according to Von
Mises criterion reveals the degree of anisotropy displayed by Ti6AI4V titanium alloy. Hereaf-

ter Figure 5-28, Figure 5-29 and Figure 5-30 show the distribution of the stress ratios a; /ag

and GHC /og (where the subscript @ denotes the loading direction while the superscripts T and

C identify the data in tension and in compression respectively) at different levels of plastic
work. These levels correspond to the following plastic strains when tension is applied to the
material along RD: 0.2% for the first level (onset of plasticity), 1% for the second level, 2%
for the third level and 5% for the last one. The results show that the hardening behavior is not
isotropic since it depends on the loading direction, which means that the shape of the yield
locus evolves with the plastic deformation.
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Figure 5-28 Evolution of the stress ratio distribution in tension with respect to the plastic work
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Figure 5-30 Comparison of the results in tension and compression given in Figure 5-28 and Figure 5-29

5.2.6. Results from layer compression tests

Evolution of the middle cross-section geometry

In order to compute the axial stress occuring in a layer compression test, it is required to de-
termine the actual area of the middle cross-section during the deformation of the specimen.
As explained in Section 4.2.3.2, with the help of DIC, it is possible to track the position of
any point on the painted lateral surface. Thus the middle cross-section can be located and its
shape can be determined at any stage of the deformation (see Figure 5-31). A subroutine de-
veloped by Halir and Flusser (1998) is then used to fit the experimental cross-section by an
ellipse, enabling to assess its area. Nevertheless, it has to be noted that the measures are af-
fected by some errors, as it can be observed in Figure 5-32 in which the area determined by
DIC is compared with the initial and final actual area measured before and after each experi-
ment with the help of a micrometer. A Matlab subroutine developed by V. Tuninetti
(Tuninetti et al. (2011)) was used to correct the data provided by DIC (see for instance the
results for the test 7 shown in Figure 5-32). This correction is performed as follows. If i (

i=0...N) denotes the stage of the deformation and if &’ and a* represent the length of

the semi-major axis determined by DIC and its actual length respectively, the error Aa, is
defined by:

Aai — a.iDIC _aiac (55)

However, only the errors before and after loading are known, i.e. Aa, and Aa,. If the error is
assumed to linearly evolve with the average axial strain ¢, it can be written:

R . YRR (5.6)

&y &

corr

and so the "correct™ length @, can be assessed:

a.icorr — a.iDIC —Aai (57)
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The same procedure is applied for the semi-minor axis and the "corrected™ area

by:

ACOTI‘ — jz_aiCOITbiCOH’

where b denotes the semi-minor axis of the ellipse.
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Figure 5-31 Shape of the middle cross-section at & =5% (stage 66 — test7): the black dots represent the ex-
perimental data (DIC) which are fitted by an ellipse (red curve) using the subroutine proposed by Halir and

Flusser (1998)
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As the deformed cross-section is assumed to be an ellipse at each stage, it can be interesting to
study the evolution of the semi-major axis and semi-minor axis, respectively denoted a and
b, with the axial strain (see Figure 5-33) or else the evolution of their ratio (see Figure 5-34).
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Figure 5-33 Evolution of the semi-major and semi-minor axes of the middle cross-section with the axial strain
(test 7)
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Figure 5-34 Evolution of the major to minor axes ratio with the axial strain (test 7)

For the tests 7, 8 and 9, it was observed that the ratio a/b decreases with increasing strain (in
absolute value), which results into a growth of the cross-section more significant in TD than
in RD. This can also be observed by plotting, for different stages of the deformation, the
shape of the middle cross-section (Figure 5-35) or r with respect to € (Figure 5-36), these
two parameters being defined as follows:

e 1 is the distance between the center of the ellipse and a point on the free surface of the
section;
e (@ is the angle between the semi-major axis a (along RD) and r (=0 when r =a).
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Figure 5-35 Shape of the middle cross-section at different average strain levels (test 7)
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Figure 5-36 Distance r with respect to the angle & at different average strain levels (test 7)

Concerning the tests 6 and 10, the conclusions differ from the above results as it can be seen
in Figure 5-37 to Figure 5-40: the growth of the middle cross-section is larger in the RD than
in the TD. It was observed that some images taken at the end of these tests were not correlated
properly by the DIC process. In order to analyze the results, these images had to be neglected
and some assumptions had to be made to perform the correction presented in Figure 5-32. An
example is given in Figure 5-40 where the r -6 curves obtained for the tests 6 and 10 are dif-
ferent from those resulting from the tests 7, 8 and 9. However this does not prove that these
experiments have to be rejected since no conclusion about compression in plane anisotropy
can be deduced at this level as friction along the minor and major axis directions induce dif-
ferent constraints in the material flow. In addition it can be noticed different results in the
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evolution of the ratio between the major and the minor axes of the cross-section depending on
the test (Figure 5-41). Since the same procedure was followed during the experimental cam-
paign, it is likely that friction played a sizeable influence in the shape evolution of the cross-
section. An analysis of the friction effect through finite element simulations will be performed
in Chapter 8.
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Figure 5-37 Evolution of the major to minor axes ratio with the axial strain (test 6)
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Figure 5-38 Shape of the middle cross-section at different average strain levels (test 6)
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In order to assess the effect of the friction coefficient with the help of finite element simula-
tions, the experimental curvature of the specimen lateral surface in RD was determined for a
strain level of 7%. The barreling effect can be observed in Figure 5-42.
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Figure 5-42 Curvature of the specimen lateral surface in RD at an average strain level of 7%: (a) results for
the different tests; (b) average curve with error bars.

Strain field

DIC enables to determine the strain field at the lateral free surface. Figure 5-43 gives an ex-
ample in which the evolution of the axial strain field along the middle cross-section of the
specimen is plotted. The observation of the results obtained for the different tests shows that
the material displays anisotropy. Nevertheless, each test reveals a strain field which is differ-
ent of each other for a same level of the average axial strain (see Figure 5-44). This discrep-
ancy of the results could be explained by the fact that the friction between the specimen and
the experimental device as well as the parallelism defect of the punches can significantly af-
fect the material response. Finite element simulations will be used in the third part of this
work to determine the most reliable behavior.
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Figure 5-44 Distribution of the axial strain along the middle cross-section for the different tests when the
average strain reaches 9%

Stress-strain curves

The axial stress is computed using three different approaches:

1. the force F measured by the load cell is divided by the cross-section area A de-
termined by DIC:

o= (5.9
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2. the force is divided by the cross-section area A" when assuming volume conserva-

tion:
F
V= 5.10
"=t (5.10)
3. the force is divided by the corrected cross-section area A™" (see Equations (5.5) to
(5.8)):
F
corr — 5.11
o ACOrI' ( )

As it can be seen in Figure 5-45, these three approaches provide different results when the
material is in plastic regime, which explains the interest to determine the actual area of the
cross-section. It can also be noticed that a transition occurs before reaching the elastic regime
due to the cavities which might exist between the different layers of the stack at the beginning
of the test.
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!
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—— stress from volume conservation -
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j/ —— stress from corrected cross-section
0 I I [ ]

0.00 0.02 0.04 0.06 0.08 0.10

strain [-]

Figure 5-45 Comparison of the axial stress-axial strain curves respectively determined by three different ap-
proaches

In order to compare the stress-strain curves of the different tests, these are first shifted (see
Figure 5-46) in such a way as to overlay the elastic part of each curve. An average curve is
then determined. A relative good agreement can be observed considering the variation of the
previous results (shape of the cross-section, strain field) from a test to another.
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Figure 5-46 Comparison of the stress-strain curves obtained for each test and the average curve

Another important remark must be reported about the elastic modulus. Indeed, using the aver-
age stress-strain curve, Young modulus is determined by fitting a straight line along the elas-
tic part (Figure 5-47), which gives E =80 000 MPa. This value is significantly lower than the
ones usually observed in a classical tensile test (105 000 — 116 000 MPa). According to
Coppieters (2012), layer compression tests are not adequate to identify Young modulus, as
well as the initial yield stress, for the following reasons:

o the compliance of the adhesive if the stack is glued;
e the elasticity of the experimental device;
e a parallelism defect of the punches.

Similar observations can also be found in Maeda et al. (1998). The first two points can be
neglected. Indeed no glue was used between the layers and the elasticity of the machine was
taken into account in the computation of the strain rate. In addition, the strain field is deter-
mined by DIC. However a parallelism defect was measured between the punches of the ma-
chine. Another cause which could explain the low value of the elastic modulus is the surface
roughness between the different layers of the stack.
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Figure 5-47 Determination of Young modulus (average stress-strain curve)
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5.2.7. Results from deep-drawing tests

Figure 5-48 shows the deformed cups obtained for the different deep-drawing tests summa-
rized in Table 4-6, while Figure 5-49 gives the corresponding force-displacement curves. It
can be observed that some problems occured during the second and third tests. The deformed
cup from the test 2 exhibits bumps along the wall part of the specimen. These bumps are actu-
ally due to a too large internal radius of the matrix. Concerning the specimen used for the test
3, the matrix was changed but significant failure occured during the process, making impossi-
ble the determination of the earing profile. This problem was caused by an unadapted lubri-
cant. Indeed only oil was used for the test 3, while test 4 differs from the previous ones by the
fact that Teflon was added.

Hereafter, only the tests 4 and 5 are analyzed since the lubricant as well as the dimensions of
the tools, except the profile radius of the matrix, are identical.

The earing profile was determined on each quarter of the deformed cup (see Figure 5-50).
Since the sheet presents an orthotropic symmetry, the four profiles should perfectly superim-
pose. Actually some deviations are observed and are probably due to an improper alignment
of the center of the blank with the centers of the matrix and the punch during the deep-
drawing process. An average earing profile was then determined from the four experimental
results obtained for each quarter.

For some materials such as aluminium, the shape of the earing profile and the number of ears
can be predicted by analyzing the distribution of the tensile r-ratios (Yoon et al. (2006)). In-

deed, during the deformation, the flange of the cup is subjected to a tensile strain &, along the
radial direction and a compressive strain ¢, acting along the circumference (Figure 5-51). In

addition the latter is predominant, i.e. |6‘1|<|6‘2|. Besides, under tension, the lower the r-ratio

is, the higher the thickness deformation of the sheet is. Since the flange is dominated by com-
pression, its thickness tends to increase and the effect is even more significant that the r-ratio
is small. As the volume is conserved during plastic deformations, a high increase of the thick-
ness corresponds to a low earing, which means that the earing is minimum (resp. maximum)
where the r-ratio is minimum (resp. maximum). Since compression occurs along the circum-
ferential direction, the behavior of the flange in a & -direction with respect to RD is controlled
by the r-ratio of the material in the direction defined by 6+ 90°.
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Test 1 Test 2

Test 3 Test 4

Test 5

Figure 5-48 Deformed cups resulting from deep-drawing tests

111



300 T T T T T 300 T 1 T T T
2501 TAGV J 2501 TABV ]
. 200 — - 200} i -
z ] E ]
o 150 & = 150} -
g ] 8
£ 5 J
100 3 “  q00fF 4
| ] e ]
0 L L L L L 0 | 1 I 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
displacement [mm] displacement [mm]
z z
= =
[ Q
e ]
il )
displacement [mm] displacement [mm]
300 r T r T v T . T r T
250
. 200
z L
=
o 150
g L
< 100
50
0
displacement [mm]
Figure 5-49 Force-displacement curves obtained for the different deep-drawing tests
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Figure 5-50 Earing profile of each quarter of the deformed cup and average profile for the tests 4 and 5
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Flange of the cup under the
blank-holder

> RD

Figure 5-51 Strains along the radial and circumferential directions on the flange of the cup during the deep-
drawing process

In the case of Ti6AIl4V, it can be noticed that this link between the earing profile and the dis-
tribution of the r-ratios also exists (see Figure 5-52).
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Figure 5-52 Link between the earing profile (test 5) and the distribution of the r-ratios in the case of Ti6Al4V
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5.3. Study of the strain rate effect

As explained in Section 2.4.3.3, Ti6Al4V mechanical response is very sensitive to the strain
ate, as shown in Figure 5-53 where the material is loaded in tension at different strain rates
along RD, namely 10* s, 10° s 10% s and 10™ s™%. It can be noticed that the yield stress
(respectively the work-hardening) increases (respectively decreases) when increasing the
strain rate. It is thus required, when characterizing the material under different strain paths
and identifying its initial yield locus, to perform experimental tests with same (equivalent)
strain rates. Nevertheless, when different devices are used to carry out experiments, it is often
difficult to reach an identical strain rate.

T T T
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0
=]
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=]
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400 f

200f

0 " 1 L | L 1 " 1 " 1 " 1 L 1 L 1 " 1 i
0.00 0.02 0.04 0.06 0.08 0.10
strain [-]

Figure 5-53 Ti6Al4V mechanical behavior in tension at different strain rates

Figure 5-54 to Figure 5-57 show the evolution of different strain components with time for
tensile, plane strain, simple shear and layer compression tests. It can be noticed that, in some
cases, the strain rate was kept constant during the whole deformation (see Figure 5-54 and
Figure 5-57), while it was only possible to maintain a constant speed in the other cases, which
resulted in a different strain rate during the elastic and plastic regimes (see Figure 5-55 and
Figure 5-56.

As different stress states are investigated, the equivalent strain rate has to be determined for
each test. According to the work-equivalence principle, the rate of plastic work per unit of

volume W " is related to the equivalent stress and the equivalent plastic strain rate £° by the
following relationship:
WP=G5s"=0, &’ (5.12)

ij “ij

where o and g,lp are respectively the components of the stress and plastic strain rate tensors.
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Figure 5-54 Evolution of ¢, with time during a tensile test (DIC measurement)
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Figure 5-55 Evolution of ¢,, with time during a plane strain test (DIC measurement)
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Figure 5-56 Evolution of y with time during a plane strain test (DIC measurement)
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Figure 5-57 Evolution of &,, with time during a layer compression test (DIC measurement)

The equivalent stress and the equivalent strain rate depend on the model used to describe the
yield locus. For instance, if Von Mises criterion is considered, & is given by:

3

o = ES”SU—

(5.13)

where s; denotes the components of the stress deviator. As for £°, it is determined as fol-
lows:

= ggg (5.14)

Since Ti6AIl4V displays anisotropy and a tension-compression asymmetry, VVon Mises criteri-
on is not adapted to capture the material behavior. It is thus required to use another model
able to take into account these specific features, as CPB06 (see Section 3.1.2). Nevertheless
material parameters involved in anisotropic yield criteria have to be identified thanks to the
experimental data. Because of this drawback, Equation (5.14) is used to assess the equivalent
strain rate since it does not need any parameter.

Table 5-3 lists the different tests and the corresponding Von Mises equivalent strain rate (the
reference frame used for each experiment is presented in Figure 5-54 to Figure 5-57). It has to
be noted that the value determined for the simple shear tests is not accurate since the compo-
nents &, and &,, are not insignificant at large deformations and the used relationship as-
sumes pure shear state. Nevertheless, for the sake of simplicity, it will be assumed that the
component ¥ mostly contributes to the equivalent strain rate.
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Tensile test

£=¢,=3x10"s"

Plane strain test

£ =

2
\/§2

= i><3><10*1 ~35x107* 5!

3

2

Simple shear test

M-

1073

7
3 3

~5.8x107" s™

Layer compression test

£=6,=9x10"s"

Table 5-3 Assessment of the equivalent strain rates for the different loadings

The results in Table 5-3 show that £ is different from one test to another. It is thus essential
to determine whether the experimental stress-strain curves need to be corrected. In order to
answer this question, the following procedure is performed:

1. Johnson-Cook (JC) constitutive model (Equation (3.70)) is used to determine the
stress-strain curves at any strain rate. The identification of JC parameters is performed
using the experimental data in tension along RD at 10, 10 and 10 s™ (Figure 5-53)

and assuming T =T,

oom

since the strain rates are low (note that this assumption is not

in agreement with Lopez (2014) research which has identified thermal effect by per-
forming tests in air and fluid for strain rates larger than 6x 10 s™). The material pa-

rameters (when choosing &, =10 s™) are listed in Table 5-4 while the numerical
curves are compared with the experiments in Figure 5-58.

Hardening parameters

Viscous parameter (sensi-
tivity to strain rate)

A B

n C

935.16 460.67

0.5103

0.0104

Table 5-4 Johnson-Cook hardening material parameters based on the experimental data in tension at differ-
ent strain rates
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Figure 5-58 Comparison between experimental and numerical stress-plastic strain curves according to John-
son-Cook model for tensile tests
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2. In the case of the plane strain, simple shear and layer compression tests, the material
hardening parameters A, B and n are identified for each loading direction while the
viscous parameter C =0.0104 is assumed independent on the direction and the stress
state. The results of the identification are given in Table 5-5 and the numerical curves
are compared with the experimental data in Figure 5-59.

g A B n C
Plane strain RD 745.36 597.12 0.1514
Plane strain 45° | 3.5x10* s 760.43 619.18 0.1523
Plane strain TD 806.90 692.69 0.1953
Simple shear RD 801.59 578.57 0.5606 0.0104
Simple shear 45° | 58x107* s 836.76 516.70 0.3610
Simple shear TD 785.16 520.28 0.4483
LCT 9.0x10* s* 916.74 773.53 0.2151

Table 5-5 Johnson-Cook hardening material parameters based on experimental data in plane strain, simple
shear and layer compression tests
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Figure 5-59 Comparison between experimental and numerical stress-plastic strain curves according to John-
son-Cook model (hardening and viscous parameters from Table 5-5): (a) plane strain tests; (b) simple shear
tests; (c) layer compression tests

3. Using the Johnson-Cook model and the parameters in Table 5-5, the different stress-
strain curves are corrected to be at & =3x10"* s (i.e. the strain rate used for the ten-
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sile tests) are assessed and compared with the experimental curves performed at strain
rates going from 3.5 to 9x 10 s (see Figure 5-60).

Even if there are some discrepancies in terms of equivalent strain rate from one test to anoth-
er, Figure 5-60 confirms that the viscous effect within this range of values (3.5x10™to
9x 10™ s has no effect. It could be explained by the fact that the stress-strain curves in ten-
sion at 10 and 10 s are very close (see Figure 5-53).
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Figure 5-60 Comparison of the numerical stress-plastic strain curves according to Johnson-Cook model at
£ =3x10"* s with the experimental data performed at different strain rates in (a) plane strain, (b) simple
shear and (c) layer compression tests

5.4. General conclusion and discussion

This chapter described the experiments carried out on Ti6Al4V sheet under different loading
conditions. It was observed that the material displays a moderate anisotropy in yield stresses,
a pronounced anisotropy in r-ratios and a strength differential effect between tension and
compression, which implies that classic plasticity models (Jo-flow theory, Hill 1948) are not
able to capture the material response. For this reason, CPBO06 yield criterion and its extensions
are used in the following of this work to model the yield locus. About the hardening behavior,
the experimental results show that the evolution of the yield locus shape must be taken into
account. In addition a significant Bauschinger effect was noticed when reversing the loading
direction during a simple shear test. Different hardening formulations will be proposed in the
next part in order to predict with a good accuracy the material behavior.
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Implementation of the CPBO0G6 yield criterion in the finite element code LAGAMINE

Chapter 6 Implementation of the
CPBO06 yield criterion in the finite ele-
ment code LAGAMINE

The simulation of the experimental tests performed on Ti6Al4V and described in both Chap-
ter 4 and Chapter 5 has been performed using the FE code LAGAMINE. The latter is an im-
plicit nonlinear FE code with an updated Lagrangian formulation and is adapted to large
strains and large displacements. It was developed by the ArGEnCo department (ULg) in 1984
and has been applied to numerous forming processes: rolling (Habraken et al. (1998)), forging
(Habraken and Cescotto (1990)), continuous casting (Castagne et al. (2003); Castagne et al.
(2004)), deep drawing (Duchéne et al. (2002)) and so on. The code uses a large element li-
brary (e.g. Cescotto and Charlier (1993); Zhu and Cescotto (1994); Zhu and Cescotto (1995);
Habraken and Cescotto (1998)) and numerous constitutive laws (e.g. Habraken and Duchéne
(2004)). Nevertheless, CPBO6 yield criterion was not included in the code at the beginning of
this work. Then the first step consisted in implementing the model into LAGAMINE in order
to use it in the simulations. This chapter describes the different integration schemes which
were integrated in the code.

6.1. Introduction

6.1.1. Discretization of equilibrium equations

The physical phenomenons such as equilibrium, compatibility, ... are governed by partial
differential equations whose solution can be determined by minimizing the total energy of the
system. It can be proved that this minimization amounts to checking the virtual work princi-
ple:
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5\/\/,=jvo:5adv=jvpb:5udV+Lpt:5udS=awE (6.1)

In Equation (6.1), oW, and SW. are respectively the internal and external virtual works. ¢

represents the stress tensor, d¢ is the virtual strain tensor determined from the virtual dis-
placement Su, b and t denote the external volumetric and surface loads respectively, p is

the density while V and S denote the current volume and surface respectively.
In finite elements, the virtual displacement field is discretized as follows:

ou=H:6q (6.2)
where &5q is the vector of the nodal values while H is the shape function matrix.
The virtual strain field is determined by:

oe=B:oq (6.3)
where B is the strain-displacement matrix.

By introducing Equations (6.2) and (6.3) in the virtual work principle, Equation (6.1) be-
comes:

jvc:Bzaqdv=jvpb:H:5qu+Lpt:H:5qu (6.4)
Since &g contains the virtual nodal displacements, it can be written:
F™:5q=F":5q (6.5)
where F*' denotes the nodal external force vector equivalent to the applied loadings:
ext _ . .
F _jvpb.HdV+jSpt.Hds (6.6)
and F™ denotes the nodal internal force vector equivalent to the stresses:
int __ .
F _jvc.de (6.7)
Since &q is arbitrary, Equation (6.5) leads to:
Fint — FeXt (68)

expressing the discretized equilibrium condition in the finite element method.

6.1.2. Temporal integration

LAGAMINE enables the solving of a finite element problem by applying either explicit or
implicit approach. Nevertheless implicit integration schemes are very often used since they
are more stable and allow larger time increments.
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Implementation of the CPBO06 yield criterion in the finite element code LAGAMINE

Implicit methods are incremental: the loading P or the displacement U is applied step by
step. 4P or AU with 0<A4, <1 is imposed to the initial configuration. The Newton-
Raphson method (see Figure 6-1) is then used to find a new balanced configuration. Next
AP or AU with 4 <4, is applied to the previous configuration and the procedure is re-

peated until »" 4, =1 is reached.
k

The equilibrium is satisfied when the nodal external forces are equal to the nodal internal

forces (Equation (6.8)) or, in other words, the out-of-balance force vector F°%® =F™ —F* s
zero. In practice, it is unrealistic to require this equality and an iterative procedure is used to

reduce the norm of F°® under a convergence tolerance. By a first-order Taylor development
around the nodal position X, , at the (i +1) -th iteration, it is obtained:

i+1

aFOOB

F°°B(xi+1):F°°B(xi)+( j AX (6.9)
ox ) _

where X; is the nodal position at the i-th iteration while Ax represents the nodal position

correction. The gradient:

ooB
K= oF (6.10)
OX i

denotes the tangent stiffness matrix. As the goal is to cancel the out-of-balance forces,
Fo°® (x,,,) =0 is imposed, which gives from Equation (6.9):

Ax=-K™"F®(x,) (6.11)
Finally, the nodal position at the (i +l) -th iteration is determined by:

Xi,g =X +AX (6.12)

The previous algorithm is repeated until the following condition is satisfied:

HFOOB H (6 13)
<& .

where R is the reaction containing all force components of fixed or constrained nodes, while
¢, is the force convergence tolerance. The symbol | .|| denotes the norm of a vector. Differ-

ent definitions can be used in LAGAMINE (n is the length of F associated to the nodal de-
gree of freedom):

1<
o FL=22
i=1

1 n
. ||F||2=m/ZF5
i=1
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* IFl. =max(F])

Another convergence tolerance &, is used in the code in order to check the balance conver-
gence and to prevent jJump displacements:

&, (6.14)
[x; =4

where X, denotes the nodal position at the previous balance configuration.
A summary of the LAGAMINE flowchart is given in Figure 6-2.

Forces
g

A
l:e:-d

Positions,

A X5 Xy %2 B

Figure 6-1 Description of the Newton-Raphson method (figure from Lequesne (2009))

Note that special cases are defined when ||R| is null or very small, but this will not be de-
scribed here.

6.1.3. Constitutive laws

In order to determine the stresses, it is required to use a constitutive model characterizing the
material behavior and which is able to compute the stresses when the nodal coordinates and
the loading history are known. LAGAMINE proposes a large library of constitutive laws.
However, no model adapted to hcp metals in general and to Ti6AI4V titanium alloy in partic-
ular had been implemented when this thesis started. The following sections describe the two
implementations which are proposed to model the mechanical behavior of hcp materials and
have been introduced into LAGAMINE. The modifications have been performed at the level
of the preprocessor (subroutine LAWPRE.F) and the finite element code (subroutine LOI2.F).
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STEPS

ITERATIONS
A

Preprocessor:
e  Geometry and mesh
e Loads
e Boundary conditions
e  Material parameters

v
Loading strategy data

\4

Initial balanced configuration [«

A

Increment of loading or displacement

v

First approximation of a new configuration

v

The new balanced config-
uration becomes the refer-
ence configuration

Computation of the stress and strain fields

A

\4

Check of the equilibrium between the exter-
nal loads and the previously computed inter-
nal stresses

A

Correction of the nodal
coordinates to approach
the equilibrium

NO
Balanced
state? '
YES
Last step?
YES
END

Figure 6-2 General flowchart of the LAGAMINE code

NO
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6.2. Implementation of CPB06 associated to iso-
tropic and kinematic hardening laws

It is assumed that yielding is described as follows:
o(c-Xz,)=5(c-X,z,)-Y(z,) (6.15)

This relationship is similar to Equation (3.41), excepted the equivalent stress & only depend
on the equivalent plastic strain £°.

o is based on the stress potential given by Equation (3.33) associated to CPBO06 yield criteri-
on, or Equation (3.36) associated to CPB06exn yield criteria. If CPBO6 yield criterion is con-
sidered (all the following relationships can easily be extended to CPB06exn family), the
equivalent stress has the form:

1

& = B(IZ] ) (|5 ]~kE, ) + (|2 -ke,) f* (6.16)

where B is a constant defined such that & reduces to the tensile yield stress in RD, i.e.:

B ={(] ko) + (0] -k, )+ -k | 617
with
2 1 1
D, = gcll _§C12 §C13
2 1 1
q)z gclz —§C22 _ECZS (618)
2 1 1
cI)s §C13 _gczs _5033

The following algorithmic aspects were adopted for the simulations. Since the elastic strains
are usually much smaller than the plastic strains, it is considered an additive decomposition of

the total strain rate € into an elastic part £° and a plastic part £°:
£=¢"+¢P (6.19)

The elastic stress-strain relationship is expressed in a rate form to fit the incremental proce-
dure. It is given by:

\Y
6 =C° & (6.20)

where C° is the fourth-order elasticity tensor. The evolution of the plastic strain is given by
an associated flow rule:
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&= 12 (6.21)
oo

where 4>0 is the plastic multiplier and ¢ is given by Equation (6.15). Since the effective

stress o (Equation (6.16)) is a first order homogeneous function in stresses, the application
of Euler theorem leads to:

6: % =5 (6.22)

WPoo:P=ic: 0 oGiz5a (6.23)
06
ie.:
A=, (6.24)

where Ep is the equivalent plastic strain rate.

The integration scheme implemented into LAGAMINE to determine the stress state at each
step is the closest point projection algorithm (see Figure 6-3). During a time step

At=t ,—t , the trial state ¢"™ = +C®:Ag, is computed. If (o(cma'—Xn,Enp)SO, the

n+1 n+l n+l

trial

n+l " n+l

stress state is elastic and then o, =63 . If (p(c -X,, Enp) >0, there is plastic flow and the

following non-linear system must be solved for ¢,,,, X,,, and A4 ,:

n+l?

Gn+1 = Ggiall _Aﬂ’nJrl(je [aﬁj
06 )i (6.25)
(2 5(Gn+l_Xn+1’gn’-)¢-1)_Y (gn’-)v-l)
where —-A4,,,C* (Z—(oj is the stress correction due to the plastic strains. If the elastic trial
Y n+1
state is denoted as iteration k=0 (e¢°, =0 and AA’,=0), k being the local iteration

counter, the stress increment update takes the effects of the plastic strains as follows:

k+1
6 =6%  + 56" =6* , —AIC® (a—q)J (6.26)

n+l n+1 n+l n+1 n+1 a
Y n+1

where 6 denotes the variation of the variable between iterations k and k+1, i.e.:

5 k+1 — k+l K
G:Jri Gni 16n+1 ) (627)
oA = AL -AA

n+1 n+1 n+1
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The stress potential gradient (see Appendix E for its computation) at the updated state

a k+1
[8_(0) is approximated by:

Y n+l
a¢ k+1 (agpjk )
= =2 = 6.28
( 86 jm—l 66 n+1 le ( )
and the stress correction is then given by:
s6y =—02,,C Q) (6.29)

The incremental variation of the plastic multiplier 52,
sion of the yield criterion about the current state:

kel _ Kk 5_(0k . okl 8_(0 k . oykil a_(ﬂ k k1
¢n+l - (pn+1+ a '§Gn+l+ 8X '5Xn+1+ —p 5n+l

is obtained through a Taylor expan-

n+1 n+1 88 n+1
— k
— 0o Qi Q- Qhuiaxii+ [ -] s a0
3 3 n+l

=0

where §X<H = Xk _ Xk

n+l n+l n+l*

Elastic
domain

Figure 6-3 Geometric interpretation of the closest point projection algorithm: at each iteration k, the con-
straint is linearized to find the intersection with ¢ =0; &*'*, located on ¢*', is the closest point of this sur-

n+l 7 n+l

face to &, (Simo and Hughes (1998))
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k
The computation of §X!7 and (%) depends on the constitutive laws used to describe
&

n+1l

the kinematic and isotropic hardenings, respectively.

In order to describe the expansion of the yield locus with the plastic deformation as well as
the Bauschinger effect revealed by Ti6AIl4V (see Section 5.2.4), a combined Voce isotropic —
Armstrong-Frederick kinematic hardening model (see Equations (3.45) and (3.48)) was first
considered. If the equivalent stress o is assumed to be independent from the equivalent plas-

tic strain £°, i.e. % =0, Equation (6.30) combined with Equations (3.44), (3.45) and (3.48)
&

leads to:
(Dr|1(+1 - ﬂ“::]il QEH :C* :Qﬁu
+ 6.31
_er(prl : [Cx (Sx (58'3 ):; _Xﬁﬂ éﬂ::f):l —Cq (SR - Rril(Jrl)éﬂ’rll(:ll =0 ( :
Since
ol P k+1 P k
(6e") " =623 (—“’j ~ oA [—ﬂ =25 QL (6.32)
i n+l a n+l
the plastic multiplier is given by:
k
SAK = P (6.33)

k . . k k. k k . k k
Qn+1 :Co: Qn+1 +Cy (SX Qn+1 : Qn+1 _Qn+l : Xn+1)+CR (SR - Rn+l)

The stresses, the back-stress and the plastic strains are then updated through 64. The plastic
corrector step is repeated until a specified tolerance 7 of the yield function has been obtained.

Once convergence is reached, the updated stresses and strains are accepted as the current
state.

The compliance matrix relates the current stress increment to the current total strain incre-
ment. It is used to predict the total strain increment for the next iteration. The derivative of the
yield function gives:

dp=22 46+ 22 . 4x+ 92 41 -0 (6.34)
o6 oX og®

Since de’ =dg —de” =de —dAQ, ityields d6 =C°:de—dA C°:Q and thus:

Q:C°:de

di= - (6.35)
Q:C*:Q+¢y (5 Q:Q-Q:X)+cy (s —R)
The compliance matrix is then given by:
C*:Q)®(C°:
oo CROEIR) 636

T de _Q:Ce:Q+cX (sx Q:Q-Q:X)+cs (s —R)
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The flowchart of the integration scheme described above is given in Figure 6-4 and Figure
6-5.

Elastic predictor: 6" =6, +C°: Ag,

n+l

l

(p(ctrial -X EP):g(G”i‘“ _Xn,gnp)—RO—Rn <0

__ n+l n?’“n n+l -
?
YES NO
v
ELASTIC CASE !
G, =6 ELASTO-PLASTIC CASE
\ 4
Compliance matrix:
C* if elastic
C*= C:Q)®(C":
- - ( Q) ( Q) if elasto-plastic
Q:C°:Q+cy (5, Q:Q-Q:X)+c (s —R)

Figure 6-4 General flowchart of the integration scheme associating CPBO06 yield criterion with a mixed hard-
ening law
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ELASTO-PLASTIC CASE

0 _ _trial

6n+1 - 6n+l
0 _

Aﬁ“n+1 - O

K _ K kK —pk
G = (p(cn+1_Xn+1’8n+l)

= E(GEH - XE+1’ Enair )_ RO - erl(+l < n D
?
YES '
——aA
k
Gn+1 = 6n+l
. NO
Aﬂ’ml = Aﬂ’ml
\ 4
k
k+1 _ ¢n+1

n+l

k . . k k . k k . k k
Qn+1 O Qn+1 +Cy (SX Qn+l : Qn+1 _Qn+1 : Xn+l)+ Cr (SR - Rn+l)

é‘ckJrl _ _5ﬂk+l Ce Qk

n+l n+1 n+1

y

k+1 _ __k k+1

6n+1 - 6n+1 + 5Gn+l
k+l _ Nk k k k+1
Xn+l - ><n+1 +Cy (SX Qn+1 - Xn+1)5 +1

k+l _ pk
Rn+1 - Rn+1 n+1 n+1

+Cq (Sp —RE, ) 04T

Ep,kﬂ — Ep,k +§/1k+l

n+1 n+l n+1

k=k+1

Figure 6-5 Flowchart of the integration scheme associating CPBO6 yield criterion with a mixed hardening
law when the material is in an elasto-plastic state
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6.3. Evolution of CPB06 shape with the plastic
work

For monotonic loadings, the general practice is to assume isotropic hardening and use a repre-
sentative hardening curve (in the rolling or biaxial direction) as input for FE simulations. An
isotropic hardening model, which implies a proportional expansion of the vyield locus
(see Section 3.2), is only valid if the material hardens at the same rate along every strain path.
However, for hexagonal materials (see Lou et al. (2007); Nixon et al. (2010); etc.), the rate of
hardening depends on the loading direction and/or its orientation even for the simplest loading
paths. A methodology that allows describing directional hardening of hexagonal materials has
been proposed by Plunkett et al. (2006). It consists in determining the anisotropy coefficients
corresponding to several fixed levels of accumulated plastic deformation and then using
piece-wise linear interpolation to obtain the yield surface corresponding to any level of accu-
mulated plastic deformation. Another method that allows the description of distortional hard-
ening occurring in proportional loading deformation through incorporation of explicit analyti-
cal laws for the variation of the anisotropy coefficients and strength differential parameters,
was proposed by Ertirk et al. (2009) and used in conjunction with the orthotropic yield crite-
rion of Cazacu and Barlat (2004).

In this section, the methodology of Plunkett et al. (2006) is used. The anisotropy coefficients
and SD parameters are considered to evolve as a function of the plastic work per unit volume

W?". They are determined for several levels of WP, i.e. WP < <WPD < cw P

j=1...m, where W"® corresponds to initial yielding and W ™™ corresponds to the highest

level of plastic work attainable in all mechanical tests. Next, for each of the individual plastic

)

work levels W PU , O is computed using Equation (6.16). To determine the yield surface cor-

responding to an intermediate level of plastic work (WY <W? <WPU™) a linear interpola-
tion is used:

&=x(WP)&" +(1-z(WP))&"™ (6.37)
where y is a weighting factor defined as:

W P P
Py _
Z(W ) - W p(i+1) —W p(i) (6.38)

such that ;((W p“)):1 and ;((W "““)) =0.

If kinematic hardening is disregarded and isotropic hardening is described by Voce law
(Equations (3.44) and (3.45)), the derivatives in Equation (6.30) are evaluated as follows:
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dp 05 o5\ o5
= L—=—=y(W"° +(1-y (WP
Q 06 5(5}(()56()(( ))86
05 _ O )_ 0 ~uw_ Ox WPy gy _ - -5
05" oz"°  ozPC oW’ og” G )_GW"“”)—WP(” (6.39)
oY oR
& = e w(®R)
If v denotes the derivative %, Equation (6.30) leads to:
&
¢r|1(+1 - ﬂ’::ll QEH :C: QEH + (Vﬁﬂ —Cr (SR - R:ﬂ))éﬂ:jll =0 (6.40)
and thus:
k
SAk = Pnia (6.41)

Qﬁu 1C QEH +Cr (SR - R:+1)_Vr|:+1
The compliance matrix is determined in a similar way as in the previous section and is given
by:

(c:Q)®(c:Q)

C¥=C°-
Q:C*:Q+cy(sg—R)-v

(6.42)

Figure 6-6 and Figure 6-7 show the flowchart of the integration scheme described in this sec-
tion.
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Figure 6-6 General flowchart of the integration scheme considering an evolution of the yield locus shape
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ELASTO-PLASTIC CASE
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Figure 6-7 Flowchart of the integration scheme considering an evolution of the yield locus shape when the
material is in an elasto-plastic state
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6.4. Conclusion

The two integration schemes detailed in Sections 6.2 and 6.3 are implemented into the non-
linear finite element code LAGAMINE, respectively in CAZACU2 and CAZACUW subrou-
tines. The choice of the model is specified from an integer variable in the input file which is
read by the preprocessor. This variable is fixed to 521 in the case of CPB06exn yield criteria
associated to a mixed Voce isotropic — Armstrong-Frederick kinematic law and 524 in the
case of CPB06exn associated to the formulation taking into account the evolution of the shape
with the plastic work. Simulations with one element subjected to a simple strain path (tension,
compression, simple shear, ...) were performed in order to validate both implementations and
to check the computation time and the convergence.
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Chapter 7 Parameter identifications
for the description of Ti6Al4V me-
chanical behavior

Chapter 5 analyses the results of the experimental tests carried out on Ti6Al4V while Chapter
6 introduces the different constitutive models chosen to describe the material behavior and
implemented into the FE code LAGAMINE. The next step consists in identifying the parame-
ters included in the different models. In this chapter, the two optimization methods used to
determine these parameters, namely the classical simulated annealing algorithm and the in-
verse method, are first described. Then several parameter identifications are performed in
order to determine which function among the CPB06exn criteria family is required to repre-
sent the yield locus of the selected Ti6AI4V alloy. Finally the last section deals with the opti-
mization of the parameters involved in three hardening modelings, namely the VVoce isotropic
hardening law, a mixed formulation combining Voce isotropic and kinematic hardening laws,
and a formulation taking into account a shape evolution of the yield locus (distortional hard-
ening).

7.1. Description of the optimization methods
used for the parameter identifications

7.1.1. Classical simulated annealing method

7.1.1.1. Introduction

Constitutive laws may involve a lot of parameters. A significant work in the characterization
of a material is to determine the set of parameters which fit at best the experimental results. In
general, the parameters are identified by an optimization procedure. Classical optimization

139



methods are usually based on a gradient descent: gradient method, conjugate gradient, New-
ton, quasi Newton, Levenberg-Marquardt, ... (a literature review concerning the optimization
methods can be found in Kleinermann (2000)). They are very efficient when applied to opti-
mization problems of convex objective functions. However these methods present two main
drawbacks:

e They require the assessment of the objective function gradient at each iteration, which
assumes the existence of the gradient and, as a consequence, the differentiability of the
function.

e The convergence to the global minimum (resp. maximum) is not ensured. Indeed, the
gradient is a vector field that locally indicates the direction of the highest rate of
change. When the function has only one minimum (resp. maximum), gradient methods
work very well. However, in the case of functions with several local minima (resp.
maxima), the solution provided by the algorithm might not be the global optimum if
the initial guess is wrongly chosen. The problem can be solved using several times the
optimization method with different initial guesses, but this solution is not very effec-
tive in practice.

The classical simulated annealing (CSA) algorithm is an iterative global optimization method
that distinguishes between different local minima (resp. maxima). This method is based on
Metropolis’ works (Metropolis et al. (1953); Hastings (1970)). At each iteration, a trial point
is generated from the previous one. If this point improves the objective function to be opti-
mized, it is automatically accepted. If it does not, it can however be accepted with a probabil-

ity p defined as follows:
_ |En+1 - En|
p=exp| ———— (7.1)

where E; stands for the value of the objective function at step i and T is a fictious tempera-

ture. The expression (7.1) shows that upwards (resp. downwards) transitions are more likely
to take place for large values of T and/or for small differences between two consecutives
values of the objective function. After a fixed number of transitions at a constant temperature,
the latter is decreased so that less upwards (resp. downwards) transitions are allowed as the
algorithm processes, which eventually leads to the determination of the global minimum
(resp. maximum). The acceptance of such a solution allows exploring a larger part of the state
space and prevents to freeze the system on a local optimum (see Figure 7-1). In contrast to
gradient methods, the CSA algorithm only requires the evaluation of the objective function
for each trial point. In the CSA method, three major parameters can be adjusted:

e the initial temperature T, ;
e the temperature reduction rate factor « ;
e the maximal number of transitions N;™.

A too low initial temperature will not allow exploring the whole state space and might con-
verge to a local optimum, whereas a too high temperature will uselessly increase the computa-
tion time. The reduction factor is usually chosen between 0.9 and 0.99. A too fast decrease
might freeze the system into a local optimum. Finally, a common rule is to fix the maximal
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number of transitions to at least 100 times the number of parameters. More details concerning
the optimization by simulated annealing method can be found in Kirkpatrick et al. (1983).

objective
function

Global optimum

)
e
R

7
%
o
>

7 » 5
7500 (A JUMP X0
S R T SS
7 2NNN\Whe
7 22NN\

%
99.0,%

W00

Figure 7-1 Principle of the simulated annealing method applied to the determination of the global maximum:
downwards transitions are allowed in order to prevent the system from freezing into a local maximum

7.1.1.2. Definition of the error functions

Optimization methods require the definition of an objective function or error function. For the
parameter identifications using the classical simulated annealing method, two functions E,

and E, are considered and defined as follows:

where:

E = Z_d:m ei2 (7.2)
E,= _deef (7.3)

N, is the number of experimental data used for the identifications;

n, are weight factors;

e, are the relative errors between the experimental data and the corresponding numer-
ical values, i.e.:

o (experimental value). —(numerical value). (7.4)
L (experimental value) '

E, represents the error function used for each identification. However this function is not ap-
propriate to compare the results. Indeed, since the formulation of E, includes weigth factors

which are modified from one identification to another, the optimal values given by the algo-
rithm actually correspond to different functions. For this reason, E, is simultaneously com-

puted in order to compare and analyse the theoretical results using the same mathematical

quantity.
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The experimental data considered in the identifications are yield stresses and tensile r-ratios.
The relative errors are defined as follows in the case of yield stresses:

e

i exp
S
(o7)

In the case of tensile r-ratios, they are determined as follows:

o (m) () 76)

1 exp
()

The superscript S in Equation (7.5) denotes the stress state (S =T for tension, S=C for
compression, S =PS for plane strain, S=SSH for simple shear) while the subscript & rep-
resents the loading direction with respect to RD. A remark has to be nevertheless underlined
concerning the data in plane strain. As explained in Section 5.2.5, only one component of the
stress tensor can be identified in the plane strain tests. At the onset of plasticity, it is possible
to assess the other component using Hooke's law. At larger plastic strains, this component
cannot be determined. However, the strain along the direction transverse to the loading direc-
tion is zero, which means that the r-ratio is also zero. When identifying the yield locus for
these levels of large deformation, the error corresponding to the experimental data in plane
strain is thus chosen as follows:

e (rgPs )num _(rgps )exp _ (raps )num a1

since (r;°)" =0.

7.1.1.3. Optimization parameters

The CSA algorithm requires the following parameters:

e the number of parameters N to be identified;

e the maximum number of transitions N;™;

e the number of weight factors (which is identical to the number of experimental data
N, used for the identifications in this study) and their value;

o the initial temperature of the system T, ;
o the temperature reduction factor « : if i denotes the i-th iteration, the temperature T, ,
at the iteration i+1 isgivenby T., =aT,;

e the error tolerance ¢ for termination: if the final function values from the last four
temperatures differ from the corresponding value at the current temperature by less
than ¢ and the final function value at the current temperature differs from the current
optimal function value by less than ¢, the execution is stopped;

e the lower and upper bounds for the allowable solution parameters;

e the initial guess for the parameters to be optimized;
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For each identification presented in the following sections, N™, N,, T,, a and ¢ are kept

constant. Their values are given in Table 7-1. Concerning the other parameters, the latter will
gradually be defined.

N™ 2.0x10°
N, 31
Ty 2.0x10°
a 0.99
P 10*

Table 7-1 Constant CSA parameters used for the identifications

7.1.2. Inverse method (OPTIM)

7.1.2.1. Introduction

The inverse method consists in determining several parameters of a complex material law
with the help of a finite element code. The principle of this method is the following one: a set
of experimental tests whose results are sensitive to the material parameters to fit are selected.
These tests are then simulated using an initial guess which can arbitrarily be chosen. Never-
theless it has to be noted that the optimization process will be faster if the initial guess is close
to the solution. The numerical results are compared with the experimental curves and, if the
accuracy defined by the user is not achieved, the parameters are iteratively adjusted with an
optimization algorithm (Figure 7-2). The advantage of this method is that complex tests with
heterogeneous stress and strain states can be chosen to identify the parameters.

Experimental test Experimental result

Optimized
material data

nnnnnnnnnnnnnnnnnn

Initial set of
material data

N

- - - New set of
Numerical result material data

(R0

Figure 7-2 Parameter identification by inverse method (scheme from the oral presentation of Bouffioux et al.
(2008))

A home-made code called OPTIM and developed by V. Mathonet based on the main
Levenberg-Marquardt algorithm (Mathonet (2003)) will be used in this work to identify the
hardening parameters in Voce isotropic law and Armstrong-Frederick kinematic law. This
optimization code is coupled with the finite element code LAGAMINE and has already been
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applied in various investigations (Florées (2005), Henrard (2008), Lequesne (2009), Bouffioux
et al. (2011)).

7.1.2.2. Error computation

A first definition of the error function could be the following one:

E— \/i(uiEF — U )2 (7.8)

i=1
where:

e i denotes a point among the n,, points belonging to the reference curve;
e U and u" are respectively the y-coordinates of the reference and numerical curves
associated to the n,, points (see Figure 7-3).

The function E represents the square root of the sum of the squared deviations. In the case of
a single curve, this definition is sufficient to be used for the optimization. When several
curves with different orders of magnitude are taken into account, it is required to normalize
the data in order to prevent the disruption of the optimization. Then the error function be-

comes:
2
o (| EF _ | REF _
E= > | ——| if [u™|>tolerance
i=1 Ui
(7.9)
& REF\Z REF
E= > (uF-uf™)" if |u|<tolerance
i=1

where a tolerance is defined by the user.

Since the finite element code does not exactly compute the numerical curve u® at the same
points defining the reference curve, OPTIM determines the common domain of the two

curves [x which is divided into n,, points regularly distributed (Figure 7-3). For

min ! Xmax]

each value x, u™ and u"" are then obtained by linear interpolation.

u
Tiz
[&(<>
o
Xmin. X1 X2 Xz Xg Xpax X

Figure 7-3 Comparison between the finite element (EF) and reference (REF) curves and determination of the
common domain
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7.1.2.3. Sensitivity analysis

One of the most important parts in the inverse method consists in determining the sensitivity
matrix. The latter represents the sensitivity of the results to the different parameters. The sen-

sitivity S of u with respect to the parameter p; is defined by:

u —u
_ Cpitdp p; —dp;
Sy = (7.10)

with dp, = p,.7 the absolute value of the perturbation and r a perturbation factor. For each
step of the simulation, the results are computed with the initial parameters (pl,..., [ pk)

and, for each parameter p,, with (p,,..., p,+dp;,..., p,) and (Py,..., B —dp;,..., Py ).

7.2. ldentification of the initial Ti6Al4V vyield lo-
cus using the classical simulated annealing
method

7.2.1. Identifications of the parameters in CPBO06 yield
criterion

The equivalent stress & associated to the CPBO6 yield criterion (see Equation (6.16)) in-
volves 11 parameters, namely the degree of homogeneity a, the strength differential parame-
ter k and the anisotropy coefficients Ci1, C12, C13, C22, Cz3, Cs3, Ca4, Css, Ces. AS & is homo-
geneous of degree one in its arguments, the coefficients C; can be replaced by sC;, 4 being
any positive number, without changing the expression of the yield function. Hence, the anisot-
ropy coefficients can be scaled by C,,, or in other words C,; can be fixed to 1. In addition, as
the studied material is a "thin™ sheet, it is only possible to easily determine one of the shear
coefficients (i.e. Ca4, Css, Ces) and it is thus assumed in the identifications that C,, =C., =C,
. Finally, it has to be noted that the degree of homogeneity is fixed to 2 because of the nearly
elliptical shape of the initial yield locus for Ti6Al4V (see Figure 5-27). The number of pa-
rameters to be optimized is reduced in this way to 7, namely k, C,, C,, C,,, C,, C;; and

Csqs- In order to identify them, it is required to use seven experimental data, at least. General-

ly, the yield stresses and/or r-ratios in tension along RD, 45° and TD are considered. Howev-
er, data in compression are also needed in the case of hcp materials since they display the
asymmetry between tension and compression.As a lot of results were obtained with the tests
carried out on Ti6Al4V, several parameter optimizations using different experimental data
sets are performed with the aim to study the effect of these different selections on the accura-
cy of the results. The complete list of the identifications and the data which are associated is
given in Table 7-2: a green (respectively red) symbol means that the experimental value is
(respectively is not) taken into account for the optimization, in other wordsz, =1 (respective-

ly 7 =0).
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IDENTIFICATION NUMBER

fixed to 1 while a red symbol corresponds to a weight factor equal to zero.
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Table 7-2 List of the experimental data used in the different identifications performed to identify the initial

Ti6Al4V yield locus described by the CPBO06 yield criterion: a green symbol means that the weight factor is
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Parameter identifications for the description of Ti6Al4V mechanical behavior

It can be observed from Table 7-2 that the tensile yield stresses, tensile r-ratios and compres-
sive yield stresses along RD, 45°-direction and TD are used for all the optimizations. In addi-
tion, four groups of identifications can be highlighted:

A first group (from to ) for which only the data in tension along
RD, 45°-direction and TD (3 yield stresses and 3 r-ratios) are taken into account.

A second group (from to ) for which all the yield stresses in tension
and the r-ratios along RD, 45°-direction and TD (11 yield stresses and 3 r-ratios) are
taken into account.

A third group (from to ) for which the yield stresses in tension
along RD, 45°-direction and TD, and all the r-ratios (3 yield stresses and 11 r-ratios)
are taken into account.

The last group (from to ) for which all the data in tension (11
yield stresses and 11 r-ratios) are taken into account.

It has to be noted that the identifications within a group differ from one another in that the
yield stresses in plane strain and/or in simple shear are considered or not.

For all these identifications, the initial guess and the bounds of the parameters are fixed as
shown in Table 7-3. It has to be noticed that:

The initial guess for the anisotropy coefficients correspond to the values associated to
the isotropic case.

The strength differential parameter k was assessed as follows: by means of Equation
(3.16) and Equation (3.17) which are only valid for the isotropic formulation of
CPBO06 (see Section 3.1.1, Equations (3.15) to (3.17)), three different values denoted
Kap, Kis and k;, were determined using the experimental data in tension and com-
pression along RD, 45° and TD, respectively. The initial guess was then chosen as the
average of these values, i.e. (1/3).(Kgo +K,s +Krp ) . As for the bounds, they were fixed

to keep k <0 since the yield stresses in compression are higher than the ones in ten-
sion.

k Cp Cls C, Czs C33 C56
Lower 10 5.0 5.0 -5.0 -5.0 -5.0 -5.0
bound
Upper |5 001 5.0 5.0 5.0 5.0 5.0 5.0
bound
Initial 1 og 0.0 0.0 1.0 0.0 1.0 1.0
guess

Table 7-3 Initial guess and bounds used for the parameter identifications associated to CPBO6 yield criterion

Table 7-4 gives the values of the error functions E, and E,with respect to the identification
number. As mentioned before, E, does not represent a good indicator to analyze the accuracy

of the different optimizations since the function depends on weight factors, which is not the
case using E,.
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Identification number E, E,
IDENT1 1.35x10°2 17.0x1072
IDENT?2 1.76x107? 16.1x1072
IDENT3 1.65x1072 14.1x1072
IDENT4 2.61x1072 14.0x1072

2.12x1072 17.4x1072

2.38x1072 17.2x107

| 2.85x1072 7.26x107

| 2.81x1072 17.6x1072
IDENT9 3.84x1072 6.69x107
IDENT10 8.61x107? 15.7x1072
IDENT11 4.99x10°° 5.44x1072
IDENT12 4.23x107 4.54x1072
IDENT13 4.72x107° 5.35x1072
IDENT14 4.84x107 5.54x1072
IDENT15 4.17x1072 4.47x107°
IDENT16 5.42x1072 5.42x107?

Table 7-4 Values of the error functions E, and E, for each identification

0.20
[ 3 IDENT5 |pente IDENTS
IDENT1 IDENT6
@ | IDENT2 . * *
L ® *
0.15 IDENT10
- * L
IDENT3 |DENT4
u'  o0.10
IDENT9 '03“7
i . ) IDENT13 IDENT14
0'05- IDENT11 IDENT16
IDENT12 IDENT15
Y] I I R R R B
5 10 15 20 25 30 35

Number of experimental data

Figure 7-4 Error function E, according to the number of experimental used in each identification

Figure 7-4 compares the identifications in terms of the E,-error function value and the num-

ber of experimental data used for the optimization. By observing the graph, it can be conclud-
ed that:

e Even if seven experimental results are theoretically enough to identify the strength dif-
ferential parameter and the anisotropy coefficients, adding more data can overall im-
prove the quality of the optimization. This can be observed in Figure 7-5 where the
theoretical results according to IDENT15 (corresponding to the lower E,-error) and
IDENT3 (taking into account the data in simple shear as IDENT15) are compared
with the experimental data.
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Parameter identifications for the description of Ti6Al4V mechanical behavior

e Excepted for IDENT7 and IDENT10, the points associated to a same group of identi-
fications are quite close to each other. In addition, it can be observed that taking into
account the complete distribution of the r-ratios in the identification provides better
results.

0.8 T T T T T

TABV H exp.
—— IDENT3
— IDENT15] |

06

"o
5
H exp. = .
—— IDENT3 )
—— IDENT15
1.2
oq4loq’
1,06 ————r——F——71—"—1—+—7——T———
T 1.0a[{TABV E
g -
g 1.02
= |
@ 1.00 -
= [ =
S 098 2
2 | o
:
T o096 <
N +
ol 0.94
E - W exp. B exp.

S  oe2f — IDENT3 |] 0.5 — IDENT3 |
c | — IDENT15 L — IDENT15| 4
0.90 " 1 " L " L 1 " n 1 L 1 L 0.0 " | L 1 " 1 " L " L L 1 L 1 " 1
0 10 20 30 40 50 80 70 80 20 0 10 20 30 40 50 60 70 80 920
loading direction [°] loading direction [°]

1.20 ——1— v . v : : T T
115|-[TABV] y

1.10

1.05
1.00 [
0.95 [
0.90

m exp. J
—— IDENT3

0.851 — IDENT15| ]

0.80 " | - | — L L 1 " | - | - Il " L
0 10 20 30 40 50 60 70 80 20

normalized compressive stress [-]

loading direction [°]

Figure 7-5 Comparison of the theoretical results according to IDENT3 and IDENT15 with the experimental
data: (a) yield locus in the biaxial plane (o, =0); (b) yield locus in the plane o, —o,, (o,, =0); (c) anisot-
ropy in tensile yield stresses; (d) anisotropy in tensile r-ratios; (e) anisotropy in compressive yield stresses.

Figure 7-6 shows the theoretical results according to IDENT13, IDENT14, IDENT15 and
IDENT16 compared with the experimental data. The associated parameters are given in Table
7-5. It can be noticed that the theoretical curves essentially differ from each other in terms of
the yield locus shape in the third quadrant of the biaxial plane and in terms of the anisotropy
in tensile and compressive yield stresses. The differences are explained by the low quantity of
data in compression (yield stresses along three loading directions) compared to what is avail-
able in tension (eleven yield stresses and r-ratios along eleven loading directions). In order to
fix the shape of the yield locus in the third quadrant, it will thus be necessary in future inves-

149



tigations to characterize the material under strain paths allowing the determination of other
points in this zone, for instance uniaxial compression along more than three directions with
respect to RD, compressive plane strain or equibiaxial compression. In the case of a sheet as
the studied material, the first suggestion is the easier to conduct, in particular using the exper-
imental device described in Section 4.1.1.2. It can also be noted that the CPBO6 criterion is
not able to capture the tension-compression asymmetry displayed by Ti6Al4V (see Figure
7-6(c) and Figure 7-6(e)), which means that additional parameters are needed to improve the
modeling of the yield locus. The next section is dedicated to the identification of the parame-
ters involved in three extensions of the CPBO06 criterion (namely CPB06ex2, CPB06ex3 and
CPBO06ex4) and to determine the best compromise in terms of accuracy and computation time.
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Figure 7-6 Comparison of the theoretical results according to IDENT13, IDENT14, IDENT15 and IDENT16
with the experimental data: (a) yield locus in the biaxial plane ( o;, =0); (b) yield locus in the plane o,, — o,

(o, =0); (c) anisotropy in tensile yield stresses; (d) anisotropy in tensile r-ratios; (e) anisotropy in compres-
sive yield stresses.
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Parameter identifications for the description of Ti6Al4V mechanical behavior

k Cp Cs Co Cy Cq Ces
IDENT13 -0.0475 1.9098 1.8740 2.3730 3.5427 2.3499 1.5284
IDENT14 -0.2502 -1.4038 1.5750 1.8384 -0.3233 -1.9125 -3.4915
IDENT15 -0.0550 1.5898 3.2530 4.3248 2.6166 2.0370 -2.2656
IDENT16 -0.2501 -2.3785 1.8377 2.2736 -0.8232 -3.0901 4.9610

a=2,C,=10

Table 7-5 Yield function CPBO06 coefficients for IDENT13, IDENT14, IDENT15 and IDENT16 based on the
experimental data given in Table 7-2

7.2.2. Identifications of the parameters in CPBO06ex2,
CPB06ex3 and CPB06ex4 yield criteria

As explained in the previous section, the CPB06 model is not convenient for the representa-
tion of the Ti6AIl4V vyield locus. Nevertheless the latter can be improved by introducing addi-
tional linear transformations in the criterion (see Section 3.1.2). Several identifications were
performed in order to determine the parameters involved in the CPB06ex2, CPB06ex3 and
CPBO06ex4 yield criteria using the experimental data given in Table 7-6.

IDENTIFICATION NUMBER IDENTIFICATION NUMBER
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Table 7-6 List of the experimental data used in the four different identifications performed to identify the
initial Ti6AI4V yield locus described by the CPB06ex2, CPB06ex3 and CPB06ex4 yield criteria: a green sym-
bol means that the weight factor is fixed to 1 while a red symbol corresponds to a weight factor equal to zero.
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Every identification is labeled by a number which has the following structure: IDENTiexn,
where n reminds the number of linear transformations included in the associated criterion
while i is used as an identifier.

All the identifications were completed using the initial guess and the bounds given in Table
7-7. It has to be noted that the strength differential parameters (k, k', k", k™) and their sign
cannot be assessed as in Section 7.2.1 when more than one linear transformation are consid-
ered, which explains the changes for the upper bound and the initial guess compared to Table
7-3.

k 3 k’ 3 k” ClZ 1 Cl’Z 1 Cl3' Cl,3' CZZ ’ CZ’Z ’ C23 ’ C2l3 ’ C33 1 C?:3 1 CBG 1 CB’G 1
, k" C,, C Cs, Cf Cy. C Cy, Ch Cis, C Cés» Ces
Lower 1.0 5.0 5.0 5.0 5.0 5.0 5.0
bound
Upper 1.0 5.0 5.0 5.0 5.0 5.0 5.0
bound
Initial 0.0 0.0 0.0 1.0 0.0 1.0 1.0
guess

Table 7-7 Initial guess and bounds used for the parameter identifications associated to CPB06ex2, CPB06ex3
and CPBO06ex4 yield criteria

Table 7-8 to Table 7-10 list the identification results, namely the values of the material pa-
rameters for Ti6AI4V using CPB06ex2, CPB06ex3 and CPB06ex4 yield criteria, respectively.
Figure 7-7 to Figure 7-9 show the associated biaxial plane projections o,, —o,, and o, — o,
(elements a and b, respectively) of the yield loci, the anisotropy of the tensile and compres-
sive yield stresses (elements ¢ and e, respectively) and the anisotropy of the tensile r-ratios
(element d) as described by the different parameter sets in comparison with the experimental
data.

IDENTLex2
k ClZ C13 CZZ C23 C33 C66
-0.5144 -1.0648 2.2381 4.9699 0.9547 -1.3450 -2.2168
k' Co Cy Ca Cs Ca Ces
0.9577 -0.5316 -1.7240 0.3416 2.1204 0.3450 49141
IDENT2ex2
k ClZ Cl3 CZZ CZS C33 C66
0.4922 1.5173 -0.3369 -3.3689 -1.5588 3.6233 -4.7836
k' Co Cy Ca Cs Ca Ces
0.9957 -3.3008 -1.2519 1.6440 0.7412 -3.0051 -4.6907
IDENT3ex2
k C12 C13 CZZ C23 C33 CGG
0.7671 43357 2.3790 0.8118 2.9526 1.8643 1.0719
k' Ch Cp Cz Cx Cs Cee
0.6671 -0.4930 -0.5604 0.0669 0.1352 2.6429 40709
IDENT4ex2
k ClZ Cl3 C22 C23 C33 CGG
-0.1361 4.9247 2.3313 0.3820 -0.1369 45720 0.8832
k' Ch Cp Cz Cx Cs Ce
0.5478 0.9354 2.1177 0.2993 -0.1927 1.3701 4.7385

a=2,C,=C/, =10

Table 7-8 Yield function CPB06ex2 coefficients for four identifications of CPB06ex2 based on the experi-
mental data given in Table 7-6
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Figure 7-7 Comparison of the theoretical results according to the four different identifications of CPB06ex2
with the experimental data: (a) yield locus in the biaxial plane ( o;, =0); (b) yield locus in the plane o,, — 0o,

(o, =0); (c) anisotropy in tensile yield stresses; (d) anisotropy in tensile r-ratios; (e) anisotropy in compres-

sive yield stresses.
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IDENT1ex3

k ClZ C13 C22 C23 C33 CGG
0.3889 1.5770 1.7583 -0.2465 -1.5721 2.2579 3.6770
k' Cp, Cis Cp Cx Cs Ces
0.4231 -2.3458 -0.0661 3.0287 2.5279 -2.4311 -1.0463
k" Cp Ch Cy Cs Cs Ces
0.6559 1.3013 3.1259 -0.0781 0.1609 0.8711 -4.8500
IDENT2ex3
k ClZ C13 C22 C23 C33 CGG
0.6591 -1.3348 0.4665 2.7780 2.8894 -1.6051 3.4600
k’ Cp, Cis Cp Cy Cs Ces
0.4877 -3.3954 0.2286 -1.1044 -1.1218 -3.9788 3.0752
k" Cp Ch Cy Cs Cs Ces
-0.3406 0.7469 2.2770 4.7344 3.5580 0.9388 -4.6070
IDENT3ex3
k ClZ Cl3 C22 C23 C33 C66
-0.5620 2.0154 0.8296 2.1989 0.4410 -4.3967 -4,1235
k' Cp, Ci Cy Cx Cs Ces
0.7363 -4.7242 -1.7058 1.6037 -0.9136 -2.2133 4.7862
k" C, Cp Cy Cx Cy Ces
0.8973 2.2403 -0.7692 -1.3438 -0.1391 -1.1843 3.9812
IDENT4ex3
k C12 Cl3 C22 C23 C33 C66
0.6128 0.4954 1.9668 0.2163 2.0640 3.6799 4.4709
K C, Ci C, C, Ci Ci
0.6480 -4.8810 -1.1894 1.8702 -0.8121 0.8803 4.3005
k" C, Ci Cy Cx Cy Ces
0.9433 2.4919 -0.9502 -1.3865 -0.5440 2.5894 4.3253

a=2,C,=C,=C/ =10

Table 7-9 Yield function CPB06ex3 coefficients for IDENT1ex3, IDENT2ex3, IDENT3ex3 and IDENT4ex3
based on the experimental data given in Table 7-6
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Figure 7-8 Comparison of the theoretical results according to the four different identifications of CPB06ex3
with the experimental data: (a) yield locus in the biaxial plane ( o;, =0); (b) yield locus in the plane o,, — 0o,

(o, =0); (c) anisotropy in tensile yield stresses; (d) anisotropy in tensile r-ratios; (e) anisotropy in compres-

sive yield stresses.
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IDENT1ex4

k ClZ Cl3 C22 C23 C33 C66
0.9954 -0.2897 -0.9986 -0.8508 0.5514 -2.2320 -3.9711
K c, ch Cy Ch Cy Cs
-0.2488 -0.9431 0.9499 -1.8127 -4.6369 -2.6824 -2.1974
% c, ch c ch cs cs
-0.9503 -2.5504 -1.4569 -3.5544 -1.7540 -4.4660 -2.9842
K" c c; cy cx cs cs
0.9255 -3.7355 -0.9408 -3.6656 -3.2894 -2.0736 -3.2087

IDENT2ex4
k C12 C13 C22 C23 C33 CGG
0.9146 0.1751 1.5247 -0.2624 1.4799 1.6501 -4.3104
% c, c, C, Ch Cy Cs
0.7037 3.1608 -0.3728 -2.8319 1.9159 -2.3678 -4.0804
K c, ch cy ch ch c
0.1581 -1.6456 -3.3395 1.7315 1.2470 1.9015 -2.7864
" c c cy cx cs c:
0.9692 4.6099 41275 45432 3.0852 1.9517 -2.4132
IDENT3ex4
k C12 ClS C22 C23 C33 C66
0.9578 3.7704 0.1765 -1.4160 2.0269 0.6110 -2.8704
% c, cl C, Ch Cy C,
-0.8955 2.8999 3.0461 0.6647 2.2946 -1.3543 -4.1208
K c, ch ch ch ch c,
-0.7489 -3.8795 -3.1481 -1.3474 -1.9742 -1.2101 2.6718
K" c c cy ch cx c:
0.8289 0.2186 1.7608 -0.7999 0.0453 0.4559 -4.3066
IDENT4ex4
k ClZ Cl3 C22 C23 C33 C66
0.3019 -0.6652 -0.5020 4.3297 3.3647 1.7893 -2.1117
K c, ch Cy Ch Cy Cs
0.6168 2.1702 -0.9903 0.8459 -0.1423 0.0576 -3.8785
% c, ch c ch ch cs
-0.8862 -2.5649 0.2133 2.9518 -0.3164 0.5723 3.3717
K" c c cy cy cr cs
-0.7339 2.3232 1.1536 2.2379 0.4598 -3.1825 47262

a=2,C,=C,=Cl=Cl=10

Table 7-10 Yield function CPB06ex4 coefficients for IDENT1ex4, IDENT2ex4, IDENT3ex4 and IDENT4ex4
based on the experimental data given in Table 7-6
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Figure 7-9 Comparison of the theoretical results according to the four different identifications of CPB06ex4
with the experimental data: (a) yield locus in the biaxial plane ( o;, =0); (b) yield locus in the plane o,, — 0o,

(o0, =0); (c) anisotropy in tensile yield stresses; (d) anisotropy in tensile r-ratios; (e) anisotropy in compres-

sive yield stresses.
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The simple observation and comparison of the different graphs do not allow the determination
of the best parameter set(s). In order to fix it, the error functions E, and E, as defined in Sec-
tion 7.1.1.2 as well as the number of transitions N, performed during the optimizations were
computed and reported in Table 7-11 for each identification (the results obtained for
IDENT13 to IDENT16 are also recalled). Figure 7-10 summarizes the data of the last two
columns. For the sake of clarity, it has to be noted that N, was divided by a reference number
N,, corresponding to the average of the values associated to IDENT13, IDENT14, IDENT15
and IDENT16, i.e.:

Ntyo — 1( NtIDENT13 + NtIDENTl4 + NtIDENTlS + NtIDENTlﬁ) — 2 156 001 (711)

4

In addition, a specified color was associated to each identification depending on the number
of parameters used to model the yield locus, namely:

e Blue symbols for IDENT13 to IDENT16 corresponding to the identifications of the
7 parameters involved in CPBO6;

o corresponding to the identifications of
the 14 parameters involved in CPB06ex2;

o corresponding to the identifications
of the 21 parameters involved in CPB06ex3;

o corresponding to the identifications

of the 28 parameters involved in CPB06ex4.

Identification number E, E, N,

4.72x1072 5.35x107 2 169 301

4.84x107 5.54x107? 2177701

4.17x107° 4.47 x1072 2153 201

5.42x107* 5.42 %1072 2123801
IDENT1ex2 0.78x107? 1.64x107 4 369 401
IDENT2ex2 0.73x1072 1.77x1072 4 400 201
IDENT3ex2 1.13x107 1.45x107? 4 449 201
IDENT4ex2 1.62x1072 1.62x1072 4 435 201
IDENT1ex3 0.31x1072 1.97x1072 6 699 001
IDENT2ex3 0.62x107? 2.89x1072 6617 101
IDENT3ex3 0.92x107? 1.21x1072 6 709 501
IDENT4ex3 1.14x1072 1.14x107? 6575 101
IDENT1ex4 0.33x107? 1.26x107 8 912 401
IDENT2ex4 0.34x107? 2.21x1072 8929 201
IDENT3ex4 0.82x107? 1.13x107 9 032 801
IDENT4ex4 1.13x1072 1.13x1072 8876 001

Table 7-11 Values of the error functions and number of transitions for the different identifications associated
to CPB06, CPB06ex2, CPB06ex3 and CPB06ex4
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From Figure 7-10, it can be observed that:

e Higher the number of parameters to be optimized is, higher the computation time di-
rectly linked to N, /N, , is;

e The value of the error function is reduced when two linear transformations are taken
into account to describe the yield surface. On the other hand, when adding more linear
transformations, two alternatives may arise: (1) a gain in accuracy is achieved, but it is
rather low compared to the one obtained when CPB06ex2 is used instead of CPBO6;
(2) the value of the error function is higher, meaning that the parameter set is less ap-
propriate.

From an accuracy-computation time ratio point of view, it can be concluded that the
CPBO06ex?2 yield criterion is necessary and sufficient to model the yield locus of Ti6AI4V.

0.06

IDENT13 to IDENT16
IDENT1ex2 to IDENT4ex2|

0.05
IDENT1ex3 to IDENT4ex3
- A IDENT1ex4 to IDENT4ex4| 1
0.04 \
003 \ i
0.02 A

0.01

>y

0.00

NN, o

Figure 7-10 Error function E, with respect to the number of transitions performed for the identifications

IDENT13 to IDENT16 (blue symbols), IDENT1ex2 to IDENT4ex2 (red symbols), IDENT1ex3 to IDENT4ex3
(green symbols) and IDENT1ex4 to IDENT4ex4 (orange symbols).

Among the identifications IDENT1ex2, IDENT2ex2, IDENT3ex2 and IDENT4ex2, it is still
possible to exclude one of them. Indeed it can be noticed in Figure 7-7 (a) that the theoretical

yield loci in the biaxial plane o, —o,, display different shapes in the first and third quad-

rants. In order to determine which ones are the most adapted for modeling, the yield stress in
equibiaxial tension was assessed using the work-equivalence principle and the experimental
curve obtained from the layer compression tests (see Section 5.2.6 and Figure 5-46). As re-
ported by Coppieters (2012), this result is underestimated, which means that it can be used as
a lower boundary. When adding the associated point in the biaxial plane and comparing with
the theoretical yield loci shown in Figure 7-7 (a), it can be observed that the parameter set
given by IDENT3ex2 is unadapted to describe the yield locus of Ti6AI4V (see Figure 7-11).
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Figure 7-11 Comparison of the theoretical yield loci according to IDENT1ex2, IDENT2ex2, IDENT3ex2 and
IDENT4ex2 with the experimental data from the tensile, plane strain and layer compression tests

7.2.3. Conclusion

In Section 7.2, different parameter identifications were performed in order to determine which
criterion from the family proposed by Plunkett et al. (2008) was appropriate to describe the
initial yield locus of Ti6Al4V. The analysis of the error function given by Equations (7.3) to
(7.6) with respect to the number of linear transformations used in the criterion showed that
CPBO06ex2 is required to obtain a good accuracy with a minimum computation time. The re-
sults given by the identifications IDENT1ex2, IDENT2ex2 and IDENT4ex2, were finally
selected as the most reliable parameters sets. The next section is devoted to identify the pa-
rameters in different formulations for the description of the hardening behavior.

7.3. Hardening parameter identifications

7.3.1. CPBO06ex2 associated to Voce isotropic hardening
law

The parameters included in VVoce isotropic hardening model (Equations (3.44) and (3.45)) are
first identified by inverse method using the stress-strain curve in tension along RD only. The
optimized parameter set, which will be denoted by "Voce 1", is given in Table 7-12.

R, [MPa] Sz [MPa] C; [-]

964.24 190.17 15.35

Table 7-12 Voce isotropic hardening parameters obtained after the first identification (set "*Voce_1")

The different experimental tests in tension, compression, plane strain and simple shear de-
tailed in Chapter 4 are simulated with the FE code LAGAMINE using one BWD3D element.
The latter is an 8-node 3D brick element with a mixed formulation and one integration point.
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Parameter identifications for the description of Ti6Al4V mechanical behavior

It is based on the nonlinear three-field (stress, strain and displacement) Hu-Washizu varia-
tional principle (Belytschko and Bindeman (1991)). BWD3D element is characterized by a
new shear locking treatment based on the Wang-Wagoner method (Wang and \Wagoner
(2004)) which consists in identifying the hourglass modes causing the shear locking and re-
moving them. The two bending hourglass modes as well as the warp hourglass mode are elim-
inated, while the volumetric locking is also treated by removing inconvenient hourglass
modes. This method is very efficient in FE analyses owing to its deep physical roots. A se-
cond feature of BWD3D element is its use of a co-rotational reference system in which the
formulation of the kinematics is expressed in order to identify the hourglass modes. This co-
rotational reference system is closely linked to the element coordinates: its origin is the center
of the element and its reference axes are aligned with element edges as much as possible, de-
pending on the element shape. Thanks to this co-rotational system, the hourglass stress objec-
tivity can be treated in a simple and accurate way by using initial and final time step rotation.
BWD3D element has proved its efficiency in various simulations such as deep drawing, in-
cremental forming and large strain torsion (Duchéne et al. (2007)). More details about
BWD3D element can be found in Duchene et al. (2005) and Duchéne et al. (2008).

The simulations of the tensile, compression, plane strain and simple shear tests are performed
using the parameter sets IDENT1ex2, IDENT2ex2 and IDENT4ex2 associated to the harden-
ing parameters in Table 7-12. Figure 7-12 and Figure 7-13 compare the experimental stress-
strain curves with the FE predictions. It can be observed a good agreement between the exper-
iments and the numerical curves, excepted in compression along RD, in plane strain and in
simple shear for which the flow stress is overestimated.
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Figure 7-13 Experimental stress-strain curves in compression, plane strain and simple shear compared to the
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In order to improve the FE results, OPTIM is used a second time to identify the VVoce harden-
ing parameters, but using all the experimental curves as data, choosing the parameter set
"Voce_1" as initial guess and fixing the value of R, (R, = 964.24 MPa, see Table 7-12).

Since each experiment is taken into account, the optimization results will depend on the pa-
rameters in CPB06ex2 characterizing the initial yield locus. Table 7-13 gives the optimized
hardening parameter sets denoted by "Voce 21", Voce 22", "Voce_23", and respectively
associated to IDENT1ex2, IDENT2ex2, IDENT4ex2. The corresponding FE stress-strain
curves in tension, compression, plane strain and simple shear are compared with the experi-
mental results in Figure 7-14 and Figure 7-15.

Associated yield
Set name locus parameter R, [MPa] s, [MPa] ¢ [
set
Voce_21 IDENT1ex2 964.24 214.73 8.41
Voce_22 IDENT2ex2 964.24 386.06 3.59
Voce_23 IDENT4ex2 964.24 341.04 5.05

Table 7-13 Voce isotropic hardening parameters obtained after the second identifications

In order to compare the accuracy of the different identifications performed in this section, an
error function based on Equation (7.9) (see Section 7.1.2.2) was computed from the experi-
mental and finite element stress-strain curves as follows:

Nexp Mpoints UiE": — UiExP 2
E'= \/Z > [% (7.12)
i=1 j-1 Oij

e i denotes a point belonging to the experimental curve referred by the index j;

e o’ = are respectively the stresses of the experimental and finite element

curves associated to the n ;.. pointsand n, tests.

where:

and o;

The errors associated to the different identifications in Table 7-12 and Table 7-13 are reported
in Figure 7-16. It can be observed that the lowest errors are obtained with the Voce_1 parame-
ter set. In addition, E’ is minimal in the case of IDENT2ex2 combined with Voce 1.
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Figure 7-14 Experimental stress-strain curves in tension compared to the numerical predictions according to
IDENT1ex2 + Voce 21, IDENT2ex2 + Voce 22 and IDENT4ex2 + Voce_23
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Figure 7-15 Experimental stress-strain curves in compression, plane strain and simple shear compared to the

numerical predictions according to IDENT1ex2 + Voce_21, IDENT2ex2 + Voce_22 and

IDENT4ex2 + Voce 23
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16 1

error E'

Figure 7-16 Error function E’ with respect to the different identifications associated to Voce isotropic hard-
ening law

7.3.2. CPBO06ex2 associated to a mixed hardening law
(Voce + Armstrong-Frederick)

As explained in Section 5.2.4, Ti6Al4V reveals a significant Bauschinger effect. It can also be
observed by comparing the experimental stress-strain curve obtained for the Bauschinger tests
with the FE results when using the CPB06ex2 yield criterion associated to VVoce hardening
law only (see Figure 7-17 and Figure 7-18). In order to take into account the Bauschinger ef-
fect, Armstrong-Frederick kinematic hardening model was added in the implementation of the
constitutive law in LAGAMINE (see Section 6.2).
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Figure 7-17 Experimental stress-strain curves in cyclic simple shear (Bauschinger) compared to the numeri-
cal predictions according to IDENT1ex2 + Voce_1, IDENT2ex2 + Voce_1 and IDENT4ex2 + Voce_ 1
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Figure 7-18 Experimental stress-strain curves in cyclic simple shear (Bauschinger) compared to the numeri-
cal predictions according to IDENT1ex2 + Voce_21, IDENT2ex2 + Voce_22 and IDENT4ex2 + Voce_23

Similarly to the previous section, two optimization steps using the inverse method are per-
formed to determine the parameters included in Voce and Armstrong-Frederick laws. The

first one consists in identifying s, c,, S, and c, from the experimental curves in tension

along RD and in cyclic simple shear. The optimized parameter sets are given in Table 7-14
with respect to the different yield locus identifications selected in Section 7.2. The compari-
son between the experimental and FE stress-strain curves is shown in Figure 7-19 and Figure
7-20.

Associated
Set name yield locus | R, [MPa] | s; [MPa] c; [-] s, [MPa] ¢, [
parameter set
Voce AF 11| IDENT1ex2 964.24 97.03 15.63 38.17 25.32
Voce AF 12 | IDENT2ex2 964.24 107.01 13.14 37.51 23.55
Voce AF 13| IDENT4ex2 964.24 95.34 15.86 37.68 25.48

Table 7-14 Voce and Armstrong-Frederick hardening parameters obtained after the first identifications
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Parameter identifications for the description of Ti6Al4V mechanical behavior

It can be observed from these graphs that, for several strain paths, the flow stress predicted by
the different models is overestimated. In order to reduce these discrepancies, a second set of
identifications is performed by including all the experimental stress-strain curves in the opti-
mization as it was achived for the Voce hardening parameters in Section 7.3.1. The optimized
parameters are given in Table 7-15 and the corresponding FE results are compared with the
experiments in Figure 7-21 and Figure 7-22 in which it can be noticed an improvement of the
numerical predictions in the case of the monotonic strain paths (tension, compression, plane
strain, simple shear). Nevertheless, it has to be noted that the Bauschinger effect is not repre-
sented with a good accuracy either for the first or the second identifications. Other optimiza-
tions by inverse method were performed in order to find a parameter set which could better fit
the experimental behavior of Ti6Al4V, but without success. The reason for which Armstrong-
Frederick kinematic hardening law fails to predict the Bauschinger effect displayed by
Ti6Al4V is due to the fact that this model is too simple from a phenomenological point of
view. It would be required to develop an approach based on the microstructure evolution, as
the formulation proposed by Teodosiu and Hu (1995) for bcc mono-crystals and then applied
to other materials (IF steel sheets, dual phase steels, aluminium).

Associated
Set name yield locus | R, [MPa] | s; [MPa] c; [ s, [MPa] ¢, [
parameter set
Voce AF 21| IDENT1ex2 964.24 136.24 10.95 20.90 9.75
Voce AF 22 | IDENT2ex2 964.24 136.24 7.99 24.48 9.75
Voce AF 23 | IDENT4ex2 964.24 138.67 8.49 32.97 11.49

Table 7-15 Voce and Armstrong-Frederick hardening parameters obtained after the second identifications

Equation (7.12) was used to compute the error E’ corresponding to the different identifica-
tions in Table 7-14 and Table 7-15. The results are given in Figure 7-23 and show that the
lowest error is obtained in the case of IDENT4ex2 associated to Voce AF_13.
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Parameter identifications for the description of Ti6Al4V mechanical behavior

[-] wiens seays pajejnunase

or'o SE0  0E0 S0 0zo S0 00 s00 on‘n-.u
T

00k
00z W
g
oog W
@
ooy <
5,
00s .m
o009
NIVL
L ! o0z

19buiyosneg

€2 4V 990A + ZxepINIAl —
22 4V 990N + ZX9ZIN3IAl —

LZ 4V 900A + ZXaLINIAl —
dxo ——

[edi] ssaus seays

[-] utens seays

(@l) .06 4eays sjdwis

[l uens

(Ql) .06 ureas aue|d

[l uens

800 900 w00 00 000

| | | I | I preey

(dl) .06 uoissaadwo)

[edw] ssans Jeays

[edw] ssans

ledw] ssans

[-] urens seays

8L0 910 w0 ZVO  0K0 800 900 P00 200 000

-G Jeays ajdwis

[-] urens

00
T

.G ureais aue|d

[] uens

800 %00 w00 00 000

-G uoissaidwo)

E 009

! 004

[edi] ssans seays

[edin] ssens

[edin] ssens

[-] utens seays

80 910 PO ZLVO OMO 800 900 ¥O00 200 000

{ay) .0 seoys ojduys

E 008

| | | | | T L

(a¥) -0 Heays sjdwis

[l uens

$00 00 000
T T

{Qu) .0 weas sueyd

(@¥) -0 urens sue|d

[l uens

L zvo o010 800 900 ¥OO zo'o 000

¥ 8204 + ZXBPLNIOI
¥ 8904 + ZXOZLINIQI

T E\‘Emr

| | | | L T preey

(ad) .0 uoissaadwo)

[edw] ssans Jeays

ledw] ssans

Figure 7-22 Experimental stress-strain curves in compression, plane strain, simple shear and reversed simple

ledw] ssans

shear (Bauschinger) compared to the numerical predictions according to IDENT1ex2 + Voce AF 21,

IDENT2ex2 + Voce_AF_22 and IDENT4ex2 + Voce_AF 23

173



16 1

151

14+

131

error E’

12+

11

Figure 7-23 Error function E’ with respect to the different identifications associated to the mixed hardening
law

7.3.3. Evolution of the parameters involved in CPB06ex2
with the plastic work

The analysis of the mechanical tests on Ti6Al4V revealed a shape evolution of the yield locus
with the plastic deformation (see Section 5.2.5). For this reason, a constitutive model taking
into account the distortional hardening of the material was also implemented into
LAGAMINE (see Section 6.3).

In Section 5.2.5, the yield locus of Ti6AIl4V is displayed for four levels of plastic work per
unit of volume. From these experimental data, it is possible to identify the CPB06ex2 parame-
ters for each level using the CSA algorithm. The identification of the initial yield locus (corre-
sponding to the first plastic work level W, = 2.0 J/cm?) having been achieved and discussed

previously, the following results will mainly be focused on the higher levels, namely W, =
9.8 JJem3, W .= .19.9 JJem?and W, = 51.3 J/cm3. For these levels, the SD parameters and

the anisotropy coefficients involved in CPB06ex2 yield criterion are optimized using the ex-
perimental data in tension, compression and plane strain. It has to be noted that the data in
simple shear are not included in these identifications since the complete stress state cannot
experimentally be determined. In addition, for the plane strain tests, it has to be recalled that
the axial stress can be computed from the experiments while the transversal stress is un-
known. Due to this, dashed lines are used in the biaxial plane o;, —o,, to represent the corre-

sponding data.

Three sets of optimizations are performed, each one starting respectively with the identifica-
tions IDENT1ex2, IDENT2ex2 and IDENT4ex2 for the description of the initial yield locus.
For each set, the CPB06ex2 parameters for the plastic work level W ; (i=2,3,4) are deter-
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Parameter identifications for the description of Ti6Al4V mechanical behavior

mined using the solution obtained for the previous level W_. . as initial guess. Besides the

p,i-1
error functions E, and E, described by Equations (7.2) to (7.6) are modified for these identi-

fications. Indeed, as explained in Section 7.1.1.2, Equation (7.7) is used to take into account
the data in plane strain at large plastic strains. In addition the experimental stresses in simple
shear cannot be included in the optimization since the complete stress state is unknown at
these levels of plastic work. Considering these remarks, the modified error functions are for-
mulated as follows:

Ny
E = Zﬂi & (7.13)
i=1
Ng
E, = Z e’ (7.14)

where Nj is the total number of experimental values in tension, compression and plane strain.

e, is defined by Equation (7.5) for the flow stresses in tension and compression, by Equation

(7.6) for the tensile r-ratios, and by Equation (7.7) for the plane strain tests. It has to be noted
that the weight factors in Equation (7.13) associated to the data in plane strain and the ones in
tension and compression were fixed to 0.01 and 1.0 respectively. Indeed when all these fac-
tors are kept to 1.0, it was noticed that the yield loci corresponding to the different plastic
work levels can cross each other, which does not cause any problem of convergence but can
result in a negative hardening rate in some finite element stress-strain curves relative to the
different experimental tests. For this reason, it was decided to reduce the weight of the errors
linked with the plane strain states in order to prevent the overlapping of the yield surfaces.
However this approach can affect the ability of the modeling to describe the material behavior
under this strain path.

It has also to be noted that the identification of the yield locus at the different levels of plastic
work is based on experimental data for which the texture differs from a test to another. Indeed
the texture evolution strongly depends on the strain path in the case of the investigated
Ti6Al4V sheet, which means that the yield loci determined according to the proposed ap-
proach does not correspond to the same material. It would be required to use a microscopic
model able to take into account the texture evolution of hcp materials in order to obtain relia-
ble information concerning the evolution of the yield locus shape with the plastic defor-
mation.

The optimized parameter sets, denoted EVOL_1, EVOL_2 and EVOL_3 respectively, are
given in Table 7-16, Table 7-17 and Table 7-18, while Figure 7-24, Figure 7-25 and Figure
7-26 show the biaxial projections in the planes o,, —o,, and o,, —o;, as well as the anisotro-
py in terms of tensile and compressive yield stresses as described by the different parameter
sets in comparison with the experimental data. It can be observed that, even if the same exper-
imental data and error functions are used during the optimizations, the shape of the yield loci
is different from a set to another, which implies that a local minimum is likely reached. This

is confirmed by the analysis of E; in Figure 7-27 which shows that the errors associated to
the different parameter sets are not identical for a same level of plastic work.
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Parameter set "EVOL 1"

W, , = 2.0 J/em3 (IDENT1ex2)

k ClZ Cl3 CZZ C23 C33 C66
-0.5144 -1.0648 2.2381 4.9699 0.9547 -1.3450 -2.2168
K’ Cpy Cis Ca Ca Cas Cos
0.9577 -0.5316 -1.7240 0.3416 2.1204 0.3450 4.9141
w,, = 9.8Jcm?
k ClZ C13 C22 CZS C33 C66
-0.8119 -0.6360 1.6816 3.8171 0.7765 -0.8374 -1.6891
k' Co Cis Cz Car Ca Ces
0.7256 -0.6331 -1.8494 0.2706 2.2217 0.2808 4.9684
W, , = 19.9J/
k C12 C13 CZZ CZS CSB CGG
-0.9835 -0.7964 1.2230 3.1054 0.5405 -1.1919 -1.4359
k' C Cs Cz Cax Ca Ces
0.7586 -0.5132 -1.6590 0.3408 1.9545 0.3062 -4.6871
W,, = 51.3J/
k ClZ ClS CZZ CZS C33 C66
-0.9214 -0.7298 1.1837 3.0301 0.5890 -1.2072 -1.0728
K’ Cpy Cis Ca Ca Ca Cos
0.7265 -0.5435 -1.6698 0.2926 1.7774 0.1337 -4.6037

a=2,C,=C/, =10

Table 7-16 Yield function CPB06ex2 coefficients for Ti6Al4V based on the experimental data in tension,
compression and plane strain corresponding to four levels of plastic work per unit volume (first parameter set
denoted "EVOL_1")
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Figure 7-24 Comparison of the theoretical results according to EVOL_1 with the experimental data: (a) yield

loci in the biaxial plane o,

(c) anisotropy in

-0, (o, =0); (b) yield loci in the plane o, —0;, (0, =0);

tensile yield stresses; (d) anisotropy in compressive yield stresses
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Parameter set

"EVOL_2"

W, , = 2.0 J/em3 (IDENT2ex2)

k ClZ C13 CZZ CZS C33 C66
0.4922 1.5173 -0.3369 -3.3689 -1.5588 3.6233 -4.7836
k' Co Cis Ca Cx Cs Ceo
0.9957 -3.3008 -1.2519 1.6440 0.7412 -3.0051 -4.6907
w,, = 9.8Jcm?
k Clz C13 C22 C23 C33 CGS
0.5942 1.3572 -0.0140 -2.3859 -0.9174 3.5940 -3.8546
k' Ce Cis Cz Cx Cs Coo
0.9734 -3.2890 -1.3854 1.3840 0.4266 -2.8489 -4.6990
W, ;= 19.9 J/cm?
k C12 ClS CZZ C23 C33 C66
0.7149 1.2272 0.1440 -1.8735 -0.4184 3.7459 -3.3207
k' Ce Cis Cz Cx Cs Cee
0.8889 -3.5693 -1.7670 1.2366 -0.0325 -3.1277 -4.9233
W,, = 51.3 J/cm?
k C12 C13 C22 C23 C33 C66
0.7207 1.1270 0.2575 -1.4406 -0.5273 3.6505 -3.0666
k' Ce Cis Cz Cx Cs Coo
0.8584 -3.6664 -1.9373 1.0124 -0.1384 -3.3712 4.9443

a=2,C,=C, =10

Table 7-17 Yield function CPB06ex2 coefficients for Ti6Al4V based on the experimental data in tension,
compression and plane strain corresponding to four levels of plastic work per unit volume (second parameter
set denoted "EVOL_2"")
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Parameter set "EVOL_3"

W, , = 2.0 J/cm? (IDENT4ex2)

k C12 C13 C22 C23 C33 C66
-0.1361 4.9247 2.3313 0.3820 -0.1369 4.5720 0.8832
k' Cp, Cis Ca Cas Ca Cos
0.5478 0.9354 21177 0.2993 -0.1927 1.3701 4.7385
W,, = 9.8 J/cm?
k C12 C13 C22 C23 C33 C66
-0.1346 4.9809 21131 0.2258 -0.2719 4.2821 1.0543
k' Cry Cis Ca Cas Ca Cos
0.7388 0.8988 1.9805 0.4205 -0.0069 1.3114 4.4020
W, ;= 19.9 J/cm?
k C12 C13 CZZ C23 C33 C66
-0.1232 4.9959 2.0671 0.1307 -0.3957 4.3071 1.1063
K’ Cr, Cis Ca Cas Ca Cos
0.7752 0.9057 1.9559 0.4015 -0.0142 1.2322 4.4098
W,, = 51.3 J/cm?
k C12 C13 C22 C23 CSS C66
-0.0927 4.9366 2.0173 0.1984 -0.5160 4.2106 1.1415
K’ Cry Cis Ca Cas Ca Cos
0.8289 0.9467 1.8255 0.4072 0.0398 1.1093 4.2377

a=2,C,=C, =10

Table 7-18 Yield function CPB06ex2 coefficients for Ti6Al4V based on the experimental data in tension,
compression and plane strain corresponding to four levels of plastic work per unit volume (second parameter
set denoted "EVOL_3"")
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levels of plastic work W, to W,

Figure 7-28 and Figure 7-29 compare the experimental stress-strain curves in tension, com-
pression, plane strain, simple shear and cyclic simple shear with the FE results according to
EVOL_1, EVOL_2 and EVOL_3. The following observations can be formulated:

for any parameter set, a very good agreement is obtained between the experimental
and numerical results in tension and compression;

the flow stress in plane strain along RD and 45°-direction is very well predicted by
EVOL_1 and EVOL_2 while it is overestimated by EVOL_3. Concerning the behav-
ior along TD, EVOL _1 provides the best result.

there is a good agreement between the experiments and the FE predictions in simple
shear along RD and TD whatever the parameter set. On the other hand, the flow stress
along 45°-direction is overestimated by all models, EVOL _2 being the closest to the
experimental curve.

concerning the Bauschinger effect, this one is captured by none of the parameter sets
since it is not taken into account in the constitutive law describing the yield locus of
the material at different plastic work levels.

In light of these observations and the analysis of the error E;, it can be concluded that the

parameter set EVOL _1 constitutes the best choice to model the shape evolution of the
Ti6AI4V yield locus.
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Figure 7-28 Experimental stress-strain curves in tension compared to the numerical predictions according to

EVOL_1, EVOL_2 and EVOL_3
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Figure 7-29 Experimental stress-strain curves in compression, plane strain, simple shear and reversed simple

shear (Bauschinger) compared to the numerical predictions according to EVOL_1, EVOL_2 and EVOL_3
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Parameter identifications for the description of Ti6Al4V mechanical behavior

7.4. Summary and conclusions

In this chapter, one significant conclusion has to be highlighted, namely the fact that the
CPBO06ex2 criterion is necessary to model the yield locus of Ti6Al4V, but is also sufficient
since the accuracy gain obtained when adding more linear transformations (and so more pa-
rameters) is very low. Concerning the description of the hardening behavior, the choice of the
best modeling is more difficult since the different formulations considered in this study
(CPBO06ex2 associated to Voce isotropic hardening law, CPB06ex2 associated to Voce iso-
tropic and Armstrong-Frederick kinematic hardening models, evolution of the yield locus
shape with the plastic deformation) are generally in good agreement with the experimental
data. In the next part of this investigation, three of these formulations will be used to study
their ability to predict the mechanical response of Ti6Al4V in the case of the layer compres-
sion tests as well as the deep-drawing process, namely:

o vyield locus described by IDENT2ex2 associated to Voce 1 parameter set;
o vyield locus described by IDENT4ex2 associated to Voce AF 13 parameter set;
e EVOL 1

The choice of these formulations is based on the errors computed in the different identifica-
tions.
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Validation for complex strain paths

Chapter 8 Validation for complex
strain paths

This chapter deals with the ability of the models identified in Chapter 7 to describe the me-
chanical behavior of Ti6Al4V under processes with complex strain paths. The layer compres-
sion and the deep-drawing tests are simulated using the finite element code LAGAMINE and
the experimental data are compared with the numerical results according to the different
modelings.

8.1. Layer compression test

8.1.1. Description of the simulations

As it can be seen in Figure 8-1, the symmetry of the problem is taken into account to reduce
the size of the simulations and then the computation time. One eighth of the specimen is mod-
eled using adapted boundary conditions (the nodes in the planes x=0, y=0 and z=0 are
fixed along the directions x, y and z, respectively) and 2865 BWD3D brick elements with
one integration point. The contact between the punch (represented by one undeformable trian-
gular foundation element) and the specimen is considered by adding 191 CFI3D elements on
the surface z=h/2 where h is the height of the specimen. It has to be noted that the initial
size of the elements BWD3D is progressively reduced when coming closer to the contact sur-
face in order to enable the barreling effect occuring during the deformation. For the sake of
simplification, the different layers forming the specimens are not modeled and the stack is
assumed as a single body.
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Figure 8-1 Mesh used for the simulations of the layer compression tests

The material behavior is described by one of the parameter sets determined in Chapter 7
(IDENT2ex2 + Voce_1, IDENT4ex2 + Voce AF_13, EVOL_1) while a Coulomb law is used
to model the contact between the tool and the sample. However the punch-specimen friction
coefficient is unknown and its identification needs the help of finite element simulations. The
effect of friction on the numerical results is the object of the next section.

8.1.2. Effect of friction

In order to investigate the influence of the friction coefficient x on the finite element results

in terms of geometry, strains and stresses, several simulations were achieved using the
IDENT2ex2 + Voce_1 model with low and high values of x (0.0, 0.02, 0.04, 0.2, 0.4).

Figure 8-2 and Figure 8-3 show the evolution of the middle cross-section area and the major
to minor axes ratio with the average axial strain according to the different simulations and
compared to the experimental data. Two stages can be noticed in the growth rate of the mid-
dle cross-section. A low rate is observed during the first stage which is related to the elastic
deformation of the material. During the second stage, the specimen undergoes plastic defor-
mations and the growth rate of the area increases. However, the numerical results predict a
change in the slope occuring earlier than the one experimentally observed. This difference can
be explained by the fact that the specimen was modeled as a single structure, assuming that
the layers of the stack are perfectly piled. Actually some defects exist between the different
layers, which affects the elastic part of the stress-strain curves as explained in Section 5.2.6
(see Figure 5-45). The slope of the experimental curves in Figure 8-2 changes at an average
axial strain level between 2% and 3%, which should be linked to the elastic-plastic transition
in the stress-strain curves. In the numerical simulations, as the defects are not taken into ac-
count, the elastic part of the stress-strain curve is a straight line and the elastic-plastic transi-
tion occurs at a strain level of ~1.1%. For these reasons, the finite element curves are not in
good agreement with the experimental results. Nevertheless it can be observed that the growth
rate of the middle cross-section is better predicted for high values of the friction coefficient
(u=02and x=04).
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Figure 8-2 Area of the middle cross-section with respect to the average axial strain: comparison between the
experimental data and the numerical results for different friction coefficients

The numerical results in Figure 8-3 again show an elastic-plastic transition when the average
axial strain reaches ~1.1%. Two cases can also be noticed depending on the value of the fric-
tion coefficient: the major axis increases faster than the minor axis when x is low while the

opposite is observed for high values of x. However it is difficult to determine which friction
coefficient is adapted to describe the evolution of the ratio a/b since the experimental data are
not reproducible from one test to another.
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Figure 8-3 Evolution of the major to minor axes ratio with the average axial strain: comparison between the
experimental data and the numerical results for different friction coefficients
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Figure 8-4 compares the experimental curvature of the specimen in RD with the finite element
results for the different friction coefficient values when the average axial strain reaches 7%.
Since the barreling effect observed during the experiments is not significant, the curvature is
better predicted with low coefficients (0.0, 0.02 and 0.04).

il o -

3l - exp.
— u=0.0
— u=0.02
—— u=0.04
n=0.2
U — u=04

z-coordinate [mm)]

10.0 10.5 11.0
x-coordinate [mm]

Figure 8-4 Curvature of the specimen lateral surface in RD at an average strain level of 7%: comparison
between the experimental data (average) and the numerical results for different friction coefficients

Figure 8-5 shows the axial strain field along the surface of middle cross-section at an average
strain level of 7% according to the different experimental tests and numerical simulations. As
previously, it can be noticed that low values of ¢ seem more adapted to fit the distribution of
the axial strain. The same observations can be made when comparing the experimental and
finite element stress-plastic strain curves (see Figure 8-6). The numerical curve is assessed by
the ratio of the predicted axial reaction and the actual middle section area.

axial strain [-]

angle with respect to RD [°]

Figure 8-5 Distribution of the axial strain along the surface of the middle cross-section at an average strain
level of 7%: comparison between the experimental data and the numerical results for different friction coeffi-
cients
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Figure 8-6 Stress-plastic strains curves: comparison between the experimental data (average) and the numer-
ical results for different friction coefficients

8.1.3. Effect of the modeling

The results of the previous section support the conclusion that it is difficult to fix the value of
the coefficient x as the area measurements suggest high values while force and strain meas-
urements identify lower values. For this reason, the ability of the models, denoted
IDENT2ex2 + Voce_1, IDENT4ex2 + Voce_AF_13 and EVOL _1 respectively, to predict the
mechanical behavior of Ti6Al4V in a layer compression test is investigated by assuming for
each model a low and a high values (z2=0.02 and x=0.2 respectively) of the friction coef-

ficient.

Figure 8-7 to Figure 8-11 compare the experimental curves mentioned above with the finite
element results according to the different modelings. As in Section 8.1.2, it can be noticed
that a low friction coefficient is more adapted to describe the response of the material in some
cases (see curvature in Figure 8-9 or axial strain field in Figure 8-10) while the predictions
obtained using a higher value of x are in better agreement with other data (see growth rate of
the middle cross-section in Figure 8-7). However it can also be observed that the model can
significantly affect the results, especially when an evolution of the yield locus shape is taken
into account (EVOL_1). Indeed the variation of the major to minor axes ratio a/b with the
deformation according to EVOL _1 (Figure 8-8 (c)) is very different from the finite element
curves associated to the other models (Figure 8-8 (a) and (b)). In addition, for x=0.2, the
barreling effect is less strong and the difference between the maximal and minimal values in
the axial strain distribution is reduced when considering that the parameters involved in
CPBO06ex2 change with the deformation (see Figure 8-9 and Figure 8-10).

In conclusion, although the agreement between the experimental and finite element results is
not entirely fulfilled for any modeling, the simulations show that an hardening law taking into
account the evolution of the yield locus shape is qualitatively more adapted to represent the
mechanical behavior of the material than an isotropic hardening formulation, combined or not
with a kinematic hardening formulation. However the comparison of the experimental data
with the numerical curves also suggest that the friction model assuming a constant coefficient
M 1s not appropriate, which implies that further investigations are required.
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8.2. Deep-drawing process

8.2.1. Description of the simulations

As explained in Section 5.2.7, only the data from the tests 4 and 5 are taken into account since
some problems (bumps along the wall of the deformed specimen, huge damage) occurred
during the other experiments. The deep-drawing process is simulated using the mesh shown in
Figure 8-12 (split view) and Figure 8-13 (initial configuration). The dimensions of the blank

and the tools are identical for both tests, except for the profile radius r,, of the matrix which

is 8 mm in the case of the test 4 and 12 mm in the case of the test 5 (see Table 4-6 and Figure
8-14). In order to reduce the computation time, the symmetry of the blank and the tools is
taken into account to model only a quarter of the structure with adapted boundary conditions.

The tools are meshed with undeformable triangular foundation elements. The punch, the
blank-holder and the matrix contain 792, 48 and 672 elements respectively. A pilot node is
associated to each tool to control its displacement. The blank is built using 6576 BWD3D
elements with one integration point divided in three layers. 6864 CFI3D elements are added
in order to take into account the contact between the blank and the different tools.

The simulations are performed in four phases:

e The first step consists in applying the blank-holder force while the punch and the ma-
trix are fixed;

e During the second phase, the punch is moved in the z-direction (see Figure 8-13) at a
speed of 1 mm/s, causing the deformation of the blank;

e At the end of the deep-drawing process, the punch is first removed (third phase) and
the matrix is next taken away from the deformed cup (fourth phase).

The third and fourth phases are required since the elastic strains are significant when observ-
ing, for example, the different stress-strain curves obtained during the tensile tests carried out
on Ti-6Al-4V (see Figure 5-7). A large springback can then occur, which is confirmed by
comparing the earing profile of the deformed specimens at the end of the second and fourth
phases, respectively (Figure 8-15 and Figure 8-16), where the maximal difference is about
0.73 mm. It has to be noted that it was very difficult to remove the deformed specimens from
the matrix after the experimental tests, which attests to a sizeable springback effect.

Different simulations of the deep-drawing tests 4 and 5 were launched using the parameter
sets IDENT2ex2 + Voce 1, IDENT4ex2 + Voce AF 13 and EVOL_1 to describe the me-
chanical behavior of the Ti-6Al-4V blank, while the contact between the tools and the sheet
was modeled by a Coulomb law with a friction coefficient of 0.04 (Teflon was added on both
sides of the blank in order to reduce the friction). The penalty coefficients were 500 in the
case of the punch-blank contact and 2000 in the other cases (blank-matrix or blank-holder).
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blank-holder

blank

Figure 8-12 Mesh of the blank and the tools (punch, blank-holder, matrix) in split view — configuration cor-
responding to test 5

Figure 8-13 Position of the blank and the tools at the beginning of the simulation associated to test 5
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Validation for complex strain paths
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Figure 8-14 Mesh of the matrices: (a) r,, = 8 mm (test 4), (b) r,, = 12 mm (test 5)
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Figure 8-15 Earing profile of the deformed specimen after loading (phase 2 of the simulation) and unloading
(phase 4 of the simulation) - results corresponding to test 4
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Figure 8-16 Earing profile of the deformed specimen after loading (phase 2 of the simulation) and unloading
(phase 4 of the simulation) - results corresponding to test 5

8.2.2. Results

Figure 8-17 compares the experimental force-displacement curves and the earing profiles
from the tests 4 and 5 with the simulation results. It can be observed that, as explained in Sec-
tion 5.2.7, the shape of the earing profile and the number of ears is linked to the distribution
of the tensile r-ratios. Although the different models capture with great accuracy the r-values
variation (see Figure 7-7), the agreement between the experimental and theoretical results in
cup drawing is less satisfactory. Further experimental tests need to be conducted to assess the
effects of friction/tooling on the profile. It can also be noticed some oscillations on the numer-
ical force-displacement curves, especially in test 5. They are caused by the passing of the fi-
nite elements on the matrix shoulder where bending occurs (Duchéne (2003)).
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Figure 8-17 Experimental earing profiles and force-displacement curves associated to deep-drawing tests 4
and 5 in comparison with the predictions according to IDENT2ex2 + Voce_1, IDENT4ex2 + Voce_AF_13
and EVOL_1

Table 8-1 gives the maximal absolute errors and the average errors between the experimental
data obtained from the deep-drawing tests (earing profile and force-displacement curves) and
the associated finite element predictions. The results reveal that:

the maximal absolute error on the earing profile is minimal in the case of IDENT4ex2
+ Voce_AF_13, while the average error is the lowest when IDENT2ex2 + Voce_1 and
EVOL 1 are used as model;
the errors (maximal and average values) on the force are minimal in the case of
EVOL_1.

These observations suggest that, as in Section 8.1, the modeling taking into account the evolu-
tion of the parameters in the CPB06ex2 yield criterion with the deformation is the best choice
to describe the behavior of Ti6AI4V.
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Earing profile Force
Test number Model ';/Ibas)glr:tzl Average I;/Ibe}s)glr:ti : Average
error [mm] error [mm] error [KN] error [kN]
IDENT2ex2 + 7.18 3.86 42.0 16.8
Voce 1
IDENT4ex2 +
Test 4 Voce AF 13 6.38 4.02 44.0 17.5
EVOL_1 7.58 3.88 38.0 15.0
IDENT2ex2 + 6.85 3.93 39.0 16.3
Voce 1
IDENT4ex2 +
Test 5 Voce AF 13 6.11 4.03 41.0 17.9
EVOL 1 7.55 3.94 35.0 14.3

Table 8-1 Maximal absolute errors and average errors between finite element results and experimental data
associated to deep-drawing tests (see Figure 8-17)

8.3. Conclusion

The comparison of the experimental data from the layer compression tests and the deep-
drawing processes with the numerical predictions according to IDENT2ex2 + Voce_1,
IDENT4ex2 + Voce_AF 13 and EVOL_1 shows that further studies are required to develop a
model able to describe the mechanical behavior of Ti6Al4V. Nevertheless, it was shown that
the finite element results given by EVOL _1 are in better agreements with the experiments
than the other models. In addition, it has to be noted that the formulations proposed in this
thesis are more adapted to Ti6Al4V than the classical ones. Figure 8-18 compares the curves
given in Figure 8-17 (test 4) with the finite element results obtained when the material behav-
ior is modeled using Hill'48 yield criterion and Voce isotropic hardening law. The Hill'48
parameters were determined from the tensile r-ratios in RD, 45°-direction and TD (see Figure
5-15), while the hardening parameters in Table 7-12 (Voce_1 set) were used. It can be noticed
that Hill'48 predicts a symmetric earing profile with a maximal value at 45° while the experi-
ment and the finite element results associated to CPB06ex2 show an asymmetric profile with
a maximal value between 50° and 60°. These observations confirm that CPB06ex2 criterion is
required to model the yield locus of Ti6AI4V.

The results of this chapter especially suggest to investigate the material response under differ-
ent strain paths in compression in order to collect more data concerning the shape of the yield
locus in the third quadrant. Indeed the experimental campaign described in Chapter 4 and
Chapter 5 is mainly focused on monotonic tests enabling a good identification of the yield
surface in the first quadrant. However, in light of the strength asymmetry of Ti6Al4V between
tension and compression, it is necessary to fill the lack of data concerning the mechanical
behavior of the alloy under compression. In addition, friction also plays a significant part on
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Validation for complex strain paths

the results, which accounts for the sake to conduct additional studies in order to obtain more
accurate information about its effect on the layer compression and deep-drawing experiments.
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Figure 8-18 Experimental earing profiles and force-displacement curves associated to deep-drawing tests 4 in
comparison with the predictions according to IDENT2ex2 + Voce_1, IDENT4ex2 + Voce_AF_13, EVOL_1
and Hill + Voce 1
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General conclusion

Chapter 9 General conclusion

The quasi-static mechanical behavior of a 0.6 mm thick Ti6Al4V sheet at room temperature
was experimentally investigated under different loading conditions. Monotonic tests (tension,
compression, plane strain, simple shear) revealed the anisotropy and the tension-compression
asymmetry displayed by the material.

The CP06exn criteria were chosen to model the yield locus of the material since they are able
to take into account both the anisotropy and the strength differential effect exhibited by hcp
metals. Concerning the hardening modeling, two formulations were considered and associated
to CPB06exn: (1) Voce isotropic hardening law coupled with Armstrong-Frederick kinematic
hardening law; (2) an evolution of the yield locus shape with the plastic work. The two phe-
nomenological models were implemented into LAGAMINE finite element code.

The identification of the anisotropy coefficients and strength differential parameters involved
in the yield criteria was achieved using the classical simulated annealing algorithm and the
results from the monotonic tests. It was shown that CPB06ex2 criterion is required to repre-
sent the yield surface of Ti6Al4V with a good accuracy. Then three sets of hardening parame-
ters were identified, each one corresponding to the following cases respectively: (1) hardening
described by Voce isotropic law; (2) hardening described by a mixed Voce isotropic — Arm-
strong-Frederick kinematic law; (3) hardening described by a law taking into account the evo-
lution of the parameters in CPB06ex2 with the plastic work.

The ability of the three phenomenological models proposed in this investigation to describe
the material response was tested in the finite element simulation of a layer compression test
and a deep-drawing process. The comparison of the numerical predictions with the experi-
mental results shows that better results are obtained when the evolution of the yield locus
shape with the deformation is regarded, although the agreement between experimental and
finite element curves is not entirely satisfactory.

The original contributions of this thesis are:

e the production of a large set of experimental data on the mechanical behavior of
Ti6Al4V in sheet form;

e the implementation of the CPB06exn yield criteria in association with a hardening
model able to take into account the evolution of the vyield locus shape into
LAGAMINE;

e the development of numerical tools for the parameter identification based on the simu-
lated annealing algorithm.

207



Note that these contributions have already helped in other studies (see for instance Tuninetti
et al. (2015)).

Future investigations will be required to improve the modeling of the Ti6Al4V mechanical
behavior and to simultaneously predict the strength differential effect displayed by the materi-
al, its anisotropy and its response in complex processes. A first step would be to perform addi-
tional tests in compression in order to fix the shape of the yield locus in the third quadrant of

the biaxial plane o, —o,, . It could be planned to conduct uniaxial compression experiments

in more directions than the three usual ones (RD, 45°, TD) and to determine both the yield
stresses and r-ratios since it was shown that the latter can improve the parameter identifica-
tion. Another suggestion would be to develop a device which would be able to submit speci-
mens to a compressive plane strain state. A second step would be to determine the equibiaxial
point on the yield locus using an experimental device adapted to Ti6Al4V since the tests con-
ducted by Prof. Kuwabara at TUAT (equibiaxial tests on cruciform specimens) and by Prof.
Thuillier at Université de Bretagne-Sud (bulge tests) encountered problems of failure occur-
ring in parts of the specimens other than the gage zones.

It has to be recalled that the yield locus of Ti6Al4V was identified at several levels of plastic
work from different monotonic tests and therefore each surface gathers data associated to dif-
ferent states of the material. However it is not possible to avoid this problem when determin-
ing the yield locus from experimental tests only. For this reason, it could be interesting to use
a reliable microscopic model which would be able to take into account the evolution of the
texture in hcp metals and to combine the model predictions with the experimental data in or-
der to obtain a better knowledge on the evolution of the yield locus shape with the plastic de-
formation. In addition, the microscopic model could generate additional data (for instance
yield stresses relative to strain paths which are not possible to experimentally achieve) which
would be included in the identification of the anisotropy coefficients and the strength differ-
ential parameters involved in CPB06exn yield criteria.

Finally, this thesis is focused on the quasi-static behavior of Ti6Al4V, but the material is also
very sensitive to the strain rate and the temperature. As explained in the first chapter, several
investigations have already been conducted on the alloy at high strain rates and high tempera-
tures. However the proposed models usually neglect the tension-compression asymmetry and
the distortional hardening exhibited by Ti6Al4V, even its anisotropy. Nevertheless recent
studies such as the work of Tuninetti (2014) provide some suggestions of phenomenological
modelings adapted to hcp materials and taking into account its dependence to strain rate and
temperature. Peirs (2012) proposed a characterization and a modeling of the dynamic behav-
ior of Ti6AI4V, while Lopez (2014) used the VPSC model to capture the anisotropy of the
alloy for a wide range of strain rate and temperature conditions. Another challenge concerning
the modeling of hcp metals is the damage evolution. Cazacu and Stewart (2009) and Revil-
Baudard et al. (2012) recently presented a new constitutive model for voided polycrystals that
incorporates the effects of the tension-compression asymmetry of the incompressible matrix
on the overall dilatational plastic behavior. In conclusion, it can be noticed that the Ti6Al4V
mechanical response is studied under various facets, but it would be needed to share and gath-
er all these data in order to improve the modeling of the material behavior.
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Convexity of the isotropic and anisotropic yield functions proposed by Cazacu et al. (2006)

Appendix A Convexity of the isotropic
and anisotropic yield functions pro-
posed by Cazacu et al. (2006)

The isotropic yield function is written as:
Do = (|5 - ksl)a +(]s,| ks, )a +(|s] — ks, )a (A.1)

@, 1S convex if its Hessian matrix H is positive semi-definite, i.e.:

82(p.
6 Ho=0, H,0,=0, —=-0,20 Vo (A.2)
00,00,

where o is the vector containing the principal stresseso; (i=1...3). Since the eigenvalues
s, (i=1...3) of the stress deviator are given by:

s) [2/3 Y3 -13](o,
s=|s, |=[-13 2/3 -13|/ 0, |=Lo (A3)

s,) |-13 -3 2/3 |lo,

the Hessian matrix can be rewritten as follows:

o’ o’p. -
= = =< ] =L, H, L A4
ij aaiéo'j ki Gskﬁs, ] ki ki LI] ( )
2
where I-_Iij :25%. It can be noticed that Equation (A.2) combined with Equation (A.4) leads
i9]
to:

O; Hij O =0; [ H_kl L|j o, =5 H_kl S (A.5)
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In addition, the matrix H is diagonal:

H, 0 0
H=0 H, 0 (A.6)
0 0 H,
where the components H, (i =1...3) are given by:
(A7)

H_i = a(a—l)[sign(si)_ k]a Siai

Therefore convexity is satisfied if s, H; s, >0 Vs, i.e. H; >0 Vi. Itimplies that the follow-

ing conditions are required:

e ax>1;
o ifs5>0, H=a(a-1)(1-k) s* and so k <1;

o ifs<0, H=a(a-1)(-1)"(1+k)"s** and so k >-1.
The convexity of the anisotropic yield function can be proved in a similar way. Indeed, the

function is written as follows:

P = (|21~ K2, )+ (15| K=, )" +(|Z5| - k=, ) (A.8)
where:
% Cn Cp Cyl 23 -13 -13|(o
=|%,|=[C, C, C,l| -3 2/3 -13||o,|=CLo=Co (A.9)
2 C Cu Cyu[-13 -13 2/3 \o,
Since
2 2
o H;o,=0 Pan o;=0,C, O Cyo, =2 Hy 2 (A.10)
00,00 02,02,
where
2
=0 O (A.11)
0%,0%,
and the matrix H is also diagonal:
1
(A.12)
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Convexity of the isotropic and anisotropic yield functions proposed by Cazacu et al. (2006)

with
H,=a(a-1)[sign(z,)-k] =, i=1...3 (A.13)
the Hessian matrix will be positive semi-definite when H, >0 Vi. The same conclusions

ensuring that the yield function is convex are obtained as previously, namely a>1 and
1<k <1.
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Insensitivity of CPBO6 yield function to hydrostatic pressure

Appendix B Insensitivity of CPB06 yield
function to hydrostatic pressure

The CPBO06 orthotropic yield criterion is:
@ =(|2]—KZ,) + (|2, - K=, )" +(|Zs] - k=) (B.1)
where X, (i=1...3) are the eigenvalues of the transformed stress tensor X defined as:
x=C:s (B.2)

s is the stress deviator while C is a constant 4™-order tensor. Let p=o; denote the mean
stress. The yield function f will be said insensitive to hydrostatic pressure when:

9 _0p 0% %y

= = (B.3)
op 0%, 0%; op
0%, : . . e -
If a—‘ =0 is proved, the condition of plastic incompressibility will be satisfied.

P
Since

X=C:s=C:(L:c)=C:o (B.4)
where

C=C:L (B.5)

and L is the 4™-order deviatoric projection transforming a 2"-order tensor in its deviator, it
results in:

oz, O éi'kl Ou < <
8pJ = (6(17 ) = Cijkl Oy = Cijkk (B.6)

mm
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In the orthotropy axes, the tensors C and L are respectively represented by:

C, C, C, 0 0 0
C, C, C, 0 0 0
C= Co Ciu Cy O 0 0
o 0 0 C, 0 O

0O 0 0 0 C, O

0 0 0 0 0 C,
[2/3 -1/3 -1/3 0 0 0]
~13 2/3 -13 0 0 0

L _|Y3 Y3 23 000
0O 0 0 100

0 0 0 010

0 0 0 00 1]

where the simplified contracted indices convention of Voigt (C,,, <>C,,

Clz < Ci3, ...) is used. Since the non-zero components of C are:

2 1
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Numerical analysis of the homogeneous zone evolution and stress computation in plane strain
tests

Appendix C Numerical analysis of the
homogeneous zone evolution and stress
computation in plane strain tests

Plane strain tests on Ti6Al4V show a strain field distribution characterized by a homogeneous
zone at the center of the specimen and a heterogeneous zone at the edges (see Section
4.2.3.1). In order to take into account the edge effects in the stress computation, a numerical
investigation using finite elements is performed with the aim of expressing the actual stress in
the specimen’s plane strain state zone along the loading direction in terms of the available
experimental data.

Given the symmetry of the problem, only a quarter of the gage zone is modeled with 3D solid
elements BWD3D (see Figure C-1). A displacement along X, -direction is applied to the upper
nodes while they are fixed along X, -direction. The nodes on the left (respectively bottom)
side are fixed along X, -direction (respectively X, -direction).

& &

> X,

Figure C-1 Mesh and boundary conditions for the simulation of plane strain tests

CPBO06 yield criterion associated to Voce isotropic hardening model is used as constitutive
law. Several simulations are run using different sets of material parameters (see Table C-1).
The first one (MAT A) considers an isotropic yield surface. The sets from MAT B to MAT D
differ in the strength differential parameters and the anisotropy coefficients, determined by the
classical simulated annealing method using different initial guesses and the experimental data
in tension and compression for Ti6Al4V in RD, 45°-direction and TD. Finally, regarding the
sets from MAT E to MAT G, they differ from MAT B in the hardening constants.
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k C12 C13 C22 c23 C33 CGG SR CR

MAT A 0.0 0.0 0.0 1.0 0.0 1.0 1.0 211.65 12.57

MAT B | -0.1948 | -1.4863 | 1.2348 1.3724 | -0.4480 | -2.1227 | 3.3588 211.65 12.57

MAT C | -0.1101 | 4.9139 2.1494 1.5700 0.8506 4.2660 4.4153 211.65 12.57

MATD | -0.1100 | -1.6860 | -2.6221 | 0.7767 0.9460 | -2.9217 | -4.0709 | 211.65 12.57

MATE | -0.1948 | -1.4863 | 1.2348 1.3724 | -0.4480 | -2.1227 | 3.3588 400.00 12.57

MAT F | -0.1948 | -1.4863 | 1.2348 1.3724 | -0.4480 | -2.1227 | 3.3588 211.65 30.0

MAT G | -0.1948 | -1.4863 | 1.2348 1.3724 | -0.4480 | -2.1227 | 3.3588 400.00 30.0

a=2,C, =10, C,=C,=C,, R =971.24 MPa

Table C-1 Material parameters used for finite element simulations of the plane strain test

The simulation data enable to compute the load F, acting on the homogeneous strain field
zone. For each simulation, the relationship between the ratios F,/F and W, /W, , where

F; is the total force applied to the specimen while W,, and W; are respectively the total

width of the gage zone and the homogeneous zone width, is plotted. The results are given in
Figure C-2. As in Flores et al. (2010), it can be observed a linear trend between the two ratios
which is similar for every simulation. Then, if « and S are constants, it can be written:

B oW g (C.1)
FT T

Assuming that W, =W, and F, =F at the beginning of the deformation, it leads to
a+ =1 and Equation (C.1) can be rewritten as:
FH

WH
H g —H 4 (1— C.2
3 a m +(1-a) (C.2)

The stress component o, along the loading direction is then given by:

o, =i=ai+(1—a)

A—| WTtH

The coefficient o is determined by linear regression thanks to the software Igor Pro 6.22A.
The results give o =1.0154 (see Figure C-2).

FT

C.3
Wt (C3)
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Figure C-2 Linear trend between the ratios W, /W, and F, / F; for the different parameter sets.
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Numerical analysis of the homogeneous zone evolution and stress computation in plane strain
tests

Equation (C.3) is used to compute the stress-strain curves in RD, 45°-direction and TD for
Ti6Al4V in plane strain state (Figure C-3). Two different values of the constant « are con-
sidered:

e «a =1, which involves considering that the strain field is homogeneous along the total
width of the gage zone during all the deformation of the specimen;
e «=1.0154, value which was previously determined.

1400 . . PTVIYYYYYTYYIT I :
R L L
1200 T ELLLLLLCE .
A e
L 5.
1000 i
— | L]
& 800 :
= L N
=] ]
b 600 N
o B @ plane strain RD (o = 1.0)
400 ] © plane strain RD (o = 1.0154) | _
H plane strain 45° (o = 1.0)
[ = O plane strain 45° (o = 1.0154)
200 A plane strain TD (@ =1.0) |
il /A plane strain TD (a = 1.0154)
0 L L L . 1 . i .
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41 [-]

Figure C-3 Stress-strain curves in RD, 45°-direction and TD for Ti6Al4V in plane strain state, determined by
Equation (C.3) when considering @ =1 and a=1.0154

It can be noticed that, although sizeable edge effects occur, the discrepancies between the
curves computed with both values of « are not significant. It can thus be maintained that, in
the case of plane strain tests on Ti6Al4V specimens with the geometry given in Figure 4-23,
assuming a homogeneous strain field along the total width of the gage zone enables the de-
termination of the axial stress with a quite good accuracy.
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Determination of the yield stress for different strain paths

Appendix D Determination of the yield
stress for different strain paths

In order to characterize the initial yield locus, it is required to determine the yield stress for
several strain paths and loading direction. In the framework of this investigation, the follow-
ing procedure was performed to identify different points on the yield locus:

1. An experiment, usually tension in RD, is first defined as reference. The yield stress is
determined by the offset method. The choice of the offset is fixed to a plastic strain

value g/, usually 0.2% (see Figure 5-11).

2. The yield stress for the other loading directions in tension or the other stress states are
determined using the work-equivalence principle (see Figure 5-12).

The above procedure requires the computation of the plastic work per unit of volume W?*
which is given by:

dW?® =0, dg; (D.1)

where o;; and ei}’ are the components of the stress and plastic strain tensors, respectively.
Here are given some examples for specific strain paths which are dealt with in this study:

e Uniaxial tension/compression. The only non-zero stress component in the local axes
IS 0;, (see Sections 4.2.2.1 and 4.2.2.2). Equation (D.1) is then written as:

dW? =0, d& (D.2)

e Plane strain. In plane strain state, two stress components, o;, and o,,, occur (see
Section 4.2.3) and the plastic work is determined as follows:

dWP =g, dgf +0,, dej, (D.3)
Nevertheless, since the transversal strain &/, is zero, it leads to:

dWP =5, de? (D.4)
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e Simple shear. In simple shear, Equation (D.1) is written as:
dW? =0, defi+0,, deb, +2 0, de)) (D.5)

At the onset of plasticity, since the components o;;, and o,, are low with respect to
o,,, Equation (D.5) can be simplified as follows:

dWP =20, dgl =7 dy” (D.6)
where itis set 7 =0, and dy’* =2dgf.

As it can be noticed for the above mentioned strain paths, the computation of W needs to
know only one component of the stress state and one component of the plastic strain state (see

Equations (D.2), (D.4) and (D.6)). In this specific case, denoting by o and &" the stress and
plastic strain components respectively, the plastic work per unit of volume is given by:

Wp(gp)zf:pad/i (D.7)

The determination of the yield stresses using the work-equivalence principle thus consists in
identifying the stress for a particular value of W ", denoted W,". This value is obtained by

integrating Equation (D.2) since it is assumed that the tensile yield stress in RD is given by
the offset method:

Wy’ = J.;O oy, defj (D.8)

where g; =0.2%. For the other stress states, a Newton-Raphson iterative process is used
to find the root of the function W® —W," and then to determine the stress value associated to
W,’. Starting with & as initial guess and denoting &? the current approximation, the next
approximation &P, is given by:

n+1

P_\\P P_\\/DP
gnp+1 = gnp - W(;—W :AIO— = gnp —W—n WO (Dg)
O,

de” |

until \W." —WO"‘ is lower than a definite value. When the strain " corresponding to W,° is

n+1

known, the stress o can be determined using the stress-plastic strain curve. It has to be noted
that the process described above can be used to identify the yield locus for other levels of
plastic work.
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Computation of stress potential gradient

Appendix E Computation of stress po-
tential gradient

The integration algorithm requires the computation of the stress potential gradient (see Equa-

tion (6.30)). If CPBO06 yield criterion is considered, the derivative Z—¢ can be decomposed as
0
follows:
Op _0p 6216_Z+ op 6228_>:+ Op 0%, OZ (E.1)
06 00X, 0X 06 0OX, OX 0o OX, OxX Oc
where ¢ =6 —Y with & defined in Equation (6.16).
op . . )
The components > (1=1...3) are given by:
a l-a
Q@ a a al g a-1
2 =B{(m ke ) (k) (k) (k) fson(2) -k €2)

The computation of the components % (i=1...3) is based on the characteristic polynomi-
al:
12+ LT —1,=0 (E.3)

where 1, |,, 1, are respectively the first, second and third invariants of tensor X defined as
follows:

|, =tr(X) =3, (E.4)
1, =%(Zii2jj _Zijzji) (E.5)
|, =det(Z)=¢, 2%, 2, (E.6)
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where ¢, is the Levi-Civita symbol.

If A denotes any eigenvalue of X, Equation (E.3) can be rewritten as:
AP =LA +1,A—1,=0 (E.7)

and the differentiation with respectto A leads to:

(3A2—2|1A+|2)8—A—[A2%—A%+%J=o (E.8)
ox oL or ox

oA _ : L (AZ%—A%+%j (E.9)
OX 3A°-21,A+1, or or ox

where, &; being the Kronecker delta,

ol,
al,
x,
al,
=,

ij

= 1,6, -3, (E.10)
=€y (51i22k23l + §2i23kzll + 53i21k22l )

It is worth noting that the previous mathematical development is correct insomuch as
3A°-2I,A+1,=0. If this condition is not fulfilled, namely if 1,=21,A—3A?, Equation
(E.7) gives:

2A3 — I1A2 +1,=0 (E.11)
and thus:
8_A:—2 ! AZ%—% (E.12)
OX 6A°-21A oxX. ox

The last components Z—E are given by:
(g

o

—=C:K (E.13)
06

where C is the fourth-order symmetric and orthotropic tensor defined in CPB06 and K is
the fourth-order symmetric deviatoric unit tensor (K, =%(5ik5,—| +§il5jk)_%5ij5kl) while

(C:K)_ =C,.K

ijkl ijmn " “mnkl *

Note that all these relationships can readily be extended to CPB06exn yield criteria.
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