
Appl. Comput. Harmon. Anal. 26 (2009) 181–199
Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Pointwise smoothness of space-filling functions

S. Jaffard a, S. Nicolay b,∗
a Université Paris Est, Laboratoire Analyse et Mathématiques Appliquées, 61, Avenue du Général de Gaulle, 94010 Créteil cedex, France
b University of Liège, Institute of Mathematics, Grande Traverse, 12, Liege, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 March 2008
Accepted 8 April 2008
Available online 11 April 2008
Communicated by Yves F. Meyer

Keywords:
Hölder regularity
Space-filling functions
Multifractal formalisms

We study irregularity properties of generic Peano functions; we apply these results to the
determination of the pointwise smoothness of a Peano function introduced by Lebesgue
and of some related functions, showing that they are either monohölder or multifractal
functions. We test on these examples several numerical variants of the multifractal
formalism, and we show how a change of topology on R can affect the Hölder regularity
of such functions.
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1. Introduction

A space-filling function is a function F (t) = ( f (t), g(t)), defined on [0,1], whose range fills a surface of the plane. It is
called a Peano function if, in addition, it is continuous. These constructions were initially motivated by their paradoxical
aspect. The interest in Peano functions has been periodically renewed, as unexpected connexions with several parts of
mathematical analysis were discovered: They have been used as a tool that allowed to put into light nonmeasurability
properties, and in connexion with the Hahn–Mazurkiewicz theorem, see [37]. In 1936, H. Steinhaus showed that space-
filling functions can be obtained if their coordinates f (t), g(t) are stochastically independent functions, see [42]. In 1945,
R. Salem and A. Zygmund discovered analytic functions in the unit disc, that have a continuous extension on the unit
circle C , and are such that the image of the unit circle is also space filling; the examples they provided were lacunary
Taylor series, satisfying a strong lacunarity condition, see [38] and also [6] for later extensions. The historical developments
of Peano functions, in connexion with other parts of analysis are detailed in the book of H. Sagan [37]. Another utility of
Peano curves appeared at the beginning of the year 2000, in the fields of “Data Mining” and “Intelligent Data Analysis,”
motivated by the extensive use of large multidimensional arrays: One needs indexing of such arrays (i.e. constructing curves
that go through all the points of the array) which satisfy proximity requirements: Data that are close should be indexed
by close indices; this leads naturally to the use of Peano functions that satisfy some Hölder regularity conditions, see for
instance [23,33]. This property of preserving the spacial relationship of 2D-patterns is also exploited in the area of digital
image processing, where Peano curves are used as a scanning technique, see for instance [7,35].

Peano functions have also been popular because they supply simple geometric constructions of continuous nowhere
differentiable functions. This last motivation was considerably sharpened in the last 15 years with the introduction of “mul-
tifractal analysis,” where the rather imprecise motivation of nondifferentiability was replaced by the sharper requirement
of determining everywhere the exact pointwise Hölder regularity. Let us recall the definitions associated with the notion of
pointwise smoothness.
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Definition 1. Let f : R → R be a locally bounded function, let x0 ∈ R and α � 0; f ∈ Cα(x0) if there exist R > 0, C > 0, and
a polynomial P of degree less than α such that

if |x − x0| � R then
∣∣ f (x) − P (x − x0)

∣∣ � C |x − x0|α. (1)

The Hölder exponent of f at x0 is h f (x0) = sup{α: f ∈ Cα(x0)}.

Space-filling functions can exhibit a large variety of smoothness characteristics: We will see that some of them, as shown
by the initial examples supplied by Peano [34] and Hilbert [14], have everywhere the same Hölder exponent (such functions
are called monohölder functions). But the Hölder exponent of others can present an extremely wild behavior: For example,
in the case of Polya’s function it is known to be everywhere discontinuous, see [20,26]. The next step in such cases is to
perform a “multifractal analysis,” i.e. to determine their spectrum of singularities which is defined as follows.

Definition 2. Let f be a locally bounded function; its isohölder sets are the sets

E H = {
x0: h f (x0) = H

}
.

The spectrum of singularities of f is the function d f : R
+ → R

+ ∪ {−∞} defined by

d f (H) = dim(E H ),

where dim denotes the Hausdorff dimension (using the standard convention dim(∅) = −∞).

The investigation of the multifractal properties of space-filling functions goes back to [20,26], and was reactivated re-
cently in [31]. The purpose of this paper is to derive general irregularity properties of such functions and to illustrate the
variety of their smoothness behaviors by focusing on three “historical” space-filling functions, which are slight variants of
each other, but present strong discrepancies from the point of view of multifractal analysis. The first one, L1, was intro-
duced by H. Lebesgue in his famous monograph “Leçons sur l’intégration et la recherche de fonctions primitives,” in 1904
(see [24, pp. 44–45]). We will show that it is a “monofractal function,” i.e. a function which is C∞ except on a fractal set
(the triadic Cantor set K), where its Hölder exponent takes a finite constant value. The second function, L2, was introduced
by Schoenberg in 1938, see [39]: It coincides with Lebesgue’s function on K, but it is extended outside of K in such a way
that it turns out to be a monohölder function. The third example is derived form L1 by performing a discontinuous change
of time which maps the Cantor set onto the whole interval [0,1]. The “Lebesgue–Davenport” function L3(t) thus obtained
has a dense set of discontinuities, and is a simple example of “Davenport series,” see (18). If the nowhere differentiability
of these functions has been repeatedly considered (see [37] and references therein), nonetheless, the determination of their
exact pointwise regularity, and therefore their multifractal analysis is new.

Section 2 is devoted to some general remarks on the smoothness of Peano functions. In particular, we prove there that
most historical examples are monohölder functions.

Sections 3 to 5 are devoted to recall the definitions and main properties of the initial Lebesgue function and its two
variants, and to determine their exact pointwise smoothness. In the case of L3, it will be the consequence of a new general
result on the pointwise smoothness of Davenport series.

The spectrum of singularities of signals obtained through the registering of real-life data cannot be estimated in the
case of multifractal signals; indeed the determination of their Hölder exponent is not numerically stable because it usually
jumps at every point; on top of that, the acquisition of the spectrum would require the determination of an infinite num-
ber of Hausdorff dimensions, each of them defined by considering an uncountable number of coverings with unspecified
sets. Therefore, formulas, referred to as “multifractal formalisms,” have been introduced in order to derive the spectrum of
singularities of a signal from numerically computable quantities. All of them are variants of a seminal derivation which was
proposed by G. Parisi and U. Frisch in [32]. Though they are based on the same thermodynamic arguments, their numerical
performances can vary a lot. A key step in the numerical improvements was performed by A. Arneodo and his collaborators,
when they introduced formulas based on wavelet analysis, see [3]. There exists now two well established forms of multi-
fractal formalisms, allowing to obtain the whole spectrum of singularities: The wavelet transform maxima method (WTMM)
see [2] and references therein, and the wavelet leaders method (WLM) developed in [1,18,22]. The purpose of Section 7 is to
compare their numerical performances on the particular case-studies supplied by the Lebesgue functions; indeed, L1, L2,
and L3 supply a competitive benchmark for that purpose: For instance, L1 is linear on intervals of all possible scales (their
lengths are the (3− j) j�1), which is a standard pitfall for the numerical performances of multifractal formalisms, and L3 has
a dense set of discontinuities, a border-line situation where wavelet-based techniques are no longer backed by theoretical
results, see [18].

Section 6 was initially motivated by the following problem: The notion of pointwise smoothness clearly depends on the
metric used on the real line: Another distance d(x, y) would induce a new definition of Cα(x0), where (1) is replaced by

if |x − x0| � R then
∣∣ f (x) − P (x − x0)

∣∣ � Cd(x, x0)
α. (2)
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Alternative distances introduced up to now in this context were obtained through a continuous time-change; they only
induced mild modifications of the usual distance on R, since they are topologically equivalent: Let θ be a continuous
increasing one-to-one mapping [0,1] → [0,1]; the distance associated with θ is

dθ (x, y) = ∣∣θ(y) − θ(x)
∣∣. (3)

Such a time-change θ can strongly simplify the multifractal nature of f , see for instance [26] where it transforms the Pólya
function into a monohölder function. An intriguing problem, which remains largely open, is to understand when such a
simplifying time-change exists, see [40] for partial results. Functions with a dense set of discontinuities, such as L3 cannot
be thus transformed through a continuous time-change. We will show that, using ultrametric distances on [0,1], L3 (and
more generally p-adic Davenport series) indeed becomes monohölder.

Note that the converse idea has also been used in order to generate new multifractal stochastic processes: B. Man-
delbrot proposed to “complexify” a monohölder process (typically a Fractional Brownian Motion) through a multifractal
time-change; these constructions were motivated by financial modeling, see [25].

2. Space-filling functions

In this section, we consider some geometric properties of space-filling functions that are commonly satisfied, and we
investigate their implications in terms of pointwise smoothness. A straightforward consequence of these considerations will
be the determination of the exact pointwise smoothness of several historical Peano functions. It may be useful to give
precise definitions at this point: Let measd denote the d-dimensional Lebesgue measure. A function f : [0,1] → R

d is space-
filling if measd( f ([0,1])) > 0. It is a Peano function if, additionally, it is continuous.

Uniform Hölder regularity of Peano functions f (t) = (x(t), y(t)) was first considered by Salem and Zygmund [38] who
remarked that, if x(t) ∈ Cα([0,1]) and y(t) ∈ Cβ([0,1]), then α + β � 1. As regards pointwise smoothness, M. Morayne
proved that there is no space-filling everywhere differentiable function (see [30, Theorem 3, p. 131]).

The famous theorem of Netto states that there exists no bijective continuous function f : [0,1] → [0,1]2; thus continuous
onto functions necessarily have multiple points. However most of these functions have a “small” set of multiple points, and
therefore satisfy the following requirement.

Definition 3. Let Mult( f ) denote the set of points of R
d that have multiple antecedents by f . A function f : [0,1] → R

d is
almost one-to-one if

measd
(
Mult( f )

) = 0.

Assume now that f : [0,1] → R
d is a continuous, almost one-to-one space-filling function. A measure μ f , supported

by [0,1], naturally attached to f is defined by

μ f (A) = measd
(

f (A)
)
. (4)

If the range of f fills a finite volume, then μ f is a probability measure (up to a multiplicative constant).
Let Ih(t0) = [t0 − h, t0 + h]; the pointwise Hölder exponent of a measure μ is defined by

hμ(t0) = lim inf
h→0

(
log(μ(Ih(t0)))

log(h)

)
.

Lemma 4. Let f : [0,1] → R
d be an almost one-to-one space-filling function. Let t0 ∈ [0,1]; if h f (t0) < 1, then

hμ f (t0) � d h f (t0). (5)

Proof. If f ∈ Cα(t0) for an α ∈ (0,1), then f (Ih(t0)) ⊂ B( f (t0), Chα) so that

μ f
(

Ih(t0)
) = measd

(
f
(

Ih(t0)
))

� Chdα;
one concludes by taking a log and a lim inf on both sides. �

Many usual space-filling functions present a remarkable extra feature: The range of f covers equal volumes (or areas in
dimension 2) in equal times, i.e.

for any interval I , meas1(I) = measd
(

f (I)
)
. (6)

Functions displaying this feature include the initial Peano, and the modification proposed by Wunderlich [43], the initial
Hilbert function, and the variant of Moore [29], the Sierpiński function [41] and the Pólya function in multifractal time, as
presented in [26]; indeed this property is a straightforward consequence of hypothesis (H) which is of geometric nature and,
by construction, is obviously satisfied by these functions; (6) means that the measure μ is exactly the Lebesgue measure
(up to a constant), and in that case, the conclusion of Lemma 4 is that the Hölder exponent of f is everywhere smaller
than 1/2. A stronger result of uniform irregularity holds.



184 S. Jaffard, S. Nicolay / Appl. Comput. Harmon. Anal. 26 (2009) 181–199
Definition 5. Let α ∈ (0,1). A function f : R
d → R

m belongs to Iα(x0) if

∃C > 0, ∃R > 0, ∀r � R, sup
x,y∈B(x0,r)

∣∣ f (x) − f (y)
∣∣ � Crα; (7)

f belongs to Iα(Rd) if

∃C > 0, ∃R > 0, ∀r � R, ∀x, sup
y∈B(x,r)

∣∣ f (x) − f (y)
∣∣ � Crα. (8)

Note that these types of statements are stronger than just negating Hölder regularity; indeed such negations only yield
the existence of subsequences rn for which the oscillation supx,y∈B(x0,rn) | f (x) − f (y)| is large, whereas (7) or (8) require
the oscillation to be large at all (small enough) scales (see [9] for a comprehensive study of this notion).

Lemma 6. Let f be a continuous function satisfying (6); then f belongs to I1/d([0,1]).

Proof. Let 0 � x < y � 1; then

sup
s,t∈[x,y]

∣∣ f (x) − f (y)
∣∣ = diam

(
f
([x, y])) � C

(
measd

(
f
([x, y])))1/d = C |x − y|1/d. �

Note that the conclusion of Lemma 6 would still hold if (6) was replaced by the less restrictive condition

∃C > 0: for any interval I , meas1(I) � C measd
(

f (I)
)
. (9)

Definition 7. Let α ∈ (0,1); A function f : R
d → R

m is strongly monohölder of exponent α ( f ∈ SMα ) if f ∈ Cα(Rd)∩ Iα(Rd),
i.e. if ∃C, C ′ > 0, ∃R > 0, ∀r � R , ∀x,

Crα � sup
y∈B(x,r)

∣∣ f (x) − f (y)
∣∣ � C ′rα. (10)

In general, equality needs not hold in (5) because, in the neighborhood of t0, f may be very oscillating in one direction
for instance, in which case its range will cover a very small area, though f can be very irregular. However the specific
functions we mention satisfy an additional geometric requirement:

(H) There exists an integer p � 2 such that the image of a pd-adic interval Ik, j = [ k
pdj ,

k+1
pdj

]
is a subset of volume Cp−dj

and of diameter C ′ p− j ; furthermore, for each j � 0 given, at scale j, all the f (Ik, j) have disjoint interiors.

Proposition 8. Let f be a Peano function satisfying (9) and (H). Then f belongs to SM1/d.

In particular, for d = 2, this conclusion holds for the functions of Peano, Wunderlich, Hilbert, Moore, Sierpiński and the
time-changed Polya function mentioned above. In particular, they are monohölder with Hölder exponents everywhere equal
to 1/2.

Proof. We only have to prove the uniform regularity estimate. Let 0 � x < y � 1, and let j be defined by

p−dj−2 � y − x < p−dj .

Either x and y belong to the same pd-adic interval of generation j or to two adjacent ones. In the first case,∣∣ f (x) − f (y)
∣∣ � diam

(
f (Ik, j)

) = C ′ p− j � C ′|x − y|1/d.

In the second case, since f is continuous, the images of these two intervals share one point; but (H) implies that∣∣ f (x) − f (y)
∣∣ � 2 diam f

(
(Ik, j)

) = C ′ p− j . �
3. The Lebesgue function L1

Let p > 1 be an integer. If (ti)i∈N is a sequence of integers satisfying 0 � ti � p − 1, then

(0; t1, t2, . . . , tn, . . .)p

will denote the real number

t =
∞∑

i=1

ti

pi
;

if the ti are not all equal to p − 1 for i large enough, it is the proper expansion of t in base p.
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Fig. 1. The components x1(t) and y1(t) of the Lebesgue function L1(t) = (x1(t), y1(t)).

Definition 9. The triadic Cantor set K is the set of real numbers t that can be written

t = (0;2t1,2t2, . . . ,2tn, . . .)3 where ti ∈ {0,1}, ∀i. (11)

If t ∈ K, then the ti are unique (but do not necessarily constitute the proper expansion of t in base 3). Let K∗ be the
subset of K defined by

K∗ = {
t ∈ K: (11) is the proper expansion of t

}
(K∗ is obtained from K as follows: In the construction of K as a limsup of triadic intervals, the right-end points of each
interval are eliminated).

The function L1 is first defined on K as follows. For any t ∈ K written as in (11), L1(t) = (x1(t), y1(t)) where{
x1(t) = (0; t1, t3, t5, . . .)2,

y1(t) = (0; t2, t4, t6, . . .)2.
(12)

H. Lebesgue proved that the restriction of L1 to K is an onto function onto the square [0,1]2, see [24, pp. 44–45]. We
will need a slightly stronger assertion.

Lemma 10. The restriction of L1 to K∗ is an onto function onto [0,1]2 − {(1,1)}.

Proof. Let (x, y) ∈ [0,1]2 − {(1,1)}. Then either x or y has a proper expansion starting with a 0. We use this expansion
in (12), which defines a sequence ti , hence, by (11), a point t ∈ K such that L1(t) = (x, y). Since either x or y has a
proper expansion, it follows that t is also written with a proper expansion, and therefore t ∈ K∗ . Note that this point is not
necessarily unique since, if x or y is dyadic, then it can be written in the binary system in two different ways; thus points
such that at least one of their coordinates are dyadic have at least two pre-images in K by L1. Note that Lebesgue’s result
follows since L1(1) = (1,1). �

H. Lebesgue proved that L1 has a continuous extension outside of K which is simply obtained by taking a linear exten-
sion on each interval which is a connex component of the complement of K, thus showing that L1 was a new example
of Peano function. The following proposition sharpens this result and yields the uniform regularity of L1 and its exact
pointwise regularity at every point.

Proposition 11. Let α = log 2
2 log 3 . The function L1 belongs to Cα([0,1]). If x0 /∈ K, then L1 is C∞ at x0 . If x0 ∈ K, then L1 belongs to

Iα([0,1]). It is therefore a monofractal function.

Though this proposition can be proved directly, we prefer to postpone its proof to Section 4 where it will be a conse-
quence of the corresponding result for the Schoenberg function.

4. The Schoenberg function L2

Let p(t) be the 2-periodic even function which satisfies on [0,1]{ p(t) = 0 if t ∈ [0,1/3],
p(t) = 3t − 1 if t ∈ [1/3,2/3],

p(t) = 1 if t ∈ [2/3,1].
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Fig. 2. The partial sums of the curve (x1(t), y1(t)) summed up to j = 26 and j = 210, respectively.

Fig. 3. The components x2(t) and y2(t) of the Schoenberg function L2(t) = (x2(t), y2(t)).

Note that p is a continuous, piecewise linear function, hence it is a Lipschitz function. The Schoenberg function L2 is defined
by L2(t) = (x2(t), y2(t)) where

x2(t) = 1

2

∞∑
n=0

p(32nt)

2n
and y2(t) = 1

2

∞∑
n=0

p(32n+1t)

2n
. (13)

The relationship between L2 and L1 was established by I. Schoenberg in 1938, see [39]:

Proposition 12. The Schoenberg function L2 coincides with the Lebesgue function L1 on the triadic Cantor set.

Proof. Let us first check that, if t ∈ K is written as in (11), then

p
(
3nt

) = tn+1. (14)

Indeed, let t ∈ K; it follows from (11) that we can write 3nt as a sum of three terms

3nt = (
2t13n−1 + · · · + 2tn

) + 2tn+1

3
+

(
2tn+2

9
+ · · ·

)
.

The first term of this sum is an even integer, and the third one is positive and bounded by 1/3; thus (14) immediately
follows from the definition of p(t).

It follows from (14) that

x2(t) = 1

2

∞∑ p(32nt)

2n
= 1

2

∞∑ t2n+1

2n
= (0; t1, t3, t5, . . .)2;
n=0 n=0
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Fig. 4. The curve (x2(t), y2(t)) approximated at resolution levels j = 27 and 29, respectively.

and similarly

y2(t) = 1

2

∞∑
n=0

p(32n+1t)

2n
= 1

2

∞∑
n=0

t2n+2

2n
= (0; t2, t4, t6, . . .)2;

hence Proposition 12 holds. �
Lemma 10 and Proposition 12 put together imply that the Schoenberg function is also onto [0,1]2. In 1981, J. Alsina [4]

proved that L2 is nowhere differentiable (see also [15,37] for additional properties of this function). The following proposi-
tion yields its exact pointwise smoothness everywhere.

Proposition 13. Let α = log 2
2 log 3 . The Schoenberg function L2 belongs to SMα .

We will derive this proposition as a consequence of two general results: Lemma 14 yields a uniform regularity criterion
and Proposition 15 yields a uniform irregularity criterion. Note that the irregularity is a consequence of results valid either
for selfsimilar functions, see [16] or for Weierstrass type functions, see [8]. However, we prefer to follow an alternative
approach, which will emphasize another specificity of L2 and yields a more straightforward proof.

Lemma 14. Let ( fn)n∈N be a sequence of bounded and Lipschitz functions on R satisfying

∃C > 0: ‖ fn‖∞ + ∥∥ f ′
n

∥∥∞ � C .

Let

f (t) =
∞∑

n=0

fn(bnt)

an
,

and assume that

∃C, a > 0 such that b > a > 1 and ∀n, an � Can.

Then f ∈ Cβ(R) with β = log a
log b .

Proof. The assumptions on fn imply that | fn(s) − fn(t)| can either be bounded by C or by C |s − t|. Let s and t be two
distinct real numbers, and let n0 be defined by b−n0+1 < |s − t| � b−n0 ; then

∣∣ f (s) − f (t)
∣∣ � C

n0∑
n=0

|bns − bnt|
an

+
∞∑
n0

C

an
� C |s − t|

(
b

a

)n0

+ C

an0
� C |s − t|β .

The uniform regularity of L2 follows from Lemma 14. �
Proposition 15. Let fn : R → R be 1-periodic Lipschitz functions, of Lipschitz constants

Cn = sup
| fn(x) − fn(y)|

|x − y| .

x�=y
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Let

f (t) =
∞∑

n=0

fn(bnt)

an
,

where b is an integer satisfying b � 2, and the an satisfy

∃a ∈ (1,b), ∃E1, E2 > 0 such that E1an � |an| � E2an.

Let l ∈ {−b − 1, . . . ,b − 1}, Dn = fn( l
b ) − fn(0), and let β = log a

log b . Let C and D be such that, for n large enough,

|Dn| � D > 0 and |Cn| � C . (15)

If
Cl

E1b( b
a − 1)

<
|D|
E2

, then f ∈ Iβ(R).

Proof. First, note that the triangular inequality implies that it is sufficient to prove that the relation (8) is satisfied for
couples (x, y) of the form

x = k

bn0
and y = k + l/b

bn0
, ∀(k,n0) ∈ Z × N.

In that case,

f (y) − f (x) =
n0−1∑
n=0

fn(bn y) − fn(bnx)

an
+ Dn

an0

(indeed, since g is 1-periodic, the increments for n > n0 vanish). Since the result clearly does not depend on the first fn , we
can assume that (15) is satisfied for all n. But∣∣∣∣∣

n0−1∑
n=0

fn(bn y) − fn(bnx)

an

∣∣∣∣∣ �
n0−1∑
n=0

Cn

E1
|x − y|bn

an
� C

E1
|x − y|

(
b

a

)n0 1
b
a − 1

� Cl

E1an0 b( b
a − 1)

.

Since | Dn
an0

| � D
E2·an0 , it follows that

if
Cl

E1b( b
a − 1)

<
|D|
E2

, then
∣∣ f (y) − f (x)

∣∣ � C ′

an0
;

hence Proposition 15 holds. �
Note that this result applies to x2(t) which is a 1-periodic function, since, in this case, fn(t) = p(2t), Cn = C = 6, l = 3,

Dn = D = 1, b = 9, a = 2 and E1 = E2 = 1.
Let us now check how to derive Proposition 11 from Lemma 14 and Proposition 15. The regularity result is a particular

case of a general regularity result for interpolating functions.

Definition 16. Let f be a continuous function on R. Let In = (an,bn) be a sequence of two by two disjoint open intervals.
The linear interpolation of f on the (In)n∈N is the continuous function g defined by

• If x /∈ ⋃
In , then g(x) = f (x);

• g is linear on each interval [an,bn].

Proposition 17. Let α ∈ (0,1) and f ∈ Cα(R). Its linear interpolation on the (In)n∈N also belongs to Cα(R).

Proof. Let A denote the complement of
⋃

In . In order to estimate g(x) − g(y), we separate different cases:

• If x and y both belong to A, the estimate follows from the result for f .
• If x and y both belong to the same interval In , then, by linear interpolation,

∣∣g(x) − g(y)
∣∣ = |x − y|

|bn − an|
∣∣ f (bn) − f (an)

∣∣ � C
|x − y|

|bn − an| |bn − an|α � C |x − y|α.

• Let us finally assume that either x or y belongs to A, or that they belong to different intervals In . We can suppose that
x < y, x ∈ [an,bn] and y ∈ [am,bm], with the convention that an = bn if x (for instance) does not belong to one of the In .
Then ∣∣g(x) − g(y)

∣∣ �
∣∣g(x) − g(bn)

∣∣ + ∣∣g(bn) − g(am)
∣∣ + ∣∣g(am) − g(y)

∣∣;
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Fig. 5. The components x3(t) and y3(t) of the Lebesgue–Davenport function L3(t) = (x3(t), y3(t)).

each of these three terms has already been taken care of above. Thus∣∣g(x) − g(y)
∣∣ � C

(|x − bn|α + |bn − am|α + |am − y|α)
� 3C |x − y|α. �

Let us now deduce the pointwise irregularity of L1 from Proposition 15.

Corollary 18. For any x ∈ K, L1 ∈ Iβ(x).

Proof. First, note that the proof of Proposition 15 applied to L2 implies that, if x and y are two endpoints of one of the
triadic intervals of generation 2n that come up in the construction of K, then

∃C > 0: ∣∣L2(x) − L2(y)
∣∣ � C

2n
.

If z ∈ K, then it belongs to one such interval for each n, so that, by the triangular inequality, either

∣∣L2(x) − L2(z)
∣∣ � C

2n+1
or

∣∣L2(z) − L2(y)
∣∣ � C

2n+1
.

Since L1 and L2 coincide on K, this implies that L1 ∈ Iβ(x). �
5. The function L3 and p-adic Davenport series

The two functions we considered can be interpreted as one space-filling function defined on K which is extrapolated
outside of K in two different ways. The third function we will consider can be interpreted as follows: Instead of “filling the
gaps” outside of K, K is “dilated” by mapping it to the whole interval [0,1], using a famous singular function: The “Devil’s
staircase.” One thus obtains the Lebesgue–Davenport function L3 which is considered in [13] (Example 5 of Chapter 10),
and can be directly defined in a very simple way as follows: Let t ∈ [0,1) and

t = (0; t1, t2, . . . , tn, . . .)2 (16)

be its proper expansion in the binary system. Then L3(t) = (x3(t), y3(t)), where{
x3(t) = (0; t1, t3, t5, . . .)2,

y3(t) = (0; t2, t4, t6, . . .)2.
(17)

One extends L3 to t = 1 by picking L3(1) = (1,1).
Let us first state precisely the relationship that we already mentioned between L3 and L1 or L2. Recall that the restric-

tion of the Devil’s staircase to K is defined as follows:

If t = (0;2t1,2t2, . . . ,2tn, . . .)3, then D(t) = (0; t1, t2, t3, . . .)2.

Note that this restriction is onto [0,1] but is not one to one. It follows immediately from (12) and (17) that

∀t ∈ K∗, L1(t) = L3 ◦ D(t).

As a consequence of this formula and of Lemma 10, it follows that L3 is onto [0,1]2.



190 S. Jaffard, S. Nicolay / Appl. Comput. Harmon. Anal. 26 (2009) 181–199
The first step in order to study its properties is to rewrite it as a Davenport series. Let us start by recalling the definition
of such series. They are odd 1-periodic functions of a particular type. Let {x} be the “sawtooth function”

{x} = x − [x] − 1

2
.

Davenport series are of the form
∞∑

n=1

an{nx}; (18)

in order to cover the case of space-filling functions, we will assume that an ∈ R
d . We will only consider the case where

(an) ∈ l1, so that the series is normally convergent. Such series already occurred in the famous “Habilitationschrift” of
Riemann, see [21,36], as an example of a Riemann-integrable function which is not Cauchy-integrable. Under their general
form, they were first studied in 1936 by H. Davenport, see [11,12]; recent results on Davenport series can be found in [6,19].

Proposition 19. The Lebesgue–Davenport function L3 has the following expansion:{
x3(t) = 1

2 + ∑∞
n=0 an{2nt}, where a2l = 2−l and a2l+1 = −2−l−1,

y3(t) = 1
2 + ∑∞

n=1 an{2nt}, where a2l = −2−l and a2l+1 = 2−l.
(19)

Proof. Let ω(t) be the one periodic function such that{
ω(t) = 0 if t ∈ [0, 1

2 ),

ω(t) = 1 if t ∈ [ 1
2 ,1).

If tn (= tn(t)) is defined by (16), then

tn(t) = ω
(
2n−1t

);
thus

x3(t) =
∞∑

n=0

ω(22nt)

2n+1
and y3(t) =

∞∑
n=0

ω(22n+1t)

2n+1
.

Since

ω(t) = 2{t} − {2t} + 1

2
,

Proposition 19 follows immediately. �
Recall that p-adic Davenport series are series of the form

f (t) =
∞∑
j=1

a j
{

p jt
}
, (20)

where p is an integer larger than 2. Thus the coordinates of L3 are examples of dyadic Davenport series.
The following result is a particular case of Proposition 12 of [19], which yields the spectrum of singularities of p-adic

Davenport series.

Proposition 20. The spectrum of singularities of the Lebesgue–Davenport function L3 is given by

d3(H) =
{

2H if 0 � H � 1/2,

−∞ else.
(21)

This result was not obtained through the everywhere determination of the Hölder exponent of such Davenport series,
but as a consequence of general upper and lower bounds of their spectra; we will now sharpen this study by determining
the exact pointwise regularity at every point of normally convergent p-adic Davenport series.

5.1. Pointwise regularity of p-adic Davenport series

We will assume in the following that (a j) ∈ l1; then the function f defined by (20) is the sum of a normally convergent
series; it follows that it is continuous at every non p-adic real number, and has a right and a left limit at every p-adic
rational kp−l (where k ∧ p = 1), with a jump of amplitude

bl = al + al+1 + · · · .
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A sequence (bl)l∈N is called regular if

∃C > 0: ∀l |bl| � C sup
m�l

|bm|. (22)

Theorem 21. Let f be given by (20), with a j ∈ l1 , and assume that its sequence of jumps is regular. Let t0 ∈ R; if t0 is not a p-adic
rational, let Δ j(t0) = dist(t0, p− j

Z), then

h f (t0) = lim inf
j→∞

(
log(|b j |)

log(Δ j(t0))

)
.

Assume now that t0 = kp−l with k ∧ p = 1. If bl �= 0 then h f (t0) = 0, else

h f (t0) = lim inf
j→∞

(
log(|b j |)
log(p− j)

)
.

Theorem 21 yields the pointwise Hölder exponent of L3 at every point; indeed, the sequence of its triadic coefficients
given by (19) obviously satisfies (22).

We will use the following lemma (Lemma 1 of [17]) which yields an upper bound for the Hölder exponent of any
function having a dense set of discontinuities.

Lemma 22. Let f be a locally bounded function; let t0 ∈ R and let rn be a sequence converging to t0 such that, at each point rn, f has
a right and a left limit; then

h f (x0) � lim inf

(
log | f (r+

n ) − f (r−
n )|

log |rn − t0|
)

.

We will also need the following lemma.

Lemma 23. Let ω > 0. There exists C > 0 such that

∀t0, ∀L ∈ N,

∞∑
j=L

(
Δ j(t0)

)ω � C
(
ΔL(t0)

)ω∣∣log
(
ΔL(t0)

)∣∣.
Proof. Let M be such that:

p−M−1 < ΔL(t0) � p−M .

Then M � L and, if j � M , since Δ j(t0) � p− j ,∑
j>M

Δ j(t0)
ω �

∑
j>M

p− jω � Cp−Mω � CΔL(t0)
ω.

If L � j � M , since Δ j(t0) is decreasing,

M∑
j=L

Δ j(t0)
ω � MΔL(t0)

ω � C
(
ΔL(t0)

)ω∣∣log
(
ΔL(t0)

)∣∣. �

Proof of Theorem 21. We first consider the case where t0 is not p-adic. The discontinuity of f at a point k/pl , where
k ∧ p = 1 has an amplitude bl; we pick for rn the sequence of dyadic points k/pl that are closest to t0. Either k ∧ p = 1 and
the jump at that point has amplitude bl , or k ∧ p �= 1 and the jump has an amplitude bm for an m < l, which, using (22), is
larger than Cbl . It follows from Lemma 22 that

h f (t0) � lim inf
l→∞

(
log(|bl|)

log(Δl(t0))

)
.

Let h > 0 be given and Ih = [x0 − h, x0 + h]. Let l be the integer defined by the conditions

Δl(t0) � h < Δl−1(t0). (23)

The function {p jt} has no jump on Ih if j < l, so that

l−1∑
a j

({
p jt0

} − {
p j(t0 + h)

}) = h
l−1∑

a j p j . (24)

j=0 j=0
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Let m denote the integer such that

p−m−1 < h � p−m. (25)

It follows from the definition of Δl that m > l. If l � j < m, then {p jt} has exactly one jump on Ih , so that

m−1∑
j=l

a j
({

p jt0
} − {

p j(t0 + h)
}) = h

m−1∑
j=l

a j p j −
m−1∑

j=l

a j = h
m−1∑

j=l

a j p j − bl +
∞∑

j=m

a j . (26)

Finally, since {p jt} � 1/2, it follows that∣∣∣∣∣
∞∑

j=m

a j
({

p jt0
} − {

p j(t0 + h)
})∣∣∣∣∣ �

∞∑
j=m

|a j |. (27)

It follows from (24), (26) and (27) that

f (t0) − f (t0 + h) =
∞∑
j=0

a j
({

p jt0
} − {

p j(t0 + h)
}) = h

m−1∑
j=0

a j p j − bl + O
( ∞∑

j=m

|a j |
)

. (28)

Let A = lim inf j→∞
log(|b j |)

log(Δ j(t0))
and let ω < A, which can be arbitrarily close to A. In order to prove Theorem 21, we will

bound each term of (28) by hω|log(ω)|. By definition of A, for j large enough, |b j | � Δ j(t0)
ω . In particular,

|bl| � Δl(t0)
ω � hω.

Since a j = b j − b j+1, it follows that |a j | � 2Δ j(t0)
ω , and it follows from Lemma 23 that

∞∑
j=m

|a j | � 2
∞∑

j=m

|b j | �
∞∑

j=m

Δm(t0)
ω � C

(
Δm(t0)

)ω∣∣log
(
Δm(t0)

)∣∣ � Cmp−mω,

which, by (25) is bounded by hω|log(ω)|.
Let us now estimate the first term in the right-hand side of (28).

• If A � 1, then we can pick ω < 1, and

m−1∑
j=0

|a j |p j � 2
m−1∑
j=0

|b j |p j � 2
m−1∑
j=0

(
Δ j(t0)

)ω
p j � 2

m−1∑
j=0

p(1−ω) j � Cp(1−ω)m � Chω−1.

• If A > 1, then we can pick ω > 1. We first notice that the series
∑

a j p j is absolutely convergent since the same
estimate as above yields that its general term is bounded by p(1−ω) j . Therefore, we can write

h
m−1∑
j=0

a j p j = h

( ∞∑
j=0

a j p j

)
− h

∞∑
j=m

a j p j .

The first term is a linear function of h, and the second one is bounded as above by

h
∞∑

j=m

p(1−ω) j � Chp(1−ω)m � Chω.

We still have to consider the case of p-adic points. let t0 = k
pl with k ∧ p = 1. If bl �= 0, then f has a jump at t0 and the

Hölder exponent of f vanishes at t0. The case of a rational p-adic point where the jump vanishes is similar to the general
case above, so that we omit its proof. �
6. Multifractal analysis based on ultrametric topologies

We will now show that, using an ultrametric distance on [0,1], L3, and more generally p-adic Davenport series become
monohölder functions. We get back to the setting supplied by (2), and we will use for distance the p-adic distance on [0,1],
which is the most natural in the setting of p-adic Davenport series.

Definition 24. Let s, t ∈ [0,1), with the proper expansions in base p

s = (0; s1, s2, . . . , sn, . . .)p, t = (0; t1, t2, . . . , tn, . . .)p

respectively and δp(s, t) = inf{k: sk �= tk} − 1. The p-adic distance between s and t is dp(s, t) = p−δp(s,t) .
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We first remark that the p-adic distance is an increasing right-continuous ultrametric distance, i.e. is an ultrametric distance
satisfying the additional requirements{

if x � y � z then d(x, z) = max(d(x, y),d(y, z)),
∀x, limh→0+ d(x, x + h) = 0.

These two requirements can be interpreted as follows: Among ultrametric distances, these one are “as close as possible”
to the usual distance on R. In the following of this section, functions are considered as mappings f : (R,dp) → (R,d), where
dp is the p-adic ultrametric distance, whereas d is the usual distance. Recall that the finite differences of arbitrary order are
defined as follows.(

Δ1
h f

)
(x) = f (x + h) − f (x),

(
Δn+1

h f
)
(x) = (

Δn
h f

)
(x + h) − (

Δn
h f

)
(x).

Regularity criteria in this setting are defined as follows.

Definition 25. Let α > 0. A function f : [0,1] → R belongs to Cα
p (x0) if there exist C > 0 and a polynomial P of degree less

than α such that

∀x ∈ [0,1], ∣∣ f (x) − P (x − x0)
∣∣ � C

(
dp(x, x0)

)α
. (29)

The p-adic Hölder exponent of f at x0 is hp
f (x0) = sup{α: f ∈ Cα

p (x0)}.
A function f belongs to Cα

p ([0,1]) if there exists C > 0 such that, ∀x0 ∈ [0,1], (29) holds.

In the p-adic setting, one can also define a notion of uniform irregularity, which is similar to the one defined in Defi-
nition 5, except that in (8), the condition y ∈ B(x, r) is replaced by y ∈ B p(x, r), where B p(x, r) denotes the p-adic ball of
center x and radius r.

Definition 26. Let α > 0. A function f : [0,1] → R belongs to Iαp ([0,1]) if there exists C > 0 such that, for any ball B =
B p(x, r), and for n = [α] + 1,

sup
y,y+nh∈B

∣∣(Δn
h f

)
(y)

∣∣ � Crα. (30)

Proposition 27. Let f be given by (20), with a j ∈ l1 and let α ∈ (0,1).

• If there exists C > 0 such that |al| � C p−αl , then f ∈ Cα
p ([0,1]).

• If there exists C > 0 such that for l large enough |bl| � C p−αl , then f ∈ Iαp ([0,1]).

Proposition 19 implies that L3, considered as a function defined on [0,1] endowed with the p-adic distance, is a mono-
hölder function of exponent 1/2. In order to prove Proposition 27, we will need the following lemma.

Lemma 28. The mapping x → {pnx} is Lipschitz, with Lipschitz constant bounded by 2pn.

Proof. Let x, y ∈ [0,1] and let l be such that dp(x, y) = p−l; then x and y are in the same p-adic interval of length p−l so
that |x − y| � p−l; therefore

∀x, y: |x − y| � dp(x, y). (31)

If l � n, then∣∣{pnx
} − {

pn y
}∣∣ � 2 � 2pndp(x, y).

If l > n, then 2nx and 2n y are in the same p-adic interval of length pn−l and {pnx} is linear on this interval, so that∣∣{pnx
} − {

pn y
}∣∣ � pn|x − y| � 2pndp(x, y). �

Proof of Proposition 27. The function f is the sum of a normally convergent series of continuous functions (for the p-adic
distance) and is therefore continuous. If |al| � C

pαl and if dp(x, y) = p−l , then

∣∣ f (x) − f (y)
∣∣ �

l∑
n=0

|an|pndp(x, y) + 2
∞∑

l+1

|an| � C
l∑

n=0

p−αn pndp(x, y) + C
∞∑

n=l+1

p−αn � Cp−αl � Cdp(x, y)α.

We now prove the second part of the proposition. Consider an open p-adic interval Ik,l−1 of length p−l+1. At each p-adic
rational kp−l inside this interval, the jump of f is bl , and therefore there exist points x, y arbitrary close to kp−l and which
lie on each side of it and such that | f (x) − f (y)| � |bl|/2. The second part of the proposition follows. �
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7. Numerical results concerning the multifractal formalisms

The numerical determination of the spectrum of singularities of a signal is derived through the application of a multi-
fractal formalism; in such formulas, the spectrum is obtained through a Legendre transform of a “scaling” function which
is computable on real life data. The variants depend on the use of different scaling functions, so that the accuracy of the
method depends on two conditions: A theoretical one, the validity of the multifractal formalism used, and a practical one,
the properties of the scaling function used, and the way it is discretized. Its estimation relies on parameters (e.g. the num-
ber of points used to sample the signal, the error in the measurements) that are often hard to handle. A natural way to
determine whether or not a method is an effective one is to test it on a collection of mathematical functions or stochastic
processes whose multifractal spectra are theoretically known. In the following, we recall the two most reliable numeri-
cal methods which have been implemented in order to estimate the entire spectrum and we test their accuracy on the
functions introduced above.

7.1. Definition of the WTMM and the WLM

The two formalisms we will review here are inspired by the one of Parisi and Frisch [32]; its principium is to estimate the
spectrum of singularities from global quantities, easily computable: the Lq-norms of the increments. The main drawback of
this method is that it is meaningless for negative values of q and, as a consequence, can only lead, at best, to the increasing
part of the spectrum. Some attempts were made to fix this problem, but none really succeeded (see [5,27]).

To overcome the difficulties raised by the negative values of q, Arneodo et al. proposed a wavelet-based method: the
wavelet transform maxima method (WTMM), see [3]. The idea is to replace the increments with a wavelet and to get rid of
null or small values by only retaining the maxima of the continuous wavelet transform. We will suppose that the function
ψ ∈ L1 ∩ L∞(R) is either even or odd. Such a “wavelet” is r-smooth if ψ ∈ Cr(R), if its r first moments vanish, and if the
∂ sψ have fast decay (s � r). The continuous wavelet transform of a function f ∈ L2(R) is defined as follows,

W f (b,a) = 1

a

∫
f (x)ψ

(
x − b

a

)
dx.

The WTMM is computed using the notion of line of maxima. For some a ∈ [a′,a′′], we write la = |W (b0,a)| if b0 is a local
maximum of the function b �→ |W (b,a)|. These local maxima are tracked and linked through the scales to yield lines of
maxima la which are replaced by the quantity

ma = sup
a′�a

la′ .

The partition function associated with the lines of maxima is

Sτ (a,q) =
∑

l

mq
a,

where the sum is taken over all the lines of maxima reaching the scale a. We then set

τ (q) = lim inf
a→0

log Sτ (a,q)

log a
(32)

to obtain the spectrum of singularities from the following relation:

dτ (h) = inf
q

{
hq − τ (q)

}
.

Using the maxima for the computation of Sτ prevents the presence of null values in the wavelet transform.
More recently, a similar approach based on the discrete wavelet transform was introduced: the wavelet leaders method

(WLM), see [18]. Let us recall some definitions (see [1,18]). From now on, we will denote by λ the dyadic interval λ =
λ( j,k) = [ k

2 j ,
k+1
2 j

]
. One uses r-smooth wavelets ψ such that {2 j/2ψ(2 j x − k)}: j,k ∈ Z} is an orthonormal basis of L2(R).

Therefore, any function f ∈ L2(R) can be written

f (x) =
∑
j,k∈Z

cλψ
(
2 j x − k

)
,

where cλ = 2 j
∫

f (x)ψ (2 j x − k)dx. The wavelet leader associated to the dyadic interval λ is the quantity

dλ = sup
λ′⊂3λ

|cλ′ |.

We then define the partition function associated to the WLM

Sω( j,q) = 2− j
∑∗

λ∈Λ

dq
λ, (33)
j
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where
∑∗ means that the sum is restricted to the intervals λ such that infλ′⊂Λ(λ) |cλ′ | �= 0, where Λ(λ) = {λ′: λ′ ⊂ λ} ∪

{λ′: λ ⊂ λ′}. This restriction is made in order to avoid, as much as possible, the presence of small, numerically instable,
coefficients. The sum is taken over all intervals λ belonging to Λ j = {λ: diam(λ) = 2− j}. From this, we set

ω(q) = lim inf
j→∞

log Sω( j,q)

log 2− j
(34)

to obtain the spectrum of singularities as

dω(h) = inf
q

{
hq − ω(q)

}
. (35)

The heuristic argument from which the preceding methods are derived is the following (we describe it for the WLM, but
it can be transposed to the WTMM). Equality (34) means

∑∗ dq
λ ∼ 2−ω(q) j . The contribution of the dyadic intervals λ ∈ Λ j

containing a point whose Hölder exponent is h to the sum
∑∗ dq

λ can be estimated as follow. If λ j(x) ∈ Λ j is the interval
at scale j containing x, the Hölder exponent h(x) of f at x is given by

h(x) = lim inf
j→∞

λ′⊂3λ j(x)

log dλ′

log 2− j
(36)

(see [18]). Therefore, one has dλ ∼ 2−hj . Moreover, the number of these dyadic intervals λ should be about 2dω(h) j , where
dω is the multifractal spectrum of the function. Hence, the contribution is

2(dω(h)−hq) j . (37)

The dominating contribution is the one corresponding to a value of h associated with the biggest exponent in (37); thus,
one can expect the following relation

−ω(q) = sup
h

{
dω(h) − hq

}
.

As −ω is a convex function, if dω is concave, then −ω and −dω are convex conjugate functions, so that (35) holds. Let us
remark that the preceding argument is far from being a mathematical proof. The only result valid in the general case is the
following inequality, see [18],

dω(h) � inf
q

(
hq − ω(q)

)
. (38)

These two formalisms are the only ones that can lead to the entire spectrum of singularities (i.e. that allow to obtain the
decreasing part of the spectrum). The main advantage of the WLM is its theoretical background. In particular, relation (36),
used in the derivation of the multifractal formalism, does not hold in general for wavelet maxima. The WLM could also be
more efficient in the characterization of the regularity of signals with oscillating singularities, a domain where the WTMM
never succeeded. Moreover the WLM is faster than the WTMM, since the complexity of the WLM is linear, while the order
of complexity of the WTMM is at least N log N (indeed, the computational speed of the two-dimensional WTMM can be a
real problem). However, the WTMM has been successfully applied to numerous applications, going from DNA sequences to
stock market data analysis (see e.g. [2]). It is translation invariant, a property that the WLM does not have. Moreover, the use
of a starred sum in (33) can induce an important loss of coefficients in the definition of Sω . This can lead to unsatisfactory
results when applied to functions such as the devil staircase.

7.2. Multifractal formalisms applied to L1 , L2 and L3

We show here that the WLM applied to highly irregular functions gives at least the same positive results, but in a much
faster way. However, some problems can arise if too many wavelet leaders vanish.

To test and compare the efficiency of the two methods, we have computed the functions L1, L2 and L3 with sample
sizes ranging from S = 214 to S = 222. We have limited the study of the functions τ and ω within the range −3 � q � 5 (as
we will see, there is no need to extend the study for larger range when considering these specific Lebesgue-type functions).
For both methods, wavelets with exactly two vanishing moments were used: the second-order derivative of the Gaussian
function for the WTMM and the second-order Daubechies wavelet for the WLM (let us recall that the Daubechies wavelets
are compactly supported, see [10]). The results remain unchanged if wavelets with a higher number of vanishing moments
are chosen. For a fixed q, τ (q) and ω(q) are obtained through a linear regression, following (32) and (34), respectively.

The function L2 is a monohölder function. The associated multifractal spectrum is thus the simplest spectrum we have
obtained, since it is reduced to a single point:

d2(h) =
{

1 if h = log 2
2 log 3 = 0.31546 . . . ,

−∞ else.

As shown in Fig. 6 for sample size S = 214, both the functions τ and ω display a remarkable linear behavior, which is
the mark of a monohölder function. The Hölder exponent h is then obtained through a linear regression. The WTMM gives
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Fig. 6. (a) The estimated function τ associated to the Schoenberg function L2. (b) The estimated function ω.

Fig. 7. (a) The spectrum of singularities of L2 estimated through the function τ (see Fig. 6). (b) The spectrum obtained using ω. The dashed lines intersect
at (

log 2
2 log 3 ,1).

hτ ≈ 0.311 ± 0.024 and the WLM gives hω ≈ 0.319 ± 0.024. In both case, the error is close to 4.1 × 10−3. Fig. 7 shows the
spectra of singularities obtained from τ and ω respectively, through a Legendre transform.

The function L1 is monofractal but not monohölder:

d1(h) =
⎧⎨
⎩

log 2
log 3 if h = log 2

2 log 3 ,

1 if h = ∞,

−∞ else.

However, if a compactly supported wavelet with more than one vanishing moment is used to perform the wavelet transform,
the coefficients corresponding to the C∞ component, i.e. the linear parts of L1, are equal to zero. Since the lines of maxima
are made of maxima of the modulus of the continuous wavelet transform, such coefficients are not taken into account in
the WTMM. For the WLM, vanishing coefficients have to be dropped to compute the partition function. This operation must
be done carefully. The best method seems to be using the starred sum in the formula (33), after having set to zero the
coefficients beyond a fixed threshold, which should correspond to a numerical accuracy. In the case of L1, this threshold is
naturally obtained by checking the values of the coefficients at the lowest scale corresponding to the interval

] 1
3 , 2

3

[
. Since,

these coefficients should vanish, the threshold must be larger than their numerical value, which is a computational artifact.
The main disadvantage of this “starred sum method” is that, in some special situations, many coefficients can be lost, as it is
the case with L1. Although this algorithm is satisfactory when applied to the functions studied here, it could be interesting
to define the threshold as a function of the scale.

Since vanishing coefficients are not taken into account, both the WTMM and the WLM are only performed on the
function L1 restricted to the Cantor set K, which is a monohölder function. The so-obtained spectrum of singularities
is thus reduced to one single point. If the wavelet has only one vanishing moment, one can show that the multifractal
formalism will lead to a wrong spectrum (see [28]). Both τ and ω display the expected linear behavior when working with
the sample size S = 220, as shown in Fig. 8. One gets hτ ≈ 0.339±0.03 and hω ≈ 0.335±0.02. When working with a smaller
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Fig. 8. (a) The estimated function τ associated to the Lebesgue function L1. (b) The estimated function ω.

Fig. 9. (a) The spectrum of singularities of L1 estimated through the function τ (see Fig. 8). (b) The spectrum obtained using ω. The dashed lines intersect
at

( log 2
2 log 3 ,

log 2
log 3

)
.

Fig. 10. (a) The estimated function τ associated to the Lebesgue–Davenport function L3. (b) The estimated function ω.

sample size (S = 214), the corresponding τ still display a linear behavior with an overestimated exponent (hτ ≈ 0.4±0.015),
while no such linear behavior is observed for ω.

The Lebesgue–Davenport function L3 is neither monohölder nor monofractal; the associated spectrum of singularities is
given by Proposition 20. Both τ and ω display a satisfactory shape when working with the smallest sample size S = 214,
but a sample size of S = 220 is needed to estimate the maximum Hölder exponent with a precision of 2% (the maximum
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Fig. 11. (a) The spectrum of singularities of L3 estimated through the function τ (see Fig. 10). (b) The spectrum obtained using ω. The real spectrum d3 is
plotted with dashed lines.

Fig. 12. The relative computational speeds of the WTMM and the WLM tested on the function L3 with sample sizes S = 215,216, . . . ,222.

Hölder exponent is simply obtained from τ or ω through a linear regression over the negative values of q, see Fig. 10). As
shown in Fig. 11, both formalisms lead to a strictly concave spectrum whose shape is close to the exact linear spectrum.
Recall that d3 has a dense set of discontinuities, so that the upper bound (38) is no more valid. In short, there is no
theoretical background for multifractal functions. Under such condition, it is quite remarkable that the numerical results
obtained are not too far from the theoretical spectrum.

In conclusion, we can say that the WTMM and the WLM give the same, correct, results on the tested functions, but
some problems can arise with the WLM when the discrete wavelet transform contains too many vanishing coefficients. The
main pitfall of the WTMM, beside the lack of theoretical foundation, is its computational speed and the quantity of memory
needed. As shown in Fig. 12, when applied to the function L3 with a sample size equal to S = 222, the WTMM is about six
times slower than the WLM.
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