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Problem formulation

B We consider the following problem setting:

p
l m + dm
Y
p

¢ We denote by 0(s) and gf.(s) the angles that the tangent vectors to the deformed imperfect
beam and the undeformed imperfect beam, respectively, make with the vertical axis.
¢ Equilibrium: m — (m + dm) — psin(f)ds = 0 = —92 — psin(F) = 0.

¢ Constitutive equation: % = .

€ At the one end, the rod is fixed; at the other end, it is subjected to a constant vertical force p.

B We obtain the following boundary-value problem:

¢ 12(0
d"(9 2006) + Asin(f) =0 with A\ = ﬁ,,
< ds Y]
do db.
\ 6(0) = 00.(0) and £<€> =0 wp (4).

ULg, Liége, Belgium MATHO0488 — Lecture 2 3/33



Problem formulation

B For the perfect beam, that is, 06, = 0, we found in the previous lecture that the trivial solution
6 = 0 solves the problem for any A in R, and the linearization of the problem close to this trivial
solution leads to an eigenproblem, whose solution immediately provides the bifurcations.

B For the imperfect beam, the function & = 0 is generally no longer a solution to the problem, and it is
no longer immediate to determine bifurcations. In the Section “Implicit function theorem,” we will
explain how to “detect bifurcations” in an algorithm that follows a “branch” of solutions.

B We will consider the imperfection, that is, 6., to be random. In the Section “Stochastic model,” we
will model this imperfection as a stochastic process. And in the Section “Sampling method,” we will
explain how to numerically generate samples of this stochastic process, thus enabling a
sampling-based numerical study of the impact of the random imperfection on the bifurcations.

B Inthe next lecture, we will carry out a theoretical analysis of the impact of the random imperfection
on the bifurcations. The theoretical insight to be gained in the next lecture will help us better
understand the numerical results already obtained in this lecture.
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Implicit function theorem
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Implicit function theorem

B Often, a function is given to us explicitly, that is, in the form of a formula, for example,
>y =Y(x) =2 +52° —x— 3.

B This notion of “function given in the form of an explicit formula” is too limited for many purposes. For

example, the subset of points (, ) in the plane R? that satisfy
g(z,y) = y° + 16y — 322> + 32z = 0

Y + 16y — 322° + 322 [-]

This figure suggests that there is a unique function 1) that maps any x onto y = () such that
g(x,y(x)) = 0; however, no explicit formula for 1 exists. We say that 1) is defined implicitly.
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Implicit function theorem

B A given equation does not always uniquely define a subset of its variables as an implicit function of
its remaining variables. For example, the subset of points (:1:, y) in the plane R? that satisfy

gz, y) =2 +y>—1=0
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The problem is that for a given —1 < x < 1, the eqn. is solved by multiple v, i.e., y = +v/1 — x2.

B For any solution (xq, yo) with yg > 0, there exists an open interval |xo — d, x¢ + [ within which
we can express ¥ explicitly as y = v/1 — x2; and for any solution (g, yo) with o < 0, there exists
an open interval |zg — 6, xg + &| within which we can express y explicitly as y = —v/1 — 2.

B Around xy = =1, we cannot uniquely express y as a function of . Note that g—g(xo, o) = 0.
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Implicit function theorem

B The implicit function theorem can help us determine when a given equation uniquely defines a
subset of its variables implicitly as a function of its remaining variables.

B Let g be a continuously differentiable function from R? into R with g(xq, yo) = 0. If the linear-
ization of the problem g(z, y) = 0 with respect to y at (¢, yo) is nondegenerate, that is, the
derivative of g(xg, -) with respect to ¥ at ¥ is nonvanishing,

g(x07 yO) — 07
29 (w0,90) # 0
ay 0, Y0 )

then at least locally the problem uniquely defines 4 implicitly as a function of x, that is, there exists
an open interval |xg — &, zo — [ around g, an open interval |y — €, yo — €| around ¥, and a
unique function ) from |zg — &, zg — & into |yg — €, yo — €] that satisfy

g(z,¢¥(x)) =0 forallzinlzg — d,z9 — d],

and this function 1 is continuously differentiable.
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Implicit function theorem

B The implicit function theorem can be generalized to a higher dimensional context as follows.

B Let g be a continuously differentiable function from R x R™ into R™ with g(z¢, y,) = 0. If the
linearization of the problem g(x,y) = 0 with respect to y at (xg, y,) is nondegenerate, that is,
the directional derivative of g(xg, -) at y, is nonvanishing in any direction e,

g(x(b yo) — 07

t _
deg(70,Yo) = lim g(xo, Yo + te) — g(xo, Yo)

0O f 0
lim n + orany e # 0,

then at least locally the problem uniquely defines y implicitly as a function of x, that is, there exists
an open interval |xg — 0, zo — d[ around g, an open ball {y € R™ : ||y — y,|| < €} around y,,
and a unique function v from |xg — 0, 2o — d[into {y € R™ : ||ly — y,|| < €} satisfying

g(z,(z)) =0 forallzin]zy — 6,20 — 4],

and this function 1) is continuously differentiable.
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Implicit function theorem

B To elaborate this generalization in more detail, let us recall a few notions from differential calculus.

B Let g be a function from R into R that maps any = onto y = g(x).
Then, the derivative of g at x is given by

dg g(xo +1) — g(xo)
—= = 1i :
dx (o) £
B Let g be a function from R™ into R that maps any © = (x1,...,x,,) ontoy = g(x).
Then, the directional derivative of g in direction e = (e, ..., e,,) at xq is given by

. glxg +te) —glx
deg(a30):%£% ( 0 t) ( 0).

This directional derivative can be represented as follows:

| (%]1(330) 1 [e]
deg(wO) = ng(al‘o) "€ = SR
_aign (zo)| L[&m]

where the gradient vector V . g(x() collects the partial derivatives of g at x( given by

(wo) — lim g(ﬂfol,...,ﬂ?o@'—I-t,...,aiomi—g(.TQl,...,ZUOi,...,.TQm)’ 1 S@Sm
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Implicit function theorem

B Let g be a function from R™ into R” that maps any € = (1, ..., Zm)ontoy = (Y1, .-, Yn)
such that y = g(a). Then, the directional derivative of g in direction e at & is given by

. glxg+te) —g(x
deg(wO):%g% ( 0 t) ( 0).

This directional derivative can be represented as follows:

_a 8 —_ — —_

8—3}1(:{30) ﬁ(wo) eq
deg(xo) = [Dzg(To)le = E : e

99, 990

5 (mo) . 5 (mo)] Lem

where the Jacobian matrix [D,g ()] collects the partial derivatives of g at x( given by

g (01, @O + L, — Gi(TOLs - TGy - -
gj (20) = lim gg( 01 xoi + Tom ) 93(5601 T0q xOm)7 1<i<m, 1<j<n.

8:1;Z- t—0 t
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Implicit function theorem

B Thus, let g be a continuously differentiable function from R x R"™ into R™ with g(xq, y,) = O. If
the linearization of the problem g(z, y) = 0 with respect to y at (xg, y,) is nondegenerate in that
the directional derivative of g(x, -) at Y, Is nonvanishing in any direction e,

g(.??o, yO) — 07

t o 9
deg(T0,yy) = lim g(xo, Yy, + te) — g(zo, yYo)

0 f 0
lim " + orany e # 0,

or, equivalently, if the Jacobian matrix [D,,g (0, Y,)] does not have a vanishing eigenvalue,

0 o L L o o
3—51(3507 Yo) - 55; (z0,Yo) el 0 €1 0
: # || forany L # |
Ogn g
_8%1 (z0,y0) - agm (2o, ?Jo)_ | Em | 0] | €m | 0]

then at least locally the problem uniquely defines y implicitly as a function of x, that is, there exists
an open interval |xg — d, zo — d[ around g, an open ball {y € R™ : ||y — y,|| < €} around y,,
and a unique function v from |zg — d, 29 — [ into {y € R™ : ||y — y,|| < €} satisfying

g(z,¥(x)) =0 foralxin]zg—d,z9— 4,

and this function 1) is continuously differentiable.
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Implicit function theorem

Buckling of perfect beam

B Let us consider again our boundary-value problem for the perfect beam. In the previous lecture, the
finite-difference approximation of this boundary-value problem led to the algebraic problem

K]0 + Af(0) = 0.

B We look at this problem as an equation g(\, @) = 0 in two “variables” A and 6:
g(\,0) =0 with g\, 0)=[K|0+ \f(0).

B This problem admits for any A in R the trivial solution (X, 8) = (A, 0), thatis, g(A,0) = 0.

B The implicit function theorem asserts that nontrivial solutions can exist close to the trivial solution
(A, 0) only if the linearization of the problem g(\, @) = 0 with respect to 6 at (A, 0) is degenerate,
or, equivalently, if the Jacobian matrix has a vanishing eigenvalue, that is,

there exists ¢ # 0 forwhich [Dgg(\,0)]¢ = [K]d + A[Def(0)|¢p = [K|op + A\ = 0O,

thus confirming what we already found in the previous lecture, namely, that bifurcations occur at the
eigenvalues Ay, of the eigenproblem — K|, = A @y
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Implicit function theorem

Buckling of perfect beam (continued)

—

0,

[Dog (A, 0)] has stric@ive eigenvalues
[Dgg (A, 0)] has zero eigenvalue

[Dgg (A, 0)] has strictly positive and negative eigenvalues
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Implicit function theorem

Buckling of imperfect beam

B Let us now consider again the boundary-value problem for the imperfect beam.

4 2 .
4°(6 2096> +Asin(d) =0 with A= L,
< ds Y]
do df.
\ 6(0) = 00.(0) and E(f) =0 . (£).

B Introducing the auxiliary function w = 6 — o6, we obtain the boundary-value problem

(d2
—ZUJr)\sin(w—l—JHe):O with )\:£.7
< ds yJ
dw
0) = —(¢) =0.
\w() ds()

B As in the previous lecture, the finite-difference approximation of this boundary-value problem leads
to the algebraic problem of the form

Klw+ Af(w + 06,.) = 0.
where f(w + 00.) is the vector with components sin(w; + 00.(s;)), j=1,...,u— 1.
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Implicit function theorem

Buckling of imperfect beam (continued)

B In a computation under “load control,” one repeats a Newton-Raphson procedure for a sequence of
increasing values of \. To “follow” a particular “branch” of solutions, one can systematically choose
as initial approximation to the solution for a subsequent value of A the final approximation to the
solution obtained for the previous value of .

B A simple method for “detecting” bifurcations involves systematically inspecting the eigenvalues of
the Jacobian matrix. At a bifurcation, the Jacobian matrix must have at least one vanishing
eigenvalue. An increase in A that changes the sign of the smallest magnitude eigenvalue of the
Jacobian matrix is an increase in A that passes the first bifurcation.

B For a value of A\ slightly larger than that at a bifurcation, one can make the Newton-Raphson
converge to a solution on the new “branch” of solutions by using as initial approximation the sum of
the final approximation to the solution obtained for the previous value of A and a multiple of the
eigenvector of the Jacobian matrix corresponding to the eigenvalue that changed its sign, where the
premultiplication constant must be appropriately chosen.
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Stochastic model
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Stochastic model

Review: Notations and conventions

B Let f: R — R be an integrable function, that is, | \f )|dt < +00. Then, the Fourier
transform f of f is the bounded, continuous function f from R into C such that

fw)=Ff(w) = /Rexp(—iwt)f(t)dt.

The Fourier transform of an integrable function is not necessarily integrable itself.

B Let f : R — R be a square-integrable function , thatiis, [, | f(¢)|*dt < +oc. Then, the Fourier
transform f’of f is the square-integrable function ffrom R into C such that

y

() = Ff(w) = / exp(—iwt) f(£)d,

10 = F1(0) = 5= [ explivn) flw)a

B These definitions indicate that one cannot take the Fourier transform of any function: these
definitions provide the Fourier transform only for integrable and square-integrable functions.

B We include the minus sign in the forward transform and the factor - in the inverse transform.
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Stochastic model

Review: Outlook

B Random variables (samples are scalars, vectors, matrices,.

B Stochastic processes (samples are functions of one variable):
Z(t) N

$
B i
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Stochastic model

Review: Random variables

B The probability distribution P of a random variable Z with values in R is the function that
associates to any meaningful subset /5 of R the probability that the value taken by Z is in B, that is,

P,(B) = P(Z € B).

B The probability density function p of a probability distribution P, with respect to dz, if it exists,
is the function from R into R™ such that for any meaningful subset B3 of R, we have

PZ(B)z/BpZ(z)dz.

The probability density function is normalized in that Pz (R) = fR pz(z)dz = 1.

B A random variable Z with values in R is a Gaussian random variable with mean Z and variance 0%
if it admits the probability density function
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Stochastic model

Review: Random variables

B A random variable Z with values in R is of the second order if
E(Z?) = / 2*pz(2)dz < +o0.
R

B The mean z of a second-order random variable Z with values in IR is defined by

7= B(Z) = /R 2pz(2)dz.

B The variance o% of a second-order random variable Z with values in R is defined by

oy, =E((Z-%2)°) = /R(z —2)?pz(2)dz.

B Please note that o3, = E((Z — z)?) = E(Z?) — 72
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Stochastic model

Review: Stochastic processes

B A stochastic process {Z(t), t € T } indexed by a subset 7 of R and with values in R is a
collection of random variables Z(¢) with values in R indexed by ¢ in 7.

B For any nonempty finite subset {t1, ..., %, } of T, where m denotes the number of elements in
this subset, the joint probability distribution Pz +,). ... z(t,.)) of (Z(t1),..., Z(tm)) is called a
(m-th order) marginal probability distribution of the stochastic process {Z(t), t € T }.

The collection of all the marginal probability distributions of a stochastic process is called the
system of marginal probability distributions.

B A stochastic process { Z(t), t € T } indexed by 7 and with values in R is Gaussian if each
probability distribution in its system of marginal probability distributions is Gaussian.
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Stochastic model

Review: Stochastic processes

first-order marginal probability distributions

ULg, Liége, Belgium MATHO0488 — Lecture 2 23/33



Stochastic model

Review: Stochastic processes

B A stochastic process { Z(t), t € T } indexed by 7 with values in R is of the second order if
E(Z(t)Z) = / ZZpZ(t)(Z)dZ < 400, VteT.
R

B The mean function of a second-order stochastic process {Z(t), t € T } indexed by T with
values in R is the function Z from 7 into R such that

zZ(t) = E(Z(t)) = /Rzpz(t)(z)dz.

B The autocorrelation function of a second-order stochastic process {Z(t), t € T } indexed by T
with values in R is the function r from 7 x T into R such that

X
B The covariance function of a second-order stochastic process {Z(t), t € T } indexed by T with

values in R is the function ¢z from 7 x T into R such that

~.

e (t,7) :E((Z(t)-z(t))(Z(f)-z(i’))) - / (2=2()) (G=2(D)) p200) 20 (2 ) dzd.

RxR

~.

B Please note that ¢z (£, 7) = E((Z(t) —2(1) (2(F) - z(f))) — ry (1) — 2(6)Z(0).
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Stochastic model

Review: Stochastic processes

B A second-order stochastic process {Z(t), ¢ € R} indexed by R with values in R is mean-square
stationary if Z(t) = Z is independent of t and r (¢, %) = r(t — t) depends on only ¢ — .

B The power spectral density function of a zero-mean, mean-square stationary, second-order
stochastic process {Z(t), t € R} indexed by R with values in R, if it exists, is the function sz
from R into R such that

rz(t—1t) = % /R sz(w)exp (iw(t —t))dw.

The power spectral density function sz has the following properties:

€ it is even because of the evenness of 7,
€ it is positive owing to Bochner’s theorem,
¢ itis integrable because E(Z(t)?) = rz(0) = 5= [ sz(w)dw < +oo0.

B If «is an integer, the spectral moment of order o, denoted by m,,, if it exists, is the integral

1
Me = —/wo‘sz(w)dw.
2T R
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Stochastic model

Review: Stochastic processes
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Stochastic model

Review: Stochastic processes
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Stochastic model

Buckling of imperfect beam

B We model the random imperfection as a stochastic process {cf.(s), 0 < s < £} indexed by [0, £]
with values in R, Gaussian, zero mean, that is, 06, = 0, and with autocorrelation function

rs9.(5,8) =1y (s —§) = o2 sinc ( 5

B This autocorrelation function corresponds to the power spectral density function

S0, (§) = 07 2e/\ <§> ;

T
where A is the triangle function such that A(—%) = A(%) and A(%) =1- % if 0 < % <1
and A% = ( otherwise.

B This stochastic model depends on two parameters: o is the variance of the stochastic process and
e determines its spatial correlation.
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Sampling method
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Sampling method

B To numerically simulate a realization of the stochastic process, we apply a numerical method based
on the spectral representation of this stochastic process. Fully describing this numerical method is
beyond the scope of this lecture; for details, please refer to [Poirion and Soize, 1995].

B This numerical method allows a realization of the stochastic process, in particular, its values at
grid points s; = jh, 0 < j < p— 1 with h < ¢, to be computed as follows:

a0 (s;) = \/2A¢ < \/_509 (§k) Ck exp(is;&k +Z¢k))

® (= +(kE—1/2)A, 1 <k <pwith& =m/hand A& = 2§ /u;

¢ {or, 1 <k < pu} are uindependent realizations of a uniform r.v. valued in [0, 27];

& {(y, 1 <k < p}aresuchthat (, = /—log(vy)), 1 < k < p, where the values
{¢r, 1 < k < u} are p independent realizations of a uniform r.v. valued in [0, 1].

B We can observe that the previous equation is consistent with the interpretation of the power spectral
density function as indicating the distribution of the variance of the stochastic process over harmonic
components of different wavenumbers. In fact, the previous equation provides an approximation of a
realization of the stochastic process as a linear combination of harmonic components of different
wavenumbers, each with a random phase shift and a random amplitude proportional to the square
root of the value taken by the power spectral density function at the corresponding wavenumber.
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Sampling method

B The previous equation can be written equivalently as follows:

g0l (s;) = \/2A¢ Re(exp (z'jw (—1 + %))

i \/%soee (€x) Crexp (z%ﬂ(k — 1)+ z‘cbk) exp (z‘(j = 1)2—7T(k _ 1)) )

7
k=1

thus allowing the summation to be computed by means of the discrete Fourier transform, hence, if u

is a power of two, by means of the fast Fourier transform algorithm (FFT/IFFT).

B This numerical simulation can be implemented in Matlab as follows:

xi=-pi/(ell/mu)+([0:mu-1]1+0.5) *2*xpi/ell;
s=sigma”2*2*epsilon*tripuls(xi*epsilon/pi/2);

thetaepsilon=sqrt (2*2*pi/ell) *real (mu*exp (i* [0:mu-1]*pi*(-1+1/mu)) .*...
ifft(sqrt(s/2/pi) .*sqrt(-log(rand(1l,mu))) .*exp(i*2*pi/mu* [0:mu-1]+i*2*pi*rand(1,mu))));
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Assignment

B Please begin part 2 of 3 of the project by carrying out a few checks to make sure that realizations
provided by the aforementioned sampling method can be considered to be good approximations to
realizations of the stochastic process {c0.(s), 0 < s < /}.

B Then, please discuss the impact of o and € on the shape of the samples of the stochastic process,
as well as on that of the autocorrelation function and the power spectral density function.

B Subsequently, for fixed values of o and €, please use the aforementioned sampling method to
sample a realization of the stochastic process {c6.(s), 0 < s < ¢}, and consider the
boundary-value problem for the imperfect beam determined by this sample. Implement the
finite-difference method and carry out a computation under “load control” that follows the “branch” of
solutions that starts at A = 0. Systematically check the eigenvalues of the Jacobian matrix and as a
bifurcation is “detected,” make the algorithm “switch” to the new “branch.”

B Finally, please try to gain some insight into the impact of the random imperfection on the first
bifurcation by repeating the previous question for several more realisations of the stochastic process
{c0.(s), 0 < s < £}. You could also consider using different values of o and e.
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