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■ We consider the following problem setting:
p

p

p

θ

m

m+ dm

◆ We denote by θ(s) and σθǫ(s) the angles that the tangent vectors to the deformed imperfect

beam and the undeformed imperfect beam, respectively, make with the vertical axis.

◆ Equilibrium: m− (m+ dm)− p sin(θ)ds = 0 =⇒ −dm
ds

− p sin(θ) = 0.

◆ Constitutive equation:
d(θ−σθǫ)

ds
= m

yj
.

◆ At the one end, the rod is fixed; at the other end, it is subjected to a constant vertical force p.

■ We obtain the following boundary-value problem:














d2(θ − σθǫ)

ds2
+ λ sin(θ) = 0 with λ =

p

yj
,

θ(0) = σθǫ(0) and
dθ

ds
(ℓ) = σ

dθǫ
ds

(ℓ).
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■ For the perfect beam, that is, σθǫ = 0, we found in the previous lecture that the trivial solution

θ = 0 solves the problem for any λ in R, and the linearization of the problem close to this trivial

solution leads to an eigenproblem, whose solution immediately provides the bifurcations.

■ For the imperfect beam, the function θ = 0 is generally no longer a solution to the problem, and it is

no longer immediate to determine bifurcations. In the Section “Implicit function theorem,” we will

explain how to “detect bifurcations” in an algorithm that follows a “branch” of solutions.

■ We will consider the imperfection, that is, σθǫ, to be random. In the Section “Stochastic model,” we

will model this imperfection as a stochastic process. And in the Section “Sampling method,” we will

explain how to numerically generate samples of this stochastic process, thus enabling a

sampling-based numerical study of the impact of the random imperfection on the bifurcations.

■ In the next lecture, we will carry out a theoretical analysis of the impact of the random imperfection

on the bifurcations. The theoretical insight to be gained in the next lecture will help us better

understand the numerical results already obtained in this lecture.
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■ Often, a function is given to us explicitly, that is, in the form of a formula, for example,

x 7→ y = ψ(x) = x3 + 5x2 − x− 3.

■ This notion of “function given in the form of an explicit formula” is too limited for many purposes. For

example, the subset of points (x, y) in the plane R
2 that satisfy

g(x, y) = y5 + 16y − 32x3 + 32x = 0
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This figure suggests that there is a unique function ψ that maps any x onto y = ψ(x) such that

g(x, ψ(x)) = 0; however, no explicit formula for ψ exists. We say that ψ is defined implicitly.
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■ A given equation does not always uniquely define a subset of its variables as an implicit function of

its remaining variables. For example, the subset of points (x, y) in the plane R
2 that satisfy

g(x, y) = x2 + y2 − 1 = 0
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The problem is that for a given −1 < x < 1, the eqn. is solved by multiple y, i.e., y = ±
√
1− x2.

■ For any solution (x0, y0) with y0 > 0, there exists an open interval ]x0 − δ, x0 + δ[ within which

we can express y explicitly as y =
√
1− x2; and for any solution (x0, y0) with y0 < 0, there exists

an open interval ]x0 − δ, x0 + δ[ within which we can express y explicitly as y = −
√
1− x2.

■ Around x0 = ±1, we cannot uniquely express y as a function of x. Note that
∂g
∂y

(x0, y0) = 0.
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■ The implicit function theorem can help us determine when a given equation uniquely defines a

subset of its variables implicitly as a function of its remaining variables.

■ Let g be a continuously differentiable function from R
2 into R with g(x0, y0) = 0. If the linear-

ization of the problem g(x, y) = 0 with respect to y at (x0, y0) is nondegenerate, that is, the

derivative of g(x0, ·) with respect to y at y0 is nonvanishing,

g(x0, y0) = 0,

∂g

∂y
(x0, y0) 6= 0,

then at least locally the problem uniquely defines y implicitly as a function of x, that is, there exists

an open interval ]x0 − δ, x0 − δ[ around x0, an open interval ]y0 − ǫ, y0 − ǫ[ around y0, and a

unique function ψ from ]x0 − δ, x0 − δ[ into ]y0 − ǫ, y0 − ǫ[ that satisfy

g
(

x, ψ(x)
)

= 0 for all x in ]x0 − δ, x0 − δ[,

and this function ψ is continuously differentiable.
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■ The implicit function theorem can be generalized to a higher dimensional context as follows.

■ Let g be a continuously differentiable function from R× R
m into R

m with g(x0,y0) = 0. If the

linearization of the problem g(x,y) = 0 with respect to y at (x0,y0) is nondegenerate, that is,

the directional derivative of g(x0, ·) at y0 is nonvanishing in any direction e,

g(x0,y0) = 0,

deg(x0,y0) = lim
t→0

g(x0,y0 + te)− g(x0,y0)

t
6= 0 for any e 6= 0,

then at least locally the problem uniquely defines y implicitly as a function of x, that is, there exists

an open interval ]x0 − δ, x0 − δ[ around x0, an open ball {y ∈ R
m : ‖y − y0‖ < ǫ} around y0,

and a unique function ψ from ]x0 − δ, x0 − δ[ into {y ∈ R
m : ‖y − y0‖ < ǫ} satisfying

g
(

x,ψ(x)
)

= 0 for all x in ]x0 − δ, x0 − δ[,

and this function ψ is continuously differentiable.
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■ To elaborate this generalization in more detail, let us recall a few notions from differential calculus.

■ Let g be a function from R into R that maps any x onto y = g(x).
Then, the derivative of g at x0 is given by

dg

dx
(x0) = lim

t→0

g(x0 + t)− g(x0)

t
.

■ Let g be a function from R
m into R that maps any x = (x1, . . . , xm) onto y = g(x).

Then, the directional derivative of g in direction e = (e1, . . . , em) at x0 is given by

deg(x0) = lim
t→0

g(x0 + te)− g(x0)

t
.

This directional derivative can be represented as follows:

deg(x0) = ∇xg(x0) · e =







∂g
∂x1

(x0)
...

∂g
∂xm

(x0)






·







e1
...

em






,

where the gradient vector ∇xg(x0) collects the partial derivatives of g at x0 given by

∂g

∂xi
(x0) = lim

t→0

g(x01, . . . , x0i + t, . . . , x0m)− g(x01, . . . , x0i, . . . , x0m)

t
, 1 ≤ i ≤ m.
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■ Let g be a function from R
m into R

n that maps any x = (x1, . . . , xm) onto y = (y1, . . . , yn)
such that y = g(x). Then, the directional derivative of g in direction e at x0 is given by

deg(x0) = lim
t→0

g(x0 + te)− g(x0)

t
.

This directional derivative can be represented as follows:

deg(x0) = [Dxg(x0)]e =







∂g1
∂x1

(x0) . . . ∂g1
∂xm

(x0)
...

...
∂gn
∂x1

(x0) . . . ∂gn
∂xm

(x0)













e1
...

em






,

where the Jacobian matrix [Dxg(x0)] collects the partial derivatives of g at x0 given by

∂gj

∂xi

(x0) = lim
t→0

gj(x01, . . . , x0i + t, . . . , x0m)− gj(x01, . . . , x0i, . . . , x0m)

t
, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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■ Thus, let g be a continuously differentiable function from R× R
m into R

m with g(x0,y0) = 0. If

the linearization of the problem g(x,y) = 0 with respect to y at (x0,y0) is nondegenerate in that

the directional derivative of g(x0, ·) at y0 is nonvanishing in any direction e,

g(x0,y0) = 0,

deg(x0,y0) = lim
t→0

g(x0,y0 + te)− g(x0,y0)

t
6= 0 for any e 6= 0,

or, equivalently, if the Jacobian matrix [Dyg(x0,y0)] does not have a vanishing eigenvalue,









∂g1
∂y1

(x0,y0) . . . ∂g1
∂ym

(x0,y0)
...

...
∂gn
∂y1

(x0,y0) . . . ∂gn
∂ym

(x0,y0)















e1
...

em






6=







0
...

0






for any







e1
...

em






6=







0
...

0






,

then at least locally the problem uniquely defines y implicitly as a function of x, that is, there exists

an open interval ]x0 − δ, x0 − δ[ around x0, an open ball {y ∈ R
m : ‖y − y0‖ < ǫ} around y0,

and a unique function ψ from ]x0 − δ, x0 − δ[ into {y ∈ R
m : ‖y − y0‖ < ǫ} satisfying

g
(

x,ψ(x)
)

= 0 for all x in ]x0 − δ, x0 − δ[,

and this function ψ is continuously differentiable.
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Buckling of perfect beam

■ Let us consider again our boundary-value problem for the perfect beam. In the previous lecture, the

finite-difference approximation of this boundary-value problem led to the algebraic problem

[K]θ + λf(θ) = 0.

■ We look at this problem as an equation g(λ,θ) = 0 in two “variables” λ and θ:

g(λ,θ) = 0 with g(λ,θ) ≡ [K]θ + λf(θ).

■ This problem admits for any λ in R the trivial solution (λ,θ) = (λ,0), that is, g(λ,0) = 0.

■ The implicit function theorem asserts that nontrivial solutions can exist close to the trivial solution

(λ,0) only if the linearization of the problem g(λ,θ) = 0 with respect to θ at (λ,0) is degenerate,

or, equivalently, if the Jacobian matrix has a vanishing eigenvalue, that is,

there exists φ 6= 0 for which [Dθg(λ,0)]φ = [K]φ+ λ[Dθf(0)]φ = [K]φ+ λφ = 0,

thus confirming what we already found in the previous lecture, namely, that bifurcations occur at the

eigenvalues λk of the eigenproblem −[K]φk = λkφk.
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Buckling of perfect beam (continued)

λ

θµ

λ1

[Dθg(λ,0)] has strictly positive eigenvalues

[Dθg(λ,0)] has zero eigenvalue

[Dθg(λ,0)] has strictly positive and negative eigenvalues
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Buckling of imperfect beam

■ Let us now consider again the boundary-value problem for the imperfect beam.














d2(θ − σθǫ)

ds2
+ λ sin(θ) = 0 with λ =

p

yj
,

θ(0) = σθǫ(0) and
dθ

ds
(ℓ) = σ

dθǫ
ds

(ℓ).

■ Introducing the auxiliary function w = θ − σθǫ, we obtain the boundary-value problem














d2w

ds2
+ λ sin(w + σθǫ) = 0 with λ =

p

yj
,

w(0) =
dw

ds
(ℓ) = 0.

■ As in the previous lecture, the finite-difference approximation of this boundary-value problem leads

to the algebraic problem of the form

[K]w + λf(w + σθǫ) = 0.

where f(w + σθǫ) is the vector with components sin(wj + σθǫ(sj)), j = 1, . . . , µ− 1.
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Buckling of imperfect beam (continued)

■ In a computation under “load control,” one repeats a Newton-Raphson procedure for a sequence of

increasing values of λ. To “follow” a particular “branch” of solutions, one can systematically choose

as initial approximation to the solution for a subsequent value of λ the final approximation to the

solution obtained for the previous value of λ.

■ A simple method for “detecting” bifurcations involves systematically inspecting the eigenvalues of

the Jacobian matrix. At a bifurcation, the Jacobian matrix must have at least one vanishing

eigenvalue. An increase in λ that changes the sign of the smallest magnitude eigenvalue of the

Jacobian matrix is an increase in λ that passes the first bifurcation.

■ For a value of λ slightly larger than that at a bifurcation, one can make the Newton-Raphson

converge to a solution on the new “branch” of solutions by using as initial approximation the sum of

the final approximation to the solution obtained for the previous value of λ and a multiple of the

eigenvector of the Jacobian matrix corresponding to the eigenvalue that changed its sign, where the

premultiplication constant must be appropriately chosen.
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Review: Notations and conventions

■ Let f : R → R be an integrable function, that is,
∫

R
|f(t)|dt < +∞. Then, the Fourier

transform f̂ of f is the bounded, continuous function f̂ from R into C such that

f̂(ω) = Ff(ω) =
∫

R

exp(−iωt)f(t)dt.
The Fourier transform of an integrable function is not necessarily integrable itself.

■ Let f : R → R be a square-integrable function , that is,
∫

R
|f(t)|2dt < +∞. Then, the Fourier

transform f̂ of f is the square-integrable function f̂ from R into C such that














f̂(ω) = Ff(ω) =
∫

R

exp(−iωt)f(t)dt,

f(t) = F−1f̂(t) =
1

2π

∫

R

exp(iωt)f̂(ω)dω.

■ These definitions indicate that one cannot take the Fourier transform of any function: these

definitions provide the Fourier transform only for integrable and square-integrable functions.

■ We include the minus sign in the forward transform and the factor 1
2π in the inverse transform.
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Review: Outlook

■ Random variables (samples are scalars, vectors, matrices,. . . ):

■ Stochastic processes (samples are functions of one variable):

t

Z(t)

t

Z(t)

t

Z(t)
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Review: Random variables

■ The probability distribution PZ of a random variable Z with values in R is the function that

associates to any meaningful subset B of R the probability that the value taken by Z is in B, that is,

PZ(B) = P (Z ∈ B).

■ The probability density function ρZ of a probability distribution PZ with respect to dz, if it exists,

is the function from R into R
+ such that for any meaningful subset B of R, we have

PZ(B) =
∫

B

ρZ(z)dz.

The probability density function is normalized in that PZ(R) =
∫

R
ρZ(z)dz = 1.

■ A random variable Z with values in R is a Gaussian random variable with mean z and variance σ2
Z

if it admits the probability density function

ρZ(z) =
1√
2πσZ

exp

(

− (z − z)2

2σ2
Z

)

.
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Review: Random variables

■ A random variable Z with values in R is of the second order if

E(Z2) =

∫

R

z2ρZ(z)dz < +∞.

■ The mean z of a second-order random variable Z with values in R is defined by

z = E(Z) =

∫

R

zρZ(z)dz.

■ The variance σ2
Z of a second-order random variable Z with values in R is defined by

σ2
Z = E

(

(Z − z)2
)

=

∫

R

(z − z)2ρZ(z)dz.

■ Please note that σ2
Z = E

(

(Z − z)2
)

= E(Z2)− z2.
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Review: Stochastic processes

■ A stochastic process {Z(t), t ∈ T } indexed by a subset T of R and with values in R is a

collection of random variables Z(t) with values in R indexed by t in T .

■ For any nonempty finite subset {t1, . . . , tm} of T , where m denotes the number of elements in

this subset, the joint probability distribution P(Z(t1),...,Z(tm)) of (Z(t1), . . . , Z(tm)) is called a

(m-th order) marginal probability distribution of the stochastic process {Z(t), t ∈ T }.

The collection of all the marginal probability distributions of a stochastic process is called the

system of marginal probability distributions.

■ A stochastic process {Z(t), t ∈ T } indexed by T and with values in R is Gaussian if each

probability distribution in its system of marginal probability distributions is Gaussian.
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Review: Stochastic processes
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Review: Stochastic processes

■ A stochastic process {Z(t), t ∈ T } indexed by T with values in R is of the second order if

E
(

Z(t)2
)

=

∫

R

z2ρZ(t)(z)dz < +∞, ∀t ∈ T .

■ The mean function of a second-order stochastic process {Z(t), t ∈ T } indexed by T with

values in R is the function z from T into R such that

z(t) = E
(

Z(t)
)

=

∫

R

zρZ(t)(z)dz.

■ The autocorrelation function of a second-order stochastic process {Z(t), t ∈ T } indexed by T
with values in R is the function rZ from T × T into R such that

rZ(t, t̃) = E
(

Z(t)Z(t̃)
)

=

∫

R×R

zz̃ρ(Z(t),Z(t̃))(z, z̃)dzdz̃.

■ The covariance function of a second-order stochastic process {Z(t), t ∈ T } indexed by T with

values in R is the function cZ from T × T into R such that

cZ(t, t̃) = E
(

(

Z(t)−z(t)
)(

Z(t̃)−z(t̃)
)

)

=

∫

R×R

(

z−z(t)
)(

z̃−z(t̃)
)

ρ(Z(t),Z(t̃))(z, z̃)dzdz̃.

■ Please note that cZ(t, t̃) = E
(

(

Z(t)− z(t)
)(

Z(t̃)− z(t̃)
)

)

= rZ(t, t̃)− z(t)z(t̃).
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Review: Stochastic processes

■ A second-order stochastic process {Z(t), t ∈ R} indexed by R with values in R is mean-square

stationary if z(t) = z is independent of t and rZ(t, t̃) = rZ(t− t̃) depends on only t− t̃.

■ The power spectral density function of a zero-mean, mean-square stationary, second-order

stochastic process {Z(t), t ∈ R} indexed by R with values in R, if it exists, is the function sZ
from R into R

+ such that

rZ(t− t̃) =
1

2π

∫

R

sZ(ω) exp
(

iω(t− t̃)
)

dω.

The power spectral density function sZ has the following properties:

◆ it is even because of the evenness of rZ ,

◆ it is positive owing to Bochner’s theorem,

◆ it is integrable because E
(

Z(t)2
)

= rZ(0) =
1
2π

∫

R
sZ(ω)dω < +∞.

■ If α is an integer, the spectral moment of order α, denoted by mα, if it exists, is the integral

mα =
1

2π

∫

R

ωαsZ(ω)dω.
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Review: Stochastic processes

t− t̃

rZ(t− t̃)

ω

sZ(ω)

t

Z(t)

t

Z(t)

t

Z(t)
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Review: Stochastic processes

t− t̃

rZ(t− t̃)

ω

sZ(ω)

t

Z(t)

t

Z(t)

t

Z(t)
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Buckling of imperfect beam

■ We model the random imperfection as a stochastic process {σθǫ(s), 0 ≤ s ≤ ℓ} indexed by [0, ℓ]
with values in R, Gaussian, zero mean, that is, σθǫ = 0, and with autocorrelation function

rσθǫ(s, s̃) = rσθǫ(s− s̃) = σ2
sinc

(

π(s− s̃)

2ǫ

)2

.

■ This autocorrelation function corresponds to the power spectral density function

sσθǫ(ξ) = σ2 2ǫ△
(

ξǫ

π

)

,

where △ is the triangle function such that △(− ξǫ
π
) = △( ξǫ

π
) and △( ξǫ

π
) = 1− ξǫ

π
if 0 ≤ ξǫ

π
≤ 1

and △ ξǫ
π

= 0 otherwise.

■ This stochastic model depends on two parameters: σ2 is the variance of the stochastic process and

ǫ determines its spatial correlation.
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■ To numerically simulate a realization of the stochastic process, we apply a numerical method based

on the spectral representation of this stochastic process. Fully describing this numerical method is

beyond the scope of this lecture; for details, please refer to [Poirion and Soize, 1995].

■ This numerical method allows a realization of the stochastic process, in particular, its values at µ
grid points sj = jh, 0 ≤ j ≤ µ− 1 with h < ǫ, to be computed as follows:

σθµǫ (sj) =
√

2∆ξ Re

( µ
∑

k=1

√

1

2π
sσθǫ(ξk) ζk exp(isjξk + iφk)

)

;

◆ ξk = −ξL + (k − 1/2)∆ξ, 1 ≤ k ≤ µ with ξL = π/h and ∆ξ = 2ξL/µ;

◆ {φk, 1 ≤ k ≤ µ} are µ independent realizations of a uniform r.v. valued in [0, 2π];
◆ {ζk, 1 ≤ k ≤ µ} are such that ζk =

√

− log(ψk)), 1 ≤ k ≤ µ, where the values

{ψk, 1 ≤ k ≤ µ} are µ independent realizations of a uniform r.v. valued in [0, 1].

■ We can observe that the previous equation is consistent with the interpretation of the power spectral

density function as indicating the distribution of the variance of the stochastic process over harmonic

components of different wavenumbers. In fact, the previous equation provides an approximation of a

realization of the stochastic process as a linear combination of harmonic components of different

wavenumbers, each with a random phase shift and a random amplitude proportional to the square

root of the value taken by the power spectral density function at the corresponding wavenumber.
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■ The previous equation can be written equivalently as follows:

σθµǫ (sj) =
√

2∆ξ Re

(

exp

(

ijπ

(

−1 +
1

µ

))

µ
∑

k=1

√

1

2π
sσθǫ(ξk) ζk exp

(

i
2π

µ
(k − 1) + iφk

)

exp

(

i(j − 1)
2π

µ
(k − 1)

)

)

,

thus allowing the summation to be computed by means of the discrete Fourier transform, hence, if µ
is a power of two, by means of the fast Fourier transform algorithm (FFT/IFFT).

■ This numerical simulation can be implemented in Matlab as follows:

xi=-pi/(ell/mu)+([0:mu-1]+0.5)*2*pi/ell;

s=sigmaˆ2*2*epsilon*tripuls(xi*epsilon/pi/2);

thetaepsilon=sqrt(2*2*pi/ell)*real(mu*exp(i*[0:mu-1]*pi*(-1+1/mu)).*...

ifft(sqrt(s/2/pi).*sqrt(-log(rand(1,mu))).*exp(i*2*pi/mu*[0:mu-1]+i*2*pi*rand(1,mu))));
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■ Please begin part 2 of 3 of the project by carrying out a few checks to make sure that realizations

provided by the aforementioned sampling method can be considered to be good approximations to

realizations of the stochastic process {σθǫ(s), 0 ≤ s ≤ ℓ}.

■ Then, please discuss the impact of σ and ǫ on the shape of the samples of the stochastic process,

as well as on that of the autocorrelation function and the power spectral density function.

■ Subsequently, for fixed values of σ and ǫ, please use the aforementioned sampling method to

sample a realization of the stochastic process {σθǫ(s), 0 ≤ s ≤ ℓ}, and consider the

boundary-value problem for the imperfect beam determined by this sample. Implement the

finite-difference method and carry out a computation under “load control” that follows the “branch” of

solutions that starts at λ = 0. Systematically check the eigenvalues of the Jacobian matrix and as a

bifurcation is “detected,” make the algorithm “switch” to the new “branch.”

■ Finally, please try to gain some insight into the impact of the random imperfection on the first

bifurcation by repeating the previous question for several more realisations of the stochastic process

{σθǫ(s), 0 ≤ s ≤ ℓ}. You could also consider using different values of σ and ǫ.
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