ULg, Liege, Belgium

MATH0488 — Stochastic Processes

Stochastically perturbed bifurcation

Part 1 of 3: Buckling of perfect beam

Maarten Arnst, Marco Lucio Cerquaglia, and Kavita Goyal

March 17, 2015

MATHO0488 — Lecture 1

1/24



Outline

B Problem formulation.

B Linearized problem.

B Nonlinear problem.

B Finite-difference approximation.

B Assignment.

B References.

ULg, Liége, Belgium MATHO0488 — Lecture 1 2/24



Problem formulation

B We consider the following problem setting:

p

< m + dm

“ m
p

ds

p
& Equilibrium: m — (m + dm) — psin(§)ds =0 = —42 — psin(§) = 0.
€ Constitutive equation: Z—g = %

€ Atthe one end, the rod is fixed; at the other end, it is subjected to a constant vertical force p.

B Denoting by s the position along the beam, we obtain the following boundary-value problem:

(72

\ ZZZ—SZ—'_)\Sin(Q):O with A= 2
do

0(0) = —(¢) =

0(0) = T (0) =0

.

YJ

to determine the angle #(s) that the tangent vector to the beam makes with the vertical axis as a

function of the position s along the beam.
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Linearized problem
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Linearized problem

B The linearized problem “close to # = 0" reads as follows:

¢ 12

d—§+w:o with A = 2

<ds YJ
do

0(0) = —(¢) = 0.

6(0)=(0) =0

B The linearized problem admits for any A in R the trivial solution 8 = 0.

B Given a strictly positive value of A, any linear combination of the two linearly independent
elementary solutions cos(v/As) and sin(v/As), thatis, 6(s) = a cos(v/As) + bsin(v/As), solves

the ODE. To satisfy 6(0) = 0, the coefficient a must vanish. From %2 (¢) = 0, it follows that the

linearized problem has a nontrivial solution if and only if v/ cos(v/A¢) = 0, that is,

2k + 1)%7?
)\:)\k:( Z@)W, dr(s) = sin(\/Ags), k=0,1,...

and every solution @ is a constant multiple of ¢;.
’ \/ VA
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Linearized problem

B Schematic representation of the solution to the linearized problem:

6(0)

funl 9n* 257
402 402 402
€ Forany \in R, the linearized problem admits the trivial solution § = 0.
2 2
& For )\ = (%L}Q) T with k = 0,1, .. ., the linearized problem becomes degenerate and

admits as nontrivial solution any constant multiple of the corresponding ¢ = sin(v/Axs).

ULg, Liége, Belgium MATHO0488 — Lecture 1 6/24



Nonlinear problem
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Nonlinear problem

B Let us consider again our boundary-value problem

( d20 . . D

. @‘F)\Sln((g):O with )\:%,
df

600) = () =0,

For nonlinear boundary-value problems, there is often little hope of finding explicit formulas for
solutions. For this particular nonlinear boundary-value problem, it turns out that we can gain useful
insight into the solutions through a “phase portrait” analysis, as described next.

B This two-dimensional system of first-order ODEs also appears in the study of the pendulum:

52d29+£ in(6) 0 O\
mes — sin(t)mg = |
e I | -
d*6 g :
—> —— 4+ Asin(f) =0 with A== |
dt? () 4 g
B Introducing the auxiliary variable w = g—g, we can write our one-dimensional second-order ODE

equivalently as a two-dimensional system of first-order ODEs:

0 = w,
w' = —Asin(6).
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Nonlinear problem

; ) \ \ \ \ \ N . , / / / , \ \ \

/ y P _ ~ AN N\ N\ AN - _ Y Y Y / p _ ~ AN AN

L P _ - -~ AN N N ~ -~ _ _ Y Y, L > _— ~ ~ N

- - - - ~ ~ AN ~ >~ -— _ _ - _ - o - ~ ~ ~

P S~ N S S~ __ — e — S~ =

e — = -— T S S~~~ — e e e — - S~
T e = ~— T TN TS S e L e = — TS T —

= -~ SN~ S~ S~ - _ - e - = ~_ ~__

For a grid of points in the # — w plane, we represented at each point the derivatives 6’ and w’ as a
vector (6’, w’). By flowing along the vector field thus obtained, we can trace out solutions (6(s), w(s)).
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Nonlinear problem

For a grid of points in the 6 — w plane, we represent at each point the derivatives 6’ and w’ as a vector
(0’,w"). By flowing along the vector field thus obtained, we can trace out trajectories (6(s),w(s)).
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Nonlinear problem

B The boundary conditions in our boundary-value problem imply that we are interested only in
trajectories that begin at s = 0 on the w-axis (because #(0) must vanish) and cross at precisely
s = { the f-axis (because 0’ (¢) = w(¥) must vanish).

B To determine these trajectories, we proceed as follows. We note that the problem is conservative;
specifically, multiplying the ODE with 8’ and integrating, we obtain

1
0’ (0" + Asin(f)) =0 = iwz + A(1 — cos(6)) = constant,

that is, along trajectories, the quantity %wQ + A(1 — cos(6)) is conserved.
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Nonlinear problem

B Along a trajectory that begins on the w-axis and crosses the #-axis at (6,, 0), we thus have
W,

0, o

—w(s)*+A(1—cos(0(s))) = A(1—cos(by)) = Zi \/2)\ (cos((s)) — cos(by)).

B This allows us to determine the distance traveled along a trajectory that begins on the w-axis and
crosses the #-axis at (6, 0):

1 /96 df 7(6,)
V2X Jo  \/cos(8(s)) — cos(0y) VA

Sy —

B For this trajectory to be a solution to our boundary-value problem, it must begin at s = 0 on the
w-axis and cross at precisely s = ¢ the 0-axis:

_ T(0(0)) _ 7(8(0)°
= 7 — A= 2
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Nonlinear problem

B The function 7 has the following form:

7(0¢) 4 |
e
s ég
B We have 7(0) = 5. This can be understood from an analysis of the linearized problem
8// —|_ )\H — (,do
’ — 0(s) = —sin(V \s).
{9(0)0 and 6'(0) = wp. (5) VA (VAs)

/(s4) = Tl
9(8@)—0z8g 2\/X
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Nonlinear problem

B This leads us to the following schematic representation of the nontrivial solutions found so far:

0(0)

€ For small 8 close to the trivial solution & = 0, the behavior of the nontrivial solution curve
obtained for the nonlinear boundary-value problem resembles that obtained for the linearized
problem. For larger 6, the effect of the nonlinearity is to bend the nontrivial solution curve.
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Nonlinear problem

B Of course, to be a solution to the boundary-value problem, the trajectory may also encircle the

origin before it crosses at s = ¢ the #-axis:
w AN w AN w AN

B This leads us to solutions that satisfy
(2k 4+ 1)1(6(¢))
VA Z

{ =
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Nonlinear problem

B This leads us to the following schematic representation of the trivial and nontrivial solutions:

6(0)

-

2 97> 257> A
402 402 402
_ (2k+1)272

€ We can observe that the trivial and nontrivial solution branches intersect at A\, =
with £ = 0, 1, ... We refer to these intersections as bifurcations.

402
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Finite-difference approximation
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Finite-difference approximation

Notion of finite-difference approximation

B Several finite-difference approximations of z—g (5):
slope d_0(3)

slope 2 (5)

slope dp6(s)
slope d1.0(3)

0+ h) — 6(3)
- ,

0 +h) —0G—h)

d.0(s)=
+0(5) oh

d_0(s)= , dof(3)=

B Similar finite-difference approximations can be defined for higher order derivatives, for example,

d*0 0(s — h) —20(3) +6(s+h)
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Finite-difference approximation

Finite-difference method for our boundary-value problem

B Let us consider again our boundary-value problem

B We introduce grid points sg, S1, S2, ...

6" + Asin(f) = 0,
6(0) =6'(¢) = 0.

|

, Sy, as follows:

@ @ @ L 9
S0 S1 S2 Sp—1 Su
< > > —>
h h h
The grid spacing is denoted by h; thus, s; = jhfor j =0,..., pwith u = £/h.

B A finite-difference method is then obtained by computing approximations 6,

values 0(sg), ..., 0(s,) taken by the exact solution at the grid points sg, ...

This corresponds to replacing

0, _2—460,_1+30

(0,1 —20; 4+ 0.1 )

! h2‘7 s + Asin(f;) =0
9 Op—2—40, 1 +30,
(7Y h o

2
Elz_sg(sj) R2

0.

h
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49 (5,,) with
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Finite-difference approximation

Finite-difference method for our boundary-value problem (continued)

B The algebraic problem provided by the aforementioned finite-difference method can be written as

—2 1 i (91 | Sin((91> 0
1 1 -2 1 6 sin(62) 0
n2 - - +A =11
1 —2 1 QM_Q Sin((gu_g) 0
. i 1 — % —2 + %_J\_@M_l_/ \_Sin((gu_l)_/ _O_
K] 0" F(0")

hence, more compactly,
[K10" + A f(6") = 0;

Please note that [K] is the above tridiagonal matrix premultiplied with 1/h2; by contrast, f(0") is
the above vector without premultiplication with .
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Finite-difference approximation

Linearized problem

B Let us consider again the linearized problem
0" + X0 =0,
A(0) = 0'(¢) = 0.

B The application of the aforementioned finite-difference method leads to the algebraic problem

-2 1 [ 0 | [ 0 |
| 1 -2 1 05 0 0
3 A =
1 -2 1 0,2 0,2 0
_ 1—3 —2+3] [Bua]  [0ua] [0
& - A -~ J/ \ s’
[K] eh Qh

hence, more compactly,
[K16" + 20" = 0.

B Forany \in R, the discretized linearized problem admits the trivial solution 0" = 0. For \ equal to
one of the eigenvalues \!! of the eigenproblem —[K]gbh — )\quh, it becomes degenerate and

admits as nontrivial solution any constant multiple of the corresponding eigenvector qbZ.
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Finite-difference approximation

Nonlinear problem

m Foragiven AinR, [K]6" + Af(8™) = 0 can be solved by using the Newton-Raphson method,
an iterative method that constructs a sequence of approximations 08, H}f, 0}2’“, ... 100"
Specifically, given the 2-th approximation H?, the nonlinear algebraic problem is linearized about 9?,

[K)(67 + A87) + A(f(67) + [2]A67) = 0,
to determine the next, (¢ + 1)-th, approximation H?H:
041 = 0] +A0; where ([K]+)[Z])A0; = —([K]0; + \f(6,));
here, [Z] is the diagonal matrix Diag(cos(6;)). If there exist multiple solutions, the choice of the
initial approximation 98 will determine the one to which the Newton-Raphson method will converge.

B [n a computation under “load control,” one repeats the aforementioned procedure for a sequence
of increasing values of A. To “follow” a particular “branch” of nontrivial solutions, one can system-
atically choose as initial approximation to the solution for a subsequent value of \ the final
approximation to the solution obtained for the previous value of \.

B If the aforementioned procedure is carried out for a value of \ slightly larger than one of the
eigenvalues A then one can make the Newton-Raphson converge to a solution on the

corresponding “branch” of nontrivial solutions by using as initial approximation 98 a multiple
¢ qbZ of the corresponding eigenvector qSZ, where ( is an “appropriately” chosen constant.
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Assignment

B As part 1 of 3 of the project, you are invited to implement the aforementioned finite-difference
method and carry out a computation under “load control” that follows the “branch” of nontrivial
solutions associated with the smallest magnitude eigenvalue of the linearized problem.

Please exploit the sparsity structure: sparse, eigs, spdiags, spy, speye,...

To solve linear systems, please do not compute the system-matrix inverse, but use the backslash
operator (help \).

B Please include in your report:

4
\ 4
4

4
\ 4

a figure analogous to the one on Slide 14,
figures that show the solution obtained for several values of A,

a description of how you proceeded to choose the grid spacing h, the number of iterations in
the Newton-Raphson method, the value of , and other parameters,

a description of the steps that you took to make sure that your results are correct,

B [f you need some help, Marco Lucio (marcolucio.cerquaglia@ulg.ac.be), Kavita
(goyalkavita9@gmail.com), and Maarten Arnst (maarten.arnst@ulg.ac.be) are at your disposal.
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