MATH0488 – Stochastic Processes

Stochastically perturbed bifurcation

Part 1 of 3: Buckling of perfect beam

Maarten Arnst, Marco Lucio Cerquaglia, and Kavita Goyal

March 17, 2015

Problem	formulation.	_
	iorriulation.	

Linearized problem.

Nonlinear problem.

Finite-difference approximation.

Assignment.

References.

Problem formulation

We consider the following problem setting:

- Equilibrium: $m (m + dm) p\sin(\theta)ds = 0 \implies -\frac{dm}{ds} p\sin(\theta) = 0.$
- Constitutive equation: $\frac{d\theta}{ds} = \frac{m}{uj}$.
- \diamond At the one end, the rod is fixed; at the other end, it is subjected to a constant vertical force p.
- lacktriangle Denoting by s the position along the beam, we obtain the following boundary-value problem:

$$\begin{cases} \frac{d^2\theta}{ds^2} + \lambda \sin(\theta) = 0 & \text{with} \quad \lambda = \frac{p}{yj}, \\ \theta(0) = \frac{d\theta}{ds}(\ell) = 0 \end{cases}$$

to determine the angle $\theta(s)$ that the tangent vector to the beam makes with the vertical axis as a function of the position s along the beam.

Linearized problem

Linearized problem

The linearized problem "close to $\theta = 0$ " reads as follows:

$$\begin{cases} \frac{d^2\theta}{ds^2} + \lambda\theta = 0 & \text{with} \quad \lambda = \frac{p}{yj}, \\ \theta(0) = \frac{d\theta}{ds}(\ell) = 0. \end{cases}$$

- The linearized problem admits for any λ in \mathbb{R} the trivial solution $\theta = 0$.
- Given a strictly positive value of λ , any linear combination of the two linearly independent elementary solutions $\cos(\sqrt{\lambda}s)$ and $\sin(\sqrt{\lambda}s)$, that is, $\theta(s) = a\cos(\sqrt{\lambda}s) + b\sin(\sqrt{\lambda}s)$, solves the ODE. To satisfy $\theta(0) = 0$, the coefficient a must vanish. From $\frac{d\theta}{ds}(\ell) = 0$, it follows that the linearized problem has a nontrivial solution if and only if $\sqrt{\lambda}\cos(\sqrt{\lambda}\ell) = 0$, that is,

$$\lambda = \lambda_k = \frac{(2k+1)^2 \pi^2}{4\ell^2}, \quad \phi_k(s) = \sin(\sqrt{\lambda_k} s), \quad k = 0, 1, \dots$$

and every solution θ is a constant multiple of ϕ_k .

Linearized problem

Schematic representation of the solution to the linearized problem:

- lacktriangle For any λ in $\mathbb R$, the linearized problem admits the trivial solution heta=0.
- For $\lambda_k = \frac{(2k+1)^2\pi^2}{4\ell^2}$ with $k=0,1,\ldots$, the linearized problem becomes degenerate and admits as nontrivial solution any constant multiple of the corresponding $\phi_k = \sin(\sqrt{\lambda_k}s)$.

Let us consider again our boundary-value problem

$$\begin{cases} \frac{d^2\theta}{ds^2} + \lambda \sin(\theta) = 0 & \text{with} \quad \lambda = \frac{p}{yj}, \\ \theta(0) = \frac{d\theta}{ds}(\ell) = 0. \end{cases}$$

For nonlinear boundary-value problems, there is often little hope of finding explicit formulas for solutions. For this particular nonlinear boundary-value problem, it turns out that we can gain useful insight into the solutions through a "phase portrait" analysis, as described next.

This two-dimensional system of first-order ODEs also appears in the study of the pendulum:

$$m\ell^{2} \frac{d^{2}\theta}{dt^{2}} + \ell \sin(\theta) mg = 0$$

$$\implies \frac{d^{2}\theta}{dt^{2}} + \lambda \sin(\theta) = 0 \quad \text{with} \quad \lambda = \frac{g}{\ell}$$

Introducing the auxiliary variable $\omega=\frac{d\theta}{ds}$, we can write our one-dimensional second-order ODE equivalently as a two-dimensional system of first-order ODEs:

$$\begin{cases} \theta' = \omega, \\ \omega' = -\lambda \sin(\theta). \end{cases}$$

For a grid of points in the $\theta-\omega$ plane, we represented at each point the derivatives θ' and ω' as a vector (θ',ω') . By flowing along the vector field thus obtained, we can trace out solutions $(\theta(s),\omega(s))$.

For a grid of points in the $\theta-\omega$ plane, we represent at each point the derivatives θ' and ω' as a vector (θ',ω') . By flowing along the vector field thus obtained, we can trace out trajectories $(\theta(s),\omega(s))$.

The boundary conditions in our boundary-value problem imply that we are interested only in trajectories that begin at s=0 on the ω -axis (because $\theta(0)$ must vanish) and cross at precisely $s=\ell$ the θ -axis (because $\theta'(\ell)=\omega(\ell)$ must vanish).

To determine these trajectories, we proceed as follows. We note that the problem is conservative; specifically, multiplying the ODE with θ' and integrating, we obtain

$$\theta'(\theta'' + \lambda \sin(\theta)) = 0 \implies \frac{1}{2}\omega^2 + \lambda(1 - \cos(\theta)) = \text{constant},$$

that is, along trajectories, the quantity $\frac{1}{2}\omega^2 + \lambda(1-\cos(\theta))$ is conserved.

Along a trajectory that begins on the ω -axis and crosses the θ -axis at $(\theta_{\ell}, 0)$, we thus have

$$\frac{1}{2}\omega(s)^2 + \lambda \left(1 - \cos(\theta(s))\right) = \lambda \left(1 - \cos(\theta_\ell)\right) \implies \frac{d\theta}{ds}(s) = \omega(s) = \sqrt{2\lambda \left(\cos(\theta(s)) - \cos(\theta_\ell)\right)}.$$

This allows us to determine the distance traveled along a trajectory that begins on the ω -axis and crosses the θ -axis at $(\theta_{\ell}, 0)$:

$$s_{\ell} = \frac{1}{\sqrt{2\lambda}} \int_{0}^{\theta_{\ell}} \frac{d\theta}{\sqrt{\cos(\theta(s)) - \cos(\theta_{\ell})}} \equiv \frac{\tau(\theta_{\ell})}{\sqrt{\lambda}}.$$

For this trajectory to be a solution to our boundary-value problem, it must begin at s=0 on the ω -axis and cross at precisely $s=\ell$ the θ -axis:

$$\ell = \frac{\tau(\theta(\ell))}{\sqrt{\lambda}} \implies \lambda = \frac{\tau(\theta(\ell))^2}{\ell^2}.$$

The function τ has the following form:

We have $\tau(0) = \frac{\pi}{2}$. This can be understood from an analysis of the linearized problem:

$$\begin{cases} \theta'' + \lambda \theta = 0, \\ \theta(0) = 0 \text{ and } \theta'(0) = \omega_0. \end{cases} \implies \theta(s) = \frac{\omega_0}{\sqrt{\lambda}} \sin(\sqrt{\lambda}s).$$

$$\theta'(s_{\ell}) = 0 \implies s_{\ell} = \frac{\pi}{2} \frac{1}{\sqrt{\lambda}}.$$

This leads us to the following schematic representation of the nontrivial solutions found so far:

For small θ close to the trivial solution $\theta=0$, the behavior of the nontrivial solution curve obtained for the nonlinear boundary-value problem resembles that obtained for the linearized problem. For larger θ , the effect of the nonlinearity is to bend the nontrivial solution curve.

Of course, to be a solution to the boundary-value problem, the trajectory may also encircle the origin before it crosses at $s=\ell$ the θ -axis:

This leads us to solutions that satisfy

$$\ell = \frac{(2k+1)\tau(\theta(\ell))}{\sqrt{\lambda}} \implies \lambda = \frac{(2k+1)^2\tau(\theta(\ell))^2}{\ell^2} \quad k = 0, 1, \dots$$

This leads us to the following schematic representation of the trivial and nontrivial solutions:

• We can observe that the trivial and nontrivial solution branches intersect at $\lambda_k = \frac{(2k+1)^2\pi^2}{4\ell^2}$ with $k=0,1,\ldots$ We refer to these intersections as **bifurcations**.

Notion of finite-difference approximation

Several finite-difference approximations of $\frac{d\theta}{ds}(\overline{s})$:

$$d_{+}\theta(\overline{s}) = \frac{\theta(\overline{s}+h) - \theta(\overline{s})}{h}, \quad d_{-}\theta(\overline{s}) = \frac{\theta(\overline{s}) - \theta(\overline{s}-h)}{h}, \quad d_{0}\theta(\overline{s}) = \frac{\theta(\overline{s}+h) - \theta(\overline{s}-h)}{2h}.$$

Similar finite-difference approximations can be defined for higher order derivatives, for example,

$$\frac{d^2\theta}{ds^2}(\overline{s}) \approx d_0^2\theta(\overline{s}) = \frac{\theta(\overline{s}-h) - 2\theta(\overline{s}) + \theta(\overline{s}+h)}{h^2}.$$

Finite-difference method for our boundary-value problem

Let us consider again our boundary-value problem

$$\begin{cases} \theta'' + \lambda \sin(\theta) = 0, \\ \theta(0) = \theta'(\ell) = 0. \end{cases}$$

■ We introduce grid points $s_0, s_1, s_2, \ldots, s_{\mu}$ as follows:

The grid spacing is denoted by h; thus, $s_j = jh$ for $j = 0, \ldots, \mu$ with $\mu = \ell/h$.

A finite-difference method is then obtained by computing approximations $\theta_0, \ldots, \theta_\mu$ of the values $\theta(s_0), \ldots, \theta(s_\mu)$ taken by the exact solution at the grid points s_0, \ldots, s_μ by requiring

$$\begin{cases} \frac{\theta_{j-1} - 2\theta_j + \theta_{j+1}}{h^2} + \lambda \sin(\theta_j) = 0 & \text{for } j = 1, \dots, \mu - 1, \\ \theta_0 = \frac{\theta_{\mu-2} - 4\theta_{\mu-1} + 3\theta_{\mu}}{h} = 0. \end{cases}$$

This corresponds to replacing $\frac{d^2\theta}{ds^2}(s_j)$ with $\frac{\theta_{j-1}-2\theta_j+\theta_{j+1}}{h^2}$ in the ODE and $\frac{d\theta}{ds}(s_\mu)$ with $\frac{\theta_{\mu-2}-4\theta_{\mu-1}+3\theta_\mu}{h}$ in the boundary condition at the edge point $s_\mu=\ell$.

Finite-difference method for our boundary-value problem (continued)

The algebraic problem provided by the aforementioned finite-difference method can be written as

$$\underbrace{\frac{1}{h^2} \begin{bmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 - \frac{1}{3} & -2 + \frac{4}{3} \end{bmatrix}}_{[K]} \underbrace{\begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_{\mu-2} \\ \theta_{\mu-1} \end{bmatrix}}_{\boldsymbol{\theta}^h} + \lambda \underbrace{\begin{bmatrix} \sin(\theta_1) \\ \sin(\theta_2) \\ \vdots \\ \sin(\theta_{\mu-2}) \\ \sin(\theta_{\mu-1}) \end{bmatrix}}_{\boldsymbol{f}(\boldsymbol{\theta}^h)} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix};$$

hence, more compactly,

$$[K]\boldsymbol{\theta}^h + \lambda \boldsymbol{f}(\boldsymbol{\theta}^h) = \mathbf{0};$$

Please note that [K] is the above tridiagonal matrix premultiplied with $1/h^2$; by contrast, $f(\theta^h)$ is the above vector without premultiplication with λ .

Linearized problem

Let us consider again the linearized problem

$$\begin{cases} \theta'' + \lambda \theta = 0, \\ \theta(0) = \theta'(\ell) = 0. \end{cases}$$

The application of the aforementioned finite-difference method leads to the algebraic problem

$$\underbrace{\frac{1}{h^2} \begin{bmatrix} -2 & 1 \\ 1 & -2 & 1 \\ & \ddots & \ddots & \ddots \\ & & 1 & -2 & 1 \\ & & & 1 - \frac{1}{3} & -2 + \frac{4}{3} \end{bmatrix}}_{[K]} \underbrace{\begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_{\mu-2} \\ \theta_{\mu-1} \end{bmatrix}}_{\boldsymbol{\theta}^h} + \lambda \underbrace{\begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_{\mu-2} \\ \theta_{\mu-1} \end{bmatrix}}_{\boldsymbol{\theta}^h} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix};$$

hence, more compactly,

$$[K]\boldsymbol{\theta}^h + \lambda \boldsymbol{\theta}^h = \mathbf{0}.$$

For any λ in \mathbb{R} , the discretized linearized problem admits the trivial solution $\boldsymbol{\theta}^h = \mathbf{0}$. For λ equal to one of the eigenvalues λ_k^h of the eigenproblem $-[K]\boldsymbol{\phi}^h = \lambda_k^h\boldsymbol{\phi}^h$, it becomes degenerate and admits as nontrivial solution any constant multiple of the corresponding eigenvector $\boldsymbol{\phi}_k^h$.

Nonlinear problem

For a given λ in \mathbb{R} , $[K]\theta^h + \lambda f(\theta^h) = 0$ can be solved by using the Newton-Raphson method, an iterative method that constructs a sequence of approximations θ^h_0 , θ^h_1 , θ^h_2 , ... to θ^h . Specifically, given the i-th approximation θ^h_i , the nonlinear algebraic problem is linearized about θ^h_i ,

$$[K](\boldsymbol{\theta}_i^h + \Delta \boldsymbol{\theta}_i^h) + \lambda(\boldsymbol{f}(\boldsymbol{\theta}_i^h) + [Z]\Delta \boldsymbol{\theta}_i^h) = \mathbf{0},$$

to determine the next, (i+1)-th, approximation $\boldsymbol{\theta}_{i+1}^h$:

$$\boldsymbol{\theta}_{i+1}^h = \boldsymbol{\theta}_i^h + \Delta \boldsymbol{\theta}_i^h \quad \text{where} \quad ([K] + \lambda[Z]) \Delta \boldsymbol{\theta}_i^h = -([K] \boldsymbol{\theta}_i^h + \lambda \boldsymbol{f}(\boldsymbol{\theta}_i^h));$$

here, [Z] is the diagonal matrix $\mathrm{Diag}(\cos(\theta_j))$. If there exist multiple solutions, the choice of the initial approximation $\boldsymbol{\theta}_0^h$ will determine the one to which the Newton-Raphson method will converge.

- In a computation under "load control," one repeats the aforementioned procedure for a sequence of increasing values of λ . To "follow" a particular "branch" of nontrivial solutions, one can systematically choose as initial approximation to the solution for a subsequent value of λ the final approximation to the solution obtained for the previous value of λ .
- If the aforementioned procedure is carried out for a value of λ slightly larger than one of the eigenvalues λ_k^h , then one can make the Newton-Raphson converge to a solution on the corresponding "branch" of nontrivial solutions by using as initial approximation θ_0^h a multiple $\zeta \phi_k^h$ of the corresponding eigenvector ϕ_k^h , where ζ is an "appropriately" chosen constant.

As part 1 of 3 of the project, you are invited to implement the aforementioned finite-difference method and carry out a computation under "load control" that follows the "branch" of nontrivial solutions associated with the smallest magnitude eigenvalue of the linearized problem.

Please exploit the sparsity structure: sparse, eigs, spdiags, spy, speye,...

To solve linear systems, please do not compute the system-matrix inverse, but use the backslash operator ($help \ \)$.

- Please include in your report:
 - a figure analogous to the one on Slide 14,
 - lack figures that show the solution obtained for several values of λ ,
 - lack a description of how you proceeded to choose the grid spacing h, the number of iterations in the Newton-Raphson method, the value of ζ , and other parameters,
 - a description of the steps that you took to make sure that your results are correct,
 - **\ldot** ...
- If you need some help, Marco Lucio (marcolucio.cerquaglia@ulg.ac.be), Kavita (goyalkavita9@gmail.com), and Maarten Arnst (maarten.arnst@ulg.ac.be) are at your disposal.

References consulted to prepare this lecture

- S.-N. Chow and H. Hale. Methods of bifurcation theory. Springer, 1982.
- W. Day, A. Karkowski, and G. Papanicolaou. Buckling of randomly imperfect beams. *Acta Applicandae Mathematicae*, 17:269–186, 1989.
- H. Kielhöfer. Bifurcation theory: An introduction with applications to partial differential equations. Springer, 2012.
- S. Krantz and H. Parks. *The implicit function theorem*. Springer, 2013.
- R. Leveque. Finite difference methods for ordinary and partial differential equations. SIAM, 2007.
- S. Strogatz. *Nonlinear dynamics and chaos*. Perseus Books, 1994.
- W. Wagner and P. Wriggers. A simple method for the calculation of post critical branches. *Engineering Computations*, 5:103–109, 1988.