MATH0488 - Stochastic Processes

# Stochastically perturbed bifurcation 

Part 1 of 3: Buckling of perfect beam

Maarten Arnst, Marco Lucio Cerquaglia, and Kavita Goyal

March 17, 2015

## Outline

- Problem formulation.
- Linearized problem.
- Nonlinear problem.
- Finite-difference approximation.
- Assignment.
- References.


## Problem formulation

- We consider the following problem setting:


- Equilibrium: $m-(m+d m)-p \sin (\theta) d s=0 \Longrightarrow-\frac{d m}{d s}-p \sin (\theta)=0$.
- Constitutive equation: $\frac{d \theta}{d s}=\frac{m}{y j}$.
- At the one end, the rod is fixed; at the other end, it is subjected to a constant vertical force $p$.

■ Denoting by $s$ the position along the beam, we obtain the following boundary-value problem:

$$
\left\{\begin{array}{l}
\frac{d^{2} \theta}{d s^{2}}+\lambda \sin (\theta)=0 \quad \text { with } \quad \lambda=\frac{p}{y j} \\
\theta(0)=\frac{d \theta}{d s}(\ell)=0
\end{array}\right.
$$

to determine the angle $\theta(s)$ that the tangent vector to the beam makes with the vertical axis as a function of the position $s$ along the beam.

## Linearized problem

## Linearized problem

- The linearized problem "close to $\theta=0$ " reads as follows:

$$
\left\{\begin{array}{l}
\frac{d^{2} \theta}{d s^{2}}+\lambda \theta=0 \quad \text { with } \quad \lambda=\frac{p}{y j} \\
\theta(0)=\frac{d \theta}{d s}(\ell)=0
\end{array}\right.
$$

- The linearized problem admits for any $\lambda$ in $\mathbb{R}$ the trivial solution $\theta=0$.
- Given a strictly positive value of $\lambda$, any linear combination of the two linearly independent elementary solutions $\cos (\sqrt{\lambda} s)$ and $\sin (\sqrt{\lambda} s)$, that is, $\theta(s)=a \cos (\sqrt{\lambda} s)+b \sin (\sqrt{\lambda} s)$, solves the ODE. To satisfy $\theta(0)=0$, the coefficient $a$ must vanish. From $\frac{d \theta}{d s}(\ell)=0$, it follows that the linearized problem has a nontrivial solution if and only if $\sqrt{\lambda} \cos (\sqrt{\lambda} \ell)=0$, that is,

$$
\lambda=\lambda_{k}=\frac{(2 k+1)^{2} \pi^{2}}{4 \ell^{2}}, \quad \phi_{k}(s)=\sin \left(\sqrt{\lambda_{k}} s\right), \quad k=0,1, \ldots
$$

and every solution $\theta$ is a constant multiple of $\phi_{k}$.


## Linearized problem

■ Schematic representation of the solution to the linearized problem:


- For any $\lambda$ in $\mathbb{R}$, the linearized problem admits the trivial solution $\theta=0$.
- For $\lambda_{k}=\frac{(2 k+1)^{2} \pi^{2}}{4 \ell^{2}}$ with $k=0,1, \ldots$, the linearized problem becomes degenerate and admits as nontrivial solution any constant multiple of the corresponding $\phi_{k}=\sin \left(\sqrt{\lambda_{k}} s\right)$.


## Nonlinear problem

## Nonlinear problem

- Let us consider again our boundary-value problem

$$
\left\{\begin{array}{l}
\frac{d^{2} \theta}{d s^{2}}+\lambda \sin (\theta)=0 \quad \text { with } \quad \lambda=\frac{p}{y j} \\
\theta(0)=\frac{d \theta}{d s}(\ell)=0
\end{array}\right.
$$

For nonlinear boundary-value problems, there is often little hope of finding explicit formulas for solutions. For this particular nonlinear boundary-value problem, it turns out that we can gain useful insight into the solutions through a "phase portrait" analysis, as described next.

- This two-dimensional system of first-order ODEs also appears in the study of the pendulum:

$$
\begin{aligned}
& m \ell^{2} \frac{d^{2} \theta}{d t^{2}}+\ell \sin (\theta) m g=0 \\
& \quad \Longrightarrow \frac{d^{2} \theta}{d t^{2}}+\lambda \sin (\theta)=0 \quad \text { with } \quad \lambda=\frac{g}{\ell}
\end{aligned}
$$



- Introducing the auxiliary variable $\omega=\frac{d \theta}{d s}$, we can write our one-dimensional second-order ODE equivalently as a two-dimensional system of first-order ODEs:

$$
\left\{\begin{array}{l}
\theta^{\prime}=\omega \\
\omega^{\prime}=-\lambda \sin (\theta)
\end{array}\right.
$$

## Nonlinear problem



For a grid of points in the $\theta-\omega$ plane, we represented at each point the derivatives $\theta^{\prime}$ and $\omega^{\prime}$ as a vector $\left(\theta^{\prime}, \omega^{\prime}\right)$. By flowing along the vector field thus obtained, we can trace out solutions $(\theta(s), \omega(s))$.

## Nonlinear problem



For a grid of points in the $\theta-\omega$ plane, we represent at each point the derivatives $\theta^{\prime}$ and $\omega^{\prime}$ as a vector $\left(\theta^{\prime}, \omega^{\prime}\right)$. By flowing along the vector field thus obtained, we can trace out trajectories $(\theta(s), \omega(s))$.

## Nonlinear problem

- The boundary conditions in our boundary-value problem imply that we are interested only in trajectories that begin at $s=0$ on the $\omega$-axis (because $\theta(0)$ must vanish) and cross at precisely $s=\ell$ the $\theta$-axis (because $\theta^{\prime}(\ell)=\omega(\ell)$ must vanish).


■ To determine these trajectories, we proceed as follows. We note that the problem is conservative; specifically, multiplying the ODE with $\theta^{\prime}$ and integrating, we obtain

$$
\theta^{\prime}\left(\theta^{\prime \prime}+\lambda \sin (\theta)\right)=0 \Longrightarrow \frac{1}{2} \omega^{2}+\lambda(1-\cos (\theta))=\text { constant },
$$

that is, along trajectories, the quantity $\frac{1}{2} \omega^{2}+\lambda(1-\cos (\theta))$ is conserved.

## Nonlinear problem

- Along a trajectory that begins on the $\omega$-axis and crosses the $\theta$-axis at $\left(\theta_{\ell}, 0\right)$, we thus have


$$
\frac{1}{2} \omega(s)^{2}+\lambda(1-\cos (\theta(s)))=\lambda\left(1-\cos \left(\theta_{\ell}\right)\right) \Longrightarrow \frac{d \theta}{d s}(s)=\omega(s)=\sqrt{2 \lambda\left(\cos (\theta(s))-\cos \left(\theta_{\ell}\right)\right)}
$$

$\square$ This allows us to determine the distance traveled along a trajectory that begins on the $\omega$-axis and crosses the $\theta$-axis at $\left(\theta_{\ell}, 0\right)$ :

$$
s_{\ell}=\frac{1}{\sqrt{2 \lambda}} \int_{0}^{\theta_{\ell}} \frac{d \theta}{\sqrt{\cos (\theta(s))-\cos \left(\theta_{\ell}\right)}} \equiv \frac{\tau\left(\theta_{\ell}\right)}{\sqrt{\lambda}}
$$

- For this trajectory to be a solution to our boundary-value problem, it must begin at $s=0$ on the $\omega$-axis and cross at precisely $s=\ell$ the $\theta$-axis:

$$
\ell=\frac{\tau(\theta(\ell))}{\sqrt{\lambda}} \Longrightarrow \lambda=\frac{\tau(\theta(\ell))^{2}}{\ell^{2}}
$$

## Nonlinear problem

- The function $\tau$ has the following form:

- We have $\tau(0)=\frac{\pi}{2}$. This can be understood from an analysis of the linearized problem:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\theta^{\prime \prime}+\lambda \theta=0, \\
\theta(0)=0 \text { and } \theta^{\prime}(0)=\omega_{0} .
\end{array} \Longrightarrow \theta(s)=\frac{\omega_{0}}{\sqrt{\lambda}} \sin (\sqrt{\lambda} s) .\right. \\
& \theta^{\prime}\left(s_{\ell}\right)=0 \Longrightarrow s_{\ell}=\frac{\pi}{2} \frac{1}{\sqrt{\lambda}} .
\end{aligned}
$$

## Nonlinear problem

- This leads us to the following schematic representation of the nontrivial solutions found so far:

- For small $\theta$ close to the trivial solution $\theta=0$, the behavior of the nontrivial solution curve obtained for the nonlinear boundary-value problem resembles that obtained for the linearized problem. For larger $\theta$, the effect of the nonlinearity is to bend the nontrivial solution curve.


## Nonlinear problem

- Of course, to be a solution to the boundary-value problem, the trajectory may also encircle the origin before it crosses at $s=\ell$ the $\theta$-axis:



- This leads us to solutions that satisfy

$$
\ell=\frac{(2 k+1) \tau(\theta(\ell))}{\sqrt{\lambda}} \Longrightarrow \lambda=\frac{(2 k+1)^{2} \tau(\theta(\ell))^{2}}{\ell^{2}} \quad k=0,1, \ldots
$$

## Nonlinear problem

- This leads us to the following schematic representation of the trivial and nontrivial solutions:

- We can observe that the trivial and nontrivial solution branches intersect at $\lambda_{k}=\frac{(2 k+1)^{2} \pi^{2}}{4 \ell^{2}}$ with $k=0,1, \ldots$ We refer to these intersections as bifurcations.

Finite-difference approximation

## Finite-difference approximation

## Notion of finite-difference approximation

- Several finite-difference approximations of $\frac{d \theta}{d s}(\bar{s})$ :


$$
d_{+} \theta(\bar{s})=\frac{\theta(\bar{s}+h)-\theta(\bar{s})}{h}, \quad d_{-} \theta(\bar{s})=\frac{\theta(\bar{s})-\theta(\bar{s}-h)}{h}, \quad d_{0} \theta(\bar{s})=\frac{\theta(\bar{s}+h)-\theta(\bar{s}-h)}{2 h} .
$$

- Similar finite-difference approximations can be defined for higher order derivatives, for example,

$$
\frac{d^{2} \theta}{d s^{2}}(\bar{s}) \approx d_{0}^{2} \theta(\bar{s})=\frac{\theta(\bar{s}-h)-2 \theta(\bar{s})+\theta(\bar{s}+h)}{h^{2}}
$$

## Finite-difference approximation

## Finite-difference method for our boundary-value problem

- Let us consider again our boundary-value problem

$$
\left\{\begin{array}{l}
\theta^{\prime \prime}+\lambda \sin (\theta)=0 \\
\theta(0)=\theta^{\prime}(\ell)=0
\end{array}\right.
$$

- We introduce grid points $s_{0}, s_{1}, s_{2}, \ldots, s_{\mu}$ as follows:


The grid spacing is denoted by $h$; thus, $s_{j}=j h$ for $j=0, \ldots, \mu$ with $\mu=\ell / h$.

- A finite-difference method is then obtained by computing approximations $\theta_{0}, \ldots, \theta_{\mu}$ of the values $\theta\left(s_{0}\right), \ldots, \theta\left(s_{\mu}\right)$ taken by the exact solution at the grid points $s_{0}, \ldots, s_{\mu}$ by requiring

$$
\left\{\begin{array}{l}
\frac{\theta_{j-1}-2 \theta_{j}+\theta_{j+1}}{h^{2}}+\lambda \sin \left(\theta_{j}\right)=0 \quad \text { for } j=1, \ldots, \mu-1 \\
\theta_{0}=\frac{\theta_{\mu-2}-4 \theta_{\mu-1}+3 \theta_{\mu}}{h}=0
\end{array}\right.
$$

This corresponds to replacing $\frac{d^{2} \theta}{d s^{2}}\left(s_{j}\right)$ with $\frac{\theta_{j-1}-2 \theta_{j}+\theta_{j+1}}{h^{2}}$ in the ODE and $\frac{d \theta}{d s}\left(s_{\mu}\right)$ with $\frac{\theta_{\mu-2}-4 \theta_{\mu-1}+3 \theta_{\mu}}{h}$ in the boundary condition at the edge point $s_{\mu}=\ell$.

## Finite-difference approximation

Finite-difference method for our boundary-value problem (continued)

- The algebraic problem provided by the aforementioned finite-difference method can be written as

$$
\underbrace{\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-2 & 1 & & & \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
& & & 1-\frac{1}{3} & -2+\frac{4}{3}
\end{array}\right]}_{[K]} \underbrace{\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{\mu-2} \\
\theta_{\mu-1}
\end{array}\right]}_{\boldsymbol{\theta}^{h}}+\lambda \underbrace{\left[\begin{array}{c}
\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{2}\right) \\
\vdots \\
\sin \left(\theta_{\mu-2}\right) \\
\sin \left(\theta_{\mu-1}\right)
\end{array}\right]}_{\boldsymbol{f}\left(\boldsymbol{\theta}^{h}\right)}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

hence, more compactly,

$$
[K] \boldsymbol{\theta}^{h}+\lambda \boldsymbol{f}\left(\boldsymbol{\theta}^{h}\right)=\mathbf{0} \text {; }
$$

Please note that $[K]$ is the above tridiagonal matrix premultiplied with $1 / h^{2}$; by contrast, $\boldsymbol{f}\left(\boldsymbol{\theta}^{h}\right)$ is the above vector without premultiplication with $\lambda$.

## Finite-difference approximation

## Linearized problem

- Let us consider again the linearized problem

$$
\left\{\begin{array}{l}
\theta^{\prime \prime}+\lambda \theta=0 \\
\theta(0)=\theta^{\prime}(\ell)=0
\end{array}\right.
$$

- The application of the aforementioned finite-difference method leads to the algebraic problem

$$
\underbrace{\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-2 & 1 & & & \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
& & & 1-\frac{1}{3} & -2+\frac{4}{3}
\end{array}\right]}_{[K]} \underbrace{\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{\mu-2} \\
\theta_{\mu-1}
\end{array}\right]}_{\boldsymbol{\theta}^{h}}+\lambda \underbrace{\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{\mu-2} \\
\theta_{\mu-1}
\end{array}\right]}_{\boldsymbol{\theta}^{h}}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] ;
$$

hence, more compactly,

$$
[K] \boldsymbol{\theta}^{h}+\lambda \boldsymbol{\theta}^{h}=\mathbf{0}
$$

- For any $\lambda$ in $\mathbb{R}$, the discretized linearized problem admits the trivial solution $\boldsymbol{\theta}^{h}=\mathbf{0}$. For $\lambda$ equal to one of the eigenvalues $\lambda_{k}^{h}$ of the eigenproblem $-[K] \phi^{h}=\lambda_{k}^{h} \phi^{h}$, it becomes degenerate and admits as nontrivial solution any constant multiple of the corresponding eigenvector $\phi_{k}^{h}$.


## Finite-difference approximation

## Nonlinear problem

■ For a given $\lambda$ in $\mathbb{R},[K] \boldsymbol{\theta}^{h}+\lambda \boldsymbol{f}\left(\boldsymbol{\theta}^{h}\right)=\mathbf{0}$ can be solved by using the Newton-Raphson method, an iterative method that constructs a sequence of approximations $\boldsymbol{\theta}_{0}^{h}, \boldsymbol{\theta}_{1}^{h}, \boldsymbol{\theta}_{2}^{h}, \ldots$ to $\boldsymbol{\theta}^{h}$.
Specifically, given the $i$-th approximation $\boldsymbol{\theta}_{i}^{h}$, the nonlinear algebraic problem is linearized about $\boldsymbol{\theta}_{i}^{h}$,

$$
[K]\left(\boldsymbol{\theta}_{i}^{h}+\Delta \boldsymbol{\theta}_{i}^{h}\right)+\lambda\left(\boldsymbol{f}\left(\boldsymbol{\theta}_{i}^{h}\right)+[Z] \Delta \boldsymbol{\theta}_{i}^{h}\right)=\mathbf{0}
$$

to determine the next, $(i+1)$-th, approximation $\boldsymbol{\theta}_{i+1}^{h}$ :

$$
\boldsymbol{\theta}_{i+1}^{h}=\boldsymbol{\theta}_{i}^{h}+\Delta \boldsymbol{\theta}_{i}^{h} \quad \text { where } \quad([K]+\lambda[Z]) \Delta \boldsymbol{\theta}_{i}^{h}=-\left([K] \boldsymbol{\theta}_{i}^{h}+\lambda \boldsymbol{f}\left(\boldsymbol{\theta}_{i}^{h}\right)\right) ;
$$

here, $[Z]$ is the diagonal matrix $\operatorname{Diag}\left(\cos \left(\theta_{j}\right)\right)$. If there exist multiple solutions, the choice of the initial approximation $\boldsymbol{\theta}_{0}^{h}$ will determine the one to which the Newton-Raphson method will converge.

■ In a computation under "load control," one repeats the aforementioned procedure for a sequence of increasing values of $\lambda$. To "follow" a particular "branch" of nontrivial solutions, one can systematically choose as initial approximation to the solution for a subsequent value of $\lambda$ the final approximation to the solution obtained for the previous value of $\lambda$.

- If the aforementioned procedure is carried out for a value of $\lambda$ slightly larger than one of the eigenvalues $\lambda_{k}^{h}$, then one can make the Newton-Raphson converge to a solution on the corresponding "branch" of nontrivial solutions by using as initial approximation $\theta_{0}^{h}$ a multiple $\zeta \phi_{k}^{h}$ of the corresponding eigenvector $\phi_{k}^{h}$, where $\zeta$ is an "appropriately" chosen constant.


## Assignment

- As part 1 of 3 of the project, you are invited to implement the aforementioned finite-difference method and carry out a computation under "load control" that follows the "branch" of nontrivial solutions associated with the smallest magnitude eigenvalue of the linearized problem.

Please exploit the sparsity structure: sparse, eigs, spdiags, spy, speye,...
To solve linear systems, please do not compute the system-matrix inverse, but use the backslash operator (help <br>).

- Please include in your report:
- a figure analogous to the one on Slide 14,
- figures that show the solution obtained for several values of $\lambda$,
- a description of how you proceeded to choose the grid spacing $h$, the number of iterations in the Newton-Raphson method, the value of $\zeta$, and other parameters,
- a description of the steps that you took to make sure that your results are correct,

■ If you need some help, Marco Lucio (marcolucio.cerquaglia@ulg.ac.be), Kavita (goyalkavita9@gmail.com), and Maarten Arnst (maarten.arnst@ulg.ac.be) are at your disposal.

## References

## References consulted to prepare this lecture

- S.-N. Chow and H. Hale. Methods of bifurcation theory. Springer, 1982.
- W. Day, A. Karkowski, and G. Papanicolaou. Buckling of randomly imperfect beams. Acta Applicandae Mathematicae, 17:269-186, 1989.
- H. Kielhöfer. Bifurcation theory: An introduction with applications to partial differential equations. Springer, 2012.
- S. Krantz and H. Parks. The implicit function theorem. Springer, 2013.
- R. Leveque. Finite difference methods for ordinary and partial differential equations. SIAM, 2007.
- S. Strogatz. Nonlinear dynamics and chaos. Perseus Books, 1994.
- W. Wagner and P. Wriggers. A simple method for the calculation of post critical branches. Engineering Computations, 5:103-109, 1988.

