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VP22, encoded by the UL49 gene of Marek’s disease virus (MDV), is indispensable for virus cell-to-cell
spreading. We show herein that MDV UL49 can be functionally replaced with avian and human viral orthologs.
Replacement of MDV VP22 with that of avian gallid herpesvirus 3 or herpesvirus of turkey, whose residue
identity with MDV is close to 60%, resulted in 73 and 131% changes in viral spreading, respectively. In contrast,
VP22 replacement with human herpes simplex virus type 1 resulted in 14% plaque formation. Therefore,
heterologous avian and human VP22 proteins share sufficient structural homology to support MDV cell-to-cell
spreading, albeit with different efficiencies.

UL49 gene-encoded VP22 is specific to alphaherpesviruses.
This 249- to 304-amino-acid protein is a major constituent of
the virus tegument layer. UL49 functional requirements seem
to vary from one virus to another and depending on the host
cell. In pseudorabies virus, herpes simplex virus type 1 (HSV-
1), and bovine herpesvirus type 1 (BoHV-1), UL49 appears to
be not essential for viral replication in cell culture (2, 6–8, 11).
In HSV-1 and BoHV-1, however, deletion of UL49 impairs
virus replication, especially in MDBK cells (7, 11). In HSV-1,
the absence of VP22 is associated with (i) a decrease in the
incorporation of several HSV-1 proteins into virions, (ii) a
toxic effect probably due to the uncontrolled RNase activity

encoded by UL41, and (iii) a decrease in extracellular particle
accumulation (6, 7, 15). UL49 has been shown to be absolutely
necessary for the replication of Marek’s disease virus (MDV)
and varicella-zoster virus in cell culture (5, 16). Despite these
differences between alphaherpesviruses, previous amino acid
alignments of VP22 unveiled the presence of a conserved cen-
tral domain suggestive of a conserved function (4, 12, 13).
Herein, we tested whether other alphaherpesvirus UL49
genes, either from the same Mardivirus genus or from a
more phylogenetically distant human virus, could replace
MDV’s UL49 gene by cis complementation in an MDV
genomic background.
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FIG. 1. Schematic representation of several avian and human VP22 proteins and their percent homologies with MDV VP22. The MDV VP22
polypeptide sequence was aligned pairwise with each ortholog by using Bestfit (GCG package; Accelerys). Grey boxes represent the conserved core
of VP22. The percent homologies (amino acid [AA] identities with MDV VP22) were calculated for (i) the conserved core region (written in the
boxes) and for (ii) the entire VP22 protein, except for varicella-zoster virus (VZV) and HSV-1, which exhibited low levels of similarity outside the
conserved area (see the supplemental material). NA, not appropriate.
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FIG. 2. Construction and cell-to-cell spreading of the recombinant MDVs containing EGFP-tagged UL49 genes derived from three Mardivirus
species. (A) Schematic representation of the three shuttle plasmids used for homologous recombination by cotransfection in CESC with the
Bac20delUL49 DNA bacmid. (B) Picture of a plaque (one for each virus) with EGFP fluorescence. (C) Analysis of EGFPVP22 protein expression
by immunoblotting revealed with a rabbit anti-GFP antibody. Mock, noninfected cells. (D) Plaques size comparison after plaque staining. Fifty
plaques were analyzed with the cell observer system (Zeiss, Göttingen, Germany) on the red channel, and plaque size was measured with the
Axiovision software. Statistical analysis (analysis of variance) showed a significant difference among the three viruses (P � 10�3). The ratio between
the average plaque area for each virus and that of recEGFPMDV is given, as well as the P values (Student’s t test).

VOL. 82, 2008 NOTES 9279

 by on F
ebruary 21, 2010 

jvi.asm
.org

D
ow

nloaded from
 

http://jvi.asm.org


Efficient cis complementation of MDV cell-to-cell spreading
with UL49 genes from other mardiviruses. The homologies
(percent amino acid identities) between MDV VP22 and its
orthologs from the two other Mardivirus species, herpesvirus of
turkey (HVT) and gallid herpesvirus 3 (GaHV-3), are 56 and
59%, respectively (Bestfit software; Fig. 1). This percent ho-
mology was even over 60% in the core region. To assess the
ability of the UL49 genes from HVT and GaHV-3 to cis com-
plement the MDV genome lacking UL49, we generated re-
combinant viruses by homologous recombination in chicken
embryonic skin cells (CESC). For this purpose, we cotrans-
fected the nonreplicative Bac20delUL49 clone (MDV lacking
UL49) with the p48-50 shuttle plasmid containing the UL49
ortholog in its MDV genetic environment as previously de-
scribed (3). As no antibody was available to detect either HVT
or GaHV-3 VP22, both the HVT and GaHV-3 UL49 orthologs
were tagged with enhanced green fluorescent protein (EGFP)
at the 3� end of the construct (Fig. 2A). After two blind pas-
sages of the cotransfected cells on CESC, replicative viruses
designated recEGFPHVT and recEGFPGaHV-3 were ob-
tained with both UL49 orthologs (Table 1). Expression of the
HVT or the GaHV-3 EGFPVP22 protein was monitored on
infected cells by the green fluorescence (Fig. 2B) and by im-
munoblotting with a rabbit anti-EGFP antibody as previously
described (3) (Fig. 2C). The apparent molecular masses, 53 kDa
for GaHV-3 and 57 kDa for HVT, closely matched the predicted
sizes. Moreover, sequencing of the PCR products obtained with
primers car4 and car6 (Fig. 2A shows the position) on extracted
viral DNA showed correct recombinations and sequences (not
shown). To estimate the functional efficiencies of the HVT and
GaHV-3 VP22 proteins, the cell-to-cell spreading of recombinant
viruses recEGFPHVT and recEGFPGaHV-3 was compared to
that of the previously described virus MDVEGFPVP22 (3), re-
named herein recEGFPMDV. To this aim, viral plaques obtained
after infection of CESC for 4 days were fixed and stained for
MDV antigens VP5, ICP4, and gB as already described (1).
Plaque size was determined by measuring 50 plaques after fluo-
rescent red staining and image analysis with the axiovision soft-
ware (Zeiss, Göttingen, Germany). There were significant differ-
ences in plaque size among the three viruses (P � 10�3 by analysis
of variance after square root transformation) (Fig. 2D), showing

a difference in the efficacy of cell-to-cell spreading. Interestingly,
while GaHV-3 VP22 led to a 1.4-fold decrease in plaque size,
HVT VP22 increased plaque size by 1.4-fold, as measured in two
independent experiments.

Substantial cis complementation of MDV cell-to-cell spread-
ing with the divergent human HSV-1 UL49 gene. We next
assessed whether avian MDV VP22 could be replaced with
VP22 from a distant genus. We chose herein to test HSV-1
VP22 because it is very divergent from MDV VP22 (only 41%
homology in the core region) and has been described as not
mandatory for HSV-1 cell-to-cell spreading. We constructed
two recombinant MDV strains by homologous recombina-
tion with the HSV-1 UL49 gene, one with and one without
a 5� EGFP tag sequence (EGFPHSV and HSV, respec-
tively). The procedure we used was two-step red recombi-
nation in Escherichia coli as described by Tischer et al. (17).
For the first recombination step, we constructed the p48-50
kana IsceI “en passant” plasmids as schematically repre-
sented in Fig. 3 (for details, see the supplemental material).
The first recombination was obtained after the transforma-
tion of EL250 bacteria containing the Bac20 bacmid with
either the 2,911-bp or the 3,634-bp XmnI/HpaI restriction
fragment from the HSV or EGFPHSV en passant plasmid,
respectively. After the second recombination step, the mu-
tant bacmids were verified by sequencing between the
XmnI/HpaI restriction sites. The bacmids recHSV and re-
cEGFPHSV were next transfected into CESC by the cal-
cium phosphate method. For the recHSV bacmid, a viral
progeny was obtained after one passage, demonstrating suc-
cessful cis complementation. Expression of the heterologous
VP22 protein was verified by fluorescence on infected cells
and by immunoblotting with AGVO31, an anti-HSV-1 poly-
clonal antibody (9) (Fig. 3B). The cell-to-cell spreading ef-
ficacy of the recHSV virus, evaluated by measuring plaque
size in three independent experiments, was reduced by 6.25-
to 8.25-fold compared to that of parental Bac20. However,
even though the spreading of this virus was limited, it was
still able to propagate to neighboring cells, leading to small
plaques, in contrast to parental Bac20 lacking UL49
(Bac20delUL49) leading only to single cells expressing late
viral antigens (5). For the recHSV strain, the sequence
integrity of MDV UL41 was verified to ensure that compen-
sation did not occur elsewhere, as was previously reported
for replicative UL49-null HSV-1 (15).

No replicative virus could be obtained after the transfection
of the recEGFPHSV bacmid despite several passages. How-
ever, an EGFP signal was observed in single cells after trans-
fection, indicating that the fusion protein is well expressed
but the signal is lost after a few passages. Moreover, this
bacmid was readily rescued after cotransfection into CESC
with the p48-50 StuNhe plasmid containing MDV UL49.
The rescued virus produced plaques similar in size to those
of Bac20 (not shown), showing that the recEGFPHSV rep-
lication defect was due not to an unexpected mutation else-
where in the genome but to the HSV EGFPUL49 gene
insertion itself. Therefore, fusing EGFP to the 3� portion of
HSV UL49 completely abrogated HSV-1 VP22 residual bi-
ological activity in this context.

This study aimed to evaluate whether heterologous UL49
could cis complement an MDV UL49-null phenotype. Our

TABLE 1. Characteristics of the MDV genome cis complemented
with several avian and human UL49 open reading frames

ORFa inserted at
MDV UL49 position

Homologous
recombination in CESC

with Bac20�UL49

Homologous
recombination in
E. coli with Bac20

Progeny
% Cell-to-cell

spreading
efficiencyb

Progeny
% Cell-to-cell

spreading
efficiencyc

None/Kanr No 0 No 0
MDV UL49 Yes 250 Yes 100
MDV EGFPUL49 Yes 100 Yes (NSd) 49 (NS)
GaHV-3 EGFPUL49 Yes 73 NDe ND
HVT EGFPUL49 Yes 131 ND ND
HSV-1 UL49 ND ND Yes 14
HSV-1 EGFPUL49 ND ND No 0

a ORF, open reading frame.
b Versus recEGFPMDV.
c Versus Bac20.
d NS, not shown.
e ND, not done.
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study brings the first evidence for a structural/functional con-
servation among four VP22 proteins from different avian and
human genuses. Although VP22 functional homologies within
highly homologous mardiviruses were not surprising, the in-
creased plaque formation observed after the introduction of
HVT VP22 points at the potential emergence of more patho-
genic MDV strains. These findings are reminiscent of lethal
mutations affecting the gB gene in pseudorabies virus that were
fully trans complemented with BoHV-1 gB, which shares 63%
amino acid identity with pseudorabies gB (10). In the present
study, the functional complementation of the MDV UL49-null
phenotype provided by HSV VP22 was more striking because
the two proteins are very divergent. This suggests that protein-

protein interactions required for MDV cell-to-cell spreading
and involving VP22 may then be partially preserved among
VP22 orthologs. A recent study supporting this hypothesis has
shown functional proteins interactions between UL34/UL31
heterologous pairs within the Betaherpesvirus subfamily (14).
Lastly, the present study confirms that MDV can be a useful
and valuable model for studying various aspects of VP22 func-
tion, as well as identifying alphaherpesvirus proteins involved
in cell-to-cell spreading.

We thank D. Naslain for technical assistance. We also thank K.
Venugopal for the gift of GaHV-3 HPRS-24 viral DNA and G. Elliott
for providing the HSV-1 UL49 gene and the AGV031 antibody (anti-

FIG. 3. Construction and cell-to-cell spreading of recombinant MDV containing the HSV-1 UL49 gene. (A) Schematic representation of the
two en passant plasmids constructed and used for the first step of recombination in E. coli. (B) Expression of HSV-1 VP22 in recHSV-infected
CESC analyzed by fluorescence and immunoblotting. CTLHSV corresponds to CESC transfected with an HSV-1 VP22 expression vector.
(C) Plaque size comparisons and plaque pictures viewed on the red channel.
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 2 

Table 1. Primers used in this study. 3 

Primers Sequence (5’-3’) Description 

StuIEGFP5 aAGGCCTatggtgagcaagggcgaggag
c 

For amplification in 5’ of fusion EGFP gene and cloning 
in StuI site (in upper case) 

3REGFPStuI ccAGGCCTcttgtacagctcgtccatgcc For amplification in 3' of EGFP sequence and cloning in 
StuI site (upper case) 

HPRS49_5FScaI ggAGTACTcattgggagattcggatagacg 
For amplification in 5’ of HPRS24 GaHV3 UL49 gene 
with underlined mutated ATG and cloning in ScaI site 
(upper case) of pEGFP-C3 

HPRS49_3R ggttcgaactattcactctcgctactatag For amplification in 3’ of HPRS24 GaHV3 UL49 gene 
and cloning in pEGFP-C3 

HPRS49_3RNheI ggGCTAGCctattcactctcgctactatag For amplification in 3’ of HPRS24 GaHV3 UL49 gene 
and cloning in NheI site (upper case) of p48-50 StuNhe 

   

HVT49_5FBglII ggAGATCTttgggagacagcgaagggcg 
For amplification in 5’ of HVT UL49 gene with underlined 
mutated ATG and cloning in BglII site (upper case) of 
pEGFP-C1 

HVT49_3RXbaI ggtctagactactcactatcgctggttcgt For amplification in 3’ of HVT UL49 gene and cloning in 
pEGFP-C1 

HVT49_3RNheI ggGCTAGCctactcactatcgctggtt For amplification in 3’ of HVT UL49 gene and cloning in 
NheI site (upper case) of p48-50 StuNhe 

5FUL49HSV1StuI aaAGGCCTatgacctctcgccgctccgt For amplification in 5' of HSV-1 UL49 gene and cloning 
in StuI site (upper case) of p48-50 StuNhe 

3RUL49HSV1NheI ggGCTAGCtcactcgacgggccgtctgg For amplification in 3’ of HSV-1 UL49 gene and cloning 
in NheI site (upper case) of p48-50 StuNhe 

NheHSV5Fkana 
cgaggcctgataactaagatataatattaaac
agtaagatatgaacaagtgcTAGGGATA
ACAGGGTAATCGATTT 

Nhe3Rkana aataggcctCATATGCTAGCCAGTG
TTACAACCAATTAACC 

For "en passant mutagenesis and construction of the 
p48-50 UL49 kana IsceI plasmids. Sequence of the last 
44bp in 3' of HSV1 UL49 is underlined (corresponding to 
the red boxes in FIG. 3) , NheI sites used for the 
construction of "en passant" plasmids are in bold, 
complementary sequences to I-SceI site in 
NheHSV5Fkan and to kanamycin gene are in upper case 

car4 ggatgtctataaaagacgac 

car6 tgtttaaagaggagtggtaa 

Previously described primers (3). For PCR amplification 

from pUL48-50 plasmids or for sequencing. Positions 
indicated in figures 1 and 2 

seqUL41_3R CTCTGGAAGCGTGTCAAACG 
seqUL41_5F ACAGAACTGTAGTACTTGTG 

For amplification of MDV UL41 gene and sequencing 

Seq_in_UL41_R CCGTGTAGTTGGAAACATC 
Seq_in_UL41_F GGCGACTACATGCACGATTG 

For sequencing MDV UL41 gene 

 4 

5 
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Figure 1 5 

1                                                   50 6 
      MDV        ~~~~~~~~~~ ~~~~~MG SE R.. KSER   . L..GY ..  AYDDVSIPA 7 
      GAHV3      ~~~~~~~~~~ ~~~~~MG SD R.. KSSR   . TMRTS DN  AHIS.S RA 8 
      HVT        ~~~~~~~~~~ ~~~~~MG SE G.. KYER   P VYHSHQDG TGGTDGT .. 9 
      VZV        ~~~~~~~~~~ ~~~MASS GD RLC SNAV   KTT.... SY  G..QYR .A 10 
      HSV1       MTSRRSVKSG PREVPRDEYE DLYYTPSSGM A .PDSP DT  RRGALQ RS 11 
      CONSENSUS  ---------- -------D-- ---R----RR -S-----P-- S------T-- 12 
 13 
                 51                                                 100 14 
      MDV         . PSTRTQR NLNQ DL... .......... .......... .... KH... 15 
      GAHV3       . DSS...K NESP RI... .......... .......... .... ..... 16 
      HVT         . KSTRSLQ SPPR DYLHA SRVTSNRHAR SPPRAELPRS TRRQ AHHAE 17 
      VZV         . SVVVGPP DDSD SLGYI TTVGADSPSP VYADLYFEHK NTTPRVHQPN 18 
      HSV1        Q GEVRFVQ YDES YALYG GSSSEDDEHP EVPRTRRPVS GAVL GPGPA 19 
      CONSENSUS  R-R------- ----D----- ---------- ---------- ----S----- 20 
 21 
                 101                                                150 22 
      MDV        ........GP FTD......H .PTQKHKSAK .AVSE..... DVSS.T.T.R 23 
      GAHV3      .........P .PS......H .SLQRRRSVK .IERK..... DSSSET.Q.R 24 
      HVT        SSPPEERPGP .SD......H RSLQRRKSVK ....E..... VEPANT.S.K 25 
      VZV        DSSGSEDDFE DIDEVVAAFR EARLRHELVE DAVYENPLSV EKPSRSFT.K 26 
      HSV1       RAPPPPAGSG GAGRTPTTAP RAPRTQRVAS KAPAAPAAET TRGRKSAQPE 27 
      CONSENSUS  ---------- ---------- ---------- ---------- ---------- 28 
 29 
                 151                                                200 30 
      MDV        G.GFTNK... ...P  K  V   VQSN . A      SSAS  T RSN VA   31 
      GAHV3      GESLSSK... ...V  K  A   IEKG . A    T ASAT  T RSN LV   32 
      HVT        SSSIPLG... ...Q  R  V   VQKN . M   S  TSRT  H KSN VA   33 
      VZV        NAAVKPK.LE DSPK  P  A G IASGRPIS      KTAT  S CGP PS   34 
      HSV1       SAALPDAPAS TAPT SKTPA QGLA..RKLH      PNPDA P TPRVAG   35 
      CONSENSUS  ---------- ----RA-PG- RA----K-F- FSTAP----S -W---T--FN 36 
 37 
                201                                                250 38 
      MDV        Q M  G  AT   QY  YQG  LA  RQDP     E  DAF S R   K  IQ  39 
      GAHV3      E    G  AA   QY  YRG  LS  RRNA     A  EEF A R   K  IQ  40 
      HVT        QH   C  AA   RY  FRG  LA  NKEP    DEQ EDF V R   K  VR  41 
      VZV        K    E  RR   AMQ QKA  EAA NSNP   N A  DRL T G   R  VH  42 
      HSV1       K    A  GR L AM  RMA  VQ  DMSR    DED NEL G ITT R  VC  43 
      CONSENSUS  -RVFC-AV-- VA--HA---A --LW----PR TN-EL---L- -AVI-IT--E 44 
 45 
                 251                                                300 46 
      MDV         P  MGE .  TCARKLLE S G SQGNENVK  KSE T.TKS ERTR G EIE 47 
      GAHV3       A  LDE .  ACTRKLSE S G SPDMGNPK  ....... S QYGK D D.E 48 
      HVT         PY LEE .  SCTQRFME T G GSADNKPK  ... S.G S ERDVES EGS 49 
      VZV         L  IQA .. .......N A D GGG....A  VSK GHN K TGDLQG MG. 50 
      HSV1        K  LQR N  LVNPDVVQDV DAATATRG.R  AAS PTE P RAPA SAS.R 51 
      CONSENSUS  G-NL---A-E --------E- -L-------- S---R---R- ----R-G--- 52 
 53 
                 301                                        342 54 
      MDV        IKS .DPGSH RTHNP. TPA .TSRRHHSSA RGYRS DSE~ ~~ 55 
      GAHV3      .ST VDKRDR RSKTPG APT .TSRRHYSSS RGNYS ESE~ ~~ 56 
      HVT        FNS....GAR RPIAIA L.V .SSAQSFADS PGERT DSE~ ~~ 57 
      VZV        .NE MYAQVR KPKS.. TDT QTTGRITNRS RARSA RTDT RK 58 
      HSV1       PRR VE~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~ 59 
      CONSENSUS  ---P------ ------R--- ---------- -----S---- -- 60 
 61 
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Figure 1 legend: Polypeptide sequences of MDV VP22 and four alphaherpesviruses 62 

orthologs were aligned, using PileUp followed by Pretty in the GCG package 63 

(Accelerys, USA). Consensus residues are indicated when at least four out of five 64 

sequences have the same residue at that position. Only differences to the consensus 65 

are written. The grey box represents the conserved central domain. 66 

 67 

68 
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MATERIALS AND METHODS SUPPLEMENT 68 

 69 

Primers. The primers used in this study are listed in Table 1 of this section. 70 

 71 

Generation of recombinant MDV viruses expressing heterologous VP22 fused 72 

or not to EGFP in N-term. All recombinant MDV viruses were derived from the 73 

genome of the attenuated strain 584Ap80C, cloned as a bacterial artificial 74 

chromosome (Bac20). 75 

1. By homologous recombination in CESC. To investigate the functional 76 

homologies between the mardiviruses VP22, we generated two recombinant viruses 77 

with the UL49 derived respectively from GaHV3 and HVT fused in 3' of the EGFP 78 

sequence.  79 

1.1. Construction of the EGFPUL49 GaHV3 and HVT genes. The GaHV3 UL49 gene 80 

was amplified by PCR from HPRS24 viral DNA (provided by Dr Venugopal Nair) with 81 

primers HPRS49_5FscaI and HPRS49_3R, resulting in a 744 bp-fragment bearing a 82 

5' ScaI site and a TTG codon in place of the original ATG from GaHV3 UL49. In the 83 

same way, the HVT UL49 gene was amplified by PCR from vaccinal HVT viral DNA 84 

with primers HVT49_5FBglII and HVT49_3RXbaI, resulting in a 868 bp-fragment with 85 

a 5' BglII site and a ATG to TTG codon substitution. These PCR fragments were 86 

cloned into pGEM-Te (Promega, Madison, WI), then subcloned into pEGFP-C3 and 87 

pEGFP-C1, respectively by using the ScaI and PstI or the BglII and SalI sites, 88 

resulting in pEGFPUL49 GaHV3 and pEGFPUL49 HVT plasmids. In order to 89 
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introduce a unique StuI site at the 5' end and a unique NheI at the 3' end of the two 90 

EGFPUL49 genes, each EGFPUL49 fusion gene was amplified by PCR from its 91 

respective pEGFPUL49 plasmid by using StuIEGFP5 and HPRS49_3RNheI for 92 

GaHV3 or HVT49_3RNheI for HVT and cloned into pGEM-Te, resulting in pGEMTe-93 

EGFPGaHV3 and pGEMTe-EGFPHVT. The EGFPUL49 GaHV3 gene encoded a 94 

482-aa protein with 239 aa corresponding to EGFP, 2 aa corresponding to a spacer, 95 

and 241 aa corresponding to VP22. The EGFPUL49 HVT gene encoded a 527-aa 96 

protein with 239 aa corresponding to EGFP, 5 aa corresponding to a spacer, and 283 97 

aa corresponding to VP22. 98 

1.2. Construction of shuttle plasmids p48-50 EGFPUL49. The p48-50 Stu plasmid 99 

was described earlier (3). A unique NheI site was introduced immediately upstream 100 

of the UL49 stop codon resulting in the p48-50 StuNhe plasmid. The UL49 gene was 101 

then replaced with either the EGFPUL49 GaHV3 or EGFPUL49 HVT fusion genes. 102 

To this end, the StuI-NheI fragments from the pGEMTe-EGFPGaHV3 and pGEMTe-103 

EGFPHVT (1457bp or 1592bp respectively), were ligated to the StuI-NheI 6364-bp 104 

fragment of the p48-50 StuNhe, yielding the shuttle plasmids, p48-50 EGFP49GaHV3 105 

and p48-50 EGFP49HVT, respectively. The final construct was verified by DNA 106 

sequencing (MWG Biotech Sequencing service, Ebersberg, Germany). 107 

1.3. Generation of the recombinant MDV expressing the EGFPUL49 mardivirus 108 

orthologs. The procedure was described earlier (3). Briefly, 2µg of the appropriate 109 

shuttle plasmid and 3 µg of Bac20∆UL49 BACmid DNA were co-transfected into 110 

CESC. Recombinant viruses were detected after one passage. The recEGFPGaHV3 111 
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and the recEGFPHVT viruses used in this study never exceeded 5 and 4 passages in 112 

culture, respectively.  113 

2. By homologous recombination in E. coli, EL250 strain. To investigate the 114 

functional homologies between the MDV VP22 and the orthologous HSV-1 protein, 115 

two recombinant bacmids were constructed with "en passant" mutagenesis, as 116 

previously described (17). 117 

2.1. Construction of the UL49 HSV-1 intermediate plasmids. The HSV1 UL49 gene 118 

was amplified by PCR from pGE109 (provided by Dr Gillian Elliott) with primers 119 

5FUL49HSV1stu and 3RUL49HSV1NheI, resulting in a 922bp-fragment which 120 

incorporated StuI and NheI sites at the 5' and 3' ends, respectively, of UL49. This 121 

PCR fragment was cloned into pGEM-Te generating the pGEM-Stu49HSVNhe. Then 122 

the Stu-NheI fragments, 914bp from pGEM-Stu49HSVNhe and 6364bp from p48-50 123 

StuNhe were ligated resulting in p48-50 HSV. 124 

The EGFP sequence was PRC-amplified from plasmid pEGFP-C1 with primers 125 

StuIEGFP5 and 3REGFPStuI and cloned in pGEM-Te generating pGEM-stuEGFPstu 126 

plasmid. Then the 723bp StuI-StuI EGFP fragment from pGEM-stuEGFPstu was 127 

ligated with the p48-50 HSV opened with StuI resulting in p48-50 EGFPHSV. The 128 

EGFPUL49 HSV gene encoded a 542 aa protein with 239 aa corresponding to 129 

EGFP, 2 aa corresponding to a spacer and 301 aa corresponding to VP22. 130 

2.2. Construction of the two "en passant" plasmids p48-50 kana IsceI. The "IsceI 131 

aphAI" cassette was amplified by PCR from pEPkan-S with NheHSV5Fkan and 132 

Nhe3Rkana primers. The 1058bp- PCR fragment was cloned into pGEM-Te, resulting 133 
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in pGEM-NheKanaNhe. The 1039bp-Nhe I fragment from this plasmid was next 134 

introduced into p48-50 HSV or into p48-50 EGFPHSV, both opened with NheI 135 

resulting in "p48-50 kana IsceI HSV" or "p48-50 kana IsceI EGFPHSV", respectively. 136 

2.3. Construction of two bacmids with ‘’en passant’’ mutagenesis. For each first 137 

recombination, we transformed electro-competent EL250 bacteria containing the 138 

bac20 bacmid with one digestion fragment of each "en passant" plasmid. The 139 

digestion fragments were either the 2911bp-XmnI/HpaI from p48-50 kana ISceI HSV 140 

or the 3634bp-XmnI/HpaI from p48-50 kana IsceI EGFPHSV. After the second 141 

recombination, the CRKS clones were selected. The UL49 region of the two resulting 142 

recombinant bacmids, named recEGFPHSV and recHSV, were sequenced in its 143 

entirety on both strands (MWG-biotech) between XmnI/HpaI sites. 144 

2.4. Generation of the recombinant MDV expressing the HSV-1 UL49 gene. Each 145 

purified bacmid (3µg) was transfected into 50% confluent CESC grown in 35-mm 146 

dishes by the calcium phosphate precipitation method. The recHSV virus was 147 

detected after one passage. The virus used in this study never exceeded 4 passages 148 

in culture. 149 


