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Abstract
Based on the observation of the existence of different timescales, this paper provides an approximate
method to compute the kurtosis coefficient of the response of a linear-time-invariant system sub-
jected to a low-frequency non Gaussian input. While the kurtosis coefficient is formally obtained by
a multidimensional integration of the corresponding spectrum, the proposed method only requires
the estimation of a single definite integral. The speedup performance is three to four orders of
magnitude and the approximation is very accurate as it corresponds to the leading order expansion
of the formal solution, with the ratio of the identified timescales considered as a small parameter.

1 Introduction

The stochastic analysis of a structure with deterministic properties, but subjected to a non Gaus-
sian stationary random loading, may be advantageously performed with a Volterra approach [4].
Although this concept may be applicable to nonlinear structures [5, 14], the scope of this paper
is limited to structures with a deterministic linear behavior. In this case, the Volterra kernels
take a simple explicit expression and the statistical moments of the structural response are simply
recovered by a multi-dimensional integration of the corresponding spectra[12].

In structural dynamics applications, Volterra models have already been used to model wind pres-
sures resulting from the quadratic transformation of wind turbulence [9] or the response of offshore
structures to random waves [2]. Although the concepts of Volterra models are appealing for single-
degree-of-freedom systems, as they provide as simple physical interpretation to the filtering process
of higher order statistical moments, they have also been applied in the context of multi-degree-
of-freedom systems [3]. In realistic applications, the spectra describing the loading, be it wave or
wind, take on heavy analytical expressions that discard any possible analytical estimation of the
multi-dimensional definite integrals. This obviously starts with the expressions of the power spectral
densities (psd) of wave heights [11] or wind velocity [13], and extends to bispectra, trispectra and
higher spectra. For this reason, in a Volterra approach, statistical moments are computed with a
numerical implementation of a multi-dimensional integration. The computational burden necessary
for the estimation of these integrals turns out to be prohibitive as soon as high order moments are
required (beyond and including 4th statistical moment). The numerical conditioning is in fact again
worse when the structural damping is low as the Volterra kernels then exhibits very large gradients
in the frequency space, which are difficult to capture properly in a numerical scheme. Although
these issues related to this difficult numerical integration are evident and sometimes reported, there
was barely not attempts at providing an efficient numerical integration scheme. An efficient meshing



Figure 1: Typical psd (left) and bispectrum (right) of the response of a single degree-of-freedom
system subjected to low frequency turbulence. The psd (left) is commonly decomposed as the sum
of background and two resonant components. The bispectrum (right) is also decomposed as the
sum of a background and six biresonant components.

technique was actually introduced in [7] for the integration of psds and bispectra, but it is hardly
transposable to fourth and high orders.

This short description of the current panorama indicates that the Volterra methods have sufficiently
matured over the last 20 years regarding multi-degree-of-freedom linear systems, and over more than
10 years for nonlinear ones. However, very few applications out of the academic context have been
presented so far. It is thus tempting to conclude that the methods are apparently hibernating,
waiting for computational power required to make them applicable to large realistic structures, say
modeled with a couple of thousands degrees-of-freedom.

One objective of this paper is to provide a method to simplify the estimation of the multi-dimensional
integrals. More precisely, we focus on the estimation of the kurtosis coefficient, i.e. the integration of
the trispectrum of the response in a 3-D frequency space. The paper is organized as follows. Section
2 summarizes existing assets for the second and third order analyses, while Section 3 provides the
novel developments related to the estimation of the kurtosis, and Section 4 illustrates the concepts
and benefits with a simple example.

2 Existing Assets

In the event that the timescale related to the dynamics of the structure (its natural periods) and the
timescale of the random loading are well distinct —as it is typically the case in buffeting analysis—,
a usual decomposition of the response into Background and Resonant contributions provides a very
good estimation of the second statistical moment [6]. Recently the concept has been extended to the
Background/biResonant (B/bR) decomposition for the estimation of the third statistical moment [8].
In this paper, we pursue this multiple timescale analysis, with the very same assumptions of slight
damping and low-frequency loading as those that made Allan Davenport’s Background/Resonant
(B/R) decomposition fruitful.

The power spectral density of the structural response of a single degree-of-freedom linear system is
obtained by

Sx (ω) = Sf (ω) K2 (ω) = Sf (ω) |H (ω)|2 (1)

where Sx and Sf are respectively the psds of the response and of the loading, and H = (−mω2 +
iωc+k)−1 is the linear frequency response function of a dynamical system, characterized by a mass



m, viscosity c and stiffness k. The kernel K2 is equal to |H|2, by definition. In this paper, we are
concerned with psds of loading that are assumed to decrease very fast in a short frequency range,
referred to as α in the following. Actually α is assumed to be small compared to the natural circular
frequency ωo =

√
k/m of the dynamical system. The ratios

ε =
α

ωo
and ξ =

c

2mωo
(2)

are actually two small parameters of the problem at hand, which makes the topology of the psd of
the response rather particular. Indeed, as seen in Fig. 1, the psd of the response features three sharp
and distinct peaks. For this reason, the second statistical moment of the response, the variance,
may be approximated as

m2,x =

+∞∫
−∞

Sx (ω) dω ' m2,b +m2,r (3)

with the background and resonant components respectively given by

m2,b =
m2,f

k2
and m2,r =

πωo
2ξ

S (ωo)

k2
(4)

where m2,f is the variance of the loading. This decomposition is known to be due to A. Davenport
[6]. It has been further analyzed by Ashraf and Gould [1], and also later on generalized by Denoël
[8]. In a very general context, this decomposition results from the estimation of an integral with
small parameters by the addition of components that are successively and iteratively identified [10].
In short, it consists in (i) subtracting the background component, which is readily obtained (ii)
providing a local and bounded approximation of the integrand in the vicinity of the resonance peak
in the positive frequency range, (iii) provide an approximate analytical expression for the resonant
component.

In a very similar manner, the description of the response of a dynamical system subjected to a non
Gaussian load is complemented by the bispectrum of the response

Bx (ω1, ω2) = Bf (ω1, ω2)K3 (ω1, ω2)

= Bf (ω1, ω2)H (ω1)H (ω2) H̄ (ω1 + ω2) . (5)

Because of the smallness of the two parameters ε and ξ, this bispectrum features one distinctive
quasi-static peak, six high biresonance peaks and, secondarily, six low biresonance peaks, see Fig. 1.
Invoking the same general methodology for the estimation of the integral of Bx, the third statistical
moment of the response may be expressed as

m3,x =

+∞∫
−∞

+∞∫
−∞

Bx (ω1, ω2) dω1dω2 ' m3,b +m3,r (6)

with the background and biresonant components respectively given by

m3,b =
m3,f

k3
and m3,r = 6π

ξω3
o

k3

+∞∫
−∞

B (ωo, ω2)

(2ξωo)
2 + ω2

2

dω2 (7)

where m3,f is the third statistical moment of the loading. This approximation is valid no matter
the expression of the bispectrum of the loading. It just requires the hypotheses of smallness to be
fulfilled. Simplified expressions for particular cases may be found in [8], along with appropriate
numerical schemes for the estimation of the remaining integral in (7).



Figure 2: Level-set representation of the fourth order Volterra kernel (ξ = 0.03).



Nomenclature Behavior around peak Local integral Total integral

2nd order: Resonance K2 = O
(
ξ−2
) ∫

K2dω ∼ O
(
ξ−1
)

1
k2

πωo
2ξ

3rd order: Biresonance K3 = O
(
ξ−2
) ∫ ∫

K3dω ∼ O (1) 1
k3

8π2ω2
o

3(1+8ξ2)

4th order: Tetraresonance K4 = O
(
ξ−4
) ∫ ∫ ∫

K4dω ∼ O
(
ξ−1
)

1
k4

3π3ω3
o

4ξ(1+3ξ2)

Table 1: Summary of the behavior of the kernel K2, K3 and K4 around their resonance peaks.

3 Integration of the Trispectrum

From the decompositions existing at the second and third order, it is postulated that the fourth
statistical moment may be decomposed as a sum of two contributions, namely the quasi-static or
background one and the triresonant one, as shown next.

The trispectrum of the response of a single degree-of-freedom linear system is expressed as

Tx (ω1, ω2, ω3) = Tf (ω1, ω2, ω3)K4 (ω1, ω2, ω3)

= Tf (ω1, ω2, ω3)H (ω1)H (ω2)H (ω3) H̄ (ω1 + ω2 + ω3) (8)

and the corresponding moment is obtained as

m4,x =

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

Tx (ω1, ω2, ω3) dω1dω2dω3. (9)

Before stepping into the development of an approximation for the computation of that integral, it is
essential to understand the topology of the fourth order kernel K4. It is represented by its level sets
in Fig. 2, starting from low values set at the top to high values at the bottom. The six little stars
in the bottom graph correspond to the high peaks of this Volterra kernel. The middle graphs show
that these peaks are connected by bridges (that we have previously coined ridge in the third order
context [8]). There exists also eight low peaks, identifiable by the little stars on the second graph.
The rightmost plots also show the symmetry planes which owe the trispectrum of a real random
process to be represented along only one twelfth of the complete frequency space.

Attention should of course be paid to the six high peaks, as they will contribute the most to the inte-
gral. They are located at (ω0, ω0,−ω0), (ω0,−ω0, ω0), (−ω0, ω0, ω0), (ω0,−ω0,−ω0), (−ω0, ω0,−ω0),
(−ω0,−ω0, ω0). Interestingly, out of the four factors of the fourth order kernel K4, all of them cor-
respond to resonance at high peaks. As a result, the fourth order kernel is of order ξ−4 at high
peaks. The high peaks in K4 may therefore be termed tetraresonance peaks. This is a noticeable
difference with respect to the third order where the kernel K3 is of order ξ−2 at biresonance peaks.
More interestingly again, as the peaks in K4 spread along a volume of order ξ3ω3

o , while they a
limited to a base surface ξ2ω2

o at the third order, the contribution of the tetraresonance peaks is
thus found to be singular in ξ, while that of the biresonance peaks was regular. These interesting
observations are summarized in Table 1.

As a conclusion, the fourth order response is expected to resemble much more the usual second
order response than the third order one.

The derivation of the approximation starts by recognizing the existence of a background component
m4,b in the response, which is simply obtained by assuming that the structure responds statically
to the random loading



m4,b =

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

Tf (ω1, ω2, ω3)

k4
dω1dω2dω3 =

m4,f

k4
(10)

where m4,f is the fourth order statistical moment of the loading. This component is then trivially
added and subtracted in (9), to obtain

m4,x = m4,b +

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

Tf (ω1, ω2, ω3)

[
K4 (ω1, ω2, ω3)−

1

k4

]
dω1dω2dω3. (11)

We will focus next on the estimation of that integral in the vicinity of the peak (ω1, ω2, ω3) =
(ω0, ω0,−ω0). To this aim, stretched coordinates (η1, η2, η3) defined as a

ω1 = ωo (1 + ξη1)

ω2 = ωo (1 + ξη2) (12)

ω3 = −ωo (1 + ξη3)

are introduced in order to provide local approximation of the integrand. Considering that the
damping ratio ξ is small, it is found that

K4 (ω1, ω2, ω3)−
1

k4
' 1

16k4ξ4 (η1 − i) (η2 − i) (η3 − i) (η1 + η2 + η3 + i)
. (13)

It is interesting to notice that this local approximation is bounded in the far field since

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

ω3
oξ

3 dη1dη2dη3
16k4ξ4 (η1 − i) (η2 − i) (η3 − i) (η1 + η2 + η3 + i)

=
π3ω3

o

8k4ξ
. (14)

Furthermore, after consideration of the jacobian ω3
oξ

3, the result (14) multiplied by 6 for the six
high peaks indicates that the total integral of the kernel is well recovered (see Table 1), at least at
the leading order term for small damping.

First option

By analogy with Davenport’s developments at the second order, we may assume that the trispectrum
of the loading Tf does not vary into the stretched frequency domain. It this case, the triple integral
in (11) collapses to

m4,r1 = Tf (ω0, ω0,−ω0)
π3ω3

o

8k4ξ
. (15)

The total tetraresonant contribution, obtained for symmetry reasons by multiplying this latter result
by 6, is then simply given as

m4,r = Tf (ω0, ω0,−ω0)
3π3ω3

o

4k4ξ
. (16)



Second option

As a second option, the local behavior of the trispectrum of the loading could be approached more
accurately. In this view, similarly to the developements presented in [8] for the third order analysis,
the more or less rapid decrease of the trispectrum in the vicinity of the peak could be incorporated
into the model.

Without too many details, because this second option is not illustrated next, this consists in deter-
mining the directions around the considered peak in which the gradient of the trispectrum of the
loading is small. If it is found that the trispectrum mainly changes (according to the ratio of the
timescales) in two orthogonal directions, then it may be assumed to be constant in a direction per-
pendicular to the plane defined by these two high gradient direction. In doing so, a local estimation
of the trispectrum may be obtained, and this results in dropping by one the order of the integration,
as for the third order analysis.

4 Illustration

As an illustration, we assume here that a single degree-of-freedom system characterized by the mass
m, viscosity c and stiffness k is subjected to a quadratic loading

f = γ (1 + u)2 = γ + 2γu+ γu2 (17)

where the low-frequency process u (regarded here as the turbulence) is modeled as a dimensionless
Gaussian process with zero mean and standard deviation σu, and γ is a characteristic force. The
intensity Iu ≡ σu is assumed to be small so that

µf = γ
(
1 + ord

(
I2u
))

m2,f = 4γ2σ2u
(
1 + ord

(
I2u
))

(18)

m4,f = 192γ4σ6u
(
1 + ord

(
I2u
))

with m4,f the fourth order cumulant1 of f , and so that the excess coefficient of the loading is, for
small turbulence intensity,

γe,f =
m4,f

m2
2,f

= 12σ2u. (19)

Furthermore the turbulence random process u (t) is supposed to be an Ornstein-Uhlenbeck process
with a psd expressed as

Su (ω) =
α

π

σ2u
α2 + ω2

. (20)

It is possible to show, see [7], that (at the leading order in Iu) the psd and the trispectrum of the
force f are respectively expressed as

Sf (ω) = 4γ2Su (ω)

Tf (ω1, ω2, ω3) = 16γ4 P
1,2,3

[Su (ω1 + ω3) [Su (ω2) + Su (ω1 + ω2 + ω3)] [Su (ω1) + Su (ω3)]] (21)

where symbol P
1,2,3

stands for the cyclic permutation over indices 1,2 and 3. This definition of the

trispectrum allows to recover the fourth order cumulant, and not the raw moment. A simple check
consists in observing that as the multiple integration of (21) renders m4,f as given in (18).

1Notice that we use symbol m4,. for quantities related to cumulants, whereas the classical notation is k4,..



Application of Davenport’s Background/Resonant decomposition yields

m2,b =
m2,f

k2
=

4γ2σ2u
k2

m2,r =
πω0

2ξ

Sf (ω0)

k2
=
m2,f

k2
1

2ξ

αω0

α2 + ω2
0

, (22)

while application of the proposed Background/TetraResonant (B/tR) decomposition yields

m4,b =
m4,f

k4
=

192γ4σ6u
k4

m4,r =
m4,f

k4
1

4ξ

α
(
8ω2

0 + 3α2
)
ω3
o(

ω2
0 + α2

)2 (
4ω2

0 + α2
) . (23)

An illustrative way to represent the statistical moments of the response it to normalize them by the
corresponding background contribution. In this perspective, the dynamic amplification coefficients
at the second and fourth orders respectively are defined as

A2 =
m2,x

m2,b
= 1 +

m2,r

m2,b
and A4 =

m4,x

m4,b
= 1 +

m4,r

m4,b
. (24)

They are represented in Fig. 3 along with the exact results obtained through an analytical integra-
tion of the corresponding spectra. (Notice parenthetically that this analytical integration is possible
only because the expression of the psd of the turbulence is simple. In fact, these reference results
were obtained in this illustration by application of Cauchy’s residue theorem.)

At the second order, the perfect match between the analytical solution (labeled“Exact”) and Daven-
port’s B/R decomposition is just another illustration of the good performance of the approximation.
The globally decreasing profile of this curve conveys the well-known idea that at high damping ratios,
the dynamic amplification factor is unitary. This statement is actually valid for any moment

lim
ξ→+∞

Aj = 1 ∀j (25)

since, as the response is quasi-static, any statistical moment of the response is directly obtained
from the same statistical moment of the loading.

As explained before, the global profile of the fourth order dynamic amplification factor A4 is much
closer to the second order one than the third order one. Despite the drastic decrease in the estimation
of the fourth statistical moment, the quality of the B/tR decomposition is respectable. It captures
quite precisely the profile of the exact solution. This is all the more impressive as the first option
described above has been retained, i.e. the heavy numerical integration in the 3-D space is simply
replaced by a single point estimate. On account that one hundred integration points at least are
required in each dimension of the frequency space, the B/tR decomposition may thus be seen as a
speedup by six orders of magnitude. We should admit however that the discrepancy may reach up
to 25% for moderate values of the damping coefficient.

The profile of the third order dynamic amplification factor A3 is discussed in detail in [8]. It is just
provided here so as to highlight the significant difference between odd and even statistical orders.

The unbounded increase of the fourth order dynamic amplification factor A4 for low damping ratios
should be interpreted with care. This increase is indeed not related to a non-Gaussian characteristic
of the response. To assess the non-Gaussianity of the response, the excess coefficient of the response
is established. Based on the B/R and B/tB approximation, it is given by



Figure 3: Dynamic amplification factors: ratio of the statistical moment of the response to the
statistical moment that would be obtained if the response was quasi-static.



Figure 4: Level-set representation of the fourth order Volterra kernel (ξ = 0.03).

γe,x =
m4,x

m2
2,x

=
A4m4,b

A2
2m

2
2,b

=
A4

A2
2

γe,f . (26)

The ratio of the excess coefficients of the response to that of the loading

Aγe =
γe,x
γe,f

=
A4

A2
2

(27)

indicates by how much the mechanical system reduces the non-Gaussianity of the loading. This
ratio is represented in Fig. 4 as a function of the damping ratio and for different values of α/ωo.
As a result of the rescaling perhaps, the discrepancy between the exact result and the proposed
approximation is now more evident. However, as the profile of A4 is properly captured by the
approximation, the global trend of this new dynamic amplification (one should rather say reduction
as the excess of the response is in general lower than the excess of the loading) is acceptably sketched.

Regarding the non-Gaussianity of the response, it is now also clear that the response tends to be
Gaussian as the damping ratio decreases, i.e. as the response tends to be resonant. This is a
consequence of the central limit theorem, on account that the memory time of the linear system
increases as ξ−1.

Finally, it is interesting to observe that, for the particular case of the Ornstein-Uhlenbeck turbulence
model the excess coefficient of the response may in some instances be larger than the excess coefficient
of the loading (Aγe). This specificity of a linear system subjected to the square of such a random
process is however not captured by the B/tR decomposition.

5 Conclusions

Based on the assumption of small structural damping and the consideration of separated timescales
for the loading and the structure, we have extended the B/R and B/bR decompositions to the
fourth order. These assumptions allow a drastic reduction of the computational costs related to the
estimation of a three dimensional integral.

The surprising correspondence between the fourth and second order analyses (rather than the third
one) drove us to the development and assessment of a first simple option in this paper which consists
in avoiding the multiple integration and replacing it by a simple estimation of the integrand. It
was thus estimated that this option reduces the computational costs by six orders of magnitude,



but it provides a solution with moderate accuracy however. The development of the second option,
addressing several refinement levels, should provide additional solutions with different trade-offs
between accuracy and computational costs.
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