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Abstract

Joint association analysis of multiple traits in a genome-wide association study (GWAS), i.e. a multivariate GWAS, offers
several advantages over analyzing each trait in a separate GWAS. In this study we directly compared a number of
multivariate GWAS methods using simulated data. We focused on six methods that are implemented in the software
packages PLINK, SNPTEST, MultiPhen, BIMBAM, PCHAT and TATES, and also compared them to standard univariate GWAS,
analysis of the first principal component of the traits, and meta-analysis of univariate results. We simulated data (N = 1000)
for three quantitative traits and one bi-allelic quantitative trait locus (QTL), and varied the number of traits associated with
the QTL (explained variance 0.1%), minor allele frequency of the QTL, residual correlation between the traits, and the sign of
the correlation induced by the QTL relative to the residual correlation. We compared the power of the methods using
empirically fixed significance thresholds (a= 0.05). Our results showed that the multivariate methods implemented in PLINK,
SNPTEST, MultiPhen and BIMBAM performed best for the majority of the tested scenarios, with a notable increase in power
for scenarios with an opposite sign of genetic and residual correlation. All multivariate analyses resulted in a higher power
than univariate analyses, even when only one of the traits was associated with the QTL. Hence, use of multivariate GWAS
methods can be recommended, even when genetic correlations between traits are weak.
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Introduction

Genome-wide association studies (GWAS) have been very

successful in the identification of common genetic variants

associated with complex traits. Usually, information on a set of

related traits is collected in populations sampled for GWAS. These

traits are typically analyzed separately, i.e. in a univariate manner,

for association to genome-wide DNA markers. This is often

followed by an informal comparison of evidence for association at

particular loci across the studied traits (e.g. [1]). However, a joint

analysis of multiple, potentially correlated traits, i.e. a multivariate

analysis, could be very advantageous for a number of reasons.

First, a multivariate analysis has increased power in case of

presence of genetic correlation between the different traits; the

extra information that is provided by the cross-trait covariance is

ignored in univariate analyses [2,3]. Secondly, most multivariate

procedures can perform a single test for association with a set of

traits. This reduces the number of performed tests and alleviates

the multiple testing burden compared to analyzing all traits

separately [2,4]. Finally, in case of presence of pleiotropy, where a

single genetic variant is associated with multiple traits, a

multivariate GWAS is more consistent with biology compared to

cross-trait comparison of univariate analyses [5].

A number of methods for simultaneous analysis of multiple traits

in population-based GWAS have been published (e.g. [4,6–19]).

Although a few of the methods have been compared to newly

proposed methods [12,15] and some of the methods have been

compared to univariate analysis [4,7,12], little is known about

their relative performances. Here, we performed the first direct

comparison of several multivariate (MV) GWAS methods using

simulated data. We included six methods, with a focus on methods

already implemented in freely available software: the multivariate

test of association MQFAM implemented in the genetic associa-

tion analysis software PLINK (MV-PLINK) [7], a Bayesian

multiple phenotype test implemented in SNPTEST (MV-

SNPTEST) [20], the R package MultiPhen (MultiPhen) [12], a

Bayesian model comparison and model averaging for multivariate

regression in BIMBAM (MV-BIMBAM) [21,22], the Principal
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Component of Heritability Association Test (PCHAT) [4], and a

Trait-based Association Test that uses Extended Simes procedure

(TATES) [15]. These can be classified into direct, indirect and

univariate-based methods (Figure 1). MV-SNPTEST, MultiPhen

and MV-BIMBAM are direct MV methods, in which the effects of

the genetic variant are modeled directly on the traits without

changing the general format and nature of the trait data. MV-

SNPTEST [20] and MV-BIMBAM [22] are both based on a

Bayesian multivariate regression analysis, but MV-BIMBAM

additionally partitions the traits into three groups: 1) traits that

are unaffected by the genetic variant, 2) traits that are directly

affected by the genetic variant, and 3) traits that are indirectly

affected by the genetic variant through directly affected traits.

MultiPhen identifies the linear combination of traits most

associated with each genetic variant by applying a reversed

ordinal regression, such that genotype (allele count) is regressed on

a collection of traits [12]. MV-PLINK [7], PCHAT [4] and UV-

PCA are indirect methods based on a reduction of the trait

dimension. In MV-PLINK the association between a set of traits

and a genetic variant is assessed using canonical correlation

analysis. Specifically, the linear combination of traits that

maximizes the covariance between the genetic variant and all

traits is extracted. PCHAT is based on extracting the principal

component of heritability that is the optimal linear combination of

the traits from a heritability point of view [4]. In TATES [15], the

observed correlation structure between the traits is taken into

account in the meta-analysis approach.

We compared the power of the methods under empirically fixed

type I errors to one another and to standard univariate (UV)

analysis, univariate analysis of the first principal component of the

traits (UV-PCA), and meta-analysis of univariate results (UV-MA).

In UV-PCA, the first principal component of a standard principal

component analysis is extracted and used in a univariate analysis.

In UV-MA, p-values obtained in standard UV GWAS analyses

are combined in a meta-analysis approach. Our goal was to

provide researchers with insights that will guide the application of

the methods to real data.

Methods

Data simulation
We simulated genotype and phenotype data for 1,000

individuals. Simulations were performed in R.

Genotype data were simulated for one bi-allelic quantitative

trait locus (QTL) with minor allele frequency q and major allele

frequency p. Genotypes were generated by sampling two alleles

independently from a binomial distribution as 0 or 1, using two

trials and a probability of success of each trial equal to q. The

genotype is the sum of the two alleles, which can be 0, 1 or 2.

Because alleles were sampled independently, genotypes were in

Hardy Weinberg equilibrium.

Phenotype simulation was based on work by Saint-Pierre and

colleagues [14]. For each individual, three quantitative traits Yj

(j = 1, 2, 3) were simulated. The trait-specific QTL heritabilities

(the relative variance of Yj explained by the QTL, h2
j), MAF of the

QTL q, and residual correlation between the traits excluding the

QTL effect (rEjj) were controlled.

First, the effect of the QTL on the individual traits, aj, was

determined from h2
j and q using the following formula [14]:

aj~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

j =2pq
q

Secondly, the traits were constructed by adding up the trait-

specific effect of the QTL and a residual component. Here, the

trait-specific effect of the QTL was assumed to be additive and

obtained by multiplying aj with the number of effect

(minor) alleles. The residual component e1,e2,e3ð Þ was simu-

lated from a multivariate normal distribution with mean

zero and with variance-covariance structure: Var
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is the trait-specific proportion of the variance not

explained by h2
j and rEjj is the residual correlation between the

traits excluding the QTL effect. The correlated residuals were

generated using the function mvrnorm from the R package

MASS. Third, all traits were centered and scaled to have zero

mean and unit variance.

Application of methods
MV-PLINK. The command used for association testing with

MV-PLINK [7,23] (https://genepi.qimr.edu.au/staff/manuelF/

multivariate/main.html) was: plink.multivariate —noweb —file geno —

mqfam —mult-pheno pheno.phen —out output. We applied an additive

model. MV-PLINK produces an F-statistic and a p-value per

genetic variant analyzed. This p-value of multivariate association

was extracted from the output. Note that the canonical correlation

analysis (CCA) applied by MV-PLINK is similar to multivariate

analysis of variance (MANOVA) as CCA is applied to a single

genetic variant at a time.

MV-SNPTEST. The command used to perform additive

association testing with MV-SNPTEST [20] (https://mathgen.

stats.ox.ac.uk/genetics_software/snptest/snptest.html#multiple_

phenotype_tests) was: snptest -data geno.gen pheno.sample -o output -

bayesian 1 -method expected -mpheno T1 T2 T3 -prior_qt_mean_b 0 -

prior_qt_V_b 0.02 -prior_mqt_c 4 -prior_mqt_Q 6.

An inverse Wishart prior [IW(6,4)] was set on the error

covariance matrix g and a matrix normal prior [N(0.02,g)] on

the vector of parameters, according to recommendations of the

authors. Method ‘expected’ was applied, which results in the use of

expected genotype counts (,dosages) in the analyses. The output

file contains a log10 Bayes Factor (BF) per genetic variant, which

was extracted for the purpose of this study.

MultiPhen. MultiPhen is an R package available from

CRAN (http://cran.r-project.org/web/packages/MultiPhen/

MultiPhen.pdf) for the R software (http://www.r-project.org/)

[12]. The test for association is a likelihood ratio test (LRT) for

model fit, testing whether all regression coefficients in the model

are jointly significantly different from zero. We analyzed the

simulation data using the mPhen function, specifying the genotype

data, phenotype data and JointModel = TRUE. This results in a p-

value per trait and a p-value for the LRT. The latter was extracted

from the output.

MV-BIMBAM. The BIMBAM software [22] can be run in

two different ways: 1) using option –mph 1, which tests for

association between the multivariate traits, all partitioned in the

group of directly affected traits, and genotype; and 2) using option

–mph2, which considers all the different possible partitions of traits

into the different categories of traits (directly affected, indirectly

affected, unaffected). We applied option –mph2 under the additive

model using the following command: bimbam -g geno.txt -p pheno.txt -

o output -f 3 -mph2 -A 0.1 -A 0.2.

According to recommendations of the authors, the prior for the

genetic effect A was set at 0.1 and 0.2. The association results are

summarized by a log10 BF that evaluates presence of any
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association between the QTL and the traits averaging over all

possible partitions of the traits into the different groups. This value

was extracted from the output.

PCHAT. In PCHAT [4] (http://www.wpic.pitt.edu/

wpiccompgen/PCHAT/PCHAT.htm) the sample is split in a

training set, which is used to construct the optimal linear

combination of traits from a heritability point of view, and a test

set, which is used for association testing between genotype and the

optimal linear combination of traits. In this way, use of the same

data for both estimation of the optimal linear combination of traits

and association testing is avoided. In addition, so called ‘bagging’

is performed, in which bootstrap samples are drawn from the

training sample and the optimal linear combination of traits is

averaged across bootstrap samples. The null distribution of the test

statistic is obtained in the same way, using permutation of the data.

We applied the additive model and set input parameters to values

recommended by the authors: 50 subsets and bagging subsets for

the determination of the distribution of the PCHAT test statistic

under the null hypothesis; 200 and 50 subsets and bagging subsets,

respectively, for testing the association of a genetic variant with the

trait; 150 individuals for the subsets; and 1000 simulations for

determination of the distribution of the test statistic under the null

hypothesis. The option ‘‘both’’ was used for the analysis, resulting

in a permutation experiment to determine the null distribution of

the test statistic, after which the association test is performed using

the standard deviation and degrees of freedom obtained in the

permutation test. PCHAT produces 11 output files. In one of

them, the association result is expressed as a p-value, which was

extracted for this study.

TATES. TATES [15] (http://ctglab.nl/software) requires a

correlation matrix of the traits and univariate association results as

input. Full, symmetrical correlation matrices were generated using

the corr option in R. UV analyses for the traits were performed by

fitting linear models using the lm function in R. TATES was run

in R using the freely available script specifying three traits and one

genetic variant. The output contains the TATES trait-based p-

value corrected for the correlations between the traits, which was

extracted for this study.

Univariate (UV) analysis, meta-analysis of univariate

results (UV-MA) and UV-PCA. UV analyses were performed

as described under ‘TATES’. Resulting p-values were extracted

for the purpose of this study. UV-MA was performed with

METAL [24] (http://www.sph.umich.edu/csg/abecasis/Metal/),

using univariate results per trait as input files and the analysis

scheme ‘scheme samplesize’, which uses p-value and direction of

effect as input for the MA and weighs according to sample size.

Figure 1. Schematic representation of the included methods. GV indicates genetic variant; MV, multivariate; PCHAT, Principal Component of
Heritability Association Test; T1, trait 1; T2, trait 2; T3, trait 3; TATES, Trait-based Association Test that uses Extended Simes procedure; UV-MA, meta-
analysis of univariate results; UV-PCA, univariate analysis of first principal component.
doi:10.1371/journal.pone.0095923.g001
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PCA was performed in R using the princomp command. UV-PCA

was executed using the first principal component (PC) in a

univariate analysis as described above.

Empirical significance thresholds (H0 simulations) and
power

For each simulation scenario (see below) 1,000 datasets were

simulated. Empirical significance thresholds for all methods were

derived based on permutation of the traits generated in these

simulation datasets, resulting in the null distribution of the test

statistic. We generated 10 permuted datasets per simulation

dataset, resulting in a total of 10,000 permuted replicates per

scenario. These replicates were analyzed with the multivariate

methods, resulting in a p-value or log10 BF for each replicate per

method per scenario. Significance thresholds were set in such a

way that 5% of the 10,000 replicates per method yielded a

significant result (5% false-positive rate). This was done by sorting

the 10,000 association measures in ascending (p-values) or

descending order (Bayes Factors) and defining the empirical

significance threshold as the mean of the 500th and 501st

association measure.

UV analysis results in one p-value per trait. We adjusted the

significance thresholds for three UV association tests, ensuring that

alpha was fixed at 5% for all traits combined. For each null model,

we first determined which trait was most strongly associated with

the QTL per replicate, i.e. which trait resulted in the smallest p-

value. These 10,000 p-values were sorted in ascending order and

the mean of the 500th and 501st p-value was set as the threshold.

The power is defined as the percentage of 1,000 replicates for

which the extracted p-value was smaller or log10 BF was larger

than the empirical significance thresholds, ensuring an equal type I

error rate of 5% for all methods.

Simulation scenarios
Simulations were focused on three main scenarios in which one,

two or three out of the three traits were associated with the QTL.

Within these main scenarios, data sets were generated for a given

combination of parameter values (rEjj, h2
j, rG and q) as shown in

Table 1. This resulted in a total of 30 simulation scenarios.

We simulated positive residual correlations between the traits

and studied scenarios with a relatively high and low residual

correlation (rEjj = 0.7 and rEjj = 0.3, respectively). The QTL was

fixed to explain 0.1% of the trait variances. By varying the sign of

a1, we created a QTL induced correlation (rG) between trait 1 and

traits 2 and 3 which was either positive or negative, enabling us to

study the influence of a negative genetic correlation.

Note that due to the fixed trait-specific QTL heritabilities, the

resulting QTL effects on the individual traits are larger for smaller

q and vice versa. This fits with the scenario one would expect in

real data [25].

Results

Empirical significance thresholds
Table S1 shows the empirical significance thresholds for all

methods for every simulation scenario. Thresholds were around

5% for MV-PLINK, MultiPhen, TATES and UV-PCA. Signif-

icance thresholds for PCHAT were slightly increased to approx-

imately 6%, indicating slight deflation of type I error rate under

the null. MV-SNPTEST and MV-BIMBAM showed log10 BF

significance thresholds between -0.05 and 0.44. Significance

thresholds for UV-MA were highly dependent on the residual

correlation between the traits: around 5% for scenarios with

uncorrelated traits and 0.2-0.3% for scenarios with high residual

correlation, thus indicating high inflation of type I error rate under

the null for the latter scenarios. Thresholds for UV analysis were

around 5%/3 = 1.7% for scenarios with no residual correlation

and slightly increased with increasing residual correlation.

Power comparison
One out of three traits associated with the QTL

(Figure 2A). All MV methods resulted in higher power than

UV analysis. Power of MV-PLINK, MV-SNPTEST, MultiPhen

and MV-BIMBAM was similar: between 10% and 15% for

scenarios with a residual correlation of 0 or 0.3 and 20-25% for

scenarios with rE = 0.7. PCHAT outperformed MV-PLINK, MV-

SNPTEST, MultiPhen and MV-BIMBAM for scenarios with

rE = 0 and 0.3, but not for scenarios with rE = 0.7, although power

of PCHAT increased for rE = 0.7 as well. TATES showed a power

between 11-14% for all scenarios and performed slightly better

than UV-PCA and UV-MA, which showed a similar performance

as UV analysis of trait 1, the trait associated with the QTL.

Two out of three traits associated with the QTL

(Figure 2B). MV-PLINK, MV-SNPTEST, MultiPhen and

MV-BIMBAM showed the best and similar performance, with

higher power with increasing residual correlation. This was most

noticeable when the correlation induced by the QTL was negative.

PCHAT and TATES showed a robust performance relatively

independent of the residual correlation, but their power never

exceeded that of MV-PLINK, MV-SNPTEST, MultiPhen or

MV-BIMBAM.

UV-PCA and UV-MA showed the same performance for

scenarios in which there was a residual correlation between the

traits. For scenarios with no residual correlation, UV-PCA

performed better under negative genetic correlation and UV-

MA under positive genetic correlation. They were outperformed

by UV analysis of trait 1 and 2 only in case of a negative genetic

correlation.

Table 1. Simulation scenarios.

# traits associated with QTL Heritability (h2
j) Effect size (aj) rG rE MAF (q)

1 h2
1 = 0.1%, h2

2 = h2
3 = 0 a1.0, a2 = a3 = 0 0 360/360.3/360.7 0.01/0.4

2 h2
1 = h2

2 = 0.1%, h2
3 = 0 a1 = a2, a3 = 0 + 360/360.3/360.7 0.01/0.4

h2
1 = h2

2 = 0.1%, h2
3 = 0 2a1 = a2, a3 = 0 2 360/360.3/360.7 0.01/0.4

3 h2
1 = h2

2 = h2
3 = 0.1% a1 = a2 = a3 + 360/360.3/360.7 0.01/0.4

h2
1 = h2

2 = h2
3 = 0.1% 2a1 = a2 = a3 2 360/360.3/360.7 0.01/0.4

MAF indicates minor allele frequency; j, trait; QTL, quantitative trait locus; rE, residual correlation; rG, genetic correlation.
doi:10.1371/journal.pone.0095923.t001
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Three out of three traits associated with the QTL

(Figure 2C). Again, MV-PLINK, MV-SNPTEST, MultiPhen

and MV-BIMBAM performed similar and best under simulation

scenarios with a negative genetic correlation; in this case, their

power increased with increasing residual correlation. However, for

scenarios with a positive genetic correlation, power of MV-

PLINK, MV-SNPTEST, MultiPhen and MV-BIMBAM in-

creased with decreasing residual correlation.

PCHAT and TATES showed a comparable performance over

all simulation scenarios. Also here, power slightly increased with

decreasing residual correlation in case of a positive genetic

correlation, and slightly increased with increasing residual

correlation for a negative genetic correlation.

Similar to simulation scenarios with two out of three traits

associated to the QTL, UV-PCA and UV-MA showed compara-

ble power for all scenarios with rE.0. Again, for scenarios with

rE = 0, UV-PCA performed better in case of a negative genetic

correlation and UV-MA performed better in case of a positive

genetic correlation. UV-MA outperformed all methods when rE

was 0 and the genetic correlation was positive; for rE = 0.3 and a

positive genetic correlation, UV-PCA and UV-MA performed best

of all methods. Power of UV-MA was the same as that of UV

analysis for all scenarios with a negative genetic correlation.

Results for simulation scenarios with different heritabilities for

the three traits (h2
1 = 0.001, h2

2 = 0.002, h2
3 = 0.0005) are

comparable to the results presented in Figure 2C (Table S2).

Results for MAF = 0.25, 0.10, and 0.05 are shown in Tables S3-

S5. As expected, power was similar for all MAF scenarios. Low

MAF was not a problem for the methods, except for MultiPhen

which experienced convergence problems of the underlying R

function ‘polr’ when MAF was equal to or lower than 5%.

Run time
Run time was measured on a Linux cluster using one core on a

node equipped with 24 GB RAM and two Intel Xeon L5520

processors running on 2.26 GHz. Time for performing association

analyses for 1000 subjects and 1000 replicates (similar to 1000

genetic variants in our study) was recorded. For TATES and UV-

MA, run time also included the time used for UV association

analyses of the three traits. MV-BIMBAM was the fastest method

using 9 seconds, while PCHAT needed 437 minutes and 15

seconds. Run times for MV-PLINK, MV-SNPTEST, MultiPhen,

TATES, UV-PCA and UV-MA were 23 seconds, 1 minute and 10

seconds, 3 minutes and 18 seconds, 23 seconds, 23 seconds and 19

seconds, respectively.

Discussion

In this study, we used simulated data to compare the

performance of six multivariate genome-wide association methods

(MV-PLINK, MV-SNPTEST, MultiPhen, MV-BIMBAM,

PCHAT and TATES) and standard univariate analysis, univariate

PCA, and meta-analysis of univariate analyses. Our results showed

that there is not a single method that performed best under all

simulation scenarios. However, all six multivariate methods

resulted in a higher power than UV analysis, even when only

one of the traits was associated with the QTL. UV-MA only

outperformed all methods when all traits were associated with the

QTL and the genetic correlation was positive.

Use of multivariate GWAS can be recommended even when

genetic correlations between traits are expected to be weak.

Indeed, even when only one of the traits was associated with the

QTL and thus in the absence of genetic correlation and

pleiotropy, MV analyses resulted in higher power than UV

analyses. This was described before by Liu et al. for bivariate

analyses and is due to the differences in the penalty for multiple

testing [9]. Note that this penalty is commonly not applied in

multiple UV analyses of real data.

The influence of the strength of residual correlation, i.e. the

relative amount of shared genetics, and sign of genetic correlation,

i.e. difference in sign of QTL effect, on power varied across the

different methods. For MV-PLINK, MV-SNPTEST, MultiPhen

and MV-BIMBAM, higher power was observed with increasing

residual correlation in case of a single QTL trait and when two or

all three traits were associated with the QTL with a negative

genetic correlation. The latter is due to the resulting opposite sign

of genetic and residual correlation. Indeed, we observed a similar

increase in power when simulating a positive genetic correlation

and negative residual correlation (data not shown). This effect has

been described before for these and other methods [7,9,12,14] and

was demonstrated analytically by Evans for bivariate linkage

analysis [26]. In contrast, when residual and genetic correlation

were in the same direction, power of these four methods decreased

with increasing residual correlation between the traits, which also

corroborates previous findings [7,12]. PCHAT and TATES were

relatively independent of the underlying (genetic) correlations of

the traits. For PCHAT, this can be explained by the fact that it

constructs the optimal linear combination of traits from an

heritability point of view, thereby essentially removing the

influence of residual correlation on power [4]. For TATES, it

was described that the power was not influenced by opposite

effects of the QTL on the traits, because of its reliance on p-value

information [15]. UV-MA did however severely suffer from a

negative genetic correlation between the traits; indeed, in this

scenario it performed equal or worse than standard UV analysis.

These findings are not unexpected; a negative genetic correlation

between the traits is disastrous for the power of a MA, because the

direction of effect is taken into account. An alternative meta-

analysis approach is Fisher’s method [27]. As it combines

univariate p-values into one test statistic, similar to TATES, it

does not suffer from a differential sign of effect. For scenarios with

a negative genetic correlation, Fisher’s method performed better

than UV-MA and also better than TATES, except for scenarios

with a residual correlation of 0.7: here it was outperformed by

TATES but not by UV-MA (data not shown). The reduced

performance for an opposite QTL effect was observed for UV-

PCA as well, but not for scenarios with no residual trait

correlation. In these scenarios, the first PC reflects the negative

genetic correlation between the traits. Power is thus increased

compared to UV since there is no need to multiple testing penalty.

We would like to emphasize that all methods were compared

based on empirically derived significance levels, adjusting each

Figure 2. Power of the methods for scenarios with one of three traits associated with the QTL (A), two of three traits associated with
the QTL (B) and with all three traits associated with the QTL (C). The explained variance of the QTL was fixed at 0.1%. For clarity reasons, we
have not provided errors bars. Confidence ranges for the power estimates are all between 1 and 5%; exact values are provided in Tables S3–S5. MAF,
minor allele frequency; MV, multivariate; PCHAT, Principal Component of Heritability Association Test; QTL, quantitative trait locus; rE, residual
correlation; rG, genetic correlation induced by the QTL; TATES, Trait-based Association Test that uses Extended Simes procedure; UV-MA, meta-
analysis of univariate results; UV-PCA, univariate analysis of first principal component; UV T1, univariate analysis of trait 1; UV T2, univariate analysis of
trait 2; UV T3, univariate analysis of trait 3.
doi:10.1371/journal.pone.0095923.g002
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method to an exact 5% type I error rate. Null simulations

illustrated that for MV-PLINK, MV-SNPTEST, MultiPhen, MV-

BIMBAM, TATES and UV-PCA these empirical significance

levels were all close to the nominal level of 0.05 for p-values or

between 0.01-1 for log10 BF [28]. PCHAT was slightly conserva-

tive based on our observations. Thresholds for UV analysis were

around 1.7% (i.e. 5 divided by 3) in case of uncorrelated traits,

which is in line with a Bonferroni correction for three independent

tests. As expected, for correlated traits the adjusted threshold was

less stringent and somewhere between 1.7 and 5%. We found that

significance thresholds for UV-MA were highly dependent on trait

correlations with increased stringency with increase in correlation.

Trait correlations result in longer tails for the test statistic

distribution, and therefore a more stringent threshold must be

applied to keep the type I error at 5%. Thus, use of the UV-MA

can potentially lead to a high number of false-positive findings if

traits are highly correlated and the significance threshold is not

appropriately adjusted.

Some of the methods included in our study have been compared

to one another before. MV-PLINK and MultiPhen were

compared by O’Reilly et al. and van der Sluis et al., which showed

that both methods result in the same power when restricting the

analysis to normally distributed traits [12,15], corroborating our

findings. TATES was compared to MANOVA (which is similar to

MV-PLINK) and shown to be only outperformed by MANOVA

in the particular condition that the genetic variant affects only one

of multiple strongly correlated traits [15]. In contrast, we observed

that MV-PLINK outperformed TATES in almost all scenarios.

In addition to power (and type I errors), there are other

characteristics that are important to take into account when

deciding upon the appropriate multivariate GWAS analysis. MV-

PLINK output results contain trait loadings, which indicate how

much each trait contributed to the multivariate association result

[7]. MV-BIMBAM outputs marginal posterior probabilities for

each trait being unaffected, directly affected or indirectly affected

by the QTL, conditional on an overall association with at least one

trait [22]. PCHAT gives the weights for each of the traits included

in the analysis which were used to construct the optimal linear

combination of the traits to detect an association with the QTL

[4]. MultiPhen output contains the betas and p-values for the

association of each trait with the QTL based on the joint model

including all traits [12]. This additional information, which is not

provided by MV-SNPTEST and TATES, can be used to obtain

insight into underlying biology and facilitates the discrimination

between independent and pleiotropic QTL effects. Furthermore,

MV-PLINK, MultiPhen, TATES and UV-MA allow analysis of a

combination of quantitative and binary (case-control) traits

[7,12,15]. MV-BIMBAM and UV-MA can be applied to

summary data, without access to raw phenotype and genotype

data [22]. Also, MV-SNPTEST, MultiPhen, TATES, UV-PCA

and UV-MA are able to handle genotype probabilities as obtained

by imputation while the other methods are not [12,15,20]. Finally,

our study showed large differences in run time between the

methods.

Our simulations are not exhaustive. Data were simulated for

three traits according to an additive model, and analyzed

accordingly. We did not simulate and analyze other, non-additive

genetic models and/or (higher-order) interactions, nor did we

study scenarios with more than three traits. In addition, priors for

MV-SNPTEST and MV-BIMBAM and input parameters (e.g.

number of (bagging) subsets) for PCHAT were not varied. Also, we

did not study the effect of missing data. This was explored by Klei

et al. for PCHAT who concluded that dropping individuals with

missing data had a substantial diminishing effect on power of the

test [4]. In addition, Van der Sluis et al. [15] reported that 10%

missingness completely at random hardly affected the power to

detect QTLs when the QTL affected all traits, but that it resulted

in a higher power drop for MANOVA compared to TATES when

the QTL was only associated to one of the traits. Finally, we did

not simulate trait outliers in our data. O’Reilly showed that this

could result in substantial inflation of the statistics for CCA for low

frequency variants [12]. However, in our opinion outliers should

be handled appropriately prior to association analyses.

Taken together, our study showed substantial differences in

power between the methods, dependent on the simulation

scenario. For some of the simulation scenarios, a large increase

in power of multivariate compared to univariate analyses was

observed, which suggests that the multivariate methods might be

able to identify genetic variants that are currently not identifiable

by standard univariate analysis. Overall, MV-PLINK, MV-

SNPTEST, MultiPhen and MV-BIMBAM performed best for

the majority of the tested scenarios, with a remarkable increase in

power for scenarios with an opposite sign of genetic and residual

correlation. As a consequence, results of these methods will be

biased towards QTLs that cause a genetic correlation that is

opposite in sign to the residual correlation. PCHAT and TATES

showed a robust performance over all simulation scenarios and are

therefore recommended to use if one aims to obtain a reflection of

the underlying genetic architecture of the traits.
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