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ABSTRACT: The paper is concerned with the seismialgsis of large reservoirs. During an earthquéakis, known that the

acceleration of the water contained in the resempmduces an additional hydrodynamic pressureclvhias a convective, a
rigid and a flexible impulsive part. The two firsbntributions are already well-known and may thenefbe easily integrated
during a pre-design phase, but it is much more dicatpd to assess the flexible contribution, as ibfluenced by the coupling
between the structure and the fluid. The only ciesi way seems to resort to finite elements methatiich are not always
convenient at an early design stage. For this reasome research have been undertaken to rapidipate the flexible

pressure acting on thick plates. The results obthby using this simplified method have been coegbém numerical solutions.

The agreement was found to be quite satisfactory.
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1 INTRODUCTION

When a reservoir is submitted to an earthquakés ivell

known that an additional hydrodynamic pressurepjsdiad on
the tank walls, because of the acceleration ofathter that is
confined in the chamber. This pressure has the tfalowing

contributions:

e The convective one, which is produced by the waves

occurring at the free surface during the seismitation.
This phenomenon is also called sloshing.

e The rigid impulsive one, which is derived under th

assumption that the walls are perfectly rigid anovenin
unison with the ground.

e The flexible impulsive one, coming from the accatams
of the walls as an imperfectly rigid structures.

The two first parts may be easily characterizedsbyne
analytical formulae already available in the litera. Many
solutions were proposed by various authors, sucBpssein
[1], Haroun [2], Housner [3] or lbrahim [4] amongghers. It
is therefore quite easy to account for these fonsen
designing new gates. Moreover, as we are preseetling
with quite large reservoirs, the convective pamegligible in
comparison with the two remaining ones, so it widit be
considered any longer in this study.

Assessing the third contribution is a more ardu@sk. In
fact, the pressure field is
accelerations of the walls, which, in turn, haseffact on the
dynamic response of the structure itself. In otiverds, we
are facing a coupled problem. This one may be solge
resorting to finite elements analyses, where be¢hfluid and
the structure have to be modeled. However, sudcipanoach
may be time demanding, because developing a coenpled
consistent numerical representation of the liquednot so

easy. Moreover, modeling entirely the fluid domaiay lead

to excessively long calculation times. Of courseés tway of
working is definitely not acceptable at an earlagst of
design, when engineers do not necessarily have af kime

to perform fastidious calculations. Such an appnoacalso

not conceivable when a great amount of scenarios or
configurations have to be checked.

For all these reasons, it is quite clear that darradtive

approach is necessary, as integrating the seisttimnan the
pre-design is of prior importance in regions freule
esubmitted to earthquakes. Nevertheless, developam
efficient simplified analytical procedure is not sasy, but we
propose to go one step further in this paper bysiceming a
large flexible reservoir undergoing a seismic aexlon.

influenced by the prope

Figure 1. Flexible reservoir.

The tank under consideration here is depicted garEil. It
has a total length, a widthl and a heighH. It is filled with
water until the levelhs and is submitted to a longitudinal
accelerationX(t) acting along thex axis. The lateral walls
located inz= 0 andz = | are considered to be perfectly rigid.
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This is also the case for the ground locategt at0. On the whereA is the modal amplitude arfgj is related to the other
contrary, the walls at = 0 andx = L are assumed to behavevariables by:

like a flexible plate simply supported on thregesl (SS) and by

free at the upper one (F), as represented on FRjure B = yiz(l_V)_Ci S”'(/]i H) (6)

" R-v)+c? sintain)

It is worth bearing in mind that all the solutiodstailed here
above are only valid for a dry plate that is notamtact with
water. In the present case however, the reserwdited up to

a levelhs, which means that equations (3) and (5) are ret th
Ay vibration properties characterizing the wet plafte. account
for the presence of a fluid, we first need to havédetter
characterization of the hydrodynamic pressure tepm
SS z appearing in equation (1).

F

SS
SS

3 FREE VIBRATION ANALYSIS OF AWET PLATE

3.1 Characterization of the hydrodynamic pressure
2 FREE VIBRATION ANALYSIS OF ADRY PLATE As recalled previously, a lot of analytical solutsoare already

In this section, we consider the free vibrationshef isotropic available in the literature to evaluate the rigidpulsive

and homogenous plate depicted on Figure 2. The dahade pressure,. One may consider, amongst others, the expression
of a linear elastic material characterized by asitgrp, a proposed by Kim et al. [6]:

Young modulus and a Poisson ratio. The out-of-plane

displacements along thxeaxis are denoted hy(y,z,). i 4 coslﬁ,é’ny) L
Under the hypothesis of Il strai p, =—p —— nJ) =
nder the hypothesis of small strains, one may yafim r f Z, ,8,$L Coslﬁ,b’nhs) 5

classical thin plates theory of Kirchhoff, in whicthe
structural equilibrium may be expressed as: whereg, = (2n - 1)/l andp; is the density of the fluid. On
. a%u %y 3% the other hand, if we still use the developmentscdied by
ptp(X + Li)+ D[—4 + 2? +—4j =-p Rajalingham [7], the flexible impulsive contributis can be
oy oy“oz" 0z (1)  derived from:

- ptp(X +Li)+ DO*=-p o+

|
wheret, and D are respectively the thickness and flexural Pt :_chmnj .[ u@:oiany)co:{/(mz) (tlydz (8)
0

rigidity of the plate. In equation (1) denotes the total Lm0 0

hydrodynamic pressure applied on the structure. in which a, = (2n — 1)z/2hs andkm = ma/L. The coefficient
In order to derive the vibration properties for thy plate, ~ o expressed as:

one can consider the homogenous form of equatipnifl

which p and X are set to zero. In this case, the proper : l—cosiﬁ{an)

displacements have a sinusoidal form: Crun =205 fmthmSinf(fan

U (%,2,0) =, (y,2)sin(@t) =1 @) with I, =1 if m =0 andl,, = I/2 if m> 0. Equations (7) and (8)

in which »; ands; are known as the dry eigenfrequencies angOW that the rigid impulsive term is not dependant from

mode shapes. Introducing (2) in (1) and applying ththe proper displacementsof the wall, while it is not the case
developments of Leissa [5] leads to: for the flexible partp. This means that the fluid-structure

coupling is directly coming frorp; and not fronp,.

2
Y2 (1—V)—ci2 7 tar()li H)‘/ﬁ tanr(ji H):O 3) 3.2  Vibration properties of a wet plate

yi2 (1— v) + ci2 As a second step, we may try to derive the vibngpimperties

of a plate surrounded by water on one side. To a@owe

where ¢ is a function ofw; that has to be determined byconsider the free vibrations problem by takifig= O in

solving (3). All the other parameters are definecehfter: equation (1). This time however, as the plate isointact with

a fluid, the homogenous form of (1) is no longelididndeed,

}iz =2+ R=c2-) LT ,oaftp @) to express the structural equilibrium, we have dooant for

oA T T ! D the flexible pressure produced by the vibrations toé

) B immerged plate. In other words, if we denoteChyandA; the
with m =1, 2, ... Furthermore, as shown by [5], themgde \ye; eigenfrequencies and mode shapes, the proper

Figure 2. Boundary conditions.

(7)

) cos{an y)coz{/(mz) (9)

shapes) are given by: displacements for such a situation may still bettemi in a
- similar manner than (2):
J(yz):A Si Ay - B sin Ay sir(yz) (5) i i
i\ Y, | | [ U (y,zt) =4, (y,2)sin(Q;t) i=1 (10)
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but the characteristic equation to be solved fattigg the
modal properties is more difficult, as introduci(i) in (1)
and (8) leads to:

[ptA 3 e mn] DO*A; =0 (11)

n=1 m=0

wherel,,, is a term coming from the flexible pressure (8) an

related toA; by:

hs |

1O = I ,[A [oda, y)codk,,z) (Hydz

12)

It is clear that finding an exact expression for that
satisfies (11) is almost impossible. An approximatalytical
solution may however be found by applying the RigyieRitz
method.

3.3 The Rayleigh-Ritz method

If we want to follow this approach, we first ne@dexpressy;
as a linear combination of admissible predefinedcfions
that satisfy the boundary conditions detailed oguFé 2. As
suggested by Rajalingham [7], we can directly use dry
mode shapes (5) to decompase In other words, we can
write:

(13)

Z):ivji d—j(yfz)

wherev; are unknown coefficients aM is the number of dry
modes involved in this simplified approach.

The first step in the Rayleigh-Ritz method is ttireate the
energy of the wet structure. According to Shamds tl&
maximal deformation enerdy may be evaluated from:

Hl 2 2 2 2
U :BJ.J.{{G AZI] +{a Azl] +2v
2o\l oy 0z

0%, 024,
ayz aZZ

while the maximal kinetic energyl characterizing the
vibrations of the plate is given by:

2

HI
Q:
TZT'pth.IAiZ Celydz (15)
00

This operation is quite fastidious but allows usatate U, T
andW under a more convenient matrix form. Indeed, weeha

T=v frly, u=y U]y, w=yl W]y,

wherey; is a vector containing the coefficiems [T], [U] and
[W] are matrices that may be directly evaluated hysitering
the dry modes given by equation (5). Finally, sodvithe
following classical eigenvalue problem:

defu]-?(r]-[w))=

[u]-02(r]- W), =0

(17)

(18)

leads to the wet eigenfrequenci€ and to the unknown
coefficientsy;. These last ones may then be introduced in (13)
to get the wet mode shap#s

4 NUMERICAL EVALUATION OF THE WET MODAL
PROPERTIES

In order to validate the analytical developmentseftyr
exposed in section 3, we can compare the corresppnd
results to those obtained by resorting to finitengnts
methods. As practical example, let us considerréservoir
depicted on Figure 3. It is characterized by a lwiolt 7 m, a
length of 15m and a height of é. It is filled with water up to
a level of 3.5m. The thickness$, of the two flexible walls is
equal to 1&m

Figure 3. Main dimensions of the reservoir.

The physical properties defining the fluid and sudid are
listed in Table 1. For this study, the reservoiassumed to be
made of steel.

In addition toU andT, it is also required to evaluate the

potential W associated to the hydrodynamic flexible pressure

Table 1. Properties for the fluid and the solid dars.

pr. This one may be shown to have the following form: Solid domain

2 +oo 400 Young modulus E 210GPa
zz 1- cost¢ L) 1010 (16) Poisson coefficient | v 0.3

e e " & d sint(g,,, L) ™ ™ Mass density p 7890kg/m?

Fluid domain
where |, has already been defined in equation (12). If we Bulk modulus Ks 2 25GPa
further introduce (13) in (14), (15) and (16),gtdlear that the Speed of sound C 1500mvs
termsU, T andW may be expressed as functions/paindg;. Mass density i 1000kg/m?
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The finite elements softwareAsTRAN is used to perform a ~ ——pDry mode Wet mode —e— Nastran
modal analysis of the reservoir shown on FigureTBe T
flexible walls are modeled by using isoparametri P09 =
quadrilateralcQuAD shell elements with four grid points, A 8'3 '§
while hexahedratHEXA solid elements with eight grid points P 0'6 %
are used for the fluid. The mesh size has beenrgssiyely s 0’5 ke
reduced until a sufficient convergence on the tesulas A 0'4 4]
reached. e 03 B

Working with NASTRAN allows us to know the modal AL o2 3
properties of the wet flexible walls. These onesy niee — 0:1 %
confronted to the results obtained by our simplifreethod. o 2

As a matter of comparison, let us start by congidethe
eigenfrequencies. The values found numerically ar
analytically are presented in Table 2 for the séveirst Normalized modal displacement
modes of vibration.

o o1 02 03 04 05 06 07 08 09 1

——Dry mode Wet mode —e— Nastran

Table 2. Comparison of the eigenfrequencies . ég g
Mode Analytical Numerical Relative 0,8 §
number solution Hz)  solution Hz)  error (%) 07 8
1 5.44 5.43 0.22 06 3
2 12,51 12.36 1.12 / \ 05 %
3 18.27 18.27 0.01 04 2
4 26.52 26.12 1.53 03 g
5 32.79 32.37 1.28 yd X 02 &
6 39.44 39.44 0.01 01 €
7 48.37 47.21 2.49 o 2

0 01 02 03 04 05 06 07 08 09 1

From Table 2, we see that the maximal discrepartyden Normalized horizontal positioz|

the results given bwASTRAN and the ones derived by the

present simplified approach does not exceed 3%Gwéeems Figure 5. Comparison of the first mode shapesiandr,

to be acceptable. Moreover, this quite good agreemeas ——Dry mode Wet mode —e— Nastran

obtained by considering only five dry modes (M= 5) in | 1 -
equation (13). 09 &
S~ 08 =
o \E\\\\ 0.7 §
0,5 E
b ESVREY
/ ! =
y 7 02 &
H = 01 8

z X 0

-1 -08 -06 04 02 0 02 04 06 08 1

M1
/ Normalized modal displacement
/2

Figure 4. Vertical and horizontal planesandz, used for — Dry mode Wetmode —e—Nastran 1
comparing the mode shapes. V.alia 09 §
Let us now compare the wet mode shapes obtainethéor 0.8 %
flexible walls of the reservoir. The two first onage plotted 0.7 %i
on Figure 5 and Figure 6 respectively. For each enddo 0.6 ©
different illustrations are proposed. The upper sna plot of / \ 8’2 §
the profile in the vertical plane=1/2 (planer, on Figure 4), 0'3 =
while the lower one corresponds to the profile imet 0’2 §
horizontal plang = H (planemr, on Figure 4). / \ 0’1 E
Regarding the horizontal profile, it is clear tlasine half- 0' g

wave seems to be a good approximation. Concerrtieg t
vertical one, the agreement appears to be satisfactven if
some discrepancy may be observed near the topeofjdte Normalized horizontal positiozil
where water is not present.

o 01 02 03 04 05 06 07 08 09 1

Figure 6. Comparison of the second mode shapeandzr,
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The comparisons illustrated here above for thismesr show u(y,zt) exhibited during the seismic excitation are basad
that the agreement between the analytical and ricaher the wet mode shapes. In other words, we postiiate t

results is satisfactory. This tends to validate tinweoretical
derivation of the vibration properties for an imged plate by
using the Rayleigh-Ritz method. The present arati
approach has also been
comparisons performed with other various reservibied are
not presented here.

5 DYNAMIC ANALYSIS OF AWET PLATE

51

The modal analysis of immerged flexible walls peried in
the previous section provides a global insightl@way such
structures respond to a seismic excitation. The s&ep is
now to consider the situation where the resenssubmitted
to an earthquake load having a longitudinal acegiem
component denoted bi{(t).

To get an analytical approximation of the dynaneisponse
of the reservoir in such circumstances, we canr refethe
equilibrium equation (1). Nevertheless, this onéll viie
modified here to account for an eventual dampirag thay
affect the structure. If we denote lyythe damping forces,
equation (1) becomes:

Equilibrium equation

ptp(X +u)+fd+DD4u=—p (19)
In order to characterize a bit further the tefgmwe will
assume that these additional forces are directiter to the
velocity. Assuming a Rayleigh-type dampirigmay be seen
as having two different contributions: a first azeming from
the mass of the structure and a second one comimg its

stiffness. According to Shames [8], we can write:

fq =apt,u+ 0% (20)

corroborated by additional

=08 (v) @=Y ol @

where N is the number of wet modes used for developing
u(y,zt). At this stage, the modal amplitudgsandoqy are still
unknown but will be determined by applying the wat work
principle.

5.3

During the virtual displacement, the work performed by the
internal forced; is simply given by:

Internal virtual work

M, = H f... (U [dydz= DHD“u [uldydz (23)
00 00

which may be transformed by considering the modal
decomposition (21). Doing so leads to an expressiaiV,,
involving the wet modes calculated in section 3.3:

N N
Mg =;d:1kzlqju jk
= =

External virtual work

(24)

5.4

If we now develop the second part of the virtualrkvo
theorem, the work associated to the external fodcemg the
virtual displacemendu(y, z, t) is given by:

Hl
Moy = [ [ T B Tllylz (25)
00

and subsequently, we have to examine the contoibsiti

where o and /i are two constants known as the Rayleiglioming from all the terms involved in the right daside of

damping coefficients. Furthermore, if we rearrarfig®), we
get:
pO*u=—{p- o, (X +ii)-apt,u+ 0% (21)

which may be identified as the equilibrium equatidra plate
submitted to an external resulting horizontal acfig; given

by the right hand side of (21). In fas, is nothing more than *

the sum of the pressure, damping and inertial for@n the
contrary, the left hand side of (21) may be seearamternal
forcefiy.

5.2 Virtual work principle

Once all the forces acting on the structure havenbe

characterized, we can try to derive analyticallg tlorced
vibrations of an immerged plate. To do so, a sofutis to
apply the virtual work principle, which simply statthat a
necessary and sufficient condition for equilibriis1o equate
the external and internal virtual works for anydamatically
compatible displacements field. Consequently, if want to
express the equilibrium of the plate, we first ntaysider a
compatible virtual fieldbu(y,zt) acting on it.

Furthermore, if we consider the developments peréat in
section 3.3, it seems reasonable to express tkamtitions

(21). This task is quite fastidious, so we will pprovide here
a short summary of the final results, obtained raftaving
incorporated the modal form (21) into (25). Theldwling

results can be easily proved (see also in the Agipefor

more details):

For the inertia forces, we get the following virtuaork:

N N H
_Zd:]k quTjk + ijﬂpAkdde (26)
k=1 j=1 00
For the Rayleigh damping forces, we get the foltayvi

virtual work:

N N

—Z&lkzq]'(m-jk +/6Ujk)

» For the pressure, we get the following virtual work

N HI N
- Z@k{” prAkdde‘quij}
00 j=1

(27)

(28)
k=t
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5.5  Global equilibrium equation 0,12

If we gather all the results obtained in (24), (2@7) and 01

(28), we can write the virtual work principle inettiollowing
way: % 0,08

s |

N N N % 0.06

qu(Tjk -W;k)+Zq,-(aTjk £ M)+ a U £ |

j=1 i=1 j=1 (29) § 0,04 - |

=X 0,02 -] .UA‘ Ly '
with k = 1,2, ... ,N. It is worth noting that the virtual o ! MWM

coefficientsdqy do not appear anymore in (29) as the virtue
work principle has to be satisfied for any value thése
parameters. Furthermore, it is important to retrat Ty, Uy,
Wi and Vi, may be directly expressed with help of the wet
mode shapes. Some more detailed results are givahei
Appendix. 6.2  Description of the model
As a final step, let us write (29) under a matoxnf. If we
introduce the matricedT], [U], [W] and the vectorg andV,
we can express (29) by the following more clasgieslilt:

0 5 10 15 20 25 30 35 40
Frequencyliz)

Figure 8. Fourier transform of the seismic accdiena

The numerical analysis is performed by using thatei
elements softwares-DYNA. The flexible walls are modeled
with Belytschko-Tsay shell elements [10] of uniform
_ - : —\I¥ thicknesg,. The constitutive material is supposed to be ielast
T|—-|W|)4(t) +{alT]|+ AU [)qt) +|U [qt) =VX(t) (30 p
([ ] [ ])9() ( [ ] '8[ ])9() [ ]9() VX(®)  (30) and characterized by a mass dengitya Young modulug&
For a given acceleratioki(t), this equation may be solved and a Poisson ratio (see_ Table 1). Thg stress and strain
by using the classical Newmark integration scherpe f(€nsors are related according to the classical Efsdaw.
example. Doing so leads to the vecwmrcontaining the The mesh of t_he solid domain is quite coarse, wnﬂmore_
coefficientsq;. These ones are then used to derive the dynanff €SS regular size of 20 x 2enfor the shell elements. This

response of the flexible walls with help of equati@2). choice is due to the necessity of Iim_iting the ffthe mpdel.
Nevertheless, we also performed simulations on mefieed

6 NUMERICAL EVALUATION OF THE DYNAMIC models with a meshing of 5 x&nor 10 x 10cm, and the
RESPONSE obtained results were not sensitively differentfrthe present

ones.

The fluid is modeled with constant stress solidmedats
To validate the analytical developments briefly @sgd in [10] and supposed to behave like an elastic medium
section 5, we can compare them to those obtainaasimg a characterized by a mass dengitynd a bulk moduluk; (see
finite element model. The reservoir considered eotisn 4 Table 1), but without shearing forces inside thaemial. This
(Figure 3), for which the material and fluid profees are is coherent with the behavior of water.
those listed in Table 1, is submitted to a seismirtgathe The mesh of the fluid domain is also regular, with

6.1 Description of the seismic action

longitudinal acceleratioA(t) depicted on Figure 7. approximate size of 1&m for the solid elements. Here again,
using more refined meshes does not change noticahbl
1 results.
0,8 The both previous meshes representing the waterttand
0.6 structure do not share any node in common, whicansi¢hat
< 04 - Lyl !, 1l il the fluid nodes are allowed to slide on the solidlisv A
5 0, ; ; ; S
= , penalty contact algorithm is used to simulate thieraction
s 02 1 between the plate and the surrounding liquid, wigickvents
'§ 0 4 the fluid from passing through the structure.
3 _g’j | f - 6.3  Presentation of the results
< _0'6 RN R ' The analytical predictions derived from the virtuabrk
’ I principle are now confronted to the numerical oresthis
0.8 section, we will limit our presentation to the cask the

-1 reservoir depicted on Figure 3. Structural dampegpplied
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 0N LS-DYNA through the classical Rayleigh formulation. The
mass and stiffness coefficient are calibrated s asodel an
arbitrary 4 % damping on the two first modes ofration.
It is worth mentioning that many other additional
simulations were performed, using different georoalr
The Fourier transform of this signal, representad=@ure configurations than the one of Figure 4. The cosiols that
8, shows that the main part of the seismic exoitais located we found in all cases are very similar to thoses@néed here,
in the frequency range Hz; 15Hz]. so for conciseness, we will not present them ig fiaiper.

Time ()

Figure 7. Longitudinal component of the seismicedexation
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As matter of comparison between analytical and micale
results, we can compare the total hydrodynamicefdr(t)
applied on the flexible wall (in excess to the (ostatic
pressure) is plotted on Figure 9 for different timrvals. As
we neglect here the convective contribution, thésuttant
force is simply obtained by integrating the rigiddaflexible
impulsive pressurgs andp; over the wall surface.

We see that the agreement between analytical seaunfd
numerical ones is quite satisfactory. The comparisb the
extreme values, extracted from the previous cuaveslisted
in Table 3, shows that the theoretical model tendse more
conservative than the finite element one. Moreowbe
maximal overestimation does not exceed 15 %, whsch
acceptable for a pre-design study. Analytical andherical
simulations performed for other reservoirs led fmilar
conclusions.

Table 3. Comparison of the extreme values

Result Analytical Numerical Relative
solution KN)  solution KN)  error (%)
Maximal g6 69N 157.36 kN 14.4
value
Minimal ;79 gg 4N -167.29 kN 7.5
value

7 CONCLUSION

In this paper, we briefly present an analytical geure to
analyze the dynamic response of flexible resensitsmitted
to an earthquake.

To achieve this goal, we first evaluate the wet ezod
characterizing the free vibrations of a plate imtest with
water on one side. These modal properties are aterby
using the Rayleigh-Ritz method. To check the validif the
results given by this approach, we compare themutoerical
solutions obtained by using the finite elementstveaife
NASTRAN. These ones are derived by performing a modal
analysis on a model where both the fluid and thel sare
represented. For all the reservoirs tested, theemgent with
the analytical results is found to be satisfactory.

As soon as the wet modal properties are deriveds it
possible to have a better investigation of the dyinaesponse
of a reservoir submitted to a seism. The virtuatknarinciple
is used to derive an analytical solution to thebprm. This
one is then validated by comparison with numeriesults
provided by the softwares-DYNA. Once again, a sufficient
agreement is found between analytical and numeresailts.

In comparison with numerical techniques, the main
advantages of the present approach may be sumuhanizee
following way:

» The method quickly provides the approximate time
evolution of the total hydrodynamic pressure actimga
flexible wall for a given acceleratioff(t). This may be
particularly useful during the early design stagésiew
structures, when engineers do not necessarily tianeto
resort to finite elements software.

e In comparison with numerical approaches, our sifiegli

81 84 87 9 93 96 99 102 105 10,8 method has also the advantage of being quite iveuit

Figure 9. Comparison over four different time intds

Indeed, using finite elements software is still tqui
arduous, as having a proper numerical representatio
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the fluid-structure interaction is not that easyhisT
requires from engineers to be highly familiar wéth the
various modeling techniques, which is not necelysari
always the case.

e Finally, we can also argue that the present simaplif
method is particularly well suited for working with

(4]
(5]
(6l

X 7
important structures (such as lock chambers orelaré]

reservoirs). Indeed, such configurations may leadery
huge finite elements models requiring non negligibl
calculation times.

Even if this paper is only dealing with the seismésign of
reservoirs, it constitutes a first step for devedgpa similar
simplified tool applicable to lock gates. Indeedie tmain
difference between the reservoir considered hedeaalock
chamber is that the flexible walls have to be repthby the
lock gates. By following a similar analytical pratee, it
should be therefore possible to derive the samé &firesults
for these particular structures. This will be psety the goal
of further investigations.

APPENDIX

This appendix provides a more detailed descriptiérthe
formulae leading to the evaluation of the matrif€g [U],
and W] introduced in equation (30). These matrices any o
functions of the wet eigenmodes of vibration. Thiast ones
are given by (13) and may be derived by followirg t
procedure described in section 3. As soon as theyoand,
they can be introduced in the following expressions

Tik :ptpT'I[AjAkdydz
00

HI
Uy =D [ [0%(a; o dydz 31)
00

+00 +00 1—cos|{<’mn|-) (1) ()
W = 2 |
k ZZ P+ <zmnhs|ms,inl"(fan) mn! mn

n=1 n=0

where I, has already been defined by equation (12). |
addition, the various components of the vedfoare to be
found by applying the subsequent relation:

el oo
L\ & pAL costiph) 2

: N
_ﬂijAkdde

00

whereg, = (2n — 1)z/L andp; is the mass density of the fluid,
as mentioned previously.
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