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a b s t r a c t

This study examines the well-known issue of evaluating the flutter probability for a long-span bridge,
necessary for assessing structural integrity and reliability. The motivation stems from the need for
critically reviewing and investigating a number of existing numerical approaches (e.g., random
perturbation analysis, collocation methods, Galerkin approach) for the modeling and the solution of
stochastic dynamic problems, by adapting them to the specific problem. The study proposes a
generalized formulation for stochastic bridge flutter in terms of random eigenvalue analysis. A 1200 m
suspension bridge model is used in the numerical simulations to compare the various methods and to
provide indications on advantages and limitations of each method. Moreover, the link between the
proposed formulation and existing studies on the propagation of uncertainty in aeroelastic systems, for
example associated with measurement errors in wind tunnel, is examined.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction and problem statement

The study of bridge flutter has attracted the attention of research-
ers and designers for many decades due to the susceptibility to flutter-
induced catastrophic structural failure. In line with the technological
developments in long-span bridge design and construction, more and
more sophisticated models for predicting the onset of flutter are
necessary. Among these models, the use of probability-based analysis
to study flutter occurrence has been often considered.

For example, probabilistic methods have been used to investigate
bridge structural reliability, associated with the ultimate collapse limit
state induced by flutter (e.g., Cheng et al., 2005; Ge et al., 2000;
Pourzeynali and Datta, 2002; Dragomirescu et al., 2003). On the other
hand, stochastic calculus has been employed to examine the effects of
atmospheric turbulence either on flutter onset (e.g., Bucher and Lin,
1988; Sarkar and Tsiatas, 2009; Bartoli et al., 1997; Cai and Albrecht,
2000; Sepe and Vasta, 2014) and beyond, i.e., in a post-critical state
(Hračov et al., 2005; Náprstek and Pospíšil, 2004; Pospíšil et al., 2006).

In recent years, capitalizing from the pioneering results on
turbulence effects on flutter (e.g., Bucher and Lin, 1988), stochastic

bridge flutter analysis has been used to examine the effect of various
sources of uncertainty (modeling andmeasurement error propagation),
originating for example fromwind tunnel tests on a sectionmodel of a
bridge deck. These sources can include errors in the estimation of
aeroelastic loads (Caracoglia, 2011). Incidentally, the issue of error
analysis and propagation had been overlooked and seldom investi-
gated, except for a limited number of cases (e.g., Caracoglia, 2011).
Nevertheless, recent studies (Sarkar et al., 2009; Kwon, 2010; Mannini
and Bartoli, 2012; Argentini et al., 2014) have reaffirmed the need for
ensuring that uncertainty evaluation, while conducting an experiment
to determine aeroelastic loads (e.g., flutter derivatives), is carefully
considered and included in flutter predictions.

Building on previous investigations and literature results, this
study aims at critically reviewing and examining a number of analysis
and solution methods, applied to the prediction of long-span bridge
flutter probability. The three main objectives of the work are: (i) to
propose the use of a randomly parametrized matrix and system for the
study of stochastic bridge flutter, in which random parameters are
used to describe aeroelastic force measurement errors; (ii) to estimate
flutter probability by using a possibly more general analysis frame-
work, i.e., in the context of random eigenvalue analysis, especially
when the number of random parameters is large; (iii) to investigate a
series of numerical analysis tools and solution methods for stochastic
bridge flutter simulation, as alternatives to MonteCarlo sampling;
these methods include: perturbation approach, stochastic collocation
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(Le Maître and Knio, 2010) and Galerkin approach (Ghanem and
Spanos, 1991; Ghanem and Ghosh, 2007).

A 1200 m long-span bridge, equipped with truss-type deck girder,
is utilized as application example. Both single-mode torsional flutter
and coupled-mode flutter are examined. Even though the use of
sampling methods is often recommended (e.g., Xu, 2013) for systems
with several random variables, other methods such as the stochastic
collocation can still provide sufficiently adequate results.

2. Reduced-order model for dynamic analysis of bridges

The dynamic response of a long-span bridge was derived from the
multi-mode formulation in the frequency domain (Jones and Scanlan,
2001). Wind-induced forces can be represented as a superposition of
aeroelastic (motion-induced) and aerodynamic (turbulence-induced)
loads. The equations of motion of a long-span bridge subject to wind
loading are given by

m ∂2t hþcy ∂thþkh h¼ LaeþLb
Iα ∂2t αþcα ∂tαþkα α¼MaeþMb ð1Þ
with hðt; xÞ and αðt; xÞ the vertical displacement and the rotation angle
of the bridge deck along the span at coordinate x, respectively. The
coefficients cy, cα , ky and kα refer to the viscous damping and stiffness
in the corresponding directions of vibration. The horizontal displace-
ment (bridge sway) is not considered in the present work. The vibr-
ations of the structure are assumed to be small. The wind loading is
split into two contributions: (i) the aeroelastic lift force (Lae) and
torsional moment (Mae) and (ii) the buffeting lift force (Lb) and tors-
ional moment (Mb). These two sources are supposed to be decoupled
and not to interact with each other (Jones and Scanlan, 2001). In the
multi-mode formulation, the displacement components are repre-
sented via a modal expansion derived from the unloaded structure,
such that

hðt; xÞ ¼
X
j

BηjðtÞhjðxÞ;

αðt; xÞ ¼
X
j

ηjðtÞαjðxÞ ð2Þ

with hj and αj the dimensionless vertical and torsional components of
the jth mode and B the deck width.

The aeroelastic loads per unit length can be interpreted as
parametric excitations depending on structural vibration via
flutter derivatives, such that

Lae ¼ qB KHn

1
1
U
∂thþKHn
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B
U
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3αþK2Hn
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� �
; ð3Þ

Mae ¼ qB2 KAn
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� �
ð4Þ

with q¼ 1
2ρU

2, ρ the air density, U the meanwind velocity, K ¼ωB=U
the reduced frequency and ω the pulsation. The coefficients Hn

i ðKÞ
and An

i ðKÞ (i¼ 1;…4), designated as flutter derivatives, are commonly
identified in wind tunnel tests as functions of K. On the other hand,
turbulence-induced forces are direct loads, usually modeled by a set
of random processes, coherent in time and space. The buffeting forces
are intrinsically random, while the aeroelastic forces are usually
considered as deterministic. However, uncertainties in the flutter
derivative measurements change this perspective to better interpret
them as random processes in the frequency domain (e.g., Seo and
Caracoglia, 2011, 2012).

The aeroelastic forces, simultaneously defined in time and fre-
quency domains, may be converted by inverse Fourier transform into
indicial functions, expressed as a function of dimensionl-
ess time s¼tU/B (Scanlan et al., 1974). An indicial function (IF) is a
dimensionless function modeling the unsteady evolution of the

aeroelastic loads,

ΦPpðsÞ ¼ 1�
X
i ¼ 1

ai;Ppexpð�bi;PpsÞ ð5Þ

with P ¼ fL;Mg and p¼ fh;αg. The parameters ai;Pp and bi;Pp result
from a nonlinear fitting of the coefficients, for example as explained in
Caracoglia and Jones (2003). The summation in (5) may contain from
1 to 4 terms depending on the complexity of the actual indicial
function to be fitted. The aeroelastic loading may be simplified by
introducing new variables fμ;νg, known as the aeroelastic states, in
order to describe the time evolution of the unsteady loading

_μ i;Ph;j ¼ ai;Phbi;Ph _ηj �bi;Phμi;Ph;j ð6Þ

_ν i;Pα;j ¼ ai;Pαbi;Pαηj�bi;Pανi;Pα;j ð7Þ

with P ¼ fM; Lg. The dot symbol in the equations above designates the
derivative with respect to s. Additional details are provided in
Caracoglia (2011, 2013).

Therefore the final form of the equations of motion is

1
Qj

€η j ¼ � 1
Qj

2ξjKj _η jþK2
j ηj

� �

þ
XM
k ¼ 1

Ĉ LGhjhk ΦLhð0Þ _ηkþ
XmLh
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" #

þ
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ð8Þ

with Gαjhk ¼ ð1=lÞ R l
0 αjðxÞhkðxÞ dx, Qj ¼ ρB4l=2Ij with Ij the general-

ized modal inertia and the reduced pulsation is Kj ¼ωjðB=UÞ. The
modal coupling is estimated through the variable Gαjhk and Gαjαk

for different combinations of jak. We also introduced the coeffi-
cients Ĉ L ¼ �∂αCL and ĈM ¼ ∂αCM .

Eqs. (6)–(8) can be recast into a state formalism with XðsÞ ¼
½ηi; _η i;μi;Ph;j;νi;Pα;j� and FbðsÞ a vector of the turbulence-induced
loads. The dynamical system can be rewritten, after simplification,
as

_X ¼ AXþFbðsÞ: ð9Þ
Matrix A is a time-invariant matrix gathering structural and aero-
elastic parameters. An explicit expression of A is given in Caracoglia
(2013). From (9), it is obvious that bounded processes, originating
from buffeting loads in the exogenous term Fb, are not sources of
instability. In order for the contribution of the buffeting force to be
relevant, a parametric perturbation to the mean wind speed would be
required. This can be accomplished for instance by replacing the
quantity U with the quantity U[1þw(t)] with w(t) a random noise
(Bucher and Lin, 1988; Sarkar and Tsiatas, 2009). Nevertheless, the use
of such a parametric disturbance has been noted as not being fully
representative of the physical phenomenon (Caracoglia, 2011) and that
the effect of turbulence on flutter should be considered either through
a loss of spanwise correlation of the aeroelastic loading (Scanlan, 1997)
or by propagating through the system a parametric-type disturbance
in the spanwise correlation of Fb (Caracoglia and Jones, 2003). Another
approach (Caracoglia, 2013), which is compatible with the interpreta-
tion of the role of aeroelastic forces versus buffeting forces in the
“classical” bridge aerodynamics formulation by Scanlan (1997), has
also suggested that the role of buffeting force (and perturbation) is
usually of secondary importance in comparison with the variability in
the coefficients describing the aeroelastic loads. The formulation, used
in this work, employs themodel and the results in Caracoglia (2013) to
justify the choice of neglecting the investigation of buffeting load
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effects.Therefore, for the purposes of this study, it is acceptable to
assume that the two loading sources are decoupled and that instability
is controlled by the eigenvalues of A. As a result, a perturbation to the
terms of this matrix will be applied in the next section to simulate
uncertainty propagation on flutter, i.e. the influence of aeroelastic
loading measurement errors.

3. Stability of linear random systems

3.1. Basis of linear stability

On a probability space ðΘ;F;PÞ, we consider a linear time-
invariant (LTI) system with random parameters, such as

_X ¼ BðθÞX ð10Þ
with the random vector Xðt;θÞ : Rþ �Θ↦Rn, the randomly para-
metrized matrix BðθÞ : Θ↦Rn�n and x0 an initial condition (possi-
bly random). We suggest to use the concept of randomly
parametrized matrix, a distinction from the concept of random
matrix, since the randomness in BðθÞ is inherited from randomness
in the parameters of the system. The matrix B in Eq. (10) is the
error-contaminated version of the error-free matrix A, described in
the previous section.

The stability of this linear system may be judged in the light of
the eigenvalues λðθÞ : Θ↦C of BðθÞ, i.e., the roots of the character-
istic polynomial PðλðθÞÞ defined as

PðλðθÞÞ ¼ det BðθÞ�λðθÞI� � ð11Þ
with I the n-dimensional identity matrix. The n eigenval-
ues satisfying this characteristic equation are gathered in Λ¼
λiji¼ 1;…n

� 	
ACn. To each eigenvalue λiðθÞ corresponds an eigen-

vector YiðθÞ : Θ↦Cn, such that

BðθÞYðθÞ ¼ λðθÞYðθÞ ð12Þ
with the normalization condition 〈Yi;Yj〉¼ δij. The randomness of
BðθÞ induces randomness in the n pair of random eigenvalues and
eigenvectors fλiðθÞ;YiðθÞg. Since BðθÞ is real-valued, the random
characteristic polynomial PðλðθÞÞ has only real random coefficients
and the eigenvalues are real-valued or complex conjugate.

For a given realization, the system is stable provided all
eigenvalues, associated with the generalized coordinates of the
structural modes, have a negative real part. Thence, the stability of
the system depends on the joint probability density function (PDF)
of the vector R ΛðθÞ� �

, designated by pR Λð ÞðθÞ : Θ↦Rþ
0 ,

PrðstableÞ ¼ Pr 8 i; λRi ðθÞo0
� �

¼
Z
Θ
pfR Λð Þo0gðθÞ dθ; ð13Þ

where superscript R denotes the real part of the argument. Comput-
ing this probability is the key goal of this work to assess the risk of
bridge flutter instability. Three different methods will be considered in
the sequel to compute this joint-PDF pR Λð ÞðθÞ: (i) perturbation
approach, (ii) collocation method, and (iii) Galerkin projection.

3.2. Perturbation approach

The perturbation approach consists in expanding any eigenva-
lue λi in a Taylor series in terms of the random parameters around
their mean value θ i up to a first or a second order, such as

λiðθÞ � λ iþ
XN
j

ðθj�θ jÞJ λi
j ðθÞþ

1
2

XN
j

XN
k

ðθj�θ jÞðθk�θkÞHλi
kjðθÞ:

ð14Þ
The factors J λi

j ðθÞ ¼ ∂jλi
� �

θ ¼ θ and Hλi
kjðθÞ ¼ ∂2kjλi

� �
θ ¼ θ

denote the
elements of the Jacobian and Hessian matrices, respectively. The
pair λi and Y i results from the eigenproblem (12) by setting θ¼ θ .

Adhikari and Friswell (2007) propose an iterative improvement of
this method, by changing the point θAΘ. However, the mean
value θ remains a convenient guess, especially for slightly dis-
persed random system, independently of the probability dist-
ribution of θ. The Jacobian and Hessian matrices are typically
estimated numerically. Closed forms can only be obtained for
specific cases, e.g., when BðθÞ is a symmetric matrix. The Taylor
expansion (14) is also simplified and both the Jacobian and
Hessian matrices can be computed in closed form.

For small dispersion, the first-order Taylor expansion is a good
approximation. Furthermore, if the random parameters are inde-
pendent Gaussian variables, each variable θi can be expressed as

θi ¼ θ iþσθiξi with Ξ ¼ fξiji¼ 1;…ng a set of independent standard

Gaussian variables with σθi the standard deviation of θi. The mean

value of the real parts of λi is μ λRi
� �

� λ
R

i , while the covariance

matrix is approximated by

Σ λRi ; λ
R
j

� �
�

Xn
k ¼ 1

σ2
θk

R J λi
k

� �
R J λj

k

� �


 


: ð15Þ

It is possible to show that these approximations are second-order
accurate in the variation coefficients of the random variables θi.
Though approximate, this method only requires the sampling of the
random parameters, as the computation of the Jacobian and Hessian
matrices is performed once and for all. However, this method depends
on the convergence of the Taylor series and is not able to capture
bifurcations.

3.3. Collocation method

The collocation is a non-intrusive interpolation method. It consists
in using deterministic solvers to obtain a set of solutions and then in
applying sampling methods and interpolation procedures to generate
samples of the solution. Le Maître and Knio (2010) identify three main
non-intrusive methods: the non-intrusive spectral projection, the
least-square fitting and the collocation methods. In this work, a
specific attention is devoted to the collocation method.

Let consider a subset Θm �Θ containing m realizations ~θ
ðiÞ
AΘm

with i¼ 1;…m. For each realization, the eigenproblem is solved with
a deterministic solver. A collection of m sets of n eigenvalues is

constituted, whose elements ~λ jð ~θ
ðiÞÞ satisfy P ~λ jð ~θ

ðiÞÞ
� �

¼ 0 with

j¼ 1;…n. Eigenvalues are thus known for some realizations. The
random space is next completed by interpolating thesem realizations.

An approximating space ~Θm is thus constructed, with the subscript
here recalling the dependence on the number of collocation points.

The approximation of the eigenvalues ΛðθÞ on ~Θm is given by

~ΛðθÞ ¼
Xm
i ¼ 1

~ΛðiÞ
ϕiðθÞ; ð16Þ

where ϕiðθÞ are interpolation functions defined on the random space.

Since ~ΛðiÞ
contains exact solutions, the function ϕiðθÞ related to

the collocation ~θ
ðiÞ

is equal to one when θ¼ ~θ
ðiÞ

and zero at other
collocation points. Actually, Lagrange polynomials are the least degree
polynomials satisfying this constraint (Le Maître and Knio, 2010;
Quarteroni et al., 2007).

The generic form of a one-dimensional Lagrange polynomial is
given in Bender and Orszag (1999)

Lm
xðiÞ ðxÞ ¼ ∏

m

j ¼ 1;ja i

x�xðjÞ

xðiÞ �xðjÞ
ð17Þ

with the m collocation points as xðiÞAC. For each constraint xðiÞ,
a Lagrange polynomial interpolation is built up. For collocation in
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higher dimensions, xðiÞACn, the n-dimensional Lagrange polyno-
mial reads

Lm
xðiÞ ðx1;…xnÞ ¼ ∏

n

k ¼ 1
Lmk

xðiÞ
k

ðxkÞ; ð18Þ

wheremk is the kth component of mANn gathering the number of
collocation points per dimension. A n-dimensional Lagrange poly-
nomial is the product of n one-dimensional Lagrange polynomials.
Actually, if a similar sampling is realized in each dimension of the
random space, a single group of one-dimensional Lagrange poly-
nomials can be built without distinction on the dimension.

Applying this concept to the interpolation of an eigenvalue of ~λ j

in (16), we have the expression

~λjðθ1;…θnÞ ¼
Xm
i ¼ 1

~λ
ðiÞ
j Lm

~θ
ðiÞ ðθ1;…:θnÞ: ð19Þ

3.4. Galerkin approach

The Galerkin approach (Ghanem and Ghosh, 2007) is an intrusive
method, based on the spectral expansion of the random quantities
involved in the problem, such as the Polynomial Chaos Expansion
(PCE). For instance, the PCE of BðθÞ reads

BðθÞ ¼
XL�1

i ¼ 0

ψ iðξÞBi ð20Þ

with L the truncation order of the expansion, ψ iðξÞ the polynomial
chaos (PC) and ξ a set of independent identically distributed (iid) ran-
domvariables. The PC ψ iðξÞ depends on the probability distribution of
ξ; Askey–Wilson polynomials are usually chosen. The PC coefficients
of BðθÞ are given by

Bi ¼
E½BðθÞψ i�
E½ψ2

i �
ð21Þ

with E½:� denoting the expectation operator.
The PCE of the lth eigenvalue and the lth eigenvector are

Yl ¼
XP�1

i ¼ 0

ψ iðξÞŶ l;i; λl ¼
XP�1

i ¼ 0

ψ iðξÞλ̂ l;i ð22Þ

with P the number of terms in these PCE's ðLoPÞ, Ŷ l;i and λ̂ l;i the PC
coefficients of the lth eigenvector and the lth eigenvalue, respectively.
The expansions (20) and (22) are then substituted in (12). This result is
multiplied by the PC ψk, before computing the expectation of both
members,

XP�1

i ¼ 0

XL�1

j ¼ 0

CijkBjŶ l;i ¼
XP�1

i;j ¼ 0

Cijkλ̂ l;jŶ l;i ð23Þ

with k¼ 0;…P�1 and Cijk ¼ E ψ iψ jψ k

h i
. Being probably complex-

valued, the considered eigenvector and eigenvalue are split into their
real and imaginary parts,

Ŷ l;i ¼ Ŷ
R

l;iþ ιŶ
I

l;i; λ̂i ¼ λ̂
R

l;iþ ιλ̂
I

l;i ð24Þ
with ι¼

ffiffiffiffiffiffiffiffi
�1

p
. The eigenproblem (23) is solved, provided the real and

the imaginary parts are both equal to zero,

XP�1

i;j ¼ 0

Cijk BjŶ
R

l;i� λ̂
R

l;jŶ
R

l;iþ λ̂
I

l;jŶ
I

l;i

� �
¼ 0

XP�1

i;j ¼ 0

Cijk BjŶ
I

l;i� λ̂
I

l;jŶ
R

l;i� λ̂
R

l;jŶ
I

l;i

� �
¼ 0 ð25Þ

with Bj4 L ¼ 0 andwhere the superscriptsR and I denote the real and
the imaginary parts of the argument, respectively. As we count
2Pðnþ1Þ unknowns in (25), this set of equations is “closed” by
invoking the normalization condition of the eigenvectors, 〈Yl;Yl〉¼ 1.

The same recipes, used to obtain (23), lead to

XP�1

i;j ¼ 0

Cijk〈Ŷ l;i; Ŷ l;j〉¼ E ψ k

� �¼ δk0 ð26Þ

with δij the Kronecker operator. Splitting once again real and imaginary
parts, the 2P complementary equations are

XP�1

i;j ¼ 0

Cijk 〈Ŷ
R

l;jŶ
R

l;i〉þ〈Ŷ
I

l;iŶ
I

l;i〉
� �

¼ δk0

XP�1

i;j ¼ 0

Cijk 〈Ŷ
R

l;jŶ
I

l;i〉� 〈Ŷ
I

l;iŶ
R

l;i〉
� �

¼ 0; ð27Þ

closing thus the set with 2Pðnþ1Þ equations.
Contrary to the collocation approach, the Galerkin approach

transforms the original eigenproblem into a set of nonlinear
algebraic equations, losing therefore connection with efficient
algorithms used to compute eigenvalues.

It must be noticed that the developments hereinabove differ from
Adhikari and Friswell (2007), since complex-valued eigenvalues are
considered. Moreover, this approach requires to solve a set of 2Pðn
þ1Þ equations for each eigenpair and to consider in this set the
coupling between the eigenvalues and the eigenvector components,
which may become computationally cumbersome.

3.5. Flutter probability

The flutter probability can be derived by calculating the prob-
ability that the real part of at least one of the eigenvalues is
positive. The computation of (13) is the final objective of this work.
Numerical integration is usually necessary, since the number of
random parameters requires high-dimensional integration. The
probability of instability is more conveniently computed from the
probability of the system stability.

The probability (13) can be conveniently computed by Monte
Carlo method, as it readily consists in evaluating the stability of
eigenvalue realizations calculated with one of the previous tech-
niques, i.e.

PrðstabilityÞ ¼ 1
M

XM
i ¼ 1

IðΛRðθðiÞÞAΩÞ ð28Þ

with IðAÞ the indicator function of the set A, Ω¼⋃n
i ¼ 1 λRi o0

n o
and M the number of realizations.

4. Applications

Comparison of the three different methods, described in Section 3,
is performed for a long-span bridge model of the Golden Gate Bridge
in San Francisco (California, USA). The characteristics of this model
are: l¼1263 m, B¼27.43 m, section inertia I0¼4.4 106kg m2/m, deck
mass m0¼37 tons/m, Ĉ L ¼ 3:248 and ĈM ¼ �0:178. The inertia I0
includes the contribution of both moving deck and main cables. The
natural frequencies and the related damping ratios of the deck modes,
employed in this study, are gathered in Table 1. The flutter derivatives
obtained experimentally (Jain et al., 1996a) are reproduced in Figs. 1,

Table 1
Modal frequencies [Hz] and modal damping ratios of the Golden Gate Bridge deck
modes (Simiu and Scanlan, 1996; Jain, 1996): AS¼asymmetric, S¼symmetric,
V¼vertical, T¼torsional.

Mode Type Frequency ξ

2 AS-V 0.0870 0.005
7 AS-T 0.1916 0.005
8 S-T 0.1972 0.005
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2 and 4. The mean values of the corresponding indicial function
coefficients ai;Pp and bi;Pp are gathered in Table 2. One term in the
summation (5) is sufficient to properly model ΦLα while up to three
terms are required for ΦLh.

The indicial function ΦMh is described in this study by using
2 terms in the summation (5), see Table 2; additional discussion on
ΦMh will be provided in a later section. Following the method
presented in Caracoglia and Jones (2003), the parameters shown
in Table 2 are obtained by least-squares fitting of the flutter
derivatives with the series of rational fractions corresponding to
the general representation (5). The flutter derivatives

Fig. 1. Flutter derivatives Hn

1 to Hn

4 of the Golden Gate Bridge. They are considered
as deterministic in the examples treated in this paper.

a randomized

b randomized

Fig. 2. Example 1: Flutter derivatives An

2 and An

3 of the Golden Gate Bridge. They are
randomized with respect to the ai coefficients (upper plot) and to the bi coefficients
(lower plot). In both cases, Gaussian variables are used.

Fig. 3. Fragility curve: Probability of unstability with aerodynamic coefficients ai
random.

b randomized

b randomized

Fig. 4. Example 2: Flutter derivatives An

1 to An

4 of the Golden Gate Bridge. They are
randomized with respect to the bi coefficients. Uniform random variables are used.

Table 2
Indicial function components ΦPp for the Golden Gate Bridge.

ΦPp a1;Pp b1;Pp a2;Pp b2;Pp a3;Pp b3;Pp

ΦLh 9.71 0.47 -23.87 0.67 14.767 0.870
ΦLα 2.17 0.036 – – – –

ΦMh �20.36 7.12 16.59 9.95 – –

ΦMα �55.12 18.86 10.55 1.13 – –
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reconstructed from the indicial functions with the parameters
taken from Table 2 (mean values) are represented by continuous
lines in Figs. 1, 2 and 4, whereas the experimental data points
reproduced from Jain et al. (1996a) are depicted by discrete-point
markers and listed in the legends with the designation “ref”.
Figs. 2 and 4 also show 200 randomized flutter derivatives for An

1
to An

4, associated with ΦMα and ΦMh; they were generated by MC
sampling, with the ai and bi coefficient considered as random
variables with mean values as given in Table 2 and distributions as
described below. These realizations span a domain whose extent
increases with increasing reduced velocity; this is aimed to model
the larger measurement errors at higher velocities.

4.1. Instability of a purely torsional mode

First, torsional flutter is considered, as it has been suggested
that aeroelastic instability can still be adequately captured for this
bridge by a simplified single-mode analysis. The deck mode that is
considered is the eighth purely torsional mode. The mode shape is
supposed to be a half-sine function. The modal parameters are
thus I8 ¼ I0l=2, Q8 ¼ ρB4=I0 and Gα8α8 ¼ 1=2.

According to Table 2 (P_p�M_α), two aeroelastic states must
be considered. In (10), B and X are identified as

B¼

0 1 0 0
�K2

8þΛ8Φð0Þ �2ξ8K8 Λ8 Λ8

a1b1 0 �b1 0
a2b2 0 0 �b2

2
6664

3
7775 ð29Þ

and X¼ η8 _η8 ν1 ν2
� �T with Λ8 ¼ ĈMGα8α8Q8.

In the sequel, the perturbation approach is limited to a first
order expansion, the Galerkin approach uses a third order expan-
sion and then six collocation points per random parameter are
considered. The statistics are computed with 105 samples.

To compare the different methods we first assume that the two
coefficients ai are independent Gaussian random variables while
coefficients bi are deterministic and equal to their mean values.
The mean values are given in Table 2, while the coefficients of
variation are both taken equal to 0.1. As outlined earlier, Fig. 2
shows 200 realizations of the flutter derivatives generated with
these random coefficients. Fig. 3 shows the fragility curves of
bridge flutter instability obtained with the proposed methods and
direct Monte Carlo simulation (sampling of the parameter space
and resolution of (11) for each sample). Flutter fragility is defined
as the probability of flutter occurrence, Ffl ¼ 1�Pr stableð Þ, condi-
tional on the mean value of the wind speed at deck height, U. In
the absence of aeroelastic load error propagation, the critical
flutter velocity is deterministic and constant Ucr;det

� �
, and the

flutter fragility degenerates into the curve FflðUÞ ¼HðU�Ucr;detÞ
with H being the Heaviside step function. In the example of Fig. 3
the deterministic flutter velocity Ucr;det is equal to approximately
22 m/s; the presence of uncertainty in ai leads to a non-negligible
flutter occurrence below Ucr;det. Fig. 3 confirms the really good
agreement between the various methods and the direct simulation
approach.

Fig. 5 illustrates the PDF of the real part of the complex conj-
ugate eigenvalues. We also notice that the distribution is nearly
Gaussian. Indeed, the distribution obtained with the Taylor expan-
sion is naturally Gaussian and it is in good agreement with the
other PDFs.

The coefficients bi are now assumed to be two independent
Gaussian variables. Fig. 2 (bottom) shows 200 realizations of the
flutter derivatives generated with these random coefficients and the
fragility curves are depicted in Fig. 6. As previously, the mean values
are given in Table 2 and the coefficients of variation are both taken
equal to 0.1. We notice here a notable difference with the first order

perturbation approach to capture the randomness in the coefficients
bi, i.e., the exponents in Eq. (5).

Fig. 7 shows the PDF of the real part of the complex conjugate
eigenvalues, as well. The distribution is clearly non-Gaussian,
illustrating the nonlinear transformation of the random variables
in the eigenproblem for the coefficients bi. The PDF obtained by
the perturbation approach, which is Gaussian, is clearly too
approximate, demonstrating inadequacy of first order approxima-
tion for random bi coefficients.

From a computational point of view, the collocation method allows
to reach accurate results in an attractively reduced computing time.
This efficiency, highlighted in Figs. 3–7, is explained as the eigenpro-
blem is only solved 36 times; also, the computation of the Lagrange

Fig. 5. PDF of the real parts of λ3 and λ4 (complex conjugate eigenvalues) with ai
random and U¼25 m/s.

Fig. 6. Fragility curve: Probability of unstability with aerodynamic coefficients bi
random.

Fig. 7. PDF of the real parts of λ3 and λ4 (complex conjugate eigenvalues) with bi
random and U¼25 m/s.
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polynomials is not cumbersome for two random parameters. In
contrast, the computation using the Galerkin approach remains quite
heavy even with two parameters. In particular, the necessity of
separating real and imaginary parts doubles the number of equations
and unknowns. Furthermore, the nonlinear set of equations must be
solved for each eigenvalue at each wind velocity U. Therefore, the
computation effort naturally increases and the calculation of the
flutter fragility curves becomes an issue.

Estimation of flutter fragility is based on the hypothesis that the
structural damping of all Golden Gate Bridge deck modes is equal to
0.5% with respect to critical (Table 1). This damping value may be
considered as a plausibly safe lower bound of the structural damping.
However, damping has a significant effect on the flutter probability for
this bridge. This observation can be related to the fact that the Golden
Gate Bridge is susceptible to single-mode torsionally driven flutter, as
shown in previous work (Seo and Caracoglia, 2011) and also remarked
in Jain et al. (1996b) and Jain (1996). For example, it is suggested (Seo
and Caracoglia, 2011) that the generalized reliability index can almost
double for this bridge if the damping ratio of the deck mode 7 (AS-T)
is increased from 0.5% to 1.0% (which is however unrealistically large).
The corresponding ratio between flutter probabilities is approximately
equal to 20. This remark suggests that flutter fragility is extremely
sensitive to structural damping. Nevertheless, a more accurate quan-
tification of the damping effect on flutter fragility is beyond the scope
of this study since the main objective is the relative comparison
among several approaches for random eigenvalue analysis, applied to
flutter probability estimation.

4.2. Instability of coupled torsional and vertical modes

In this second example, two vibration modes are considered. The
coupling between the purely vertical mode 2 ðα2 ¼ 0Þ and the purely
torsional mode 7 ðh7 ¼ 0Þ is now included. The modal constants are
G¼ Gh2h2 ¼ Gα7α7 ¼ Gα7h2 ¼ 1

2, Gα2h7 ¼ 0 and Qi ¼ ρB4l=2Ii with the
modal inertia I2 ¼m0B

2l=2 and I7 ¼ I0l=2.
According to Table 2, eight aeroelastic states must be consid-

ered. For the sake of conciseness, X and B are reported in
Appendix A.

To compare the different methods we only assume that the four
coefficients bi;Mh and bi;Mα are independent uniform random variables
while the other coefficients are deterministic and equal to their mean
values, given in Table 2. The coefficients of variation of the random
variables are taken equal to 0.1. The corresponding randomized flutter
derivatives from An

1 to An

4 are illustrated in Fig. 4. In the sequel, the
perturbation approach is limited to a first order expansion, five
collocation points per random parameter are considered. The statistics
are computed with 104 samples. We do not consider the Galerkin
approach in this example, as the computational time becomes
extremely large in comparison with other methods, only with four
parameters.

Fig. 8 shows the fragility curves of bridge flutter instability
obtained with the proposed methods and direct Monte Carlo simula-
tion. This figure confirms the good agreement between the collocation
method and the direct simulation approach, while the first order
Taylor expansion is too approximate. From a computational viewpoint,
the collocation method allows to reach accurate results in an
attractively reduced computational time. With four random variables,
the computational time is reduced by 10 compared to direct Monte
Carlo simulation.

Fig. 9 shows the PDF of the real part of a complex conjugate
eigenvalue. As before, the nonuniform distribution illustrates the
nonlinear transformation in the eigenproblem. The PDF obtained by
the perturbation approach (in red) is satisfactory compared to Monte
Carlo results (in blue). However, much better results are obtained with
the collocation method (in black). Indeed, the PDF computed with this
method and the direct Monte Carlo simulation are in really good

agreement. Both computational efficiency and accuracy of the colloca-
tion method with four random parameters are thus clearly demo-
nstrated.

Finally, in Fig. 4 (top) the comparison between the continuous solid
curve of An

1 with the experimental data with triangle marker (“ref.”),
suggests that the An

1 and An

4 derivatives are adequately reconstructed
from the indicial function ΦMh in the interval of reduced velocities
between 0 and 6. Nevertheless, inadequate agreement between the An

1
data (triangle markers) and the model (continuous solid line), inher-
ited from ΦMh with 4 parameters (2 terms in Eq. (5)), is observed in
Fig. 4 (top) at larger reduced velocities. A 6-parameter model (3 terms
in Eq. (5)) would be needed to adequately reproduce the experimental
data of An

1 and An

4 at all reduced velocities. Further investigation (not
reported for brevity) has revealed that, even with an appropriately
calibrated 6-parameter model for ΦMh and a better representation of
An

1 and An

4, the fragility curve in Fig. 8 does not significantly change.
This is because stochastic bridge flutter occurs for this example in the
interval of reduced velocities between 3.5 and 6.5 where the An

1 and
An

4, inherited through the 4-parameter model of ΦMh in Table 2, are
still compatible with experimental data. In any case, the parameters of
ΦMh in Table 2 are not acceptable and should be replaced by the
6-parameter model (a1 ¼ �8:86, b1 ¼ 1:73, a2 ¼ 12:03, b2 ¼ 12:67,
a3 ¼ 3:74, b3 ¼ 0:304), if An

1 and An

4 of the Golden Gate Bridge were
needed at other reduced velocities.

5. Concluding remarks

In this paper we have compared different methods for the
assessment of critical flutter velocities for a bridge deck. Uncertainties
resulting from the nondeterministic identification of flutter derivatives

Fig. 8. Fragility curve: coupled-mode flutter probability.

Fig. 9. PDF of the real parts of λ11 (complex conjugate eigenvalue) with bi;Mh and
bi;Mα random and with U¼25 m/s. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)
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require the solution of an eigenvalue problem with randomly para-
meterized matrices. Direct Monte Carlo simulations are used as
references and the problem is solved with three different probabilistic
approaches. Among them, the collocation method shows a certain
superiority in both accuracy and computational efficiency. This
approach is thus a perfect tool to be used in higher dimensions, with
more than four sources of randomness.
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Appendix A

In example 2, the augmented state space vector X collects the
amplitudes and velocities in the two mode shapes as well as
8 aeroelastic states, X¼ ½η2; _η2;η7; _η7, ν1;Lα;7;ν1;Mα;7, ν2;Mα;7; μ1;Lh;2;

μ2; Lh;2;μ3;Lh;2, μ1;Mh;2;μ2;Mh;2�. The 12�12 randomly parametrized
matrix B reads

B¼ E Λ
c b

" #
ð30Þ

with

E¼

0 0 1 0
0 0 0 1

�K2
2 ΛLhΦLαð0Þ �2ξ2K2þΛLhΦLhð0Þ 0

0 �K2
7þΛMαΦMαð0Þ ΛMαΦMhð0Þ �2ξ7K7

2
66664

3
77775;

ð31Þ

Λ¼

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
ΛLh 0 0 ΛLh ΛLh ΛLh 0 0
0 ΛMα ΛMα 0 0 0 ΛMα ΛMα

2
6664

3
7775; ð32Þ

c¼

0 a1;Lαb1;Lα 0 0
0 a1;Mαb1;Mα 0 0
0 a2;Mαb2;Mα 0 0
0 0 a1;Lhb1;Lh 0
0 0 a2;Lhb2;Lh 0
0 0 a3;Lhb3;Lh 0
0 0 a1;Mh

b1;Mh
0

0 0 a2;Mh
b2;Mh

0

2
666666666666664

3
777777777777775

; ð33Þ

and

b¼ diag �b1;Lα ;�b1;Mα ;�b2;Mα ;�b1;Lh ;�b2;Lh ;�b3;Lh ;�b1;Mh
;�b2;Mh

� �
:

ð34Þ
We have also introduced the parameters ΛLh ¼ Q2Ĉ LG and ΛMh ¼
Q7ĈMG.
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