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Abstract 16 

 The development of methodologies for predicting crop yield, in real-time and in 17 

response to different agro-climatic conditions, could help to improve the farm management 18 

decision process by providing an analysis of expected yields in relation to the costs of 19 

investment in particular practices. Based on the use of crop models, this paper compares the 20 

ability of two methodologies to predict wheat yield (Triticum aestivum L.), one based on 21 

stochastically generated climatic data and the other on mean climate data. 22 

It was shown that the numerical-experimental yield distribution could be considered as 23 

a log-normal distribution. This function is representative of the overall model behaviour. The 24 

lack of statistical differences between the numerical realisations and the logistic curve showed 25 

in turn that the Generalised Central Limit Theorem (GCLT) was applicable to our case study. 26 

In addition, the predictions obtained using both climatic inputs were found to be 27 

similar at the inter- and intra-annual time-steps, with the root mean square and normalised 28 
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deviation values below an acceptable level of 10% in 90% of the climatic situations. The 29 

predictive observed lead-times were also similar for both approaches. Given (i) the 30 

mathematical formulation of crop models, (ii ) the applicability of the CLT and GLTC to the 31 

climatic inputs and model outputs, respectively, and (iii ) the equivalence of the predictive 32 

abilities, it could be concluded that the two methodologies were equally valid in terms of 33 

yield prediction. These observations indicated that the Convergence in Law Theorem was 34 

applicable in this case study.  35 

For purely predictive purposes, the findings favoured an algorithm based on a mean 36 

climate approach, which needed far less time (by 300-fold) to run and converge on same 37 

predictive lead-time than the stochastic approach.    38 
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A COMPARISON OF WITHIN-SEASON YIELD PREDICTION ALGORITHMS 39 

BASED ON CROP MODEL BEHAVIOUR ANALYSIS 40 

 41 

 1.  Introduction  42 

Agricultural production is greatly affected by variability in weather (Semenov et al., 43 

2009; Supit et al., 2012). Providing an opportunity to study the effects of variable inputs (such 44 

as weather events) on harvestable crop parts, crop models have been used successfully to 45 

support the decision-making process in agriculture (Basso et al., 2011; Ewert et al., 2011; 46 

Thorp et al., 2008). The development of methodologies for predicting grain yield, in real time 47 

and in response to different agro-climatic conditions (Dumont et al., 2014b; Lawless and 48 

Semenov, 2005), would further improve farm management decisions by providing an analysis 49 

of the trade-off between the value of expected crop yields and the cost of inputs.  50 

Plant growth and development can be seen as systems linked to the environment in 51 

linear and non-linear ways (Campbell and Norman, 1989; Semenov and Porter, 1995). Many 52 

of the links between crop dynamics and atmospheric variables are non-linear and 53 

interdependent. Crop models were developed about 40 years ago as an effective substitute for 54 

ambiguous and cumbersome field experimentation (Sinclair and Seligman, 1996). The greater 55 

expectations from modelling rapidly led to increasingly detailed descriptions of the 56 

functioning of the biotic and abiotic components of cropping systems, leading to an increase 57 

in complexity and computer sophistication. Crop models provide the best-known approach for 58 

improving our understanding of complex plant processes as influenced by pedo-climatic and 59 

management conditions (Semenov et al., 2007), and they have proved to be more heuristic 60 

tools than simply a substitute for reality (Sinclair and Seligman, 1996). Most physically based 61 

soil-crop models operate on a daily time basis and simulate the evolution of variables of 62 

interest through daily dynamic accumulation.  63 

In crop models, weather conditions need to be described as accurately as possible. 64 
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Weather data are the input data that drive the model and daily crop growth. It has been shown 65 

that weather data have a greater effect on yield than technical data and soil parameterisation 66 

(Nonhebel, 1994). In addition, crop model predictions (such as phenological development, 67 

biomass growth, or yield elaboration) are affected by temporal fluctuations in temperature 68 

and/or precipitation, even when the mean values remain similar (Semenov and Porter, 1995). 69 

It has been demonstrated that historical mean weather data might be inappropriate for 70 

predicting crop growth because of the non-linear response of crops to agro-environmental 71 

conditions (Porter and Semenov, 1999, 2005; Semenov and Porter, 1995). The sequencing of 72 

weather events greatly affects dynamic crop simulations; interactive stresses might have a 73 

greater impact on the final value of crop characteristics of interest (such as grain yield) than 74 

individual stresses (Riha et al., 1996). 75 

Important research has been done on estimating the form of historical crop yield 76 

distributions. Day (1965) analysed crop yield distributions using the Pearson System and 77 

found that: (i) crop yield distribution is generally non-normal and non-log-normal, whereas 78 

(ii ) the skewness and kurtosis of yield distribution (the mathematical third and fourth central 79 

moment, respectively) depend on the specific crop and the amount of available nutrients. His 80 

conclusions were corroborated by Du et al. (2012), who considered that the development of a 81 

complete theory on the effect of input constraints on yield skewness required empirical 82 

studies on diverse crops grown in different production environments. Several authors (Just 83 

and Weninger, 1999; Ramirez et al., 2001) have tried to assess the normality of crop yield 84 

distribution, but have not been able to do so. Just and Weninger (1999) identified three 85 

specific reasons for this: (i) the misspecification of the non-random components of yield 86 

distributions, (ii ) the misreporting of statistical significance, and (iii ) the use of aggregate 87 

time-series data to represent farm-level yield distributions. Numerous works have referred to 88 

the ‘usual left-tail problem’, which deals with the low probability of occurrence of some very 89 
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low yields, characterised by particularly poor climate conditions (Hennessy, 2009a). More 90 

recently, Hennessy (2009a, b, 2011) analysed crop yield expectations with reference to the 91 

Law of the Minimum Technology and the Law of Large Number. 92 

 Within the context of yield prediction, there is a distinction between statistical models 93 

and process-based models. In the early 1960s the National Agricultural Statistics Service 94 

(NASS) of the United States Department of Agriculture (USDA) developed a method for 95 

assessing crop yield based on several sources of information, including various types of 96 

surveys and field-level measurements. These yield forecasting models are based on analysing 97 

relationships of samples at the same stage of maturity in comparable months over the 98 

preceding 4 years (Allen et al., 1994; Keller and Wigton, 2003). More recently, the statistical 99 

models have been coupled with remote data and recorded climatic measurements covering a 100 

preliminary period of a few months (Doraiswamy et al., 2007). As the yield prediction model 101 

is empirical and not physically based, this approach has serious limitations: (i) the future 102 

impact of past stress effects is not integrated into the physiological plant growth and (ii ) the 103 

compensation mechanisms of crop management are not fully considered. 104 

 Process-based crop model approaches appear to be better alternatives for yield 105 

prediction, but crop models should rely on data that reflect hypothetical future scenarios. An 106 

appropriate and sophisticated approach for predicting grain yield with incomplete weather 107 

data was described by Lawless and Semenov (2005). It is based on the use of the Sirius crop 108 

simulation model (Jamieson et al., 1998; Semenov et al., 2007; Semenov et al., 2009) and the 109 

LARS-WG stochastic weather generator (WG) (Racsko et al., 1991; Semenov and Barrow, 110 

1997). The methodology for predicting grain yield with incomplete weather data was related 111 

to the crop’s life cycle: based on observed weather for the first part of the growing season, the 112 

authors used a stochastic WG to produce a probabilistic ensemble of synthetic weather time-113 

series for the remainder of the season. WGs can be used to generate multiple stochastic 114 
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realizations of extended sequences of real historical weather data (Lawless and Semenov, 115 

2005; Mavromatis and Hansen, 2001; Mavromatis and Jones, 1998; Singh and Thornton, 116 

1992), allowing risk assessment studies to be performed. The weather time-series built in this 117 

way were then used as an input in a crop simulation model to generate distributions of crop 118 

characteristics (such as phenological stages, end-season grain yields). As the season 119 

progressed, the uncertainty of the crop simulations decreased. This approach is interesting, but 120 

time-consuming and machine intensive. 121 

Another method would involve replacing future data by forecasted weather. The initial 122 

problems here, though, are that forecasting has a time limit and that forecast accuracy 123 

diminishes with the long-time predictions. An added problem is the need to downscale data 124 

from a Global or Regional Climate Model (GCM/RCM) to local conditions at a resolution 125 

suitable for crop simulation models. The EU-funded DEMETER and ENSEMBLES projects 126 

are probably the two most representative examples of this application in Europe (Cantelaube 127 

and Terres, 2005; Challinor et al., 2005; Hewitt, 2004; Palmer et al., 2005). It is worth 128 

mentioning that GCM/RCM downscaling can be achieved by linking a seasonal forecast with 129 

a WG (Semenov and Doblas-Reyes, 2007), which allows yield prediction to be performed. It 130 

has been shown, however, that this approach is not any better at yield prediction than the 131 

approach based on historical climatology (Semenov and Doblas-Reyes, 2007). 132 

Dumont et al. (2014b) have developed a similar approach. They assessed the potential 133 

of overcoming the lack of future weather data by using seasonal averages. For each of the 134 

climatic variables necessary to run the crop model (temperature, precipitation, solar radiation, 135 

vapour pressure, wind speed), they computed the seasonal averages as the daily mean values 136 

calculated from a 30-year historical weather database. Being based on only one future 137 

projection, it was very light in terms of computational requirement. 138 

The aim of our study was to compare the efficiency of two crop yield prediction 139 
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methodologies that are based only on historical records. To make the yield predictions, the 140 

Lawless and Semenov (2005) approach, based on using a high number of stochastically 141 

generated climate data, and the Dumont et al. (2014b) methodology, based on using seasonal 142 

averages, were selected. Both approaches benefit from the same amount of realized 143 

information. In each of the studies, relevant yield predictions could be made only at a late 144 

stage, but no research had ever compared the methodologies in an identical case study or 145 

using the same crop model. Comparing the efficiency of the two methodologies relied on an 146 

in-depth analysis of crop model behaviour based on a sound statistical foundation. The 147 

research findings reported by Day (1965) and Hennessy (2009a, 2009b, 2011) were applied to 148 

our study of crop model behaviour and the mathematical nature of the computed weather 149 

time-series is discussed in relation to the Convergence in Law Theorem and Central Limit 150 

Theorem (CLT). 151 

 2.  Material and methods 152 

2.1 Overview of the procedure 153 

To answer the question of whether the predictive approaches have equal potential in 154 

terms of their ability to predict yield with the same accuracy and lead-time, we developed a 155 

four-step procedure (see Figure 1). The first step focused on the applicability of the CLT to 156 

the weather input generation. In other words, it has to be verified that the stochastically 157 

generated climates used by Lawless and Semenov (2005), denoted Xn, converged on the mean 158 

climate computed by Dumont et al. (2014b), denoted as X. This was ensured by the properties 159 

of the LARS-WG, and was thus only reminded in the material and method section. 160 

The second step sought to determine if the crop model answers (i.e., in this case, the 161 

simulated end-season grain yields) could be approximated by a general function ‘f’ being 162 

representative of the whole model and linking the climatic inputs and the simulated variable 163 

output. The numerical-experimental crop yield distributions obtained with stochastically 164 
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generated climate data were analysed. In compliance with the Generalised Central Limit 165 

Theorem (GCLT), the approximation of the simulated yield distribution by a log-normal 166 

distribution was assessed.  167 

In the third step, which was divided into two successive phases, the simulations 168 

obtained using both sets of climatic data were compared. In the first phase, the within-season 169 

yield predictions were compared on an annual basis. In the second phase, the corresponding 170 

predictive lead-times were compared.  If the two approaches were found to be equivalent (i.e., 171 

if the mathematical expectation of the Lawless and Semenov [2005] approach, denoted as 172 

E[f(Xn)] , did not differ significantly from the other approach, where the mathematical 173 

expectation of the outcomes was denoted E[f(X)] ) this would validate the applicability of the 174 

Convergence in Law Theorem. 175 

2.2 Case study 176 

The data used in this paper are derived from an experiment conducted to study the 177 

growth response of wheat (Triticum aestivum L., cultivar Julius) in the agro-environmental 178 

conditions of the Hesbaye region in Belgium. The soil at the experimental site was a classic 179 

loam type.  180 

Biomass growth was monitored over 3 years (crop seasons 2008-09, 2009-10 and 181 

2010-11). In 2008-09, the yields were fairly high under adequate nitrogen fertiliser rates,  due 182 

mainly to good weather conditions. In the 2009-10 and 2010-11 seasons, there was severe 183 

water stress, resulting in yield losses. In 2009-10 the water stress occurred in early spring and 184 

early June; in 2010-11 it occurred from February to the beginning of June. In the summer 185 

rainfall returned, ensuring a normal growth rate for the last part of the season. Reasonable 186 

grain yield levels were achieved, but the straw yield remained low, giving a high harvest 187 

index.  188 

The current practice in Belgium is to apply a total of 180 kgN.ha-1 in three equal 189 
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fractions (60 kgN.ha-1) at the tiller, stem extension and flag-leaf stages, which is known to be 190 

close to the optimum nitrogen rate for crop growth under the climatic conditions prevalent in 191 

the country (Dumont et al., 2014a). Over the 3-year experiment, at this fertilisation level, the 192 

grain yields reached 12.6, 7.8 and 7.1 ton.ha-1 of dry matter, respectively Among the 193 

replicates, the highest yield was 14.0 ton.ha-1 in 2009 and the lowest was 5.8 ton.ha-1 in 2011. 194 

2.3 Modelling crop growth 195 

2.3.1 The STICS crop model 196 

The STICS crop growth model (Brisson et al., 2003; Brisson et al., 2009; Brisson et 197 

al., 1998) was used to simulate the end-season grain yields (expressed in tons of dry matter 198 

per hectare [ton.ha-1]) that were the focus of the study. In this model, dry matter is related to 199 

absorbed radiation according to the radiation-use efficiency (RUE) concept (Monteith and 200 

Moss, 1977). STICS allows the effect of water and nutrient stress on development rate 201 

(Palosuo et al., 2011) to be taken into account The actual and potential evapotranspiration 202 

were computed using the Penman formalism (Penman, 1948). The STICS model requires 203 

daily weather inputs (i.e., minimum and maximum temperatures, total radiation and total 204 

rainfall, vapour pressure and wind speed).  205 

The STICS model parameterisation, calibration and validation were performed on the 206 

3-year database used for the case study. For the calibration process, the DREAM(-ZS) 207 

algorithm (Dumont et al., 2014c; Vrugt et al., 2009) was used. The highly contrasting climatic 208 

data in the 3-year database were used to parameterise crop water, thermal and nitrogen stress 209 

dependence. Times-series of leaf area index (LAI) measurements (once a month), biomass 210 

and grain yield estimates (once a fortnight and at the time of final grain yield), soil N-NO3
- 211 

and N-NH4
+ (once a fortnight) and plant N uptake (once a month) were used to parameterize 212 

the various aspects of plant development (i.e., grain yield components, plant growth rate, soil 213 

water and nitrogen uptake). There is more detail on the model calibration process and the 214 
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accuracy of the model in Dumont et al. (2014c).  215 

2.3.2 The simulation process 216 

It was assumed that cultivar, soil and management remained the same for all 217 

simulations, and therefore that the simulations differed only in terms of weather inputs. In 218 

order to ensure that the simulated plant growth would be limited only by climatic factors, 219 

simulations were conducted with adequate nitrogen fertilisation levels. The simulated 220 

fertiliser rate used for the study was a total of 180 kgN.ha-1 applied in three equivalent 221 

fractions (60 kgN.ha-1) at the tiller, stem extension and flag-leaf stages.   222 

In order to simplify the simulation process, the same management techniques were 223 

applied to each simulation, following the 2008-09 itinerary. The sowing date was in late 224 

October, on 10/25.. Each simulation was run with the sowing date as the starting point. The 225 

same soil description was used for all simulations. The soil-water content was initialized at 226 

field capacity, and the soil initial inorganic N content corresponded to real measurements 227 

taken in the first year of the experiments. The three 60 kgN.ha-1 nitrogen fertilizer doses were 228 

applied at fixed dates (i.e., at the tillering, stem extension and flag-leaf stages in 2008-09) on 229 

on the 03/23, 04/16 and 05/25, respectively. 230 

2.4 Weather database generation 231 

2.4.1 Historical climatic database 232 

The complete 30-year (1980-2009) Ernage weather database (WDB) was used in this 233 

study to generate the crop model inputs. Part of Belgium’s Royal Meteorological Institute 234 

(RMI), the Ernage weather station is 2 km from the experimental field. The measurements 235 

carried out by the station involved all the climatic variables required to run a crop model. 236 

2.4.2 Generating a probabilistic ensemble of synthetic weather data 237 

The first approach used for within-season yield predictions was based on the work of 238 

Lawless and Semenov (2005). In essence, the 30-year Ernage WDB was analysed using the 239 



  11 

LARS-WG, which computed a set of parameters representing the experimental site (daily 240 

mean values, daily standard deviations, daily maxima and minima, successive wet and dry 241 

series and frequency of rainfall events). They the LARS-WG can be used to generate a set of 242 

stochastic synthetic weather time-series representative of the climatic conditions in the area. 243 

According to Lawless and Semenov (2005), and for reasons detailed at section 2.6.1, 300 244 

time-series were generated and then input into the model. 245 

Using a WG is an appropriate way of simulating yields under new combinations of 246 

probable weather scenarios. If the crop model is correctly calibrated and validated, this would 247 

lead to a simulation of stress conditions not observed during the limited time of a field 248 

experiment.  249 

2.4.3 Generating the mean climate data  250 

The second approach, based on the work of Dumont et al. (2014b), used a daily mean 251 

climate dataset. The dataset was drawn from the Ernage WDB, and the daily mean data for 252 

each climate variable was computed. In other words, for each variable and day, each element 253 

of the mean climate matrix was computed as the mean of the corresponding 30 values of the 254 

same day over the 30 years. 255 

This approach relies on the strong assumption that climate conditions are very close to 256 

the seasonal norms. This is particularly the case with precipitation, for which a minimum 257 

value is thus available each day, ensuring reduced water stress. As discussed by Dumont et al. 258 

(2014b), such an assumption leads to simulations that, at any time of the year, show the 259 

remaining yield potential. Other assumptions and limitations of this approach are described by 260 

Dumont et al. (2014b). 261 

2.4.4 Within-season prediction 262 

These two types of synthetic weather data were used to perform within-season yield 263 

prediction. Climate series were generated from recorded historical climatic data. At a pre-264 
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determined rate (e.g., every 10 days), the observed weather sequences were replaced by either 265 

the probabilistic ensemble of synthetic climatic time-series or the mean climatic data. The 266 

climatic matrix ensembles of data thus generated could then be used as inputs for the crop 267 

growth model. The effect of such probable climatic conditions could be studied for the 268 

various yield components. With this methodology, the proportion of the hypothetical future 269 

data diminished as the growing season progressed, as did the uncertainty about the 270 

corresponding simulated yield. 271 

2.5 Statistical considerations 272 

2.5.1 The Convergence in Law Theorem 273 

The convergence in law (→L) or in distribution (→d) is considered to be one of the 274 

weaker laws of convergence, but underpins the demonstration of many theorems and is key to 275 

our analysis of crop model behaviour. It can be enunciated as follows: Let {Xn} be a sequence 276 

of n random variables x and let X be a random variable. Denote by Fn(x) the distribution 277 

function of Xn for all real x. The convergence in law theorem then states that {Xn} converges in 278 

distribution to X ( Xn →d X) as n→∞, if there is a function f, which extends over the real space 279 

(R→R), continuous and bounded such that: 280 

( )[ ] ( )[ ]XfEXfE n →      (Eq.  1) 281 

 282 
2.5.2 The Central Limit Theorem and the log-normal distribution  283 

The Central Limit Theorem (CLT) (de Moivre, 1976) can be enunciated as follows: 284 

Let {Yn} be independent random variables, of the same law (i.e., identically distributed), of  285 

integrable square. We denote µ its expectation and σ² its finite variance; here we assume that 286 

σ²>0. Then: 287 

,Y
n

Sn
L

n →






 − µ
σ

 as n→∞     (Eq.  2) 288 

where Sn is the sum of the Yn values. Y follows a Gaussian distribution, centred in zero, with 289 
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variance one: Y~NNNN(0,1). In practical terms, the CLT implies that for ‘large’ n, the distribution 290 

of Yn may be approximated by a Normal distribution with mean µ and variance σ²/n.  291 

The CLT allows for different generalisations in order to ensure the convergence of a 292 

sum of random variables under a weaker hypothesis (particularly with regard to the 293 

distribution from which they originated), but relies on conditions that ensure that no variable 294 

has significantly greater influence than any other variable. In particular, the CLT has been 295 

extended to the product of functions, the logarithm of a product being the sum of the 296 

logarithms of each factor. This extension is known as the Generalised Central Limit Theorem 297 

(GCLT).  298 

Day (1965) suggested assessing the following generalised log-normal transformation 299 

of data in order to determine if crop yields Yn responded to a log-normal distribution: 300 

( ) maxmaxlog ,ln YYYYY nnn <−=−      (Eq.  3) 301 

where Ymax corresponded to a theoretical maximal threshold and Yi, i ϵ {1,...,n} corresponded to 302 

the observed yield under given climate Xi, in other words Yi=f(Xi). 303 

An easy way to assess the log-normal behaviour of a yield sampling Yn is to evaluate 304 

the normality of the corresponding normalised and zero-centred log-transform vector YNorm 305 

(computed according to Eq. 3). Such an evaluation relies on the use of the Kolmogorov-306 

Smirnov test (Dagnelie, 2011; Feller, 1948). The vector of observations Yn could therefore be 307 

transformed according to Eqs. 2 and 3, leading to Eq. 4 where the corresponding distribution 308 

(Eq. 5) is assumed to follow the log-normal distribution. 309 

( ) ( )

( )n

n

YY

YYn
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YY
Y

−

−−−
=

max

max
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lnmaxln

σ
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2.6 Practical implementation of the statistical basis of general model behaviour 313 

assessment 314 

2.6.1 LARS-WG and mean climate data 315 

The LARS-WG was specifically designed “to generate synthetic data which have the 316 

same statistical characteristics as the observed weather data” (Semenov and Barrow, 2002). It 317 

is therefore clear that the CLT applies to the inputs, ensuring that the stochastically generated 318 

climatic time-series (Xn) used in the Lawless and Semenov (2005) methodology converge in 319 

law with the mean climatic data (X) proposed by Dumont et al. (2014b). The statement Xn →L 320 

X, however, does not say how large n must be for the approximation to be practically useful. 321 

Lawless and Semenov (2005) demonstrated that a set of 60 synthetic weather time-series was 322 

enough to achieve a stationary prediction of mean grain yield. As the stochastic component of 323 

LARS-WG is driven by a random seed number, however, Lawless and Semenov (2005) 324 

recommended using at least 300 stochastically generated weather time-series, which latter 325 

was therefore the number of time-series used to conduct this research.  326 

2.6.2 Hypothesis underlying the GCLT  327 

Crop models are known to have a non-linear response to weather conditions. They also 328 

have limitation factors affecting yield components, attributable mainly to genetic 329 

specification, such as a maximum number of grains in place or a maximal weight of 330 

individual grains. A third feature of crop models is that, within them, growth is simulated as a 331 

differential daily increment (Eq. 6) and that most of the increment (f(Y(t), X(t), θ)) is 332 

determined by functions that are themselves either multiplicative (e.g., growth function x 333 

stress function) or hierarchical (e.g,. biomass growth being exponentially connected to LAI 334 

value). 335 

( ) ( ) ( ) ( )( )θ,, tXtYftYttY +=∆+      (Eq.  6) 336 

where Y(t) and Y(t+∆t) are the outputs simulated at the daily ∆t time step, X(t) is the vector of 337 

input variables, θ is the vector of model parameters and f accounts for the simulated model 338 
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processes.  339 

 We can reasonably assume that each simulated end-season yield (i.e., Yn) is the result 340 

of a unique combination of climatic variables Xn: different combinations of variables (e.g., 341 

temperature, vapour pressure); different dynamics over the seasons for each individual 342 

variable (stochastic generation of values such as X(t), X(t+1), X(t+2) and so on); and different 343 

dynamics of interacting variables (successive dry and wet series). To some extent, this ensures 344 

that the simulated yields are independent random variables, which is a necessary condition for 345 

assessing CLT applicability. 346 

 The second assumption is that the output variables have the same law. The objective of 347 

the second step of the procedure is to find this general law and validate the CLT applicability 348 

to the model outputs. Some discussions, however, have to be made at this stage. Each input 349 

variable Xn (known to comply with the CLT) is used to pilot the simulations through the same 350 

complex model summarized as Eq. 6. The sum term in Eq. 6, which constitutes the daily 351 

increment, is therefore also consistent with the CLT. On the other hand, due to the structure of 352 

a crop model, it is known that under the f(Y(t), X(t), θ) term there are hidden hierarchical (Y = 353 

f (X) ≡ g(h(X)) and multiplicative (Y = f(X) ≡ g(X)×h(X)) functions. The model f(Y(t), X(t), θ) 354 

remains the same for all assessed input variables. Provided that none of the climatic variables 355 

has a significantly greater influence than others, the main objective is therefore to determine if 356 

the generated outputs respond to a unique distribution law compliant with the CLT. 357 

2.6.3 The log-transformation of simulated outputs to assess the GCLT 358 

Among the generalisations of log-transformation proposed by Day (1965), the one 359 

proposed at Eq. 3 appeared suitable for the observed yield distributions and the ‘left-tail’ 360 

problem. Day (1965) stated, however, that it would be difficult to find the threshold Ymax (Eq. 361 

3) that would correspond to the potential maximal yield of the crop, for which the probability 362 

of occurrence should be zero.  363 
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An easy, yet relevant, way to find the potential yield Ymax in Eqs. 3 to 5 would be to 364 

consider that the maximal yield obtained under n climatic scenarios generated with LARS-365 

WG was the upper limit of the distribution. The probability that such an optimal climatic 366 

scenario had occurred would be quite low (close to zero) and due exclusively to a particular 367 

combination of climatic variables resulting from the stochastic generation performed using 368 

LARS-WG.  369 

2.7 Comparisons of model output distributions and yield prediction abilities 370 

The third and fourth steps of the procedure focus on comparing the distribution of the 371 

simulated grain yields obtained using the Lawless and Semenov (2005) methodology with the 372 

results obtained using the Dumont et al. (2014b) approach. As a high number of synthetic 373 

climate data was used, and provided that a general law f can be highlighted, the mathematical 374 

expectation of the end-season yields (i.e., E[f(Xn)])  could be computed as its empirical mean. 375 

It could then be compared with the unique yield value simulated, using mean climate as the 376 

climatic projection (i.e., E[f(X)] ). 377 

There were three levels of comparison. First, the model was run on inputs consisting 378 

only of stochastic climate data on the one hand and only of daily mean data on the other. The 379 

end-season yield value obtained from the second dataset was positioned within the yield 380 

distribution obtained from the first dataset. As the main aim of the study was to compare the 381 

two within-season yield prediction algorithms, the equivalence of the yields simulated using 382 

the two approaches would then be evaluated throughout the season (2.7.1). Finally, the 383 

predictive lead-time for both approaches would then be compared (2.7.2). 384 

2.7.1 Single year analysis and model output distributions  385 

In order to see if the two methodologies led to same output simulations, two statistical 386 

criteria were used: relative root mean square error (RRMSE) and normalised deviation (ND) 387 

(Eqs. 7 and 8). The two approaches would be considered as equivalent if the value of both 388 
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criteria was less than 10%. The 10% threshold was seen as appropriate for two reasons. First, 389 

an ND value less than 10% is usually thought to validate model simulations (Beaudoin et al., 390 

2008; Brisson et al., 2002). Second, the within-season predictive ability would be assessed 391 

considering a plus or less 10% error around the final simulated grain yield (cfr 2.6.4 - 392 

Analysed data). 393 

( )
( )∑

∑

=

=
−

=
k

i
i

k

i
ii

Y
k

YY
k

RRMSE

1

1

2

1

ˆ1

 , with expected RRMSE < 0.1 (Eq.  7) 394 

( ) ( )
( )∑

∑∑

=

==

−
=

k

i
i

k

i
i

k

i
i

Y
k

YY
ND

1

11

1

ˆ

, with expected ND < 0.1   (Eq.  8) 395 

where Y and Ŷ refer to the end-season yields simulated using the two approaches and i refers 396 

to the i th simulation of end-season yields performed during the season. 397 

2.7.2 Inter-year analysis and prediction ability of the approaches 398 

The ability of both approaches to predict yield was assessed finally by comparing the 399 

predictive lead-time curves observed for the original 30-years Ernage weather database. The 400 

computation of the curves followed the process proposed by Lawless and Semenov (2005) 401 

and consisted of plotting the cumulative probability distribution of the first day for which the 402 

yield could have been predicted. There is more detail on how this distribution is computed in 403 

Lawless and Semenov (2005) and Dumont et al (2014b). 404 

With regard to the predictive ability of the model, the within-season predictive 405 

simulations were compared to the simulated final grain yield, with an error of plus or minus 406 

10% considered as an acceptable predictive value. There is more detail on this in the work 407 

reported by Lawless and Semenov (2005) or Dumont et al. (2014b), 408 
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 3.  Results   409 

3.1 Assessing the crop model behaviour 410 

3.1.1 Analysis of the experimental probability density function for purely 411 
synthetic climate data 412 

Figure 2 shows the probability density function and cumulative distribution function 413 

of grain yield simulations conducted on purely synthetic climate data generated using the 414 

LARS-WG. The simulated outputs were subjected to the log-normal distribution. The 415 

log-normal distribution was not fitted to the data, but the theoretical distribution was 416 

computed on the basis of the characteristic values of the simulated output that were the mean 417 

and standard deviation of the log-transformed values (Eq. 5). The computed theoretical 418 

function (solid black lines) matched the numerical-experimental distribution (solid grey line 419 

or grey histogram) fairly well. The log-normal distribution therefore seemed particularly 420 

suitable for representing the crop model answer.  421 

Using this approach, it was possible to compute the mean (vertical black line in Fig. 422 

2B) or median of the experimental distribution, intercepted at the 50th percentile (horizontal 423 

black line in Fig. 2B), which was 11.25 ton.ha-1 and 11.82 ton.ha-1, respectively. From a 424 

probabilistic point of view, at sowing there was a 50% chance of achieving at least 11.82 425 

ton.ha-1, without any prior knowledge of the forthcoming weather. In comparison, the mean of 426 

the distribution occurred at a probability level of 40%. The simulated yields accorded with the 427 

observations performed during the original 3-year experiments, the values of which were 428 

presented at section 2.2. 429 

The yield simulated using the pure mean dataset was 12.14 ton.ha-1. In the previous 430 

distribution this would have occurred at a probability level of 56%, implying that, if mean 431 

climate data were used instead of stochastic data, there was a 16% chance of overestimating 432 

the yields by about 7.5%. This latter value was computed as the relative difference between 433 

the yield prediction obtained via the mean climatic projections (i.e., E[f(X)]) and that obtained 434 
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via the stochastic simulations (i.e., E[f(Xn)] ). 435 

 With regard to the theoretical computed log-distribution, the cumulative distribution 436 

function curve showed a left-tail, with a theoretical minimum value fixed at -∞, whereas the 437 

minimum simulated grain yield was 3.4 ton.ha-1. The maximum simulated Ymax value was 14.9 438 

ton.ha-1. 439 

Finally, the YNorm vector was computed according to Eq. 4 and its normality was 440 

evaluated using the Kolmogorov-Smirnov test. The p-value was 0.837, far higher than the 441 

expected value of 0.025 (= α/2). This led to the conclusion that the experimental distribution 442 

could not be considered as differing from a log-normal function, and confirmed the validation 443 

of the GCLT and its applicability to the crop model. In other words, the STICS crop model 444 

could be considered as a global f-function that links the X(t) random climatic inputs and the 445 

Y(t) simulated grain yield outputs. 446 

3.1.2 Climate data combination and the log-normal behaviour 447 

When performing within-season yield prediction using the Lawless and Semenov 448 

(2005) approach, the stochastic projections were coupled with observed time-series. The issue 449 

then was to determine to what extent (i.e., till which amount of observed weather data) the 450 

crop model could exhibit a log-normal behaviour ? An example of the simulated grain yields 451 

based on combined synthetic and observed data, and drawn from 300-year weather 452 

simulations, was computed for the 1981-1982 crop season (see Fig. 3). Progressing through 453 

the crop lifecycle, the uncertainty about the weather data lessened as the amount of observed 454 

time-series increased. The surrounding bounds on corresponding yield predictions therefore 455 

gradually tightened until a final value (11.6 t.ha-1) was reached with purely observed time-456 

series. 457 

For each section of data that could be extracted from this figure, an analysis conducted 458 

as described in the previous section was performed. Table 1 shows the p-value resulting from 459 
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the Kolmogorov-Smirnov test, applied on the normalised vector of data (Eq. 4). The 30 years 460 

of the database were studied individually, as year 1981-82 (Fig. 3), using a 10-day 461 

replacement rate of the observed time-series. The p-value under the acceptable 0.025 (α/2, α = 462 

5%) expected criteria are underlined in grey. Until the day of the year (DOY) 06/15, our 463 

analyses showed that in almost 95% of cases the model could be considered as having log-464 

normal behaviour. The test generally failed later in the season (between 06/15 and 08/24), 465 

whatever the year. For example, the 1981-82 crop season (Fig. 3) failed the Kolmogorov-466 

Smirnov test for DOY 06/15, when the p-value was 0.01, below the acceptable value of 0.025.  467 

Figure 4 presents same results as Figure 2, but for 1981-82 and taking account of real 468 

time-series observed until 06/15. The corresponding simulations (Fig. 3) showed that the 469 

period between DOY 05/16 and 06/15 corresponded to a transient period where simulation 470 

distribution evolved from widely spread to closely tightened around the final simulation 471 

obtained only for real climate. At DOY 06/25 (Fig. 4), a p-value of 0.02 was obtained. The 472 

distribution seemed closer than a normal/symmetric distribution, as confirmed by the 473 

proximity of the mean and median of the distribution (Fig. 4B) 474 

In conclusion, for most of the season (from sowing until DOY 06/15), the log-normal 475 

distribution seemed able to account for crop yield distribution. This confirmed the 476 

applicability of the GCLT. Later in the season, as the part represented by the observed time-477 

series became dominant within the model inputs (at DOY 06/15, 230 days of real weather had 478 

been observed), the log-normal behaviour disappeared. At that point, on one hand there was 479 

no longer any independence of the climate series, and on the other hand the number of grains 480 

was fixed. 481 

3.2 Assessing the potential of yield prediction  482 

3.2.1 Single-year analysis of model outputs  483 

The follow-up to the research focused on determining if the Converge in Law theorem 484 
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could be applied to STICS model simulations. Thus, the mathematical expectation of the 485 

simulation conducted on 300 stochastic climate data (E(f[Xn])) was compared with the 486 

simulation conducted using the mean climate data E(f[X]) . 487 

Figure 5 presents the variation in predicted model output during within-season 488 

simulation, using the both Lawless and Semenov (2005) and Dumont et al. (2014b) 489 

approaches. In terms of the outputs of the methodologies, there were contrasting results in the 490 

1991-92 (Fig. 5A) and 2007-08 (Fig. 5B) seasons. Figure 5 is based on Figure 3, which 491 

summarised the information using three characteristic values: the average and the percentile 492 

2.5 and 97.5 of the 300 simulations. 493 

For the 1991-92 season, the mean values of the 300 simulations (solid grey line) were 494 

very close to the results generated using the Dumont et al. (2014b) approach (solid black 495 

line). The RRMSE and ND values were 0.026 and -0.015, respectively.     496 

This was not the case for the 2007-08 season. The main differences between the two 497 

seasons could be explained by the first 10 days of the observed time-series (drastic autumn 498 

conditions) for the crop seasons from 2005 to 2008. For these years, there was a significant 499 

reduction in the predicted final grain yield values because the sowing for the simulations was 500 

based on stochastic climate assumptions. It is likely that the first 10 days of the observed 501 

time-series had such an impact on the simulations that only very good climatic conditions, 502 

such as the mean climate assumption, could have compensated for this. This effect had 503 

repercussions for each simulation out of 300 climate ensembles and over the main part of the 504 

season. After DOY 07/15, the simulations based on both projective assumptions (mean and 505 

stochastic climate) were very close, which indicates the importance of the observed time-506 

series in the crop model inputs. 507 

When comparing the two crop seasons, the projected mean climate assumptions (solid 508 

black line) also led to more constant yield simulations over the years (about 12t.ha-1), at least 509 
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for the first part of the season.  510 

The final aim of this section is to determine if the mean yield of the 300 stochastic 511 

climate inputs is equivalent to the yield predictive curve obtained using the Dumont et al 512 

(2014b) methodology. In other words, the equivalence between the expectations E[f(Xn)]  and 513 

E[f(X)]  needs to be assessed. 514 

Table 2 summarizes the criteria (RRMSE and ND) computed on the basis of the 515 

outputs from the two methodologies where data were replaced every 10 days for each 516 

individual year (lines 1981 to 2009 in Table 2) and when the data originating from all the 517 

simulations were aggregated (line ‘Overall’ in Table 2). In 90% of cases, ND values were 518 

below the expected 10%, whereas RRMSE values were above the threshold in only 5 years 519 

out of 29. In general, both approaches gave very close results. To a lower extend, the two 520 

approaches were also equivalent for the 1984-85 and 1996-97 crop seasons, with the RRMSE 521 

very close to the imposed thresholds (0.102 and 0.101, respectively). As illustrated by Figure 522 

5, the 2007-08 crop season exhibited bad RRMSE and ND criteria when comparing the two 523 

approaches, which was also the case for the 2005-06 and 2006-07 seasons. 524 

Figure 6 presents the graphical comparison of the two approaches resulting from the 525 

concatenated data. The RRMSE and ND values were also computed with these data  526 

(corresponding to the last ‘overall’ row in Table 2). The overall ND value revealed a slight 527 

overestimation (-5.8%) using the Dumont et al. (2014b) methodology compared with the 528 

Lawless and Semenov (2005) methodology. The overall RRMSE was close to the acceptable 529 

value (0.112). This was due mainly to the crop seasons from 2005 to 2008; which simulations 530 

are shown by the cloud of small dots in the upper left of the graph (Fig. 6)  531 

The close simulations seemed qualitative enough to be able to conclude that there was 532 

equivalence between the two approaches, supporting the validity of applying the Convergence 533 

in Law theorem to the use of crop model. 534 
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3.2.2 Multiple-year analysis and prediction ability  535 

Finally, the statistical predictive ability of both predictive methods was compared (Fig. 536 

7) using the Lawless and Semenov (2005) approach. This approach is based on determining 537 

the cumulative probability function associated with the first days for which the predictions 538 

would have been possible, given an error level around the final simulated value (10% in this 539 

case, represented by the horizontal light dotted grey lines in Fig. 5).  540 

The 2-sample Kolmogorov-Smirnov test was applied to these distributions, enabling 541 

the equivalence of both distributions (p-value = 0.31) to be validated. The RMSE between the 542 

two approaches was evaluated at 9 days, which is less than the rate of data replacement (10 543 

days). Both approaches produced yield predictions with an equivalent lead-time. 544 

 4.  Discussion   545 

When developing decision-support systems, crop modellers are faced with antagonist 546 

decisions. On one hand, it is very important to build models and systems that can compute a 547 

reasonable and reliable answer as fast as possible. At critical moments, when important 548 

management decisions have to be made, farmers, who are the users of the information 549 

produced, are not concerned about the time a model needs to run – they just want clear, rapid 550 

answers to their questions. On the other hand, with regard to statistics, a modeller needs to 551 

characterise the quality and certainty of a simulation, which makes it essential to perform 552 

multi-simulations from which statistical values can be computed, to give a mean accompanied 553 

by a confidence interval (e.g., 95% uncertainty limit). In addition, both practical approaches 554 

need to be implemented in the spirit of the philosophy of the methodologies developed by 555 

Dumont et al. (2014b) and Lawless and Semenov (2005).  556 

It is worth mentioning that, although the two methodologies are generic, the results 557 

presented here are site-specific. The model was parameterised and calibrated on a specific soil 558 

type and for a specific crop culture. The 30-year WDB was also representative of the climatic 559 
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conditions of a specific area. Although generic, however, the procedure could be applied to 560 

other models or model outputs.  561 

4.1 Crop model behaviour analysis 562 

Crop yields have finite lower and upper ranges, even under favourable climatic 563 

conditions (Day, 1965), and this is especially true for crops that have a determinate growth, 564 

such as wheat. Day (1965) observed, however, that determinate-growth crops skewed the 565 

probability function under random weather effects, particularly when nitrogen was fertilised. 566 

Our analysis confirms the observation by Day (1965) of a left-tail dissymmetry under 567 

different climates.  568 

It was therefore necessary to find a distribution that could account for these 569 

behaviourial traits of dissymmetry and upper limitations. Our study showed that the behaviour 570 

of the model could usually be correctly approximated by a log-normal distribution. This was 571 

so for the stochastic climate approach and at the early stages of the within-season yield 572 

prediction, i.e., provided (i) that the observed time-series were not predominant in the climatic 573 

combinations or (ii ) that, in the early season, observed time-series did not have a significant 574 

effect on the end-season simulated yield (as illustrated in the years from 2005 to 2008). 575 

With a few exceptions, the properties of the GCLT could be used to account for the 576 

whole model behaviour. By extension, in this case, it is reasonable to assume that the STICS 577 

model could be considered to operate as a product of functions that are themselves dependent 578 

on random climatic variables. 579 

4.2 Grain yield results 580 

The results analysis showed a systematic and important tightening of the 95% 581 

confidence curves between DOY 05/16 and 07/05. At this level, the crop had been sown about 582 

200-250 days earlier. This transient period corresponds to the stages between flag-leaf  583 

emergence and anthesis, the exact date being determined by the climatic conditions of the 584 
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relevant year. In real life, over its whole life cycle, wheat is able to compensate in order to 585 

optimise its reproduction abilities. Once the number of grains is established, however, the 586 

yield result depends entirely on grain filling,  no matter it is driven by climatic condition 587 

(linked to future data) or biomass reallocation (linked to past growing conditions). 588 

Therefore, according to the simulation processes and the within-season prediction 589 

methodology, as the season progresses and the hypothetical projective climatic conditions are 590 

replaced by observed time-series, the number of grains is progressively fixed for each 591 

simulation at a time and according to the different scenarios. Once the real weather has been 592 

monitored up to the day when the number of grains has been fixed for all simulations, 593 

however, the confidence boundaries become very close. From that time, as in real life, the 594 

simulated yield depends entirely on grain filling and exhibits normal behaviour. During this 595 

period, an observed normal distribution of grain yields would argue in favour of the 596 

applicability of the CLT, instead of GCLT. Further research is needed to validate this 597 

statement. 598 

4.3 Predictive ability of the two approaches 599 

As Dumont et al. (2014b) discussed in their work, the mean climate hypothesis is a 600 

strong assumption. Seeing the climatic conditions as the mean data over the studied period is 601 

equivalent to make crop growth predictions in almost non-limiting growing conditions. Under 602 

such conditions, the plant will grow with little or no stress because a minimum amount of 603 

water, solar radiation energy and sum of temperature are provided each day to the crop. These 604 

assumptions imply that the simulated yield will correspond to the remaining yield potential of 605 

the crop. This answers the question: “At a given point in the season, what could I still expect 606 

at harvest if the climate  tends to come back closer to the seasonal norms ?” This also implies 607 

that the simulated yield could often be slightly overestimated, as confirmed by the observed 608 

overall ND value (+5.8 %). 609 
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The conclusion that emerges from our analysis, however, is that from a strictly 610 

predictive point of view the Dumont et al. (2014b) approach is equivalent to the Lawless and 611 

Semenov (2005) approach (2005). In addition, during the single-year analysis the RRMSE 612 

and ND criteria were close to or lower than the 10% threshold in 90% of the cases. Finally, 613 

when no climatic data replacements were performed (i.e., when the yields were simulated 614 

based only on pure projective stochastic climatic data or pure mean data), the difference was 615 

about 7.5%. This clearly shows that the Convergence in Law theorem is applicable.  616 

This fact is very important because the Dumont et al. (2014b) approach needs less 617 

time (by 300-fold) to run and reach the same conclusions as the Lawless and Semenov (2005) 618 

approach. The Lawless and Semenov (2005) approach is very important, however, because it 619 

allows prediction uncertainty to be characterised, which is not possible with the Dumont et al. 620 

(2014b) approach. When analysing climate variability or climate changes, this issue of 621 

uncertainty associated with the simulations is significant. When predicting yield, however, 622 

running time is a crucial factor in terms of building decision-support systems.  623 

4.4 Further discussion on climatic assumption and yield distribution analysis 624 

There is clear evidence that yield simulated using mean climatic data is close to the 625 

yield mean obtained under stochastically generated climatic data. An overestimation has been 626 

observed, though. Ongoing research (Dumont et al., 2014a ; Dumont et al., 2013) has 627 

suggested that under the specific agro-pedo-climatic conditions of this case study, greater 628 

skewness occurred under a fertilisation level corresponding to three applications of 60 629 

kgN.ha-1 at the tillering, stem extension and flag-leaf stages, which is the fertilisation regime 630 

simulated in this study. A higher degree of asymmetry leads to greater differences between the 631 

mean, the median and the mode of the yield distribution.  632 

This raises other discussions. First, the applicability of the Convergence in Law 633 

Theorem is attractive and is compatible with the mathematical nature of crop models. As the 634 
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level of asymmetry is likely to decrease with other practices, the legitimacy of applying the 635 

Convergence in Law Theorem should be easier to demonstrate. 636 

Second, Day (1965) suggested that mode or median estimates of yield might be 637 

preferred to the mean estimates, both for forecasting and prescription purposes. Our study 638 

seemed to confirm this statement. The median value of yield distribution obtained using only 639 

stochastic climate data (11.82 ton.ha-1) was much closer to that for yield simulated with mean 640 

climate data (12.14 ton.ha-1). The analysis described in this paper should be performed using 641 

the median value instead of the mean value. 642 

Third, mean climate data was used as a model input. It is fairly evident that some 643 

weather variables, such as temperature and solar radiation, show normal daily distributions, 644 

suggesting an equivalence of the mean and median of these distributions. For some other 645 

climatic data, however, daily distribution is itself asymmetric. In Belgium, rain records exhibit 646 

a right-tail dissymmetry, with a high frequency of low rainfall, and low return times of 647 

substantial rain. It would be interesting to assess the impact of median climatic data on the 648 

corresponding simulated yield, and compare it with the yield distribution obtained 649 

stochastically. 650 

Finally, it is worth commenting on the generic nature of the results presented in this 651 

paper. With regard to the statistical references, it could be concluded that using a model that 652 

relies on similar formalisms as those of STICS models should not contradict our conclusions 653 

and the GCLT would still be applicable. With regard to the crop, wheat has a determinate 654 

growth and therefore it is likely that the conclusions we reached could be extended to any 655 

other crop with determinate growth. Further research needs to be conducted on tuberous 656 

crops, by example, such as potatoes and sugar beet, because the factors involved in tuberous 657 

yield elaboration differ greatly from those in grain yield elaboration. Finally, the main 658 

question to address was whether or not the Convergence in Law theorem could apply in other 659 
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contexts, particularly in other climatic conditions (e.g., southern Europe Mediterranean 660 

weather, as in Italy or Spain) or under climatic changes. Our research suggested that if 661 

climatic-induced stress remains limited in intensity or length, the GCLT would be applicable 662 

to crop modelling. More work needs to be done, however, to determine the extent to which 663 

this would apply given greater climatic-induced stress levels. 664 

 5.  Conclusion 665 

In this paper, two validated methodologies for within-season wheat yield prediction, 666 

one proposed by Dumont et al. (2014b) and the other by Lawless and Semenov (2005), were 667 

compared. Both approaches offer the main advantage of being able to use historical data, the 668 

first based on the computed mean climate and the second on using stochastically derived 669 

time-series. The comparison was made using sound statistical procedures to study crop model 670 

behaviour. Based on the Convergence in Law Theorem and the CLT (as well as GCLT), we 671 

developed a procedure that shows how the two approaches, relying on the same weather input 672 

database, could be used to make yield predictions and how close the predictions thus obtained 673 

could be.  674 

The generalised log-normal distribution was seen as a good way of assessing model 675 

behaviour, especially when the model was run on a high number of stochastic climate inputs. 676 

This is attractive because it means the model can be seen as a product of variables, which is 677 

consistent with the mathematical nature of the model. It also validated the applicability of the 678 

GCLT, which was a requirement in assessing the applicability of the Convergence in Law 679 

Theorem. 680 

Once the model behaviour had been characterised, the comparison of the yield 681 

prediction ability of the two methodologies was investigated. On a year-to-year basis, the 682 

analysis showed that some climatic combinations of variables could induce a bias from the 683 

beginning of the season, leading to a divergence at an early stage of the predictive curves. In 684 
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90% of the cases, however, the differences between the two methodologies were close enough 685 

to consider them as equivalent (RRMSE and ND < 10%). The inter-year analysis, which 686 

related to the statistical ability of yield prediction, led to the conclusion that the two 687 

methodologies had equivalent lead-time. These observations suggest that the Convergence in 688 

Law theorem was validated by our case study. 689 

It is important to note, however, that our work was carried out under temperate 690 

Belgian weather conditions, simulating the development of a determinate wheat crop and 691 

using the STICS model and the formalisms inherent in it. The procedure we designed, 692 

however, is generic and should be tested on other models, under other climatic conditions and 693 

with other crops before any generalisations can be made. Some generalised model behaviour 694 

was highlighted, though. Crop models have been built to match reality, but contrary to real-695 

life, they operate entirely according to their mathematical construction. Under fixed agro-696 

pedological conditions, it should thus be possible to summarize the crop model behaviour 697 

under a wide variety of climate conditions and put it in relation to a specific but relevant 698 

distribution. The methodology described in this paper constituted an attempt to achieve this. 699 
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 854 

 855 

Figure 1: Schematic representation of the procedure used to compare the predictive ability of the 856 
Dumont et al. (2014b) and Lawless and Semenov (2005) methodologies. Xn represents the n stochastic 857 
weather realisations, X represents the mean climate data, f represents a general function and E is the 858 

mathematical expectation. 859 

 860 
 861 
 862 

 863 
Figure 2: Probability density function (A) and cumulative distribution function (B) of the simulation 864 

conducted on pure synthetic-stochastic climate data. Simulated data are represented by a grey bar (A) or 865 
a bold solid grey line (B) and the computed log-normal distribution is represented by a solid black line. In 866 

graph B, the mean value is represented by a vertical thick black line and the 50th percentile by a 867 
horizontal thick black line). 868 
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 870 

Figure 3: Variation in predicted model outputs (grey line) from 300 years of weather ensemble 871 
simulations based on a combination of synthetic and observed data for the 1981-1982 crop season 872 

 873 
Figure 4: Probability density function (A) and cumulative distribution function (B) of the predicted yield 874 

for which observations were made up to DOY 06/25 for 1981-82. Simulated data are represented by a grey 875 
bar (A) or bold solid grey line (B) and the computed log-normal distribution is represented by a solid 876 

black line. In graph B, mean value is represented by a vertical thick black line) and the 50th percentile by 877 
a horizontal thick black line. 878 

 879 
Figure 5: Variation in the predicted grain yield simulations based on a combination of synthetic and 880 

observed data using the methodology proposed by Lawless and Semenov (2005) for the 1991-92 (A) and 881 
2007-08 (B) seasons. The solid grey line represents the mean value and the dashed grey lines represents 882 
the 2.5 and 97.5 percentiles (confidence interval at 95%). The solid black line represents the simulations 883 
obtained with the mean climate assumptions of Dumont et al. (2014b). The 10% error prediction level 884 
around the final yield simulation obtained with pure real climate is represented by a horizontal dotted 885 

light-grey line. 886 
 887 
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 888 

Figure 6: Graphical representation of predictive simulation output for the two assessed method. 889 

 890 
 891 

 892 

Figure 7: Graphical representation of the predictive ability, using the method of determining the first day 893 
of possible prediction, of the mean climate approach (black line with empty circles) and the mean value of 894 

300 simulations (grey line with filled squares). 895 
 896 

 897 
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List of tables : 898 

Table 1: Results of the Kolmogorov-Smirnov test ( p-value of the statistical test) on the simulated end-899 
season grain yields distributions, according to climatic year of harvest and the day of the year when 900 
observed time-series were replaced by synthetic time series. 901 

Year
DOY 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
10/28 0,75 0,74 0,64 0,74 0,80 0,67 0,64 0,56 0,72 0,65 0,82 0,76 0,77 0,81 0,82 0,64 0,88 0,84 0,39 0,65 0,71 0,68 0,67 0,46 0,67 0,27 0,95 0,89 0,54
11/07 0,79 0,77 0,56 0,79 0,86 0,82 0,78 0,68 0,92 0,73 0,85 0,91 0,87 0,78 0,63 0,72 0,93 0,78 0,56 0,72 0,79 0,62 0,57 0,52 0,59 0,12 0,98 0,86 0,49
11/17 0,80 0,90 0,80 0,83 0,82 0,75 0,71 0,75 0,85 0,70 0,80 0,91 0,84 0,72 0,72 0,64 0,86 0,70 0,78 0,82 0,65 0,61 0,63 0,50 0,68 0,21 0,98 0,74 0,48
11/27 0,80 0,91 0,64 0,74 0,78 0,74 0,78 0,62 0,81 0,71 0,88 0,96 0,90 0,75 0,95 0,76 0,83 0,62 0,71 0,79 0,67 0,80 0,44 0,59 0,45 0,21 1,00 0,62 0,47
12/07 0,80 0,93 0,76 0,83 0,93 0,64 0,84 0,77 0,80 0,81 0,85 0,88 0,97 0,73 0,87 0,76 0,58 0,62 0,88 0,74 0,82 0,89 0,51 0,81 0,72 0,27 1,00 0,81 0,44
12/17 0,66 0,95 0,88 0,77 0,93 0,55 0,86 0,89 0,93 0,67 0,53 0,84 0,98 0,77 0,88 0,86 0,53 0,67 0,66 0,62 0,85 0,90 0,50 0,42 0,63 0,33 0,99 0,94 0,45
12/27 0,65 0,92 0,82 0,80 0,89 0,69 0,83 0,84 0,91 0,86 0,57 0,91 0,93 0,84 0,88 0,67 0,68 0,80 0,78 0,57 0,66 0,91 0,13 0,66 0,41 0,30 0,98 0,78 0,38
01/06 0,58 0,89 0,81 0,78 0,89 0,60 0,82 0,95 0,77 0,78 0,72 0,90 0,85 0,59 0,83 0,49 0,80 0,76 0,79 0,59 0,48 0,62 0,21 0,71 0,64 0,24 0,99 0,72 0,60
01/16 0,64 0,86 0,81 0,77 0,88 0,44 0,78 0,79 0,73 0,83 0,79 0,93 0,67 0,56 0,84 0,64 0,76 0,84 0,37 0,55 0,75 0,82 0,71 0,88 0,51 0,35 0,99 0,59 0,71
01/26 0,66 0,66 0,56 0,77 0,74 0,51 0,58 0,90 0,93 0,81 0,69 0,88 0,77 0,60 0,76 0,78 0,25 0,71 0,51 0,76 0,71 0,59 0,73 0,79 0,44 0,38 0,98 0,58 0,58
02/05 0,85 0,71 0,78 0,78 0,69 0,63 0,52 0,81 0,91 0,84 0,69 0,71 0,84 0,58 0,72 0,78 0,34 0,84 0,42 0,74 0,48 0,83 0,77 0,65 0,23 0,38 0,96 0,51 0,45
02/15 0,80 0,72 0,46 0,74 0,70 0,51 0,66 0,71 0,94 0,89 0,70 0,90 0,82 0,51 0,77 0,70 0,40 0,88 0,38 0,48 0,86 0,87 0,39 0,80 0,24 0,39 0,94 0,60 0,62
02/25 0,71 0,66 0,35 0,66 0,77 0,29 0,52 0,59 0,94 0,74 0,76 0,84 0,64 0,46 0,80 0,59 0,48 0,75 0,22 0,39 0,57 0,80 0,07 0,95 0,17 0,33 0,83 0,48 0,45
03/07 0,91 0,73 0,50 0,61 0,73 0,22 0,65 0,66 0,79 0,55 0,61 0,84 0,59 0,51 0,88 0,62 0,36 0,62 0,37 0,70 0,34 0,76 0,13 0,78 0,16 0,31 0,58 0,45 0,45
03/17 0,81 0,58 0,26 0,76 0,63 0,34 0,47 0,83 0,67 0,63 0,24 0,79 0,82 0,55 0,83 0,49 0,70 0,88 0,60 0,73 0,89 0,77 0,21 0,38 0,16 0,35 0,91 0,44 0,39
03/27 0,84 0,48 0,68 0,69 0,66 0,18 0,69 0,87 0,86 0,73 0,42 0,97 0,87 0,33 0,82 0,35 0,51 0,76 0,45 0,67 0,88 0,60 0,03 0,17 0,04 0,28 0,79 0,71 0,42
04/06 0,76 0,38 0,37 0,68 0,55 0,25 0,33 0,89 0,81 0,63 0,59 0,60 0,82 0,36 0,55 0,47 0,66 0,83 0,34 0,79 0,99 0,69 0,05 0,40 0,16 0,58 0,68 0,91 0,39
04/16 0,65 0,48 0,35 0,65 0,62 0,22 0,22 0,78 0,91 0,50 0,32 0,54 0,63 0,33 0,85 0,62 0,22 0,93 0,33 0,58 0,93 0,56 0,04 0,25 0,36 0,43 0,46 0,49 0,44
04/26 0,50 0,30 0,12 0,42 0,41 0,31 0,34 0,67 0,70 0,77 0,49 0,50 0,83 0,40 0,75 0,66 0,77 0,71 0,41 0,66 0,89 0,27 0,03 0,40 0,57 0,47 0,56 0,95 0,38
05/06 0,64 0,31 0,43 0,33 0,57 0,15 0,52 0,60 0,40 0,78 0,64 0,34 0,66 0,33 0,49 0,43 0,69 0,45 0,28 0,43 0,39 0,71 0,30 0,89 0,12 0,13 0,24 0,66 0,44
05/16 0,18 0,13 0,11 0,55 0,18 0,06 0,20 0,57 0,34 0,49 0,21 0,13 0,70 0,56 0,40 0,23 0,59 0,45 0,48 0,34 0,52 0,58 0,02 0,43 0,08 0,30 0,00 0,66 0,38
05/26 0,09 0,11 0,02 0,17 0,14 0,07 0,30 0,31 0,32 0,42 0,14 0,07 0,34 0,21 0,12 0,37 0,15 0,17 0,07 0,38 0,12 0,28 0,01 0,02 0,04 0,07 0,10 0,73 0,09
06/05 0,27 0,07 0,01 0,09 0,31 0,09 0,40 0,69 0,63 0,09 0,49 0,41 0,50 0,50 0,23 0,60 0,19 0,33 0,56 0,06 0,69 0,32 0,00 0,54 0,42 0,02 0,06 0,21 0,06
06/15 0,01 0,01 0,00 0,02 0,08 0,00 0,05 0,32 0,13 0,03 0,45 0,58 0,19 0,27 0,01 0,25 0,08 0,38 0,00 0,07 0,08 0,87 0,00 0,11 0,07 0,07 0,00 0,05 0,11
06/25 0,02 0,02 0,00 0,01 0,08 0,00 0,00 0,02 0,18 0,00 0,06 0,10 0,01 0,55 0,30 0,00 0,16 0,00 0,00 0,10 0,00 0,01 0,00 0,29 0,00 0,00 0,00 0,01 0,00
07/05 0,33 0,00 0,00 0,64 0,00 0,14 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,37 0,13 0,24 0,44 0,00 0,02 0,07 0,00 0,00 0,00 0,00 0,00 0,00
07/15 0,01 0,01 0,00 0,50 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,54 0,00 0,00 0,00 0,00 0,44 0,00 0,00 0,00 0,00 0,00 0,00 0,21 0,00 0,00 0,00 0,00 0,00
07/25 0,02 0,39 0,20 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,00 0,70 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
08/04 0,28 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,71 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
08/14 0,79 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,21 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
08/24 0,13 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 902 

 903 

Table 2: RRMSE and ND values computed for each crop and as an aggregated dataset in order to 904 
evaluate the equivalence of the yield prediction simulation approaches: comparison of the mean climate 905 
assumptions with the mean value of 300 simulations 906 

 907 

Year RRMSE ND   
1980-81     0.044    -0.034      
1981-82 0.038    -0.022      
1982-83 0.047    -0.032      
1983-84 0.057    -0.037      
1984-85 0.102    -0.087     
1985-86 0.037    -0.022     
1986-87 0.072    -0.055     
1987-88 0.048    -0.032      
1988-89 0.051    -0.041      
1989-90 0.085    -0.068     
1990-91 0.091    -0.075      
1991-92 0.026    -0.015     
1992-93 0.077    -0.064     
1993-94 0.082    -0.062     
1994-95 0.078    -0.058      
1995-96 0.079    -0.061     
1996-97 0.101    -0.082     
1997-98 0.041    -0.033     
1998-99 0.079    -0.063     
1999-00 0.040    -0.032     
2000-01 0.061    -0.056     
2001-02 0.080    -0.058    
2002-03 0.058     +0.049      
2003-04 0.041     +0.033   
2004-05 0.062     +0.051   
2005-06 0.492    -0.393     
2006-07 0.354    -0.281     
2007-08 0.326    -0.264      
2008-09 0.038    -0.029     
Overall 0.112 -0.058  

 908 


