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Abstract

The development of methodologies for predictingpcyield, in real-time and in
response to different agro-climatic conditions, Idoloelp to improve the farm management
decision process by providing an analysis of exkdtields in relation to the costs of
investment in particular practices. Based on theafscrop models, this paper compares the
ability of two methodologies to predict wheat yiglfriticum aestivumL.), one based on
stochastically generated climatic data and therathenean climate data.

It was shown that the numerical-experimental yai&dribution could be considered as
a log-normal distribution. This function is repretsive of the overall model behaviour. The
lack of statistical differences between the nunaniealisations and the logistic curve showed
in turn that the Generalised Central Limit Theo@CLT) was applicable to our case study.

In addition, the predictions obtained using botimatic inputs were found to be

similar at the inter- and intra-annual time-stepgh the root mean square and normalised
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deviation values below an acceptable level of 18990% of the climatic situations. The
predictive observed lead-times were also similar fwth approaches. Given) (the
mathematical formulation of crop modelg) the applicability of the CLT and GLTC to the
climatic inputs and model outputs, respectivelyl &) the equivalence of the predictive
abilities, it could be concluded that the two meliblogies were equally valid in terms of
yield prediction. These observations indicated tihat Convergence in Law Theorem was
applicable in this case study.

For purely predictive purposes, the findings faeauan algorithm based on a mean
climate approach, which needed far less time (b9-f8@) to run and converge on same

predictive lead-time than the stochastic approach.
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A COMPARISON OF WITHINSEASON YIELD PREDICTION ALGORITHMS
BASED ON CROP MODEL BEHAVIOUR ANALYSIS

1. Introduction

Agricultural production is greatly affected by \aility in weather (Semenov et al.,
2009; Supit et al., 2012). Providing an opportumitystudy the effects of variable inputs (such
as weather events) on harvestable crop parts, mangels have been used successfully to
support the decision-making process in agricul{iBasso et al., 2011; Ewert et al., 2011;
Thorp et al., 2008). The development of method@sdor predicting grain yield, in real time
and in response to different agro-climatic condsiqDumont et al., 2014b; Lawless and
Semenov, 2005), would further improve farm managgrdecisions by providing an analysis
of the trade-off between the value of expected grelals and the cost of inputs.

Plant growth and development can be seen as syditgkesl to the environment in
linear and non-linear ways (Campbell and Normai@91%emenov and Porter, 1995). Many
of the links between crop dynamics and atmospheaciables are non-linear and
interdependent. Crop models were developed aboyed® ago as an effective substitute for
ambiguous and cumbersome field experimentatiorc(&mand Seligman, 1996). The greater
expectations from modelling rapidly led to incresgy detailed descriptions of the
functioning of the biotic and abiotic componentscaipping systems, leading to an increase
in complexity and computer sophistication. Crop elegrovide the best-known approach for
improving our understanding of complex plant preessas influenced by pedo-climatic and
management conditions (Semenov et al., 2007), laeyl have proved to be more heuristic
tools than simply a substitute for reality (Sincland Seligman, 1996). Most physically based
soil-crop models operate on a daily time basis sintulate the evolution of variables of
interest through daily dynamic accumulation.

In crop models, weather conditions need to be destras accurately as possible.
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Weather data are the input data that drive the frevttedaily crop growth. It has been shown
that weather data have a greater effect on yiedd thchnical data and soil parameterisation
(Nonhebel, 1994). In addition, crop model predm$iqsuch as phenological development,
biomass growth, or yield elaboration) are affedbgdtemporal fluctuations in temperature

and/or precipitation, even when the mean valuesaesimilar (Semenov and Porter, 1995).

It has been demonstrated that historical mean weatlata might be inappropriate for

predicting crop growth because of the non-line@poase of crops to agro-environmental
conditions (Porter and Semenov, 1999, 2005; Semandworter, 1995). The sequencing of
weather events greatly affects dynamic crop sinmanat interactive stresses might have a
greater impact on the final value of crop charasties of interest (such as grain yield) than
individual stresses (Riha et al., 1996).

Important research has been done on estimatingotine of historical crop yield
distributions. Day (1965) analysed crop yield disttions using the Pearson System and
found that: () crop yield distribution is generally non-normaildanon-log-normal, whereas
(ii) the skewness and kurtosis of yield distributithre (mathematical third and fourth central
moment, respectively) depend on the specific crapthe amount of available nutrients. His
conclusions were corroborated by Du et al. (2002 considered that the development of a
complete theory on the effect of input constraiats yield skewness required empirical
studies on diverse crops grown in different promucenvironments. Several authors (Just
and Weninger, 1999; Ramirez et al., 2001) havel trteeassess the normality of crop yield
distribution, but have not been able to do so. dumst Weninger (1999) identified three
specific reasons for thisi)(the misspecification of the non-random componegityield
distributions, i) the misreporting of statistical significance, afid) the use of aggregate
time-series data to represent farm-level yieldriigtions. Numerous works have referred to

the ‘usual left-tail problem’, which deals with thav probability of occurrence of some very
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low yields, characterised by particularly poor die conditions (Hennessy, 2009a). More
recently, Hennessy (2009a, b, 2011) analysed creld gxpectations with reference to the
Law of the Minimum Technology and the Law of Laigember.

Within the context of yield prediction, there isliatinction between statistical models
and process-based models. In the early 1960s thiendh Agricultural Statistics Service
(NASS) of the United States Department of AgricdtfUSDA) developed a method for
assessing crop yield based on several sourcesfaimation, including various types of
surveys and field-level measurements. These yalechsting models are based on analysing
relationships of samples at the same stage of matir comparable months over the
preceding 4 years (Allen et al., 1994; Keller andjddh, 2003). More recently, the statistical
models have been coupled with remote data anddedalimatic measurements covering a
preliminary period of a few months (Doraiswamy ket 2007). As the yield prediction model
is empirical and not physically based, this appnohas serious limitationsi)(the future
impact of past stress effects is not integrated the physiological plant growth anil)(the
compensation mechanisms of crop management afallyotonsidered.

Process-based crop model approaches appear tcetter hlternatives for yield
prediction, but crop models should rely on data thiect hypothetical future scenarios. An
appropriate and sophisticated approach for predjcgjrain yield with incomplete weather
data was described by Lawless and Semenov (2adS)based on the use of the Sirius crop
simulation model (Jamieson et al., 1998; Semena!l. e2007; Semenov et al., 2009) and the
LARS-WG stochastic weather generator (WG) (Racgkal.e 1991; Semenov and Barrow,
1997). The methodology for predicting grain yieldhnincomplete weather data was related
to the crop’s life cycle: based on observed wedibrethe first part of the growing season, the
authors used a stochastic WG to produce a probabiensemble of synthetic weather time-

series for the remainder of the season. WGs canskd to generate multiple stochastic
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realizations of extended sequences of real historeather data (Lawless and Semenov,
2005; Mavromatis and Hansen, 2001; Mavromatis amtes, 1998; Singh and Thornton,
1992), allowing risk assessment studies to be padd. The weather time-series built in this
way were then used as an input in a crop simulatiodel to generate distributions of crop
characteristics (such aphenological stages, end-season grain yields). s geason
progressed, the uncertainty of the crop simulatadeteased. This approach is interesting, but
time-consuming and machine intensive.

Another method would involve replacing future diayaforecasted weather. The initial
problems here, though, are that forecasting hasna timit and that forecast accuracy
diminishes with the long-time predictions. An addedblem is the need to downscale data
from a Global or Regional Climate Model (GCM/RCM) lbcal conditions at a resolution
suitable for crop simulation models. The EU-funddEMETER and ENSEMBLES projects
are probably the two most representative examgldési®application in Europe (Cantelaube
and Terres, 2005; Challinor et al., 2005; Hewid02, Palmer et al., 2005). It is worth
mentioning that GCM/RCM downscaling can be achiebvgdinking a seasonal forecast with
a WG (Semenov and Doblas-Reyes, 2007), which alipeld prediction to be performed. It
has been shown, however, that this approach isamptbetter at yield prediction than the
approach based on historical climatology (Sememav2oblas-Reyes, 2007).

Dumont et al. (2014b) have developed a similar @ggn. They assessed the potential
of overcoming the lack of future weather data byngiseasonal averages. For each of the
climatic variables necessary to run the crop m@@ehperature, precipitation, solar radiation,
vapour pressure, wind speed), they computed theosahaverages as the daily mean values
calculated from a 30-year historical weather databa&8eing based on only one future
projection, it was very light in terms of computetal requirement.

The aim of our study was to compare the efficien€ytwo crop yield prediction
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methodologies that are based only on historicabriez To make the yield predictions, the
Lawless and Semenov (2005) approach, based on asimgh number of stochastically
generated climate data, and the Dumont et al. 20dvethodology, based on using seasonal
averages, were selected. Both approaches benefit the same amount of realized
information. In each of the studies, relevant yiplddictions could be made only at a late
stage, but no research had ever compared the nodtigges in an identical case study or
using the same crop model. Comparing the efficiesfcthe two methodologies relied on an
in-depth analysis of crop model behaviour basedaosound statistical foundation. The
research findings reported by Day (1965) and Hesyng2009a, 2009b, 2011) were applied to
our study of crop model behaviour and the matharaktiature of the computed weather
time-series is discussed in relation to the Corergrg in Law Theorem and Central Limit

Theorem (CLT).

2. Material and methods

2.1 Overview of the procedure

To answer the question of whether the predictiver@gches have equal potential in
terms of their ability to predict yield with therma accuracy and lead-time, we developed a
four-step procedure (see Figure 1). The first $tepised on the applicability of the CLT to
the weather input generation. In other words, & bha be verified that the stochastically
generated climates used by Lawless and Semenog)2d¢notedX,, converged on the mean
climate computed by Dumont et al. (2014b), denat&Xd. This was ensured by the properties
of the LARS-WG, and was thus only reminded in tregerial and method section.

The second step sought to determine if the cropemaaswers (i.ein this case, the
simulated end-season grain yields) could be appratad by a general functiofi being
representative of the whole model and linking theaatic inputs and the simulated variable

output. The numerical-experimental crop yield dsttions obtained with stochastically
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generated climate data were analysed. In compliavite the Generalised Central Limit
Theorem (GCLT), the approximation of the simulaigeld distribution by a log-normal
distribution was assessed.

In the third step, which was divided into two swEsiee phases, the simulations
obtained using both sets of climatic data were amagh In the first phase, the within-season
yield predictions were compared on an annual bésithe second phase, the corresponding
predictive lead-times were compared. If the twprapches were found to be equivalent (i.e.,
if the mathematical expectation of the Lawless &ethenov [2005] approach, denoted as
E[f(Xn)], did not differ significantly from the other appich, where the mathematical
expectation of the outcomes was dendii@X)]) this would validate the applicability of the

Convergence in Law Theorem.

2.2 Case study

The data used in this paper are derived from areréxent conducted to study the
growth response of wheatr{ticum aestivunL., cultivar Julius) in the agro-environmental
conditions of the Hesbaye region in Belgium. The abthe experimental site was a classic
loam type.

Biomass growth was monitored over 3 years (crop@ea 2008-09, 2009-10 and
2010-11). In 2008-09, the yields were fairly highder adequate nitrogen fertiliser rates, due
mainly to good weather conditions. In the 2009-hd 2010-11 seasons, there was severe
water stress, resulting in yield losses. In 2009hEwater stress occurred in early spring and
early June; in 2010-11 it occurred from Februarythi® beginning of June. In the summer
rainfall returned, ensuring a normal growth rate tfee last part of the season. Reasonable
grain yield levels were achieved, but the strawdyiemained low, giving a high harvest
index.

The current practice in Belgium is to apply a ta&l180 kgN.h# in three equal
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fractions (60 kgN.hd) at the tiller, stem extension and flag-leaf ssagehich is known to be

close to the optimum nitrogen rate for crop growttder the climatic conditions prevalent in
the country (Dumont et al., 2014a). Over the 3-y@qreriment, at this fertilisation level, the
grain yields reached 12.6, 7.8 and 7.1 toh.ld dry matter, respectively Among the

replicates, the highest yield was 14.0 toit.ma2009 and the lowest was 5.8 tort-ia 2011.

2.3 Modelling crop growth
2.3.1 The STICS crop model

The STICS crop growth model (Brisson et al., 20BB8sson et al., 2009; Brisson et
al., 1998) was used to simulate the end-season gralids (expressed in tons of dry matter
per hectare [ton.[) that were the focus of the study. In this modl; matter is related to
absorbed radiation according to the radiation-uieiency (RUE) concept (Monteith and
Moss, 1977). STICS allows the effect of water andriant stress on development rate
(Palosuo et al., 2011) to be taken into account dd¢teal and potential evapotranspiration
were computed using the Penman formalism (Penm@48)1 The STICS model requires
daily weather inputs (i.e., minimum and maximum penatures, total radiation and total
rainfall, vapour pressure and wind speed).

The STICS model parameterisation, calibration aalcdation were performed on the
3-year database used for the case study. For thlerati@mn process, the DREAM(-ZS)
algorithm (Dumont et al., 2014c; Vrugt et al., 2D@&s used. The highly contrasting climatic
data in the 3-year database were used to paraseetgop water, thermal and nitrogen stress
dependence. Times-series of leaf area index (LAdasurements (once a month), biomass
and grain yield estimates (once a fortnight anthattime of final grain yield), soil N-N©
and N-NH;" (once a fortnight) and plant N uptake (once a mpwere used to parameterize
the various aspects of plant development (i.eingreld components, plant growth rate, soill

water and nitrogen uptake). There is more detaitr@model calibration process and the
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accuracy of the model in Dumont et al. (2014c).
2.3.2 The simulation process

It was assumed that cultivar, soil and managementamed the same for all
simulations, and therefore that the simulationgeded only in terms of weather inputs. In
order to ensure that the simulated plant growthldvdoge limited only by climatic factors,
simulations were conducted with adequate nitrogertilifation levels. The simulated
fertiliser rate used for the study was a total 8D kgN.h& applied in three equivalent
fractions (60 kgN.hd) at the tiller, stem extension and flag-leaf stage

In order to simplify the simulation process, thensamanagement techniques were
applied to each simulation, following the 2008-@@drary. The sowing date was in late
October, on 10/25.. Each simulation was run with $bwing date as the starting point. The
same soil description was used for all simulatidifse soil-water content was initialized at
field capacity, and the soil initial inorganic Nrdent corresponded to real measurements
taken in the first year of the experiments. The¢hB80 kgN.ha nitrogen fertilizer doses were
applied at fixed dates (i.e., at the tillering,nstextension and flag-leaf stages in 2008-09) on

on the 03/23, 04/16 and 05/25, respectively.

2.4 Weather database generation

2.4.1 Historical climatic database

The complete 30-year (1980-2009) Ernage weathabdae (WDB) was used in this
study to generate the crop model inputs. Part dfjiB@’'s Royal Meteorological Institute
(RMI), the Ernage weather station is 2 km from é&xgerimental field. The measurements
carried out by the station involved all the clincatariables required to run a crop model.

2.4.2 Generating a probabilistic ensemble of synthetic weather data
The first approach used for within-season yieldptgons was based on the work of

Lawless and Semenov (2005). In essence, the 30Breage WDB was analysed using the



240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

11

LARS-WG, which computed a set of parameters repteasg the experimental site (daily
mean values, daily standard deviations, daily maxand minima, successive wet and dry
series and frequency of rainfall events). TheylARS-WG can be used to generate a set of
stochastic synthetic weather time-series repregeataf the climatic conditions in the area.
According to Lawless and Semenov (2005), and faswas detailed at section 2.6.1, 300
time-series were generated and then input intontheel.

Using a WG is an appropriate way of simulating ggelnder new combinations of
probable weather scenarios. If the crop model isectly calibrated and validated, this would
lead to a simulation of stress conditions not olesgrduring the limited time of a field
experiment.

2.4.3 Generating the mean climate data

The second approach, based on the work of Dumaalt €014b), used a daily mean
climate dataset. The dataset was drawn from thader®WDB, and the daily mean data for
each climate variable was computed. In other wdatseach variable and day, each element
of the mean climate matrix was computed as the médime corresponding 30 values of the
same day over the 30 years.

This approach relies on the strong assumptiondimatte conditions are very close to
the seasonal norms. This is particularly the cagk precipitation, for which a minimum
value is thus available each day, ensuring reducgdr stress. As discussed by Dumont et al.
(2014b), such an assumption leads to simulatioas #t any time of the year, show the
remaining yield potential. Other assumptions amtétions of this approach are described by
Dumont et al. (2014b).

2.4.4 Within-season prediction
These two types of synthetic weather data were tsgerform within-season yield

prediction. Climate series were generated from rnoemb historical climatic data. At a pre-
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determined rate (e.g., every 10 days), the obsemeadher sequences were replaced by either
the probabilistic ensemble of synthetic climatimeiseries or the mean climatic data. The
climatic matrix ensembles of data thus generateddcthen be used as inputs for the crop
growth model. The effect of such probable climatenditions could be studied for the
various yield components. With this methodologg groportion of the hypothetical future
data diminished as the growing season progresseddic the uncertainty about the

corresponding simulated yield.

2.5 Statistical considerations

2.5.1 The Convergencein Law Theorem

The convergence in law—) or in distribution (~4) is considered to be one of the
weaker laws of convergence, but underpins the dstration of many theorems and is key to
our analysis of crop model behaviour. It can benerated as follows: LeX,} be a sequence
of n random variablex and letX be a random variable. Denote By(x) the distribution
function of X, for all realx. The convergence in law theorem then states{¥yhtconverges in
distribution toX ( X,—¢X) asn—oo, if there is a functior, which extends over the real space

(R—R), continuous and bounded such that:
e (x,)] - E[f(X)] (Eq. 1)

2.5.2 The Central Limit Theorem and the log-normal distribution
The Central Limit Theorem (CLT) (de Moivre, 197@ncbe enunciated as follows:
Let {Y,} be independent random variables, of the same ilaw identically distributed), of
integrable square. We dengtets expectation anek its finite variance; here we assume that

02>0. Then:

ﬂ(i —,uJ -~ .Y, asn—ow (Ea. 2)
g\ n

wheres, is the sum of th&,, values Y follows a Gaussian distribution, centred in zevgh
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variance oneY~MO0,1). In practical terms, the CLT implies that for ‘large’the distribution

of Y, may be approximated by a Normal distribution witbany and variance?/n.

The CLT allows for different generalisations in erdo ensure the convergence of a
sum of random variables under a weaker hypothgsssti¢ularly with regard to the
distribution from which they originated), but redien conditions that ensure that no variable
has significantly greater influence than any otharable. In particular, the CLT has been
extended to the product of functions, the logaritbma product being the sum of the
logarithms of each factor. This extension is kn@srthe Generalised Central Limit Theorem
(GCLT).

Day (1965) suggested assessing the following gésedalog-normal transformation

of data in order to determine if crop yieMsresponded to a log-normal distribution:

Y,

n-log

=In(Y,

max

=Yo) Yo <Y (Eq. 3
the observed yield under given climadein other wordsy;=f(X;).

An easy way to assess the log-normal behaviouryséld samplingY, is to evaluate
the normality of the corresponding normalised aatbzxentred log-transform vectdgorm
(computed according to Eq. 3). Such an evaluatedies on the use of the Kolmogorov-
Smirnov test (Dagnelie, 2011; Feller, 1948). Theteeof observation¥, could therefore be
transformed according to Eqgs. 2 and 3, leadinggod4Bwvhere the corresponding distribution

(EqQ. 5) is assumed to follow the log-normal disitibn.

Inly =Y |-
YNormz n( max n) :uln(YmaX—Yn) (Eq. 4)

Jln (Ymax —Ya )

2

1 1 In(Ymax - y) - /’In -
o(y) = expl-= { "lray) (Eq. 5
\ 21T In(YmaX - y).0'|n(Ymax_y) 2 T in(Yau-y)
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2.6 Practical implementation of the statistical basis of general model behaviour
assessment

2.6.1 LARS-'WG and mean climate data

The LARS-WG was specifically designed “to genesytethetic data which have the
same statistical characteristics as the observatheredata” (Semenov and Barrow, 2002). It
is therefore clear that the CLT applies to the tapansuring that the stochastically generated
climatic time-seriesX,) used in the Lawless and Semenov (2005) methogalogverge in
law with the mean climatic datX) proposed by Dumont et al. (2014b). The staterXgrb
X, however, does not say how lamgenust be for the approximation to be practicallgfuk
Lawless and Semenov (2005) demonstrated thata 66t synthetic weather time-series was
enough to achieve a stationary prediction of meamgield. As the stochastic component of
LARS-WG is driven by a random seed number, howekawless and Semenov (2005)
recommended using at least 300 stochastically geterweather time-series, which latter
was therefore the number of time-series used tdwairthis research.

2.6.2 Hypothesisunderlyingthe GCLT

Crop models are known to have a non-linear resptmaeather conditions. They also
have limitation factors affecting yield componentaitributable mainly to genetic
specification, such as maximum number of grains in place or a maximal Wweigf
individual grains. A third feature of crop modedstihat, within them, growth is simulated as a
differential daily increment (Eq. 6) and that mast the increment f(Y(t), X(t),0)) is
determined by functions that are themselves eitheltiplicative (e.g., growth function x
stress function) or hierarchical (e.gjomass growth being exponentially connected to LAI
value).

Y(t+at)=Y(t)+ £(Y(t) X(t),6) (Eq. 6)
whereY (t) andY (t+4t) are the outputs simulated at the daftytime stepX(t) is the vector of

input variablesg is the vector of model parameters dratcounts for the simulated model
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processes.

We can reasonably assume that each simulatedeaisdss yield (i.e.Y;) is the result
of a unique combination of climatic variabl¥s. different combinations of variables (e.g.,
temperature, vapour pressure); different dynamiesr dhe seasons for each individual
variable (stochastic generation of values suckK(gs X(t+1), X(t+2 and so on); and different
dynamics of interacting variables (successive dig/\@et series). To some extent, this ensures
that the simulated yields are independent randamablas, which is a necessary condition for
assessing CLT applicability.

The second assumption is that the output varidides the same law. The objective of
the second step of the procedure is to find thieegsd law and validate the CLT applicability
to the model outputs. Some discussions, howeveg tabe made at this stage. Each input
variableX, (known to comply with the CLT) is used to piloetkimulations through the same
complex model summarized as Eq. 6. The sum terfagin6, which constitutes the daily
increment, is therefore also consistent with th@.@n the other hand, due to the structure of
a crop model, it is known that under titg(t), X(t),0) term there are hidden hierarchicdl=£
f (X) = g(h(X) and multiplicative Y = f(X) = g(X)xh(X)) functions. The modd{Y (t), X(t),0)
remains the same for all assessed input variaBlesided that none of the climatic variables
has a significantly greater influence than othérs,main objective is therefore to determine if
the generated outputs respond to a unique distiiolaw compliant with the CLT.

2.6.3 Thelog-transfor mation of simulated outputsto assessthe GCLT

Among the generalisations of log-transformationpased by Day (1965), the one
proposed at Eq. 3 appeared suitable for the obdeyiadd distributions and the ‘left-tail’
problem. Day (1965) stated, however, that it wdagddifficult to find the thresholtax (Eq.

3) that would correspond to the potential maximald/iel the crop, for which the probability

of occurrence should be zero.
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An easy, yet relevant, way to find the potentia@lgiYmax in Egs. 3 to 5 would be to
consider that the maximal yield obtained undeslimatic scenarios generated with LARS-
WG was the upper limit of the distribution. The Ipability that such an optimal climatic
scenario had occurred would be quite low (closeetm) and due exclusively to a particular
combination of climatic variables resulting fromettochastic generation performed using

LARS-WG.

2.7 Comparisons of model output distributions and yield prediction abilities

The third and fourth steps of the procedure foaus@mparing the distribution of the
simulated grain yields obtained using the Lawlex$ $emenov (2005) methodology with the
results obtained using the Dumont et al. (2014ipr@gch. As a high number of synthetic
climate data was used, and provided that a gelavdlcan be highlighted, the mathematical
expectation of the end-season yields.( E[f(X,)]) could be computed as its empirical mean.
It could then be compared with the unique yieldueasimulated, using mean climate as the
climatic projection (i.e.E[f(X)]).

There were three levels of comparison. First, tloelehwas run on inputs consisting
only of stochastic climate data on the one handantyl of daily mean data on the other. The
end-season yield value obtained from the secondsdatwas positioned within the yield
distribution obtained from the first dataset. As thain aim of the study was to compare the
two within-season yield prediction algorithms, #guivalence of the yields simulated using
the two approaches would then be evaluated thraugtie season (2.7.1). Finally, the
predictive lead-time for both approaches would thertompared (2.7.2).

2.7.1 Single year analysisand model output distributions

In order to see if the two methodologies led to samtput simulations, two statistical

criteria were used: relative root mean square dR&®MSE) and normalised deviation (ND)

(Egs. 7 and 8). The two approaches would be coresidas equivalent if the value of both
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criteria was less than 10%. The 10% threshold was s appropriate for two reasons. First,
an ND value less than 10% is usually thought tedest model simulations (Beaudoin et al.,
2008; Brisson et al., 2002). Second, the withirssaapredictive ability would be assessed
considering a plus or less 10% error around thal feimulated grain yield (cfr 2.6.4 -

Analysed data).

RRMSE=1— 2 , with expectedRRMSE< 0.1 (Eq. 7)

ND="2__ = with expectedND < 0.1 (Eq. 8)

whereY andY refer to the end-season yields simulated usindweapproaches aridrefers
to thei™ simulation of end-season vyields performed durirgsiBason.
2.7.2 Inter-year analysis and prediction ability of the approaches

The ability of both approaches to predict yield easessed finally by comparing the
predictive lead-time curves observed for the oagiB0-years Ernage weather database. The
computation of the curves followed the process psed by Lawless and Semenov (2005)
and consisted of plotting the cumulative probapititstribution of the first day for which the
yield could have been predicted. There is moreildetahow this distribution is computed in
Lawless and Semenov (2005) and Dumont et al (2014b)

With regard to the predictive ability of the moddhe within-season predictive
simulations were compared to the simulated finalrgyield, with an error of plus or minus
10% considered as an acceptable predictive valoereTis more detail on this in the work

reported by Lawless and Semenov (2005) or Dumoait €2014Db),
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3. Reaults

3.1 Assessing the crop model behaviour

3.1.1 Analysis of the experimental probability density function for purely
synthetic climate data

Figure 2 shows the probability density function anoinulative distribution function
of grain yield simulations conducted on purely &tic climate data generated using the
LARS-WG. The simulated outputs were subjected te tbg-normal distribution. The
log-normal distribution was not fitted to the datayt the theoretical distribution was
computed on the basis of the characteristic vabfiese simulated output that were the mean
and standard deviation of the log-transformed \&l(feq. 5). The computed theoretical
function (solid black lines) matched the numerieaperimental distribution (solid grey line
or grey histogram) fairly well. The log-normal dibution therefore seemed particularly
suitable for representing the crop model answer.

Using this approach, it was possible to computentiean (vertical black line in Fig.
2B) or median of the experimental distributioneicepted at the $0percentile (horizontal
black line in Fig. 2B), which was 11.25 ton‘hand 11.82 ton.h§ respectively. From a
probabilistic point of view, at sowing there wa$@% chance of achieving at least 11.82
ton.ha’, without any prior knowledge of the forthcomingatieer. In comparison, the mean of
the distribution occurred at a probability leveld@®. The simulated yields accorded with the
observations performed during the original 3-yegpegiments, the values of which were
presented at section 2.2.

The yield simulated using the pure mean dataseti@ak4 ton.hd. In the previous
distribution this would have occurred at a prohgabikevel of 56%, implying that, if mean
climate data were used instead of stochastic tla¢ae was a 16% chance of overestimating
the yields by about 7.5%. This latter value was poted as the relative difference between

the yield prediction obtained via the mean climatigjections (i.e.E[f(X)]) and that obtained
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435 via the stochastic simulations (i.&[f(X,)]).

436 With regard to the theoretical computed log-disttion, the cumulative distribution
437 function curve showed a left-tail, with a theorationinimum value fixed ato, whereas the
438 minimum simulated grain yield was 3.4 tori'h@he maximum simulate¥., value wad4.9
439 ton.ha'.

440 Finally, the Ynorm Vector was computed according to Eqg. 4 and its abtynwas
441 evaluated using the Kolmogorov-Smirnov test. Phealuewas 0.837, far higher than the
442 expected value of 0.025 @#2). This led to the conclusion that the experirakdtstribution
443 could not be considered as differing from a logamalrfunction, and confirmed the validation
444  of the GCLT and its applicability to the crop madkl other words, the STICS crop model
445 could be considered as a gloldilinction that links theX(t) randomclimatic inputs and the
446 Y(t) simulated grain yield outputs.

447 3.1.2 Climate data combination and the log-nor mal behaviour

448 When performing within-season vyield prediction gsithe Lawless and Semenov
449 (2005) approach, the stochastic projections wewnpled with observed time-series. The issue
450 then was to determine to what extent (i.e., tilichhamount of observed weather data) the
451 crop model could exhibit a log-normal behaviourr? é&ample of the simulated grain yields
452 based on combined synthetic and observed data, daadn from 300-year weather
453 simulations, was computed for the 1981-1982 cr@sae (see Fig. 3). Progressing through
454  the crop lifecycle, the uncertainty about the weattata lessened as the amount of observed
455 time-series increased. The surrounding bounds omesmonding yield predictions therefore
456 gradually tightened until a final value (11.6 tfhavas reached with purely observed time-
457  series.

458 For each section of data that could be extractd this figure, an analysis conducted

459 as described in the previous section was perforffadale 1 shows thp-valueresulting from
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the Kolmogorov-Smirnov test, applied on the norseli vector of data (Eq. 4). The 30 years
of the database were studied individually, as y&881-82 (Fig. 3), using a 10-day
replacement rate of the observed time-series phvaueunder the acceptable 0.0282%, o =
5%) expected criteria are underlined in grey. Uttié day of the year (DOY) 06/15, our
analyses showed that in almost 95% of cases theslntodld be considered as having log-
normal behaviour. The test generally failed lateithe season (between 06/15 and 08/24),
whatever the year. For example, the 1981-82 cregase (Fig. 3) failed the Kolmogorov-
Smirnov test for DOY 06/15, when thevpluewas 0.01, below the acceptable value of 0.025.

Figure 4 presents same results as Figure 2, but9®i-82 and taking account of real
time-series observed until 06/15. The correspondiimgulations (Fig. 3) showed that the
period between DOY 05/16 and 06/15 corresponded transient period where simulation
distribution evolved from widely spread to closdightened around the final simulation
obtained only for real climate. At DOY 06/25 (Fi4), ap-value of 0.02 was obtained. The
distribution seemed closer than a normal/symmetiigtribution, as confirmed by the
proximity of the mean and median of the distribat(ig. 4B)

In conclusion, for most of the season (from sowingl DOY 06/15), the log-normal
distribution seemed able to account for crop yiedtribution. This confirmed the
applicability of the GCLT. Later in the season,tlas part represented by the observed time-
series became dominant within the model input®@Y 06/15, 230 days of real weather had
been observed), the log-normal behaviour disapde#tethat point, on one hand there was
no longer any independence of the climate serie$oa the other hand the number of grains

was fixed.

3.2 Assessing the potential of yield prediction
3.2.1 Single-year analysis of model outputs

The follow-up to the research focused on determgiifithe Converge in Law theorem
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could be applied to STICS model simulations. Thhg, mathematical expectation of the
simulation conducted on 300 stochastic climate d&d[X.])) was compared with the
simulation conducted using the mean climate &#t]).

Figure 5 presents the variation in predicted mooeiput during within-season
simulation, using the both Lawless and Semenov §p0hd Dumont et al. (2014b)
approaches. In terms of the outputs of the metlugied, there were contrasting results in the
1991-92 (Fig. 5A) and 2007-08 (Fig. 5B) seasonguié 5 is based on Figure 3, which
summarised the information using three charactenstlues: the average and the percentile
2.5 and 97.5 of the 300 simulations.

For the 1991-92 season, the mean values of theig@@ations (solid grey line) were
very close to the results generated using the Durabml. (2014b) approach (solid black
line). The RRMSE and ND values were 0.026 and #).6dspectively.

This was not the case for the 2007-08 season. Tdie differences between the two
seasons could be explained by the first 10 dayhebbserved time-series (drastic autumn
conditions) for the crop seasons from 2005 to 26@8.these years, there was a significant
reduction in the predicted final grain yield valueause the sowing for the simulations was
based on stochastic climate assumptions. It idylikeat the first 10 days of the observed
time-series had such an impact on the simulatibas anly very good climatic conditions,
such as the mean climate assumption, could havepeuwsated for this. This effect had
repercussions for each simulation out of 300 clare&tsembles and over the main part of the
season. After DOY 07/15, the simulations based ath Iprojective assumptions (mean and
stochastic climate) were very close, which indisatee importance of the observed time-
series in the crop model inputs.

When comparing the two crop seasons, the projenesh climate assumptions (solid

black line) also led to more constant yield simiolag over the years (about 12tMaat least
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for the first part of the season.

The final aim of this section is to determine ietmean yield of the 300 stochastic
climate inputs is equivalent to the yield predietigurve obtained using the Dumont et al
(2014b) methodology. In other words, the equivadebetween the expectatioBf(X,)] and
E[f(X)] needs to be assessed.

Table 2 summarizes the criteria (RRMSE and ND) aateqgh on the basis of the
outputs from the two methodologies where data wepdaced every 10 days for each
individual year (lines 1981 to 2009 in Table 2) amden the data originating from all the
simulations were aggregated (line ‘Overall’ in T@ld). In 90% of cases, ND values were
below the expected 10%, whereas RRMSE values wWereeathe threshold in only 5 years
out of 29. In general, both approaches gave versgectesults. To a lower extend, the two
approaches were also equivalent for the 1984-851888-97 crop seasons, with the RRMSE
very close to the imposed thresholds (0.102 andl0).despectively). As illustrated by Figure
5, the 2007-08 crop season exhibited bad RRMSENdhariteria when comparing the two
approaches, which was also the case for the 20@B@&006-07 seasons.

Figure 6 presents the graphical comparison of wWeapproaches resulting from the
concatenated data. The RRMSE and ND values wem @sputed with these data
(corresponding to the last ‘overall’ row in Table Zhe overall ND value revealed a slight
overestimation (-5.8%) using the Dumont et al. @f)1methodology compared with the
Lawless and Semenov (2005) methodology. The ovBRMSE was close to the acceptable
value (0.112). This was due mainly to the crop @esgrom 2005 to 2008; which simulations
are shown by the cloud of small dots in the upe&rdf the graph (Fig. 6)

The close simulations seemed qualitative enoudietable to conclude that there was
equivalence between the two approaches, suppdhéngalidity of applying the Convergence

in Law theorem to the use of crop model.
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3.2.2 Multiple-year analysis and prediction ability

Finally, the statistical predictive ability of bofinedictive methods was compared (Fig.
7) using the Lawless and Semenov (2005) approduk. approach is based on determining
the cumulative probability function associated witle first days for which the predictions
would have been possible, given an error level rddhe final simulated value (10% in this
case, represented by the horizontal light dotteg gnes in Fig. 5).

The 2-sample Kolmogorov-Smirnov test was appliedh&se distributions, enabling
the equivalence of both distributionsyalue= 0.31) to be validated. The RMSE between the
two approaches was evaluated at 9 days, whictssstlean the rate of data replacement (10

days). Both approaches produced yield predictiatis an equivalent lead-time.

4. Discussion

When developing decision-support systems, crop tevdeare faced with antagonist
decisions. On one hand, it is very important tddmodels and systems that can compute a
reasonable and reliable answer as fast as possgibleritical moments, when important
management decisions have to be made, farmers, amdiadhe users of the information
produced, are not concerned about the time a nmaggls to run — they just want clear, rapid
answers to their questions. On the other hand, keiffard to statistics, a modeller needs to
characterise the quality and certainty of a singtwhich makes it essential to perform
multi-simulations from which statistical values das computed, to give a mean accompanied
by a confidence interval (e.g., 95% uncertaintyithinin addition, both practical approaches
need to be implemented in the spirit of the phiftgoof the methodologies developed by
Dumont et al. (2014b) and Lawless and Semenov (2005

It is worth mentioning that, although the two metblmgies are generic, the results
presented here are site-specific. The model waspeterised and calibrated on a specific soil

type and for a specific crop culture. The 30-yeddBMvas also representative of the climatic
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conditions of a specific area. Although genericwlweer, the procedure could be applied to

other models or model outputs.

4.1 Crop model behaviour analysis

Crop vyields have finite lower and upper ranges,neuader favourable climatic
conditions (Day, 1965), and this is especially tfoilecrops that have a determinate growth,
such as wheat. Day (1965) observed, however, thtrminate-growth crops skewed the
probability function under random weather effeg@rticularly when nitrogen was fertilised.
Our analysis confirms the observation by Day (1966)a left-tail dissymmetry under
different climates.

It was therefore necessary to find a distributidratt could account for these
behaviourial traits of dissymmetry and upper linitas. Our study showed that the behaviour
of the model could usually be correctly approxirdabg a log-normal distribution. This was
so for the stochastic climate approach and at Hréy estages of the within-season yield
prediction,i.e., provided(i) that the observed time-series were not predominahte climatic
combinations ori() that, in the early season, observed time-seiigesat have a significant
effect on the end-season simulated yield (as ittt in the years from 2005 to 2008).

With a few exceptions, the properties of the GCblld be used to account for the
whole model behaviour. By extension, in this caises, reasonable to assume that the STICS
model could be considered to operate as a proddahotions that are themselves dependent

on random climatic variables.

4.2 Grain yield results

The results analysis showed a systematic and iapiortightening of the 95%
confidence curves between DOY 05/16 and 07/05histlevel, the crop had been sown about
200-250 days earlier. This transient period cowadp to the stages between flag-leaf

emergence and anthesis, the exact date being de¢erroy the climatic conditions of the
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relevant year. In real life, over its whole lifeaty, wheat is able to compensate in order to
optimise its reproduction abilities. Once the numbg grains is established, however, the
yield result depends entirely on grain filling, nuatter it is driven by climatic condition
(linked to future data) or biomass reallocationkéd to past growing conditions).

Therefore, according to the simulation processes the within-season prediction
methodology, as the season progresses and thehieyipat projective climatic conditions are
replaced by observed time-series, the number ohgres progressively fixed for each
simulation at a time and according to the differecgnarios. Once the real weather has been
monitored up to the day when the number of graias been fixed for all simulations,
however, the confidence boundaries become veryeclesom that time, as in real life, the
simulated yield depends entirely on grain fillingdaexhibits normal behaviour. During this
period, an observed normal distribution of grairelgs would argue in favour of the
applicability of the CLT, instead of GCLT. Furtheesearch is needed to validate this

statement.

4.3 Predictive ability of the two approaches

As Dumont et al. (2014b) discussed in their wohle tmhean climate hypothesis is a
strong assumption. Seeing the climatic conditichtha mean data over the studied period is
equivalent to make crop growth predictions in altman-limiting growing conditions. Under
such conditions, the plant will grow with little oo stress because a minimum amount of
water, solar radiation energy and sum of tempesadue provided each day to the crop. These
assumptions imply that the simulated yield willrespond to the remaining yield potential of
the crop. This answers the question: “At a giveimipim the season, what could | still expect
at harvest if the climatéends to come back closer to the seasonal normki8 also implies
that the simulated yield could often be slightlyemstimated, as confirmed by the observed

overall ND value (+5.8 %).
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The conclusion that emerges from our analysis, keweis that from a strictly
predictive point of view the Dumont et al. (2014pproach is equivalent to the Lawless and
Semenov (2005) approach (2005). In addition, dutivg single-year analysis the RRMSE
and ND criteria were close to or lower than the 1i®¥eshold in 90% of the cases. Finally,
when no climatic data replacements were performed (vhen the yields were simulated
based only on pure projective stochastic climatitacr pure mean data), the difference was
about 7.5%. This clearly shows that the Convergemt@w theorem is applicable.

This fact is very important because the Dumontle(2014b) approach needs less
time (by 300-fold) to run and reach the same caichs as the Lawless and Semenov (2005)
approach. The Lawless and Semenov (2005) appresagtry important, however, because it
allows prediction uncertainty to be characteriseloich is not possible with the Dumont et al.
(2014b) approach. When analysing climate varigbibt climate changes, this issue of
uncertainty associated with the simulations is ificant. When predicting yield, however,

running time is a crucial factor in terms of buildidecision-support systems.

4.4 Further discussion on climatic assumption and yield distribution analysis

There is clear evidence that yield simulated usimaan climatic data is close to the
yield mean obtained under stochastically generdligthtic data. An overestimation has been
observed, though. Ongoing research (Dumont et28ll4a ; Dumont et al., 2013) has
suggested that under the specific agro-pedo-clomainditions of this case study, greater
skewness occurred under a fertilisation level spoading to three applications of 60
kgN.ha' at the tillering, stem extension and flag-leafys& which is the fertilisation regime
simulated in this study. A higher degree of asymmynietads to greater differences between the
mean, the median and the mode of the yield digtabu

This raises other discussions. First, the applitabof the Convergence in Law

Theorem is attractive and is compatible with thehmaatical nature of crop models. As the



635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

27

level of asymmetry is likely to decrease with otpeactices, the legitimacy of applying the
Convergence in Law Theorem should be easier to dstraie.

Second, Day (1965) suggested that mode or medimatss of yield might be
preferred to the mean estimates, both for foremgsind prescription purposes. Our study
seemed to confirm this statement. The median vaflygeld distribution obtained using only
stochastic climate data (11.82 tonhavas much closer to that for yield simulated witkan
climate data (12.14 ton.a The analysis described in this paper shouldeséopmed using
the median value instead of the mean value.

Third, mean climate data was used as a model inpig. fairly evident that some
weather variables, such as temperature and salaticmn, show normal daily distributions,
suggesting an equivalence of the mean and mediahest distributions. For some other
climatic data, however, daily distribution is itsesymmetric. In Belgium, rain records exhibit
a right-tail dissymmetry, with a high frequency lofv rainfall, and low return times of
substantial rain. It would be interesting to asgbssimpact of median climatic data on the
corresponding simulated yield, and compare it witte yield distribution obtained
stochastically.

Finally, it is worth commenting on the generic matof the results presented in this
paper. With regard to the statistical referendespuld be concluded that using a model that
relies on similar formalisms as those of STICS ni®daould not contradict our conclusions
and the GCLT would still be applicable. With regdodthe crop, wheat has a determinate
growth and therefore it is likely that the concuss we reached could be extended to any
other crop with determinate growth. Further researeeds to be conducted on tuberous
crops, by example, such as potatoes and sugarlsset,ise the factors involved in tuberous
yield elaboration differ greatly from those in grayield elaboration. Finally, the main

question to address was whether or not the Conweeg® Law theorem could apply in other
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contexts, particularly in other climatic conditiorfe.g., southern Europe Mediterranean
weather, as in Italy or Spain) or under climati@amfjes. Our research suggested that if
climatic-induced stress remains limited in intepsit length, the GCLT would be applicable
to crop modelling. More work needs to be done, hareto determine the extent to which

this would apply given greater climatic-inducecdess levels.

5. Conclusion

In this paper, two validated methodologies for witeeason wheat yield prediction,
one proposed by Dumont et al. (2014b) and the dijxdrawless and Semenov (2005), were
compared. Both approaches offer the main advardhbeing able to use historical data, the
first based on the computed mean climate and thenseon using stochastically derived
time-series. The comparison was made using soatidtgtal procedures to study crop model
behaviour. Based on the Convergence in Law Theameththe CLT (as well as GCLT), we
developed a procedure that shows how the two appesarelying on the same weather input
database, could be used to make yield predictindhaw close the predictions thus obtained
could be.

The generalised log-normal distribution was seea ge®od way of assessing model
behaviour, especially when the model was run omgla humber of stochastic climate inputs.
This is attractive because it means the model easelen as a product of variables, which is
consistent with the mathematical nature of the rhdtlalso validated the applicability of the
GCLT, which was a requirement in assessing theigplity of the Convergence in Law
Theorem.

Once the model behaviour had been characterised,coimparison of the yield
prediction ability of the two methodologies was estigated. On a year-to-year basis, the
analysis showed that some climatic combinationsasiables could induce a bias from the

beginning of the season, leading to a divergen@a agarly stage of the predictive curves. In
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90% of the cases, however, the differences betweetwo methodologies were close enough
to consider them as equivalent (RRMSE and ND < 10Phg inter-year analysis, which
related to the statistical ability of yield preddct, led to the conclusion that the two
methodologies had equivalent lead-time. These wh8ens suggest that the Convergence in
Law theorem was validated by our case study.

It is important to note, however, that our work weeried out under temperate
Belgian weather conditions, simulating the develepmof a determinate wheat crop and
using the STICS model and the formalisms inherenit.i The procedure we designed,
however, is generic and should be tested on otloelels, under other climatic conditions and
with other crops before any generalisations cambde. Some generalised model behaviour
was highlighted, though. Crop models have beert buiinatch reality, but contrary to real-
life, they operate entirely according to their neatfatical construction. Under fixed agro-
pedological conditions, it should thus be posstblesummarize the crop model behaviour
under a wide variety of climate conditions and fiun relation to a specific but relevant

distribution. The methodology described in thisgragonstituted an attempt to achieve this.
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856 Figure 1: Schematic representation of the procedure used to compar e the predictive ability of the
857 Dumont et al. (2014b) and L awless and Semenov (2005) methodologies. X, representsthe n stochastic
858 weather realisations, X representsthe mean climate data, f representsa general function and E isthe
859 mathematical expectation.
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864 Figure 2: Probability density function (A) and cumulative distribution function (B) of the simulation

865 conducted on pure synthetic-stochastic climate data. Simulated data are represented by a grey bar (A) or
866  abold solid grey line (B) and the computed log-nor mal distribution isrepresented by a solid black line. In
867 graph B, the mean value isrepresented by a vertical thick black line and the 50th per centile by a
868 horizontal thick black line).
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Figure 3: Variation in predicted model outputs (grey line) from 300 year s of weather ensemble
simulations based on a combination of synthetic and observed data for the 1981-1982 crop season
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Figure 4: Probability density function (A) and cumulative distribution function (B) of the predicted yield
for which observationswere made up to DOY 06/25 for 1981-82. Simulated data arerepresented by a grey
bar (A) or bold solid grey line (B) and the computed log-normal distribution isrepresented by a solid
black line. In graph B, mean valueisrepresented by a vertical thick black line) and the 50" per centile by
a horizontal thick black line.
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Figure5: Variation in the predicted grain yield simulations based on a combination of synthetic and
observed data using the methodology proposed by L awless and Semenov (2005) for the 1991-92 (A) and
2007-08 (B) seasons. The solid grey line represents the mean value and the dashed grey linesrepresents
the 2.5 and 97.5 percentiles (confidence interval at 95%). The solid black line representsthe simulations
obtained with the mean climate assumptions of Dumont et al. (2014b). The 10% error prediction level
around thefinal yield ssmulation obtained with purereal climateisrepresented by a horizontal dotted
light-grey line.
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Figure7: Graphical representation of the predictive ability, using the method of determining the first day
of possible prediction, of the mean climate approach (black line with empty circles) and the mean value of
300 simulations (grey linewith filled squares).
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Table 1: Results of the Kolmogor ov-Smirnov test ( p-value of the statistical test) on the smulated end-
season grain yields distributions, according to climatic year of harvest and the day of the year when
observed time-series wer ereplaced by synthetic time series.

Year
DOY 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 19923 19994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 20086 2@007
10/28 0,75 0,74 064 074 080 067 064 056 072 065 08260077 081 082 064 08 084 039 065 071 068 067 0,467 0027 0,95
11/07 0,79 0,77 056 079 086 082 0,78 068 092 0,73 08%10087 0,78 063 072 093 078 05 072 079 062 057 05590012 0,98
1127 o080 09 08 08 08 075 071 075 085 0,70 080910084 0,72 072 064 08 070 0,78 082 065 061 063 05068 0021 0,98
1127 080 091 064 074 078 074 078 062 081 071 0,886 009 075 095 076 08 062 071 079 067 080 044 05%50021 1,00
12/07 080 093 076 083 093 064 084 077 080 081 08580097 073 087 076 058 062 08 074 082 089 051 085720027 1,00
12/17 066 095 088 077 093 055 08 089 093 067 05384009 077 08 08 053 067 066 062 08 09 050 042630033 099
12/27 065 092 082 08 089 069 08 084 091 086 05m™1009 084 08 067 068 080 0,78 057 066 091 013 0,641 0030 0,98
o01/06 058 089 081 078 089 060 08 095 077 0,78 0720008 05 083 049 08 076 079 059 048 062 021 07164 00,24 0,99
01/16 064 086 081 077 088 044 078 0,79 073 083 0,7930,067 05 084 064 076 084 037 055 075 082 071 08%10035 0,99
01/26 066 066 056 077 074 051 058 090 093 081 06980077 060 076 078 025 071 051 076 071 059 073 07%4 0038 0,98
02/05 085 071 078 078 069 063 052 081 091 084 06910084 058 072 078 034 084 042 074 048 083 077 06%30038 096
0215 080 072 046 074 070 051 066 071 094 089 07090 0,08 051 0,77 070 040 088 038 048 086 087 039 08R40039 094
0225 071 066 035 066 077 029 052 059 094 0,74 07684 0,064 046 080 059 048 075 022 039 057 08 007 0957 00,33 0,83
03/07 091 0,73 050 061 073 022 065 066 079 055 06184005 051 08 062 036 062 037 070 034 076 013 0,786 00,31 0,58
0317 081 058 026 076 063 034 047 083 067 063 002479 0,082 055 08 049 0,70 088 060 073 089 0,77 021 0,386 0035 091
0327 084 048 068 069 066 018 069 087 086 073 04270,087 033 08 035 051 076 045 067 088 060 003 011040028 0,79
04/06 076 038 037 068 055 025 033 089 081 063 05%00082 03 055 047 066 083 034 079 099 069 005 0,406 0058 0,68
04/16 065 048 035 065 062 022 022 0,78 091 050 03240063 03 08 062 022 093 033 058 093 056 004 02860043 0,46
04/26 050 030 012 042 041 031 034 067 070 077 04%00,08 040 075 066 077 071 041 066 089 027 003 040670047 0,56
05/06 064 031 043 033 057 015 052 060 040 078 06434 0,066 033 049 043 069 045 028 043 039 071 030 08920013 0,24
0516 018 0,13 0,11 055 018 006 020 057 034 049 02130070 056 040 023 059 045 048 034 052 058 002 0408 0030 0,00
0526 009 0111 0,02 017 014 007 030 031 032 042 011407 0,034 021 0412 037 015 017 007 038 012 028 001 0,024 00,07 0,10
06/05 027 007 0,01 009 031 009 040 069 063 009 0491 0,050 050 0,23 060 019 033 056 0,06 069 032 000 05420002 0,06
06/15. 001 001 0,00 002 008 000 005 032 013 003 04580019 027 001 025 008 088 000 007 008 087 000 0,107 00,07 0,00
06/25/ 0,02 002 000 001 008 000 000 002 018 0,00 0,06100,001 055 030 000 016 000 000 010 000 001 000 0,290 00,00 0,00
07/05 033 000 000 064 000 014 001 0,00 000 000 00000000 000 000 000 037 013 024 044 000 002 007 0,000 0000 0,00
0715 001 001 0,00 050 000 000 0,00 000 000 000 00040000 000 000 000 044 000 000 0,00 000 000 000 02100 00,00 0,00
07/25 002 039 0,20 000 000 000 0,02 000 000 000 000700000 000 000 000 000 000 000 033 000 000 000 00000000 0,00
08/04 028 000 0,00 000 000 000 000 000 000 000 000000000 000 000 000 000 000 000 071 000 000 000 00000000 0,00
08/14 0,79 0,00 0,00 0,00 000 000 000 0,00 000 000 00000000 000 000 000 000 000 000 021 000 000 000 0000000 0,00
08/24 013 0,00 000 0,00 000 000 000 000 000 000 00000000 000 000 000 000 000 000 000 000 000 000 0000000 0,00

2008
0,89
0,86
0,74
0,62
081
0,94
0,78
072
0,59
0,58
051
0,60
0,48
045
044
071
0,91
0,49
0,95
0,66
0,66
073
0,21
0,05
0,01
0,00
0,00
0,00
0,00
0,00
0,00

2009
0,54
0,49
0,48
0,47
0,44
0,45
0,38
0,60
0,71
0,58
0,45
0,62
0,45
0,45
0,39
0,42
0,39
0,44
0,38
0,44
0,38
0,09
0,06
0,11
0,00
0,00
0,00
0,00
0,00
0,00
0,00

Table 2: RRM SE and ND values computed for each crop and as an aggregated dataset in order to

evaluate the equivalence of theyield prediction simulation approaches: comparison of the mean climate
assumptionswith the mean value of 300 simulations

Year RRM SE ND
1980-81 0.044 -0.034
1981-82 0.038 -0.022
1982-83 0.047 -0.032
1983-84 0.057 -0.037
1984-85 0.102 -0.087
1985-86 0.037 -0.022
1986-87 0.072 -0.055
1987-88 0.048 -0.032
1988-89 0.051 -0.041
1989-90 0.085 -0.068
1990-91 0.091 -0.075
1991-92 0.026 -0.015
1992-93 0.077 -0.064
1993-94 0.082 -0.062
1994-95 0.078 -0.058
1995-96 0.079 -0.061
1996-97 0.101 -0.082
1997-98 0.041 -0.033
1998-99 0.079 -0.063
1999-00 0.040 -0.032
2000-01 0.061 -0.056
2001-02 0.080 -0.058
2002-03 0.058 +0.049
2003-04 0.041 +0.033
2004-05 0.062 +0.051
2005-06 0.492 -0.393
2006-07 0.354 -0.281
2007-08 0.326 -0.264
2008-09 0.038 -0.029
Overall 0.112 -0.058




