International Conference on Use-Wear Analysis
USE-WEAR 2012

Edited by
João Marreiros, Nuno Bicho and Juan F. Gibaja
International Conference on Use-Wear Analysis

Use-Wear 2012

Edited by
João Marreiros, Nuno Bicho
and Juan Gibaja Bao

Cambridge Scholars Publishing
Table of Contents

Introduction .. xiv

Part I: Methods

Chapter One ... 2
A Specialized Occupation Despite Appearances. Function of the Buhot Late Glacial Site (Calleville, North-western France)
Jérémie Jacquier

Chapter Two ... 13
Use-Wear Characterization through Confocal Laser Microscopy: The Case of Wild vs Domestic Cereal Harvesting Polish
J.J. Ibáñez, J.E. González-Urquijo and J. Gibaja

Chapter Three ... 24
Glossy Tools: Innovations in the Method of Interpretation of Use-Wear Produced by Plant Processing
Davide d’Errico

Chapter Four .. 35
Turning the Wheel on Lithic Functionality
Telmo Pereira, Rui Martins and João Marreiros

Chapter Five ... 45
Experimental Program for the Detection of Use Wear on Quartzite
Victoria Aranda, Antoni Canals and Andreu Ollé

Chapter Six .. 56
Micro-residues on Stone Tools: Morphological Analysis, Interpretation and Challenges
H.J. Geeske Langejans and Marlize Lombard

Chapter Seven ... 66
Management of Heated Bladelets in the Southern Chassey Culture: Use-Wear Analysis and Efficiency Test
Loïc Torchy
Chapter Eight	Ornaments and Use-Wear Analysis, Methods of Study Applied to the Adaïma Necroploises	Mathilde Minotti	80
Chapter Nine	“Cereal polish”: Diagnosis, Challenge or Confusion	Maria Gurova	90
Chapter Ten	Ten Years of Use-Wear Analysis of Early Neolithic Macrolithic Tools from North-Western Europe: Limits and Contribution	Caroline Hamon	103
Chapter Eleven	The Effects of Cleaning on Surface Roughness: Evaluating Sample Preparation Using Use-Wear Quantification	Danielle Macdonald and Adrian Evans	116
Chapter Twelve	Use-Wear Analysis on Quartz and Quartzite Tools Methodology and Application: Coudoulous I (Midi-Pyrénées, France)	Flavia Venitti	124

Part II: Hunter-Gatherers

Chapter Thirteen	New Functional Data concerning Middle Palaeolithic Bifaces from Southwestern and Northern France	Emilie Claud	140
Chapter Fourteen	Use of Middle Palaeolithic Tools in San Quirce (Alar del Rey, Palencia, Spain)	Ignacio Clemente-Conte, J. Carlos Diez Fernández-Lomana and Marcos Terradillos Bernal	152
Chapter Fifteen	Flint Workshop or Habitat? Technological and Functional Approaches towards the Interpretation of Site Function in Bergerac Region Early Aurignacian	Joseba Rios-Garaizar and Iluminada Ortega Cordellat	162
Chapter Sixteen ... 173
The Camp of Upper Palaeolithic Hunters in Targowisko 10 (S Poland)
Bernadeta Kufel-Diakowska and Jarosław Wilczyński

Chapter Seventeen ... 183
The Contribution of Traceology and Lithic Technology in the Study
of the Socio-economic Capshian of SHM-1 (Hergla, Tunisia)
Rym Khedhaier El Asmi, Simone Mulazzani and Lotfi Belhoucchet

Chapter Eighteen ... 198
Typology versus Function: Technological and Microwear Study of Points
from a Federmesser Site at Lubrza (Western Poland)
Jacek Kabaciński, Iwona Sobkowiak-Tabaka
and Małgorzata Winiarska-Kabacińska

Chapter Nineteen ... 213
Use-Wear Analysis of a Set of Geometric Projectils from the Mesolithic
Context of Cocina Cave (Eastern Spain)
Oreto García Puchol, Niccolò Mazzucco, Juan F. Gibaja Bao
and Joaquim Juan Cabanilles

Chapter Twenty ... 224
Late Mesolithic Notched Blades from Western Europe and North Africa:
Technological and Functional Variability
Bernard Gassin, Juan Francisco Gibaja, Pierre Allard, Toomaï Boucherat,
Émilie Claud, Ignacio Clemente, Colas Gueret, Jérémie Jacquier,
Rym Khedhaier, Grégor Marchand, Niccolò Mazzucco, Antoni Palomo,
Unai Perales, Thomas Perrin, Sylvie Philibert, Amelia Rodríguez
and Loïc Torchy

Chapter Twenty One .. 232
Experimentation and Functional Analysis of the Backed Point Tools
from the Castello’s Shelter at Termini Imerese (PA, Italy) Preserved
from the Museo delle Origini (Rome)
Stefano Drudi

Chapter Twenty Two ... 241
Functional Analysis of a Magdalenian Site from the Spanish Northern
Meseta: A Case Study of Endscrapers from La Peña de Estebanvela
(Ayllón, Segovia)
Ignacio Martín Lerma and Carmen Cacho Quesada
<table>
<thead>
<tr>
<th>Chapter Twenty Three</th>
<th>The Proto-Aurignacian “Knives” of the Riparo Mochi (Balzi Rossi, Italy)</th>
<th>Stefano Grimaldi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Twenty Four</td>
<td>A Microwear Analysis of Handaxes from Santa Ana Cave (Cáceres, Extremadura, Spain)</td>
<td>Andreu Ollé, Josep Maria Vergés, Luna Peña, Victoria Aranda, Antoni Canal and Eudald Carbonell</td>
</tr>
<tr>
<td>Chapter Twenty Five</td>
<td>Stone Tool Hafting in the Middle Palaeolithic as Viewed through the Microscope</td>
<td>Veerle Rots</td>
</tr>
<tr>
<td>Chapter Twenty Six</td>
<td>Lithic Technology and Tool Use in the North American Archaic: Bridging Technologies, Plants, and Animals</td>
<td>April K. Sievert and Melody K. Pope</td>
</tr>
<tr>
<td>Chapter Twenty Seven</td>
<td>Lithic Use-Wear Analysis from the Early Gravettian of Vale Boi (Southwestern Iberia)</td>
<td>João Marreiros, Juan Gibaja and Nuno Bicho</td>
</tr>
<tr>
<td>Chapter Twenty Eight</td>
<td>Integrated Functional Studies of Badegoulian Lithic Industry: Preliminary Results of Le Péhau (Coimères, France)</td>
<td>Amaranta Pasquini, Gilles Monin and Paul Fernandes</td>
</tr>
<tr>
<td>Chapter Twenty Nine</td>
<td>Human Occupation of the High-Mountain Environments: The Contribution of Microwear Analysis to the Study of the Cova del Sardo Site (Spanish Pyrenees)</td>
<td>Niccolò Mazzucco, Ignacio Clemente and Ermengol Gassiot</td>
</tr>
<tr>
<td>Chapter Thirty</td>
<td>Wood Technology of Patagonian Hunter-Gatherers: A Use-Wear Analysis Study from the Site of Cerro Casa de Piedra 7 (Patagonia, Argentina)</td>
<td>Laura Caruso Fermé, Ignacio Clemente, Sylvie Beyries and Maria Teresa Civalero</td>
</tr>
</tbody>
</table>
Chapter Thirty One.. 352
Unmodified Quartz Flake Fragments as Cognitive Tool Categories:
Testing the Wear Preservation, Previous Low Magnification Use-Wear
Results and Criteria for Tool Blank Selection in Two Late Mesolithic
Quartz Assemblages from Finland
Noora Taipale, Kjel Knutsson and Helena Knutsson

Chapter Thirty Two ... 362
A Consideration of Burin-Blow Function: Use-Wear Analysis
of Kamiyama-Type Burin from the Sugikubo Blade Assemblage
in North-Central Japan
Akira Iwase

Chapter Thirty Three ... 375
The Two Faces of Resharpening: Management and Use of Resharpening
Flakes in the Middle Paleolithic at Cueva Morín
Talia Lazuén

Chapter Thirty Four ... 389
Looking for the Use and Function of Prismatic Tools in the Mesolithic
of the Paris Basin (France): First Results and Interpretations
Caroline Hamon and Sylvain Griselin

Chapter Thirty Five ... 398
Semi-product, Waste, Tool… Are We Sure? Functional Aspect of Stone
Age Morphological Flint Tools
Grzegorz Osipowicz

Chapter Thirty Six ... 430
The History of One Arrowhead from a Peat Bog Site in Central Russia
(Technological and Use-Wear Studies)
Natalia Skakun Mikhail Zhilin Vera Terekhina

Part III: Projectile Technology

Chapter Thirty Seven.. 442
The Functionality of Palmela Points as Throwing Weapons
and Projectiles: Use-Wear Marks
Carmen Gutiérrez Sáez, Ignacio Martín Lerma
and Alba López del Estal Charles Bashore Acero
Chapter Forty Five.. 531
Recovering the Oldest Bone Tool Assemblage from Low Paraná Wetland
Natacha Buc

Chapter Forty Six .. 539
Traces on Mesolithic Bone Spatulas: Signs of a Hidden Craft
or Post-Excavation Damage?
Sara Graziano

Chapter Forty Seven.. 551
Bone Tools Use-Wear in an Early Formative Pastoralist Site of Northern
Chile: Weaving and Piercing at the Dawn of Herds
Boris Santander

Chapter Forty Eight .. 561
Atypical Use of Bone Objects of Known Forms from Some East
European Upper Paleolithic Sites
Natalia B. Akhmetgaleeva

Part V: From the Neolithic to the Iron Age

Chapter Forty Nine .. 572
Investigating Neolithic Activities: The Contribution of Functional
Analysis to the Reconstruction of Settlements’ Economy in Central-
Southern Italy
Cristiana Petrinelli Pannocchia

Chapter Fifty .. 584
The Use of Flint Artifacts from Early Neolithic Levels at Atxoste (Basque
Country): An Interpretation of Site Function through Use-Wear Analyses
Unai Perales Barrón, Juan José Ibáñez Estévez and Alfonso Alday Ruiz

Chapter Fifty One .. 597
Use-Wear Analysis of Chipped Stone Assemblages from Neolithic Burial
Caves in Portuguese Estremadura: The Case of Bom Santo (Lisbon)
Juan Francisco Gibaja and António Faustino Carvalho

Chapter Fifty Two .. 607
Comparative Analysis of Shell Tools from Two Neolithic Sites in NE
Iberia: La Draga and Serra del Mas Bonet (Girona)
I. Clemente-Conte, D. Cuenca-Solana, M. Oiva-Poveda, R. Rosillo-Turrà
and A. Palomo-Pérez
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifty Three</td>
<td>Investigating Pottery Technological Patterns through Macrowear Analysis: The Chalcolithic Village of Maccarese-Fiumicino (Italy)</td>
<td>Vanessa Forte</td>
</tr>
<tr>
<td>Fifty Four</td>
<td>Experimental Approach to Use-Wear Damage on Limestone Tools Comparing with Flint Tools</td>
<td>Laura Hortelano Piqueras and Paula Jardón Giner</td>
</tr>
<tr>
<td>Fifty Five</td>
<td>Use-Wear Analysis of Early Neolithic Lithic Industry of Peiro Signado: A Pioneer Implantation in South of France</td>
<td>Sylvie Philibert, François Briois and Claire Manen</td>
</tr>
<tr>
<td>Fifty Six</td>
<td>A Neolithic Sickle Haft from Costamar (Castellón, Spain)</td>
<td>Juan F. Gibaja, Juan José Ibáñez, Enric Flors and Oreto García</td>
</tr>
<tr>
<td>Fifty Seven</td>
<td>The Perforation of Pottery using Seashells: An Experimental Approach</td>
<td>Renaud Gosselin</td>
</tr>
<tr>
<td>Fifty Eight</td>
<td>Beyond Chaves: Functional Analysis of Neolithic Blades from the Ebro Valley</td>
<td>Rafael Domingo Martinez</td>
</tr>
<tr>
<td>Sixty</td>
<td>The Materiality of Funnelbeaker Burial Practices: Evidence from the Microscope</td>
<td>Annelou Van Gijn</td>
</tr>
<tr>
<td>Sixty One</td>
<td>Funerary Adornments: Objects Belonging to the Living or to the Dead? A Few Examples from the Romanian Eneolithic</td>
<td>Monica Margarit</td>
</tr>
</tbody>
</table>
CHAPTER THIRTY ONE

UNMODIFIED QUARTZ FLAKE FRAGMENTS
AS COGNITIVE TOOL CATEGORIES:
TESTING THE WEAR PRESERVATION,
PREVIOUS LOW MAGNIFICATION USE-WEAR
RESULTS AND CRITERIA FOR TOOL BLANK
SELECTION IN TWO LATE MESOLITHIC
QUARTZ ASSEMBLAGES FROM FINLAND

NOORA TAIPALE1, KJEL KNUTSSON2
AND HELENA KNUTSSON3

1 Service de Préhistoire, University of Liège, Belgium
noora.taipale@ulg.ac.be
2 Department of Archaeology and Ancient History
Uppsala University, Sweden
kjel.knutsson@arkeologi.uu.se
3 Stoneslab, Uppsala, Sweden
www.stoneslab.se
stonesslab@gmail.com

Abstract

We present the results of the first microwear analysis made on quartz artefacts excavated in Finland. Fifty-nine pieces from two Late Mesolithic sites were analyzed, including both morphological tools and unmodified flakes and flake fragments. Both assemblages have been previously analyzed using a stereomicroscope (Pesonen & Tallavaara 2006, Rankama & Kankaanpää 2011). Our results show that unmodified quartz fragments have been utilized as tools and therefore new tool categories can be found
among the material previously treated as production waste. The results also indicate that the reliability of low magnification analysis depends greatly on the level of wear preservation, as well as on tool edge morphology, as obtuse-angled working edges could only be identified as used with high magnifications. Preliminary observations about possible tool blank selection criteria, such as the preference of intact flakes over flake fragments, should be tested with larger and more varied samples.

Keywords: Microwear analysis, vein quartz, Late Mesolithic, Finland

1. Introduction

Due to the idiosyncratic fracturing patterns of vein quartz, the quartz industries of eastern Fennoscandia were long misunderstood (Knutsson 1998; Siiriäinen 1981). While the quartz assemblages are nowadays better comprehended in terms of technology (see Callahan et al. 1992; Driscoll 2011; Tallavaara et al. 2010), formal tools are typically rare in the assemblages (e.g. Manninen & Knutsson 2011), and the use of unmodified flakes and fragments has been demonstrated to be a common trait among quartz-using groups in Sweden. Because of this, microwear analysis is often needed to reconstruct and understand the logic of tool blank production, selection and use (see Knutsson 1988a, 1988b; Knutsson & Knutsson 2009).

In Finland, vein quartz was the most common raw material for tools throughout the Stone Age. Although some recent studies have utilized stereomicroscopy in the analysis of quartz in order to recognize small retouch and possible use-wear (Pesonen & Tallavaara 2006; Rankama 2002; Rankama & Kankaanpää 2011; Tallavaara 2007), high magnifications have not been used in Finland prior to our study. Here, we present the results of the microwear analysis of 38 pieces from Pello Kaaraneskoski and 21 pieces from Lohja Hossanmäki. The sites have been subject to rescue excavations, which covered parts of the settlement areas. At both sites, a number of finds concentrations have been observed and may reflect repeated short-term occupations and/or variability in the activities performed at the sites. The inner chronology of the sites remains somewhat open, but both quartz assemblages have been dated to the Late Mesolithic (Pesonen & Tallavaara 2006; Rankama & Kankaanpää 2011). The purpose of our study was 1) to examine the level of microwear preservation in the two assemblages; 2) to evaluate the relationship between the results of low magnification and high magnification analyses, carried out separately; and 3) to make observations about the possible patterns in tool blank selection at the two sites.
2. Materials and methods

A high power method for the analysis of use-wear on vein quartz artefacts has been developed in Sweden since the 1980s (Knutsson 1988a, 1988b; Knutsson & Knutsson 2009; Knutsson et al. in prep.). Experimental programs devoted to macroscopic wear on quartz tools, on the other hand, have to our knowledge been very rare. A study by Broadbent and Knutsson (1975), focussed on quartz scrapers, has been used as a reference in the stereomicroscope analysis of the Kaaraneskoski material (Rankama & Kankaanpää 2011), whereas the interpretation of the Hossanmäki material (Pesonen & Tallavaara 2006) relies on more general observations made in the context of experiments involving other lithic raw materials. Our interpretations of the wear observed under high (mainly $400\times$) magnifications are based on the experimental results published by K. Knutsson (1988a) and on the results of a small experimental series produced for the purposes of this study (see Taipale 2012).

Fig. 1. Wear from sawing on tool NM 31377:642, a flake fragment, from Pello Kaaraneskoski. Discontinuous striations run parallel to the edge line. Magnification $400\times$, scale bar 100µm.
A clear difference was observed in the level of preservation between the two samples of archaeological tools. This might be partly due to the differences between the soil types at the sites. The silt moraine at Hossannäki is generally more fine-grained than the sandy soil found at Kaaraneskoski (Pesonen & Tallavaara 2006; Rankama & Kankaanpää 2011), and it is possible that the difference in the grain size of the sediment affects the way the worn surfaces preserve. It seems likely, however, that other factors play a part here as well. Possible differences in the stability of the soil, for instance, cannot be ruled out. Some tool edges in the Kaaraneskoski sample have suffered damage that is visible as rather heavy rounding. Occasionally this rounding appears on edges without linear features that would clearly indicate use, and therefore its connection with prehistoric tool use is ambiguous. Despite these observations, the Kaaraneskoski assemblage also shows evidence of well-preserved microwear (see Figs. 1 and 2). Features like the rounding mentioned above pose challenges for low magnification use-wear analysis.

Fig. 2. Wear from planing/scraping on an unmodified, obtuse-angled edge of tool NM 31377:1043 from Kaaraneskoski. The polished surface is covered in numerous impact pits and discontinuous striations, running at slightly varying angles, generally perpendicular to the edge line. Magnification 400×, scale bar 100µm.
3. Results

The Hossanmäki assemblage showed an excellent level of preservation, which probably has an effect on the good agreement between the results of the two analyses in the case of our sample (see Table 2). Tables 1 and 2 show the frequencies of morphological tools and unmodified flakes identified as used during the microwear analysis. Our analysis showed that the correlation between the low magnification and high magnification results depends greatly on the level of postdepositional damage on tool edges. The amount and quality of this damage cannot be evaluated without examining the tools with magnifications of 200-400×. Low magnification analysis, though showing promising results especially in the case of the Hossanmäki sample, is further complicated by the fact that fractures occur frequently on quartz tool edges, and it is not easy to separate those originating from tool use from those caused by retouch or later damage.

<table>
<thead>
<tr>
<th>Tools with secondary</th>
<th>Number of used pieces</th>
<th>Number of analysed pieces</th>
</tr>
</thead>
<tbody>
<tr>
<td>modification</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Tools with edge rounding or crushing</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Flakes and flake fragments</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>38</td>
</tr>
</tbody>
</table>

Table 1. The number of pieces with clearly identifiable use-wear observed under magnifications of 200–400×. Groups represent the categories from the earlier analysis (Rankama & Kankaanpää 2011) using magnifications of 24× or less. On several retouched pieces, wear in the form of edge rounding and crushing was registered during the initial stereomicroscope analysis, but it could not always be connected to tool use and is interpreted as being partly caused by postdepositional processes.
Unmodified Quartz Flake Fragments as Cognitive Tool Categories

<table>
<thead>
<tr>
<th>LOHJA HOSSANMÄKI</th>
<th>Number of used pieces</th>
<th>Number of analysed pieces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tools with secondary modification</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Tools with edge rounding or crushing</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Flakes and flake fragments</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 2. The number of pieces with clearly identifiable use-wear observed under magnifications of 200–400×. Groups represent the categories from the earlier analysis (Pesonen & Tallavaara 2006) using magnifications of 24× or less. The use-wear was well-preserved on these pieces, which is also reflected in the agreement between the two methods.

Also, a trait common to both samples was the evident utilization of right- or obtuse-angled edges for different tasks such as sawing, planing and scraping (Figs. 2 and 3). Typically, the edges identified as used under a stereomicroscope in the Hossanmäki sample are rather sharp and thin. In both assemblages, the low-power method failed to identify the obtuse-angled tool edges as used, probably due to their resistance to severe rounding and crushing. Therefore, it can be suspected that tools with thin edges are overrepresented in assemblages that have been analyzed with low magnifications, while obtuse-angled edges suitable for planing, scraping or sawing remain undetected. This observation further underlines the potential value of microwear analysis in future studies dedicated to observing cultural and behavioural patterns in the use of quartz in the area of present-day Finland.

When quartz is knapped, flakes fragment more easily than is the case with most lithic raw materials. Because of this, fragments with different shapes and edge qualities are found in assemblages together with intact flakes (Callahan et al. 1992). It has sometimes been suggested that certain fragment types might have been preferred for certain tool types (e.g. Rankama 2002). While no clear connection between fragment types and specific tasks was observed in our study, both the samples show a preference of intact flakes over flake fragments. These pieces often possess a sharp edge suitable for, e.g., cutting or whittling, and at least at Hossanmäki, they have also served as scraper blanks.
Fig. 3. Wear from sawing on an obtuse-angled edge of tool NM 34856:104, a flake fragment, from Lohja Hossanmäki. Very parallel discontinuous and straight-sided striations cover the surface. The edge rim is located below the picture and runs parallel to the striations. Magnification 400×, scale bar 100µm.

4. Discussion

The samples for this study were chosen primarily on the basis of the earlier macrowear results (Pesonen & Tallavaara 2006; Rankama & Kankaanpää 2011) in order to assess the feasibility of the method in the study of quartz tools. As said, this method may recognize certain tool categories such as sharp cutting edges more readily than others, and our samples do not therefore necessarily reflect the overall variation in tool blank morphology. Therefore, results presented here remain suggestive and should be tested against larger samples picked in a different manner. In the case of the Kaaraneskoski sample, the large portion of secondarily modified tools among the used pieces (five out of 13) further complicates the evaluation of the relationship between the fragment types and use, since retouch prevents the recognition of the types of fragments that have served as blanks for these five tools. When they are excluded, the second largest category (three pieces), are intact flakes. While the dominance of
intact flakes seemed clearer among the used pieces from Hossanmäki, it was not found statistically significant in the small sample (see Taipale 2012) and should also be tested further.

Some differences were observed between the groups of used pieces from the two sites. For instance, the use of multiple edges was more common in the Hossanmäki sample than in the Kaaraneskoski sample. Among the Kaaraneskoski tools, the amount of retouch seems to correlate with the amount of wear, whereas no such connection was observed in the Hossanmäki sample. In the case of the latter, unmodified pieces also exhibited strong wear. These observations would be worth investigating further, especially with respect to the spatial distribution of the artefacts, since both the sites can be interpreted as the remains of several occupations that have occurred over a period of time (Pesonen & Tallavaara 2006; Rankama & Kankaanpää 2011).

Despite the observed differences, there are also similarities between the samples. Our study clearly demonstrates that the use of unmodified quartz flakes and fragments has been part of the strategies used by the groups visiting Kaaraneskoski and Hossanmäki. Another trait common to both the samples is the selection of sturdy, straight natural edges with angles close to 90° for different tasks such as sawing or planing. These are exactly the type of edges that commonly appear on quartz flake fragments and are not easily recognized as used in low magnification analysis. Both these observations have implications for future quartz studies in Finland, and underline the importance of integrating microwear analysis with other analytical methods.

Acknowledgements

We would like to thank Gunvor and Josef Anér’s foundation and Berit Wallenberg’s foundation that partly funded the teaching and supervision involved in the project. We also want to thank Tuija Rankama, Petro Pesonen and Miikka Tallavaara for providing us with the macrowear analysis results, and Miikka Tallavaara for the help with statistical testing.

References

