19F NMR In Vivo Spectroscopy Reflects the Effectiveness of Perfusion-Enhancing Vascular Modifiers for Improving Gemcitabine Chemotherapy

Greg O. Cron, Nelson Beghein, Réginald Ansiaux, Philippe Martinive, Olivier Feron, and Bernard Gallez

Nuclear magnetic resonance spectroscopy of fluorine-19 (19F NMR) has proven useful for evaluating kinetics of fluorinated chemotherapy drugs in tumors in vivo. This work investigated how three perfusion-enhancing vascular modifiers (BQ123, thalidomide, and Botulinum neurotoxin type A [BoNT-A]) affect the chemotherapeutic efficacy of gemcitabine, a fluorinated drug widely used in human cancer treatment. Murine tumor growth experiments demonstrated that only BoNT-A showed a strong trend to enhance tumor growth inhibition by gemcitabine (1.7 days growth delay, \(P = 0.052 \), Student t-test). In accord with these results, 19F NMR experiments showed that only BoNT-A increased significantly the uptake of gemcitabine in tumors (50% increase, \(P = 0.0008 \), Student t-test). Further experiments on gemcitabine kinetics (NMR vs time) and distribution (19F MRI) confirmed the uptake-enhancing properties of BoNT-A. The results of this study demonstrate that 19F NMR can monitor modulation of the pharmacokinetics of fluorinated chemotherapy drugs in tumors. The results also show that 19F NMR data can give a strong indication of the effectiveness of perfusion-enhancing vascular modifiers for improving gemcitabine chemotherapy in murine tumors. 19F NMR is a promising tool for preclinical evaluation of such vascular modifiers and may ultimately be used in the clinic to monitor how these modifiers affect chemotherapy. Magn Reson Med 59:19–27, 2008. © 2007 Wiley-Liss, Inc.

Key words: fluorine NMR; cancer; BQ123; thalidomide; Botox

Nuclear magnetic resonance spectroscopy of fluorine-19 nuclei (19F NMR) has proven to be a useful tool for investigating noninvasively the pharmacokinetics of fluorinated chemotherapy drugs in tumors in vivo (1–4). 19F NMR experiments performed on humans (5–7) and animals (8–23) have found significant correlations between cancer treatment success, normal tissue toxicity, the presence or absence of externally administered biological modifiers (e.g., carbogen), and the uptake and elimination of fluorinated chemotherapy drugs in tumors and normal tissues.

Until now, most such 19F NMR studies have focused on the chemotherapy drug 5-fluorouracil. Only a small number of studies have dealt with the newer fluorinated chemotherapy drug gemcitabine (21,22). Moreover, to our knowledge, no 19F NMR study has been performed using a biological modifier that acts directly on tumor vasculature to enhance the perfusion (delivery) of the chemotherapy drug. In the context of cancer treatment, this approach is being pursued actively in preclinical models (24) and in the clinic (25) to enhance the delivery of chemotherapeutic agents and increase the efficacy of the treatment. In our laboratory, we have been experimenting with three such perfusion-enhancing vascular modifiers (BQ123, thalidomide, and Botulinum neurotoxin type A [BoNT-A]), with the goal of increasing tumor perfusion transiently to boost the effectiveness of radiotherapy and chemotherapy (26–30). BQ123 is an endothelin receptor antagonist that induces tumor vessel dilation by blocking the effect of endothelin-1 (ET-1), a very active vasoconstrictor released by tumor cells (26). Thalidomide, an antiangiogenic agent, has recently been shown to increase tumor blood flow transiently by means of a phenomenon referred to as “normalization” of the tumor vasculature (pruning away of less functional vessels) (27–29). BoNT-A has been demonstrated to open up tumor vasculature (i.e., open previously constricted or closed vessels) by decreasing vascular tone (30). These three compounds are possible candidates for clinical use in combination with cytotoxic therapies. Agents that inhibit endothelin-1 receptors have already been used in clinical trials for prostate cancer (31,32). Thalidomide is one of the most studied antiangiogenic agents in clinical trials, including usage in combination with chemotherapeutic agents (33). Finally, BoNT-A has been widely used in the clinic with a long-term established absence of toxicity (absence of systemic effects) when used appropriately (34). Thus, it is certainly valid to envision clinical trials with local administration of BoNT-A in easily accessible tumors.

The original purpose of this work was to test how those three vascular modifiers would affect gemcitabine chemotherapy. After some murine tumor growth experiments (described below), we found that only BoNT-A enhanced...
significantly gemcitabine chemotherapy. To gain some understanding of these results, we then used 19F NMR in vivo to measure the effect of the modifiers on the uptake of gemcitabine in the tumors. For the modifier that had the most spectacular effect (BoNT-A), we performed further 19F NMR experiments to study gemcitabine elimination and distribution (the latter through 19F MR imaging).

MATERIALS AND METHODS

All experiments were performed according to national animal care regulations. Intramuscular hepatomas were implanted in the gastrocnemius muscle of the right hind limb of male NMRI (Naval Marine Research Institute) mice (~30–35 g, Janvier) (35). These tumors are hypoxic (oxygen partial pressure < 5 mmHg) and poorly perfused (typically less than half of tumor volume with measurable perfusion), thus mimicking cancers in the clinic that are highly resistant to radiation therapy and chemotherapy. Five different groups of these tumors were grown (on different dates), for a total of 124 tumors (Table 1). Tumor diameters (anterior–posterior axis) were measured manually using calipers (26–28,30). To maximize consistency, the same experimenter (G.O.C.) performed all diameter measurements. Treatments for a given tumor were begun on “day 0,” when the tumor had reached a diameter of ~6 mm. The diameter of the tumors on day 2 was 8.0 ± 0.1 mm (numbers given as mean ± SEM unless otherwise stated). Based on T_2-weighted imaging of the mice used for NMR/MRI (groups 2 through 5 in Table 1), the three-dimensional volume of the tumors on day 2 was 0.85 ± 0.03 cm3. Previously acquired (unpublished) MRI data in our laboratory relating the volume of these tumors to manually measured anterior–posterior diameter indicate that a diameter of 6 mm corresponds to a tumor volume of approximately 0.55 cm3 (15 mm corresponds to ~2.7 cm3). In Table 1, “DMSO” refers to an intraperitoneal (i.p.) injection of 100 µL dimethyl sulfoxide (DMSO); “BQ123” refers to an i.p. injection of 1 mg/kg BQ123 (Sigma, Bornem, Belgium); “thal.” refers to an i.p. injection of 200 mg/kg racemic thalidomide (Sigma-Aldrich, Bornem, Belgium); “BoNT-A” refers to an intratumoral injection of Botulinum neurotoxin type A (BoNT-A; Botox®, Allergan, Antwerp, Belgium); 2 injections of 20 µL at different sites, corresponding to a total dose of 29 U kg$^{-1}$; and “gemci.” refers to an i.p. injection of gemcitabine (Gemzar®, Eli Lilly) at 5 mg/kg for group 1, 800 mg/kg for groups 2–4, and 1600 mg/kg for group 5. “BQ123+gemci.” indicates that BQ123 was administered at the same time as gemcitabine (separation < 2 min). A dash “-“ indicates no treatment or a sham treatment with saline solution. It should be noted that, when a treatment was performed on a mouse, the treatment was only administered once on the given day. The scheduling, doses, and routes of administration of BQ123, thalidomide, and BoNT-A followed those of previously published work and have been shown to increase tumor perfusion significantly (26–28,30).

For NMR and MR imaging experiments, animals were anesthetized by inhalation of isoflurane mixed with air in a continuous flow (1.8 l/h), delivered by a nose cone. Anesthesia was initiated with 3% isoflurane, then stabilized at ~1.5% isoflurane for 10 min before any manipulation. Animals were maintained at 37°C in the MRI scanner by flushing warm air inside the bore.

Tumor Growth Experiments

A group of 70 tumors was prepared for growth experiments (group 1 in Table 1). This group was subdivided into eight subgroups of tumors, each subgroup receiving a different treatment regimen shown by the table. The gemcitabine dose of 5 mg/kg used for this group was chosen after performing separate tumor growth experiments (data not shown) to investigate the efficacy of different doses of gemcitabine varying from 0 to 100 mg/kg. Those experiments showed that 5 mg/kg was below the efficacy threshold for this product, which ensured that any improvements in efficacy conferred by the biological modifiers (BQ123, thalidomide, BoNT-A) would be reflected in the growth curves. After treatments were performed on days 0–2, each tumor was allowed to grow until it reached a diameter of 15 mm (volume ~2.7 cm3), at which point the mouse was killed. The time to grow from 8 mm (volume ~0.85 cm3) (on day 2) to 15 mm (volume ~2.7 cm3) was recorded for each tumor. Differences in this growth time between the different subgroups were assessed by means of the Student t-test.

19F and 1H NMR Spectroscopy of Gemcitabine

Implementation of Spectroscopy and Phantom Validation

MR imaging and spectroscopy experiments were performed with a Bruker Biospec 4.7T MRI scanner (Karlsruhe, Ger-
many) and a 25-mm diameter surface coil that could be tuned separately to either 1H (200.1 MHz) or 19F (188.3 MHz). Preliminary experience showed that the tumor 19F signal of gemcitabine (administered i.p. to the mouse) was very small (gemcitabine spectrum height divided by standard deviation of noise was less than 5 for a gemcitabine dose of 100 mg/kg, 150 averages, repetition time $t = 6$ s). Thus, every possible effort was made to maximize the 19F signal-to-noise ratio (SNR). NMR spectroscopy was performed in a nonlocalized manner (simple excite–acquire pulse sequence) to sample the earliest possible time points of the free induction decay (FID) and thereby increase spectra SNR. For mouse tumor experiments, the surface coil was placed directly on the tumor in such a way as to maximize the NMR signal received from the tumor and minimize the signal from the upper leg and paw. The tail and non–tumor-bearing left hind limb were positioned completely outside the sensitive volume of the coil. A small, sealed glass capillary tube containing a small sample of hexafluorobenzene was permanently affixed to the underside of the coil. This procedure provided a consistent 19F signal easily distinguishable from gemcitabine (~ 51 ppm downfield from gemcitabine) which was used for quality assurance purposes (more details given at the end of this section).

As has been the case in previous work, the gemcitabine parent compound and metabolites were not distinguishable in the 19F spectra (21,22). Thus, gemcitabine was treated as a single peak. 1H and 19F spectroscopy were performed with the following parameters: excitation angle $= 90^\circ$, spectral width $= 25$ kHz, acquisition size $= 6k$, repetition time $t = 6$ s (to ensure complete relaxation). For 1H spectroscopy, an 80-μs-long block radio frequency (RF) excitation pulse was used, whereas for 19F spectroscopy a 20-μs-long block pulse was used. Four averages were acquired for 1H spectroscopy, whereas 150 averages were acquired for 19F spectroscopy (total 19F acquisition time $= 15$ min). The frequency of the RF excitation pulse was centered directly on the water peak for 1H spectroscopy and ~ 7 ppm downfield of the gemcitabine peak for 19F spectroscopy. FIDs were Fourier transformed (exponential line broadening 25 Hz for 19F spectra), phased, and baseline corrected. The real part of each spectrum was integrated over the water peak for 1H spectroscopy and ~ 7 ppm downfield of the gemcitabine peak for 19F spectroscopy (integration width $= 20$ ppm) and over the gemcitabine peak for 19F spectroscopy (integration width $= 12$ ppm). Each integral was divided by the receiver gain number used for that acquisition. (The receiver gain for 19F spectroscopy was always set to the same value, which was the maximum possible for the scanner.) A relative measure of the concentration of gemcitabine measured by spectroscopy ($[\text{gem}]_{\text{rel}}$) was then obtained by dividing the gemcitabine integral by the water integral.

Ten aqueous ~ 1-ml plastic centrifuge tubes were prepared with known concentrations of gemcitabine (range, 0–3 mM). These phantoms were used to test the reproducibility and linearity of $[\text{gem}]_{\text{rel}}$ as a function of gemcitabine concentration. $[\text{gem}]_{\text{rel}}$ measurements with these phantoms were found to be linear with gemcitabine concentration ($R = 0.99$) with a slope of 0.135 mM$^{-1}$. $[\text{gem}]_{\text{rel}}$ measurements were henceforth multiplied by the inverse of that slope, 7.41 mM, so that the numerical values of $[\text{gem}]_{\text{rel}}$ would be approximately equal to the absolute concentrations of gemcitabine in mM. The equality between $[\text{gem}]_{\text{rel}}$ and absolute concentration is only approximate, because it assumes uniform distribution of gemcitabine, homogeneous unit density of tissue, and no NMR-invisible 1H or 19F nuclei. $[\text{gem}]_{\text{rel}}$ measurements were found to be reproducible to within $< 10\%$ (~ 0.16 mM), even when the phantoms were completely removed from the scanner and put back in with different geometrical orientations (necessitating new shimming). For repeat measurements on the same phantom (not removed from the scanner), the reproducibility improved to $< 7\%$ (~ 0.11 mM).

For the in vivo 19F spectroscopy data, the integral of the real part of the spectrum peak corresponding to the hexafluorobenzene reference tube (integration width $= 18$ ppm) was very stable from experiment to experiment, varying by less than 7.5% of the mean for all studies (standard deviation $= 3.7\%$ of the mean). The positions (in frequency) of the gemcitabine and hexafluorobenzene peaks were very stable as well (7.3 ± 0.2 ppm for gemcitabine, -43.5 ± 0.6 ppm for hexafluorobenzene, mean \pm standard deviation, transmitter frequency $= 188.2805$ MHz). Thus, from a quality assurance viewpoint, we considered that all our spectroscopy data were valid.

Initial Uptake in Tumors In Vivo

Three separate groups of tumors were prepared for NMR experiments investigating the initial uptake of gemcitabine in tumors (groups 2, 3, and 4 in Table 1). Each of these groups was divided into a control subgroup (gemcitabine only) and a treatment subgroup (gemcitabine + modifier). On day 2, gemcitabine (800 mg/kg) was injected i.p. into the awake mouse in a fume hood facility approved for the handling of chemotherapeutic agents. The dose of 800 mg/kg provided gemcitabine concentrations in the tumor of $\sim 1–2$ mM. This dose was chosen to ensure adequate SNR and reproducibility for 19F spectroscopy. Preliminary in vivo 19F spectroscopy tumor experiments with gemcitabine doses of 100, 200, 400, and 800 mg/kg had given SNRs (gemcitabine spectrum height divided by standard deviation of baseline noise) of approximately 4, 6, 13, and 25, respectively (same 15-min acquisition described above). Our technical goal was an SNR of at least 20 for a 15-min acquisition (repetition time $= 6$ s), leading to our choice of the 800 mg/kg dose. This dose is within the range of single-dose chemotherapy experiments which have been performed safely by other investigators (i.e., no acute [–hours] toxicity) (36).

After gemcitabine administration, the mouse (under isoflurane anesthesia) was transported to the MRI facility and installed in the MRI scanner. The surface coil was initially set to 1H mode for shimming, preliminary imaging (to check positioning), and 1H spectroscopy. Immediately afterward, the coil was set to 19F mode and one spectroscopy acquisition was begun. This acquisition commenced 37.5 min after the i.p. injection of gemcitabine and finished 52.5 min after the injection (15-min acquisition). Thus, the mean acquisition time post-i.p. was considered to be 45 min (= the mean of 37.5 and 52.5 min). After the end of the 19F acquisition, the coil was switched back to 1H mode for multislice proton-density and T2-weighted imaging of the tumor. For proton density-weighted imaging, a gradient echo pulse sequence was used with field of view (FOV) $= 40$ mm, matrix $= 64 \times 64$, 20 transverse (axial)
slices, slice thickness = 2 mm, repetition time = 5 s, echo
time = 4.5 ms, and flip angle = 90°. For T2-weighted
imaging, a fast spin echo pulse sequence was used with
FOV = 40 mm, matrix = 128 × 128, 20 transverse (axial)
slices, slice thickness = 2 mm, repetition time = 4 s, and
effective echo time = 50 ms.

For each tumor, the 1H and 19F spectroscopy data were
used to compute the value of [gem]rel for the i.p. injection of gemcitabine. For each tumor group (i.e.,
groups 2, 3, and 4 in Table 1), all [gem]rel values were
normalized to the average value found for the control
subgroup. This was done to facilitate comparisons be-
tween groups. For each tumor group, [gem]rel values for the
control subgroup were compared with values for the treat-
ment subgroup by means of the Student t-test.

Nonlocalized spectroscopy measurements gather NMR
signals not only from the tumor, but also from adjacent
muscle, fat, skin, and any other structure that is within the
sensitive volume of the surface coil. The proton-density
and T2-weighted images were used to estimate the percent-
age of total NMR signal produced by the tumor alone, to
rule out any biases in the data that could be caused by
variations in tissue composition. Regions of interest (ROIs)
were drawn around the tumor on the T2-weighted images.
These ROIs were then used to compute the percentage of
total MRI signal in the proton-density–weighted images
contributed by the tumor.

For five mice in each subgroup of group 4 (BoNT-A
experiments), ∼1 ml of blood was withdrawn by means of
cardiac puncture at the end of the experiment (60 min
post-i.p. injection of gemcitabine). The blood was placed
in a plastic heparinized centrifuge tube, and a [gem]rel
measurement was performed in the scanner to obtain an
estimate of the concentration of gemcitabine in the blood.
This procedure was to verify that any differences in tumor
[gem]rel between the control and treatment subgroups were
not due simply to differences in gemcitabine blood con-
centration.

Kinetics in Tumors In Vivo (BoNT-A Experiments)

Six tumors (three controls, three treated with BoNT-A)
from group 4 were used to investigate [gem]rel as a function
of time. The protocol and analysis were similar to the
initial uptake experiments, except that 16 sequential 19F
acquisitions were performed instead of 1. Additionally, a
maximum possible effort was made to perform the initial
steps of the protocol quickly (transportation of the mouse,
installation in the scanner, and so on), which allowed the
mean acquisition time post-i.p. of the first 19F spectrum to
be 30 min (start of acquisition = 22.5 min, end of acquis-
tion = 37.5 min) instead of the usual mean acquisition
time of 45 min. For each tumor, the 1H and 19F spectro-
copy data were used to compute the value of [gem]rel as a
function of time post-i.p. injection of gemcitabine. Here,
[gem]rel values were not normalized to the control sub-
group. These [gem]rel vs time data were then used to com-
pute the area under the curve (AUC, for all time points)
and the slope of the elimination phase of the curve (linear
regression performed on time points > 120 min).

19F MR Imaging of Gemcitabine in Tumors In Vivo

19F MR imaging of gemcitabine was performed on a group
of nine tumors (four control, five treated with BoNT-A,
group 5 in Table 1). The protocol was similar to that used
for the spectroscopy experiments. The gemcitabine dose
used for 19F imaging was 1600 mg/kg instead of 800 mg/kg.
This doubling of the dose used for spectroscopy was
deemed necessary after preliminary experiments showed
that the 19F image SNR would not be adequate with
800 mg/kg. To our knowledge, 1600 mg/kg administered to
a mouse is greater than any single dose that has ever been
used by other investigators. Thus, to ensure a lack of acute
(hours) toxicity, a separate group of five mice (not in-
cluded in Table 1) was injected with that dose and ob-
served for 24 hr. No deaths, weight loss, or adverse behav-
ioral effects were observed for that time period.

For the 19F imaging experiments, after the mice were
installed in the MRI scanner, the 1H mode of the surface
coil was used for shimming and preliminary imaging (to
check positioning). The coil was then switched to 19F
mode. One 19F spectrum was acquired to find the precise
center frequency of the gemcitabine peak. Using this as the
center transmit frequency, a 19F gradient echo imaging
pulse sequence was then commenced. This pulse se-
quence acquired a single projection image (i.e., ~infinite
slice thickness) in the coronal plane. Other parameters
were as follows: FOV = 70 mm, matrix = 32 × 32, repeti-
tion time = 6 s, echo time = 2.1 ms, flip angle = 90°,
number of averages = 16, total acquisition time = 51 min.
A gaussian RF pulse shape with length 680 μs was used for
excitation. This pulse had no significant spectral power at
frequencies farther than ~5 kHz from the center frequency.
This ensured that the 19F signals from the isoflurane anes-
thetic (~6.4 kHz upfield of the gemcitabine peak) and the
hexafluorobenzene sample (~9.6 kHz downfield) would
not contaminate the gemcitabine images. The time be-
tween the i.p. injection of gemcitabine and the midpoint of
the 19F image acquisition was 62 min.

After 19F imaging, the coil was switched back to 1H
mode. A proton-density–weighted projection image was
acquired, whose pulse sequence was nearly identical to
the one used for 19F imaging (except 2 averages and center
frequency set to the water peak). Finally, a T2-weighted
projection image was acquired (FOV = 70 mm, matrix = 128 × 128, repetition time = 4 s, echo time = 50 ms).

The pixel values of the 19F and proton density projection
images were divided by their respective receiver gain
numbers. (The receiver gain for 19F imaging was always set
to the same value, which was the maximum possible for
the scanner.) An ROI was drawn around the empty space
(air) surrounding the tumor mass in the 19F image to com-
pute the mean and standard deviation of the image noise.
Pixels whose 19F signal did not exceed the mean noise
level by at least 2 SDs were excluded from further analysis.
It should be noted that the image noise in empty space (air)
has a Rayleigh distribution with nonzero mean, which
may differ from the noise distribution of the object in the
image (37). Our simple calculations of the mean and stan-
dard deviation of the noise were not used for any analyses,
only for thresholding. Pixels whose proton density signal
was less than 10% of the maximum signal in the tumor
mass were also excluded. An estimate of the \(\text{[gem]}_{\text{rel}} \) distribution (i.e., a \(\text{[gem]}_{\text{rel}} \) image) was then obtained by dividing the \({^{19}}\text{F} \) image by the proton density image. The \(\text{[gem]}_{\text{rel}} \) values for all images were then normalized to the average of the \(\text{[gem]}_{\text{rel}} \) values for the control group, to facilitate comparisons.

RESULTS

Tumor Growth Experiments

The mice tolerated all treatments well, with no deaths and minimal weight loss (≤ 5%; drugs administered as in Table 1 group 1, then mice monitored daily with no further treatments up to 12 days postgemcitabine). Tumors in animals treated with gemcitabine grew more slowly than those in animals which were not treated with gemcitabine (8.1 ± 0.3 days vs 5.8 ± 0.3 days, n = 35 vs 35, \(P < 0.0001 \), all subgroups combined, where “days” refers to the number of days required for the tumor to grow from 8 mm [volume ~0.85 cm\(^3\)] to 15 mm [volume ~2.7 cm\(^3\)]). Among animals not treated with gemcitabine, there was no significant difference in tumor growth observed between subgroups. Among animals treated with gemcitabine, the results of the different subgroups are shown in Figure 1. There was no significant difference in tumor growth between the control subgroup (gemcitabine only) and the treatment (gemcitabine + modifier) subgroups, with the exception of BoNT-A. Tumors treated with gemcitabine plus BoNT-A grew more slowly than tumors treated with gemcitabine only (9.4 ± 0.6 days vs 7.7 ± 0.5 days, n = 9 vs 10, \(P = 0.052 \)).

\({^{19}}\text{F} \) and \({^1}\text{H} \) NMR Spectroscopy of Gemcitabine

Initial Uptake in Tumors In Vivo

Figure 2 shows example in vivo \({^{19}}\text{F} \) NMR spectra. Figure 3 shows the results of the \({^{19}}\text{F} \) spectroscopy initial uptake experiments. Similar to the tumor growth experiments, there was no significant difference in gemcitabine uptake between the control subgroups (gemcitabine only) and the treatment (gemcitabine + modifier) subgroups, with the exception of BoNT-A. Tumors treated with BoNT-A had a higher uptake of gemcitabine than controls (50% more, \(P = 0.0008 \)). Additionally, there was no significant difference in \(\text{[gem]}_{\text{rel}} \) between blood samples withdrawn from BoNT-A–treated mice and blood samples withdrawn from controls (2.9 ± 0.4 mM vs 3.2 ± 0.3 mM, where relative concentrations of gemcitabine were converted to estimates of absolute concentration by means of the scaling factor described in the Materials and Methods section). Finally, the estimate of the fraction of total NMR signal attributable to the tumor did not vary significantly between subgroups (MRI signal intensity from tumor volume divided by total MRI signal intensity = 0.63 on average).

Kinetics in Tumors In Vivo (BoNT-A Experiments)

Figure 4 shows the results of the gemcitabine kinetics experiments involving BoNT-A. For this figure, relative concentrations of gemcitabine were converted to absolute ones (nM) by means of the scaling factor described in the Materials and Methods section. The approximate symbol (~) has been placed in front of the nM symbol, however, because the conversion makes unverified assumptions of uniform distribution of gemcitabine, homogeneous unit density of tissue, and no NMR-invisible \({^1}\text{H} \) or \({^{19}}\text{F} \) nuclei.

Tumors treated with BoNT-A received more gemcitabine over time than controls: The average AUC for the former subgroup was 40% higher than for the latter (356 ± 14 vs 252 ± 22, units of mM min, \(P = 0.02 \), Student t-test). No statistically significant difference in elimination rate was observed between the two subgroups (0.0025 ± 0.0005 mM/min for the control group vs 0.0038 ± 0.0011 mM/min for the BoNT-A group).

\({^{19}}\text{F} \) MRI of Gemcitabine in Tumors In Vivo

Figure 5 shows example images from the \({^{19}}\text{F} \) imaging experiments. Pooling all \(\text{[gem]}_{\text{rel}} \) values for all pixels of the treatment group (141 total pixels for the 5 animals) and comparing them with those of the control group (120 total pixels for the 4 animals), the \(\text{[gem]}_{\text{rel}} \) values for the treatment group were significantly higher than those of the control group (1.21 ± 0.07 vs 1.00 ± 0.05, \(P = 0.015 \), Student t-test). Taking the average \(\text{[gem]}_{\text{rel}} \) value for each image and comparing the two groups (5 \(\text{[gem]}_{\text{rel}} \) values for the treatment group vs 4 \(\text{[gem]}_{\text{rel}} \) values for the control group), the treatment group had higher \(\text{[gem]}_{\text{rel}} \) values but the difference was not quite statistically significant (1.22 ± 0.10 vs 1.00 ± 0.05, \(P = 0.1 \)).

DISCUSSION

The results of the initial uptake experiments closely matched those of the tumor growth experiments (compare...
Figs. 1 and 3). Among the three modifiers, only BoNT-A showed a strong trend to enhance tumor growth inhibition by gemcitabine (P = 0.052) and gemcitabine uptake (P = 0.0008). Considering the results qualitatively, there appears to be the same trend in both figures whereby BQ123 is the least effective modifier, followed by thalidomide, followed by the most effective modifier BoNT-A. The results of the kinetics experiments in Figure 4 confirm that BoNT-A does indeed increase significantly the exposure of the tumor to gemcitabine (greater AUC, P = 0.02). Thus, it appears that the differences in gemcitabine chemosensitization for the three modifiers can be explained by corresponding differences in gemcitabine tumor uptake enhancement that they confer.

This study supports the assumption that 19F NMR experiments can provide a reliable description of the pharmacokinetics of fluorinated chemotherapy drugs in tumors. In the context of the current work, these results suggest that 19F NMR data can give a strong indication of the effectiveness of perfusion-enhancing vascular modifiers for improving gemcitabine chemotherapy in murine tumors.

At this time, it is not fully understood why the three modifiers affect gemcitabine uptake in tumors differently (and thus, chemosensitize differently). The data presented in this work are the first systematic, direct, comparison of the perfusion-enhancing and chemosensitization abilities of the three modifiers. Considering previously published data, however, it is possible to make some approximate comparisons of the three modifiers based upon laser Doppler imaging and Patent Blue staining (26–28,30). In the same tumor model, BQ123 and thalidomide were each found to cause an increase in laser Doppler-measured tumor blood flow of ~25% (relative to controls) (26,27). Thalidomide was found to increase the amount of tumor exposed to Patent Blue staining by ~70% (relative to controls) (27), whereas BoNT-A was found to increase the amount of tumor exposed to Patent Blue staining by

![FIG. 2. Example in vivo 19F NMR spectra for intramuscular hepatomas as a function of time after i.p. injection of gemcitabine 800 mg/kg. Identical scales have been used for all spectra. Each spectrum shows isoflurane peaks (− +45 ppm), the gemcitabine peak (− +7 ppm), and the hexafluorobenzene reference peak (− −45 ppm). a: Spectra for a control tumor (no vascular modifiers administered). b: Spectra for a tumor pretreated with BoNT-A.](image)
This comparison of the three modifiers, although not rigorous, is consistent with the current study, where it was found that BoNT-A provided superior perfusion enhancement compared with the other two modifiers. Of note, our study does not exclude that thalidomide and BQ123 administered according to a different scheme (e.g., repeated exposure or higher dosage) might lead to a significant gain in chemotherapy uptake.

The dose of gemcitabine that was used for the in vivo 19F spectroscopy tumor experiments (800 mg/kg) is higher than that used in similar work by previous investigators (e.g., 160 and 500 mg/kg for references 21 and 22). However, these previous studies used tumor models different from ours, did not report spectra SNR, and did not report estimates of absolute gemcitabine concentration in tumor, making comparisons with our work difficult. Relative to our 19F spectroscopy acquisition parameters, the study performed with 160 mg/kg used a smaller spectral width (20 kHz), wider line broadening (40 Hz), longer acquisition times (30 min), and a shorter repetition time (1.5 s, which provides more FIDs and thus more averaging), all of which boost SNR (21). We used a long repetition time (6 s) to ensure complete spin-lattice relaxation of the 19F nuclei, thus improving quantification. It should also be noted that the dose of 800 mg/kg used in our study is higher than that used for clinical human chemotherapy (<300–350 mg/kg equivalent for a 25-g mouse). It is expected that these clinical doses would still provide adequate SNR if 19F NMR gemcitabine spectroscopy studies were performed on humans, especially given the typically large size of human tumors compared with murine tumors. We also note that, although a dose of 800 mg/kg caused no acute toxicity in our and other studies, we currently have no data on how such a high dose may affect tumor perfusion by means of either direct effects on tumor endothelium or nonspecific effects (36).
For the NMR spectroscopy experiments involving the initial uptake of gemcitabine, the relative concentration of gemcitabine was measured essentially at a single time point (45 min post-i.p.). From a pharmacokinetics viewpoint, it is better to measure the entire time course (e.g., from 0 to 250 min) and compute the AUC to obtain a measure of the exposure of the tumor to the drug. Compared with a single time point, the AUC is less affected by any potential animal-to-animal variations in the vascular input function and tumor pharmacokinetic parameters (e.g., tumor blood volume, capillary permeability, rates of cellular uptake and metabolism). AUC experiments are expensive, however, requiring large amounts of scanner time per animal. The strategy that we have envisioned is thus to use the single-time-point experiments as an initial “screening” test of the effectiveness of the vascular modifiers, followed up by AUC and 19F imaging experiments if the results are promising. It should be kept in mind that, according to pharmacokinetic theory, it is possible for the results of single-time-point experiments to contradict those of AUC experiments, depending upon when the single time point is acquired. For the long-acting vascular modifiers used in this study (constant or gradually increasing effects with time constants ranging from hours to days), we believe that such a scenario is unlikely to have happened, especially considering the agreement with the tumor growth experiments.

We note that safety regulations prohibited us from handling chemotherapy drugs in the MRI laboratory, which prevented us from injecting gemcitabine while the animals were in the scanner (to obtain data starting at time 0). Collecting data from time 0 would not have changed the overall result of the BoNT-A AUC experiments (Fig. 4), however. This is because the control data (open circles) reached peak concentration at ~90 min. Pharmacokinetic theory would predict a smooth connection for the control data (i.e., relatively straight line) between 0 and 30 min, making it impossible for the AUC of the control data to exceed that of the BoNT-A data (filled squares).

Until now, few studies have attempted to obtain 19F MR images of the distribution of fluorinated chemotherapy drugs, and none of these have demonstrated sufficient 19F sensitivity to image individual tumors in any appreciable detail (23). Figure 5 shows 19F MR images that we obtained of gemcitabine in tumors in vivo (spatial resolution = 2.2 mm). To our knowledge, these are the most detailed such images that have been published to date. There was a strong trend of higher [gem]sat values in the group treated with BoNT-A (P = 0.015 when all pixels are pooled into treatment vs control groups), which is consistent with the spectroscopy experiments. Moreover, we observed qualitatively a “ring” enhancement pattern (more gemcitabine in the periphery of the tumor compared with the center, e.g., Fig. 5 BoNT-A) in at least five of the nine tumors, which is consistent with tumor perfusion patterns often found with Gadolinium-enhanced MRI (38). Although these 19F MRI results are very encouraging, the quality of the images still warrants improvement. It may be possible to increase the SNR of the images, for example, by acquiring the low-frequency components of the k-space lines (containing the most important image information) earlier in the free induction decay, thereby shortening the effective echo time.

CONCLUSIONS

The results of this study support the assumption that 19F NMR experiments can provide a reliable description of the pharmacokinetics of fluorinated chemotherapy drugs in tumors. The results also show that 19F NMR data can give a strong indication of the effectiveness of perfusion-enhancing vascular modifiers for improving gemcitabine chemotherapy in murine tumors. 19F NMR is a promising tool for preclinical evaluation of such vascular modifiers and may ultimately be used in the clinic to monitor how these modifiers affect chemotherapy.

ACKNOWLEDGMENT

The authors thank Dr. Arturo Cardenas-Blanco for helpful discussions regarding statistical issues.

REFERENCES

19F NMR In Vivo Reflects Gemcitabine Enhancement

