
A Parallel Processing Approach to Dynamic Simulations of
Combined Transmission and Distribution SystemsI

P. Aristidou
Department of Electrical Engineering and Computer Science,

University of Liège, Liège, Belgium

T. Van Cutsem
Fund for Scientific Research (FNRS) at Department of Electrical Engineering and Computer

Science, University of Liège, Liège, Belgium

Abstract

Simulating a power system with both transmission and distribution networks
modeled in detail is a huge computational challenge. In this paper, a Schur-
complement-based domain decomposition algorithm is proposed to provide accu-
rate, detailed dynamic simulations of such systems. The simulation procedure is
accelerated with the use of parallel programming techniques, taking advantage
of the parallelization opportunities inherent to domain decomposition algorithms.
The proposed algorithm is general, portable and scalable on inexpensive, shared-
memory, multi-core machines. A large-scale test system is used for its performance
evaluation.

Keywords: time simulations, domain decomposition methods, parallel
computing, OpenMP, Schur-complement

1. Introduction

The most noticeable developments foreseen in power systems involve Distri-
bution Networks (DNs). Future DNs are expected to host a big percentage of the
renewable energy sources. The resulting challenge in dynamic simulation is to cor-
rectly represent DNs and their participation in system dynamics. This becomes
compulsory as DNs are called upon to actively support the Transmission Network

IAn earlier version of this paper was presented at the 2014 Power Systems Computation
Conference.

Email addresses: p.aristidou@ieee.org (P. Aristidou), t.vancutsem@ulg.ac.be
(T. Van Cutsem)
To appear in International Journal of Electrical Power & Energy Systems 2015

2

(TN) with an increasing number of Distributed Generation Units (DGUs) and
loads participating in ancillary services through smart-grid technologies.

In present-day dynamic security assessment of large-scale power systems, it
is common to represent the bulk generation and higher voltage (transmission)
levels accurately, while the lower voltage (distribution) levels are equivalenced.
On the other hand, when concentrating on a DN, the TN is often represented by
a Thévenin equivalent. The prime motivation behind this practice has been the
lack of computational resources. Indeed, fully representing the entire power sys-
tem network was historically impossible given the available computing equipment
(memory capacity, processing speed, etc.) [1]. Even with current computational
resources, handling the entire, detailed model with hundreds of thousands of Dif-
ferential and Algebraic Equations (DAEs) is extremely challenging [1, 2].

As modern DNs are evolving with power-electronics interfaces, DGUs, active
loads, and control schemes, more detailed and elaborate equivalent models would
be needed to encompass the dynamics of DNs and their impact on the global sys-
tem dynamics. The three main equivalencing approaches reported in the literature
are modal methods, coherency methods and measurement or simulation-based
methods [3]. Equivalent models, however, inadvertently suffer from a number of
drawbacks:

• the identity of the replaced system is lost. Faults that happen inside the
DNs themselves cannot be simulated and individual voltages at internal
buses, currents, controllers, etc. cannot be observed anymore. This makes
it difficult to simulate controls or protections that rely on these values;

• most equivalent models target a specific type of dynamics (short-term, long-
term, electromechanical oscillations, voltage recovery, etc.) and fail when
used for another type. This requires running different types of simulations
with different models. Moreover it adds an additional burden of maintaining
and updating these models when changes are made to the DN;

• in most cases, the use or not of these equivalent models is decided offline,
when it is still unknown whether the disturbance will affect or not the DNs
of concern.

In this paper, a Schur-complement-based domain decomposition algorithm for
the dynamic simulation of combined transmission and distribution systems is
presented. The algorithm decomposes the combined system on the boundary
between the TN and the DNs. Following, a Schur-complement-based solution is
performed to solve the full, detailed DAE system in a decomposed manner.

The proposed algorithm accelerates the simulation procedure in two ways.
First, the independent calculations of the sub-networks (such as formulation of
non-linear DAE system, discretization, formulation and solution of linear systems,

3

check of convergence, etc.) are parallelized, thus providing computational accel-
eration. Second, it performs a selective, infrequent Jacobian update, that is, it
exploits the decomposition of the system to selectively update only the Jacobian
matrices of sub-networks converging more slowly.

The proposed algorithm is parallelized with the use of shared-memory parallel
computing techniques through the OpenMP Application Programming Interface
(API) targeting common, inexpensive multi-core machines (i.e. desktops or lap-
tops). The implementation is general, with no hand-crafted optimizations partic-
ular to the computer system, operating system, simulated electric power network
or disturbance.

The paper is organized as follows. In Section 2 the proposed Schur-complement-
based algorithm is presented. In Section 3, the parallel processing techniques con-
sidered are summarized. Simulation results are reported in Section 4 and followed
by closing remarks in Section 5.

2. Schur-complement-based Algorithm

M

M

M

M

M

Injectors

M

Figure 1: Decomposed Power System

2.1. Model Decomposition

An important step in developing and applying a domain decomposition algo-
rithm is the identification of the partition scheme to be used. In this paper, a
topologically-based partitioning has been chosen lying on the boundary between
TN and DNs. The decomposition assumes that every DN is connected to a single
TN bus through a transformer [4].

2.1 Model Decomposition 4

Let the power system sketched in Fig. 1 be decomposed into the TN and L
DNs, along with the power system components connected to them. For reasons
of simplicity, all the components connected to the TN or DNs that either produce
or consume power in normal operating conditions (such as power plants, DGUs,
induction motors, other loads, etc.) are called injectors.

The injectors’ model can be described by a system of non-linear DAEs [5]:

Γẋ = Φ(x,V)

where V is the vector of rectangular components of bus voltages (VDi if connected
to the i-th DN or VT if connected to the TN), x is the state vector containing
differential and algebraic variables and Γ is a diagonal matrix with:

(Γ)`` =

{
0 if the `-th equation is algebraic
1 if the `-th equation is differential.

At the same time, under the standard phasor approximation, the algebraic equa-
tions of each network (TN or DN) take on the linear form:

0 = DV − I , g(x,V)

where D includes the real and imaginary parts of the bus admittance matrix and
I is the vector of rectangular components of the bus currents.

Hence, the DAE system describing the TN with its injectors is:

0 = gT (xT ,VT ,VDt)
ΓT ẋT = ΦT (xT ,VT)

(1)

where VDt is a sub-vector of VD = [VD1 . . . VDL]T , including only the voltage
components of the DN buses connected to the TN through the distribution trans-
formers (see Fig. 1).

Similarly, for the i-th DN with its injectors (i = 1, . . . , L):

0 = gDi(xDi,VDi,V T i)
ΓDiẋDi = ΦDi(xDi,VDi)

(2)

where VT i is a sub-vector of VT , including only the voltage components of the
TN bus where the i-th DN is connected to (see Fig. 1).

The proposed decomposition is reflected on the DAE system through the pres-
ence of VDt in the Eq. 1 of the TN and VT i (i = 1, ..., L) in the Eq. 2 of the i-th
DN.

2.2 Discretization and Algebraization 5

2.2. Discretization and Algebraization
For the purpose of numerical simulation, the injector DAE systems are dis-

cretized using an implicit differentiation formula (such as Trapezoidal Rule, Back-
ward Differentiation Formula, etc.) which yields the corresponding non-linear
algebraized system:

0 = f(x,V)

Next, these injector equations are linearized and solved together with the network
equations using a Newton-type method to compute the state vectors VT , xT , VDi

and xDi.
Thus, at each Newton iteration, the linear system to be solved for the TN is:[
JT1 JT2

JT3 JT4

]
︸ ︷︷ ︸

[
∆VT

∆xT

]
−
∑L

i=1

[
CDi4VDi

0

]
= −

[
gT (xT ,VT ,VDt)

fT (xT , VT)

]
JT

(3)
where JT is the Jacobian matrix of gT and fT towards the TN states and CDi

towards the voltage of the i-th DN. It is worth noting that the CDi matrix is very
sparse with the only non-zero columns corresponding to voltage variables of DN
buses directly connected to the TN through the transformers.

Similarly, for the i-th DN, it is:[
JDi1 JDi2

JDi3 JDi4

]
︸ ︷︷ ︸

[
∆VDi

∆xDi

]
−
[
BDi4VT

0

]
= −

[
gDi(xDi,VDi,VT i)
fDi(xDi,VDi)

]
JDi

(4)

where JDi is the Jacobian matrix of gDi and fDi towards the DNi states and BDi

towards the TN bus voltage variables. It can be seen that the BDi matrix is very
sparse with the only non-zero columns corresponding to VT i variables.

2.3. Reduced System Formulation
The solution of the systems (3)-(4) is performed in a decomposed manner

using a Schur-complement-based method. For this, the systems (4) are each
solved towards ∆VDi and substituted in (3) to build a reduced system involving
only the TN variables.

To solve for ∆VDi, Eqs. 4 can be rewritten as:

JDi1∆VDi + JDi2∆xDi = −gDi(xDi,VDi,VT i) + BDi4VT

JDi3∆VDi + JDi4∆xDi = −fDi(xDi,VDi)

and then solved for ∆VDi as:

∆VDi = + S−1
DiBDi4VT − S−1

Di

[
gDi(xDi,VDi,VT i)

− JDi2J
−1
Di4fDi(xDi,VDi)

]
= + B̃Di4VT − g̃Di(xDi,VDi,VT i)

2.4 Solution 6

where:

SDi , JDi1 − JDi2J
−1
Di4JDi3

B̃Di , S−1
DiBDi

g̃Di(xDi,VDi,VT i) , S−1
Di

[
gDi(xDi,VDi,VT i)− JDi2J

−1
Di4fDi(xDi,VDi)

]
The resulting equations are then substituted in (3) to formulate the reduced
system (5). [

JT1 −
∑L

i=1CDiB̃Di JT2

JT3 JT4

] [
∆VT

∆xT

]
=

−
[
gT (xT ,VT ,VDt) +

∑L
i=1CDig̃Di(xDi,VDi,VT i)

fT (xT , VT)

] (5)

It should be noted that the Schur-complement terms CDiB̃Di each contribute
a [2 × 2] matrix centered on the diagonal of JT1. Thus, the original sparsity
pattern of the TN Jacobian matrix JT is preserved. Also, each Right-Hand-Side
(RHS) factor CDig̃Di(xDi,VDi,VT i) affects only the mismatch values of the TN
bus where the i-th DN is connected, i.e. only two components when Cartesian
coordinates are used.

Finally, all the inverse matrix operations appearing in the above mathemati-
cal formulation are actually implemented as sparse linear system solutions, with
appropriate solvers, to preserve computational efficiency.

2.4. Solution
The solution proceeds by solving the reduced system (5) to compute the cor-

rections related to the TN. Then, ∆VT and the updated VT variables are back
substituted in Eqs. 4, which are solved to compute the DN corrections. After
updating the state vectors, if all the DAE systems (1)-(2) have been solved, the
simulation proceeds to the next time instant, otherwise a new iteration is per-
formed with the updated variables.

The solution algorithm performs a “dishonest” update of the Jacobian matri-
ces. That is, the Jacobian matrices JT and JDi, as well as the Schur-complement
terms CDiB̃Di and the intermediate matrices (e.g. SDi), are kept constant over
several solutions or even time-steps. They are selectively and independently up-
dated only if the corresponding sub-network DAE does not converge after a num-
ber of iterations within the same discrete time computation.

The proposed algorithm is numerically equivalent to solving the original DAE
system (1)-(2) using a simultaneous Very DisHonest Newton (VDHN) method
[6]. The Schur-complement-based algorithm, though, allows to selectively up-
date the Jacobian matrices of DAE sub-systems when needed, and to exploit the
decomposition to parallelize the procedure.

2.4 Solution 7

Parallel threads

Parallel threads

(L+1 parallel tasks)

(L parallel tasks)

Figure 2: Proposed Solution Algorithm

8

3. Parallel Computing Aspects

Domain decomposition-based algorithms offer parallelization opportunities as
independent computations can be performed by different computing threads. The
proposed algorithm, sketched in Fig. 2, employs parallel computing for the system
formulation, Jacobian update and DN solution.

3.1. Parallel Algorithm
First, based on the proposed decomposition, no data dependencies exist in

the system formulation of each sub-network (TN or DN). Thus, the independent
calculations (injector discretization and linearization, Jacobian matrix update,
mismatch and reduced system contribution evaluation) are each performed in
parallel for the various sub-networks. This is shown in the upper shaded block in
Fig. 2 where each parallel task deals with one sub-network. If the L + 1 parallel
tasks are more than the number of available computational threads, a sharing
mechanism takes care of properly assigning the tasks to the threads.

Next, the reduced system (5) is solved to compute the updated TN variables
and the convergence of the TN system is checked. Schur-complement-based al-
gorithms suffer from the sequentiality introduced by the reduced system solution
[7]. However, due to the high sparsity (retained even after the Schur-complement
reduction), the linear nature of the network equations and the infrequent Jaco-
bian update, this bottleneck is bounded to 1-2% of the overall computational cost
in the proposed algorithm. Thus, even though this sequentiality could be tackled
with a parallel sparse linear solver, the overhead due to the new synchronization
points would counteract the benefits. Hence, in this work, a sequential sparse
linear solver has been used.

Finally, after the computed corrections ∆VT are back substituted in Eqs. 4,
the DN systems are decoupled, removing any data dependencies. The solution
of DN sub-systems is obtained in parallel, using sparse linear solvers, and their
convergence is checked. This is shown in the lower shaded block in Fig. 2 where
each parallel task deals with one DN.

3.2. Implementation Specifics
Shared-memory, multi-core computers are becoming more and more popular

among low-end and high-end users due to their availability, variety and perfor-
mance at low prices. The OpenMP API was selected for this implementation as
it is supported by most hardware and software vendors and it allows for portable,
user-friendly programming.

OpenMP has the major advantage of being widely adopted, thus allowing the
execution of a parallel application, without changes, on many different computers.
It consists of a set of compiler directives, library routines, and environment vari-
ables that influence run-time behavior. A set of predefined directives are inserted

9

in Fortran, C or C++ programs to describe how the work is to be shared among
threads that will execute on different processors or cores and to order accesses to
shared data [8].

One of the most important tasks is to make sure that parallel threads re-
ceive equal amounts of work. Imbalanced load sharing leads to delays, as some
threads are still working while others have finished and remain idle. OpenMP
includes three easy to employ mechanisms (namely static, dynamic and guided)
for achieving good load balance among the working threads [8].

The static strategy is used mainly when the work within each parallel task
is almost the same. Thus, the scheduling is predefined with the parallel tasks
assigned to the threads evenly prior to the execution. This strategy has the
lowest scheduling overhead among the three but can introduce load imbalance
if the work inside each task is not equal. Following, the dynamic strategy is
used when the work within each parallel task is highly imbalanced. To cope
with that, the scheduling is updated during the execution. This strategy has the
highest overhead cost for managing the threads but provides the best possible
load balancing. Finally, the guided strategy is a compromise between the other
two. The scheduling in this strategy is dynamic but the number of tasks assigned
to each thread is progressively reduced in size. This way, scheduling overheads
are reduced at the beginning of the loop and good load balancing is achieved at
the end.

In the proposed algorithm, there is inherently a high imbalance between par-
allel tasks due to the different sizes of the various sub-networks (TN or DNs).
That is, if the sub-networks in the system have different number of buses and
injectors, hence different size of DAE systems, the threads computing them will
have different work loads. Consequently, the dynamic strategy has been chosen
for better load balancing. Furthermore, by defining a minimum number of suc-
cessive tasks to be assigned to each thread (chunks) and positioning the task data
consecutively in memory, spatial locality can be exploited. That is, the likelihood
of accessing consecutive blocks of memory is increased and the amount of cache
misses decreased [8].

4. Results

In this section the results of the Schur-complement-based algorithm are pre-
sented. The algorithm is implemented in the academic simulation software RAM-
SES, developed at the University of Liège. The software is written in modern
Fortran 2003 with the use of OpenMP API directives for the parallelization as
detailed in Section 3. The simulations were performed on a 48-core AMD Opteron

4.1 Performance Indices 10

Interlagos1 desktop computer running Debian Linux 6 and the environment vari-
able OMP_NUM_THREADS was used to vary the number of computational
threads at each execution.

4.1. Performance Indices
Many different indices exist for assessing the performance of a parallel algo-

rithm A. The two indices used in this study, scalability and speedup, are defined
as [9]:

Scalability(N) =
Wall time (A) (1 core)

Wall time (A) (N cores)
(6)

Speedup(N) =
Wall time (V DHN) (1 core)

Wall time (A) (N cores)
(7)

where N is the number of available computational threads.
The first index shows how the parallel implementation scales when the num-

ber of available processors increases. That is, the tested parallel algorithm is
benchmarked against a sequential execution of the same algorithm.

The scalability index is directly related to Amdahl’s law [8] and using the
latter, can be rewritten as:

Scalability(N) =
S + P

S + P
N + OHC(N)

(8)

where S is the sequentially computed portion, P the parallel portion and OHC
the OverHead Cost of making the code run in parallel (creating and managing
threads, communication, memory latency, etc.). The values of S and P can be
estimated with the use of a profiler monitoring the sequential execution of the
algorithm. Equations (6) and (8) can be used to assess the algorithm’s parallel
efficiency, defined as the net incremental acceleration gained with each additional
computational thread.

Usually, parallel algorithms are designed and optimized to be executed in par-
allel and exhibit low performance in sequential execution. Thus, even though
scalability is an important index, it is not enough to assess the absolute perfor-
mance of a parallel algorithm. Hence, the speedup index (7) can be used to show
how much faster is the proposed parallel algorithm compared to a fast, optimized
for sequential execution, algorithm. In this study, the sequential VDHN algorithm
was used as a reference. In this algorithm, the combined DAE system (1)-(2) is
solved as a whole using a Newton method with infrequent Jacobian update. The
full DAE system is discretized and linearized, the combined Jacobian matrix is

1CPU 6238 @ 2.60GHz, 16KB private L1, 2048KB shared per two cores L2 and 6144KB
shared per six cores L3 cache, 128GB RAM

4.1 Performance Indices 11

g11

g20

g19

g16

g17

g18

g2g9

g1 g3g10

g5

g4

g12

g8

g13

g14

g7

g6

g15

4011

4012

1011

1012 1014

1013

10221021

2031

cs

404640434044

40324031

4022 4021

4071

4072

4041

1042

10451041

4063

4061

1043 1044

4047

4051

40454062

TN

DN

NORTH

CENTRAL

EQUIV.

SOUTH

4042

2032

Figure 3: Expanded Nordic System

4.1 Performance Indices 12

TN Bus Reactor Reactor Reactor Reactor

Substation

Tr1

Tr2

Tr3

Reactor

Figure 4: Detailed DN model

V
o
lt

a
g
e
 (

p
u
)

time (s)0.2 0.7

0.5

0.9

0.7

1.5

LVFRT

Figure 5: LVFRT capability curve of WTs

formulated and the linear system solved to compute all variable corrections simul-
taneously. The Jacobian matrix is updated only if the solution has not converged
after three iterations. This is a well-known method used by many commercial and
academic software and considered to be one of the fastest sequential algorithms
[9].

It has to be noted that both algorithms were implemented in the same soft-
ware. Thus, exactly the same model equations are solved to the same accu-
racy, using the same algebraization method (namely the second-order backward
differentiation formula), way of handling the discrete events [10], mathematical
libraries (i.e. sparse linear solver), etc. By keeping the aforementioned param-
eters the same for both algorithms, the evaluation of the proposed algorithm’s
performance is facilitated.

4.2 Test System Model 13

4.2. Test System Model

This section reports on results obtained with a large-scale combined transmis-
sion and distribution network model based on the Nordic system, documented
in [11]. The TN model (presented in Fig. 3) is expanded with 146 DNs (shown
in Fig. 4) that replace the aggregated distribution loads. The model and data
of each DN were taken from [12] and scaled to match the original loads seen by
the TN. Multiple DNs were used to match the original load powers, taking into
account the nominal power of the TN-DN transformers.

Each one of the 146 DNs is connected to the TN through two parallel trans-
formers equipped with Load Tap Changing (LTC) devices. Each DN includes 100
buses, one distribution voltage regulator equipped with LTC, six type-2 and two
type-3 Wind Turbines (WTs) [13] and 133 dynamically modeled loads, such as
small induction machines and exponential loads.

To further avoid identical DNs and artificial synchronization, the delays on
transformer tap changes were randomized around their original values and the
WTs were randomly initialized to produce 80-100% of their nominal power. More-
over, each WT complies with the Low Voltage and Fault Ride Through (LVFRT)
requirements sketched in Fig. 5 as described in [14].

In total, the combined transmission and distribution system includes 14653
buses, 15994 branches, 20 large synchronous machines, 1168 WTs and 19419
dynamically modeled loads. The resulting DAE system has 143462 differential-
algebraic states.

4.3. Case 1: Short-term Stability Study

In this scenario a short-term stability study is presented. The disturbance
considered is a 8-cycle 3-phase fault near the TN bus 4044 cleared by the opening
the faulted line 4043-4044 in the CENTRAL area (see Fig. 3). The system is
simulated for 10 s with a time-step size of half cycle at the nominal frequency
(50 Hz). The simulation is performed twice: once taking into account the LVFRT
characteristics (Case 1a) and once keeping all the WTs connected throughout the
entire simulation (Case 1b).

Figure 6 shows the voltage at some TN buses for Cases 1a and 1b. It can
be seen that the system is short-term stable in both cases. However, the final
values in Case 1b are higher than in 1a. This can be explained from Fig. 7,
depicting the total active power generated by WTs throughout the simulation.
The disconnection of the WTs in accordance with the LVFRT curves leads to
losing approximately 150 MW of distributed wind generation. This deficit is
covered by importing more power from the TN, thus leading to depressed TN
voltages.

Furthermore, Fig. 8 shows the voltage at buses E22 and R09 (see Fig. 4) in
two different DNs connected on TN buses 1041 and 4043, respectively. These

4.3 Case 1: Short-term Stability Study 14

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10

t (s)

(pu)

Case 1a: TN Bus 4044
Case 1b: TN Bus 4044
Case 1a: TN Bus 1045
Case 1b: TN Bus 1045

Figure 6: Case 1: Voltages on selected TN buses

 750

 900

 1050

 1200

 1350

 1500

 1650

 1800

 1950

 2100

 2250

 0 2 4 6 8 10

t (s)

(MW)

Case 1a
Case 1b

Figure 7: Case 1: Total active power generation by WTs in all the DNs

4.3 Case 1: Short-term Stability Study 15

 0.1

 0.3

 0.5

 0.7

 0.9

 1.1

 0 1 2 3 4 5 6 7

t (s)

(pu)

DN Bus 1041a-E22
DN Bus 4043a-E22
DN Bus 1041a-R09
DN Bus 4043a-R09

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

FRT curve 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

FRT curve

Figure 8: Case 1a: Voltages in DNs

buses have WTs attached to them and the voltage evolution can be compared to
the LVFRT curve of Fig. 5 to know whether they will remain connected or not.
It can be seen that the WTs in the DN 1041a disconnect at t ≈ 1.2 s while in DN
4043a, they remain connected. The LVFRT disconnection relies on the voltage
evolution at DN buses, illustrating the necessity for detailed combined dynamic
simulations.

Figure 9 shows the speedup of the proposed algorithm compared to the VDHN
algorithm. Initially, the parallel algorithm executed on a single core performs
similarly to the VDHN. When using more computational cores, the proposed
algorithm offers a speedup of up to 15 times and the system is simulated in
approximately 20 seconds. As regards the scalability of the algorithm, Fig. 10
shows that it executes up to 15 times faster in parallel compared to its own
sequential execution.

From Figs. 9 and 10, it can be seen that the parallel algorithm is more efficient
in the range of up to 24 cores, while after that the benefit becomes marginal. This
can be explained from Eq. 8. When increasing the number of parallel threads by
one, the execution time gained can be computed as P

N −
P

N+1 , assuming that the
sequential and parallel portions remain unchanged. Thus, when N increases, it is
easy to see that the incremental gain decreases. At the same time, the incremen-
tal OHC of creating and managing a new thread (OHC(N + 1)−OHC(N)),
calculated for the specific computer platform, is almost constant. Hence, as the
number of computational threads increases, the net incremental gain (difference
between incremental gain and OHC) declines and can reach zero or even negative
values.

4.3 Case 1: Short-term Stability Study 16

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 1 2 4 6 12 18 24 30 36 42 48
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

W
a

ll
ti
m

e
 (

s
)

S
p

e
e

d
u

p

of cores

Simulated time=10s

VDHN=297s

Wall time
Speedup

Figure 9: Case 1a: Speedup

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 6 12 18 24 30 36 42 48

S
c
a

la
b

ili
ty

of cores

Case 1a
Case 2a

Figure 10: Cases 1a and 2a: Scalability

4.4 Case 2: Long-term Stability Study 17

 0.9

 0.95

 1

 1.05

 1.1

 0 20 40 60 80 100 120 140 160 180

t (s)

(pu)

Case 2a: VDHN
Case 2a: Parallel Algorithm
Case 2b: VDHN
Case 2b: Parallel Algorithm

Figure 11: Case 2: Voltage on TN bus 4044

4.4. Case 2: Long-term Stability Study
In this section a long-term stability study is presented. The disturbance con-

sidered is a 5-cycle 3-phase fault near the TN bus 4032 cleared by the opening the
faulted line 4032-4042. The system is simulated for 180 s with a time-step size
of half cycle in the short-term (10 s) and one cycle for the remaining. Here too,
the simulation is performed taking into account the LVFRT curves (Case 2a) and
keeping all the WTs connected throughout the entire simulation (Case 2b).

Figure 11 shows the voltage at the TN bus 4044 for Cases 2a and 2b. Both
cases are short-term stable. After the electromechanical oscillations have died out,
the system evolves in the long-term under the effect of LTCs acting to restore
distribution voltages, and overexcitation limiters on the generators. It can be
seen that, while Case 2b is long-term stable, Case 2a is unstable with the system
collapsing at t ≈ 150 s.

The simulated evolution is shown with both VDHN and the proposed parallel
algorithm. As expected, the output trajectories are indistinguishable as the two
algorithms solve the same DAEs with the same accuracy.

In Case 2a, the successive disconnection of WTs inside the DNs, in accordance
with the LVFRT, is reflected on the voltages. Figure 12 shows the total active
power generated by WTs. It can be seen that the WT disconnection leads to
losing approximately 140 MW. As the WTs disconnect, the DNs import the lost
power from the TN and this increased TN-DN power transfer leads to depressed
TN voltages. Moreover, the LTCs act to restore distribution voltages and conse-
quently the consumption of voltage sensitive loads. This leads to a further voltage
depression at the TN level until the system collapses.

4.4 Case 2: Long-term Stability Study 18

 1050

 1200

 1350

 1500

 1650

 1800

 1950

 0 20 40 60 80 100 120 140 160 180

t (s)

(MW)

Case 2a
Case 2b

Figure 12: Case 2: Total active power generation by WTs in all the DNs

On the other hand, in Case 2b the WTs remain connected to the DNs through-
out the simulation, thus supporting the system; the long-term voltage collapse is
avoided. This complex interaction mechanism shows the necessity for detailed DN
representation in dynamic simulations. The sequence of discrete events, like WT
disconnections, LTC actions, etc., the behavior of DN components and controls,
and the interactions of DNs with the TN or between them, dictate the system
evolution.

Figure 13 shows that the proposed algorithm offers a speedup of up to 11.5
times compared to the VDHN algorithm. Initially, the parallel algorithm executed
on a single core performs around 32% slower than the, optimized for sequential ex-
ecution, VDHN. This delay is due to the extra computational costs of the domain
decomposition-based scheme (e.g. partition-related book-keeping, intermediate
Schur-complement calculations, etc.). As regards the scalability of the algorithm,
Fig. 10 shows that it executes up to 15 times faster in parallel compared to its
own sequential execution. The algorithm exhibits efficient scaling up to 24 cores,
similarly to Case 1.

It can be seen that while scalability is similar, the speedup is higher in Case 1
compared to Case 2. In Case 1, only the short-term period after the fault is
simulated. During this period, the system exhibits high dynamic activity, thus
more frequent Jacobian matrix updates and DN solutions are needed leading to
an increased overall computation time (S +P). At the same time, as most of the
aforementioned computations are in the parallel portion (see Fig. 2) the ratio P

S+P
also increases. Hence, Eq. 8 can be used to explain the higher speedup, considering
that the incremental OHC is practically constant for the given computational

19

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1350

 1 2 4 6 12 18 24 30 36 42 48
 0

 2

 4

 6

 8

 10

 12

W
a

ll
ti
m

e
 (

s
)

S
p

e
e

d
u

p

of cores

Simulated time=180s

VDHN=1027s

Wall time
Speedup

Figure 13: Case 2a: Speedup

platform.
On the other hand, in Case 2, the long-term period is also considered where

the Jacobian matrix updates and DN solutions are not so frequent. Hence, the
speedup is slightly lower.

5. Conclusion

In the future, distributed protection and control schemes, DGUs providing
ancillary services and active demand response will make the contribution of DNs
to the system dynamics more significant and their detailed simulation more vital.
The need for simulating power system models including DNs, will dramatically
increase the computational burden of dynamic simulations.

In this paper a parallel Schur-complement-based algorithm for dynamic simu-
lation of combined transmission and distribution systems has been presented. The
algorithm yields acceleration of the simulation procedure in two ways. On the one
hand, the procedure is accelerated numerically, by performing selective and in-
frequent Jacobian updates of the decomposed sub-systems. On the other hand,
it is accelerated computationally, by exploiting the parallelization opportunities
inherent to domain decomposition algorithms.

The proposed algorithm is accurate, as the original system of equations is
solved with the same accuracy. It has the ability to simulate a wide variety of
disturbances. It exhibits high numerical convergence rate, provided by Newton-
type algorithms.

REFERENCES 20

Along with the proposed algorithm, an implementation based on the shared-
memory parallel programming model has been presented. The implementation is
portable, as it can be executed on any platform supporting the OpenMP API.
It can handle general power systems, as no hand-crafted, system specific, op-
timizations were applied. Moreover, it exhibits good parallel performance on
inexpensive, shared-memory, multi-core computers.

Finally, it was shown that the proposed algorithm is more efficient in simula-
tions with high dynamic activity.

References

[1] D. Koester, S. Ranka, G. Fox, Power systems transient stability-A grand computing chal-
lenge, Northeast Parallel Architectures Center, Syracuse, NY, Tech. Rep. SCCS 549.

[2] R. Green, L. Wang, M. Alam, High performance computing for electric power sys-
tems: Applications and trends, in: Proc. of the IEEE PES General Meeting, 2011.
doi:10.1109/PES.2011.6039420.

[3] U. D. Annakkage, N. K. C. Nair, Y. Liang, A. M. Gole, V. Dinavahi, B. Gustavsen, T. Noda,
H. Ghasemi, A. Monti, M. Matar, R. Iravani, J. A. Martinez, Dynamic System Equivalents:
A Survey of Available Techniques, IEEE Transactions on Power Delivery 27 (1) (2012) 411–
420. doi:10.1109/TPWRD.2011.2167351.

[4] T. Short, Electric Power Distribution Handbook, Electric power engineering series, Taylor
& Francis, 2003.

[5] P. Kundur, Power system stability and control, McGraw-hill New York, 1994.
[6] B. Stott, Power system dynamic response calculations, Proceedings of the IEEE 67 (2)

(1979) 219–241. doi:10.1109/PROC.1979.11233.
[7] Y. Saad, Iterative methods for sparse linear systems, 2nd Edition, Society for Industrial

and Applied Mathematics, 2003.
[8] B. Chapman, G. Jost, R. Van Der Pas, Using OpenMP: Portable Shared Memory Parallel

Programming, MIT Press, 2007.
[9] J. Chai, A. Bose, Bottlenecks in parallel algorithms for power system stability analysis,

IEEE Transactions on Power Systems 8 (1) (1993) 9–15. doi:10.1109/59.221242.
[10] D. Fabozzi, A. Chieh, P. Panciatici, T. Van Cutsem, On simplified handling of state events

in time-domain simulation, in: Proc. of the 17th Power Systems Computation Conference,
2011.
URL http://hdl.handle.net/2268/91650

[11] T. Van Cutsem, L. Papangelis, Description, modeling and simulation results of a test system
for voltage stability analysis, Internal Report, University of Liège (Nov. 2013).
URL http://hdl.handle.net/2268/141234

[12] A. Ishchenko, Dynamics and stability of distribution networks with dispersed generation,
Ph.D. thesis, Dept. Electrical. Eng., Univ. TU/ E, the Netherlands (2008).

[13] A. Ellis, Y. Kazachkov, E. Muljadi, P. Pourbeik, J. Sanchez-Gasca, Description and tech-
nical specifications for generic WTG models: A status report, in: Proc. of the IEEE PES
Power Systems Conference and Exposition, 2011. doi:10.1109/PSCE.2011.5772473.

[14] J. Schlabbach, Low voltage fault ride through criteria for grid connection of wind turbine
generators, in: Proc. of the 5th International Conference on European Electricity Market
(EEM), 2008. doi:10.1109/EEM.2008.4578999.

