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1. Introduction

Inversion of time-lapse resistivity data allows obtaining
‘snapshots’ of changes occurring in monitored systems

for applications such as tracer tests or geothermal heat
exchange. Based on these snapshots, one can infer
gualitative information on the location and morphology of
changes, but also quantitative estimates on the degree of
changes in temperature or TDS content [1].

Analysis of these changes can provide direct insight into
flow and transport and associated processes. However, the
reliability of the analysis is dependent on survey design,
data error, and regularization. Regularization may be
chosen depending on available information collected
during the monitoring. Common approaches consider
smoothing model changes both in space and time but it is
often needed to obtain a sharp temporal anomaly, for
example in fractured aquifers.

3. Numerical model

2. Formulation of the problem

We have implemented a time-lapse inversion scheme
using the minimum gradient support functional as
regularization operator in a difference inversion scheme
[2]. This approach limits the occurrences of changes in
the model [3]. The model functional is expressed as

V(Am).V(Am) y
V(Am).V(Am) + f3°
- Am is the parameter change (resistivity)

- B is an additional parameter to stabilize the functional
for small values of Am
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We propose here to optimize f by considering a
univariate line search at the first iteration to find the
value of f that minimizes the data misfit. The parameter
is then kept constant during the Gauss-Newton iterative
scheme.

Fig 1. (A) Background model (B) Time-lapse model (C) Background inversion (D) Smoothness constraint
time-lapse inversion (E) Optimization of 8 (F to K) MGS time-lapse inversion with various f3
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Fig 2. (A) Background inversion (B) Smoothness constraint time-lapse inversion (C) Optimization of 8 (D to
H) MGS time-lapse inversion with various S (1) Field survey (J) Geological conditions

We applied the methodology on a salt
tracer experiment carried out in
fractured limestones (J) [4].

The 72 electrodes (3m spacing) ERT
profile was located 15m downgradient
of the injection well (I) and the error

was estimated using reciprocal
measurements.
The inversion with smoothness

constraint inversion (B) displays a
large negative anomaly (-6%). The
diffuse nature of the anomaly is likely
the result of the regularization.

We tested several values of f for the
MGS inversion (D to H). For large p,
the anomaly is similar to the
smoothness constraint solution. For
very small S, the inversion fails to
converge. The value of f yielding the
minimum of the data misfit after the
first iteration (C) provides the results
(G) with a sharp and focused anomaly
as can be expected from the geology

(J).

5. Conclusion

* We propose an optimization procedure to select the value of /5 in MGS inversion

Through a line search, we select the f which minimizes the data misfit of the first iteration of the inversion procedure
This optimization is robust, it does not require prior information and relies on the data only

ne numerical benchmark validates the methodology for a challenging target
ne similitude of the synthetic and field cases provides increased confidence in the results obteained with the MGS
inversion compared to the smoothness constraint inversion
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