Avoiding 2-binomial squares and cubes

Michaël Rao ${ }^{\text {a }}$, Michel Rigo ${ }^{\text {b,* }}$, Pavel Salimov ${ }^{\text {b,c, }}$,
${ }^{a}$ CNRS, LIP, ENS Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07 - France.
${ }^{b}$ Dept of Math., University of Liège, Grande traverse 12 (B37), B-4000 Liège, Belgium.
${ }^{c}$ Sobolev Institute of Math., 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia

Abstract

Two finite words u, v are 2-binomially equivalent if, for all words x of length at most 2, the number of occurrences of x as a (scattered) subword of u is equal to the number of occurrences of x in v. This notion is a refinement of the usual abelian equivalence. A 2-binomial square is a word $u v$ where u and v are 2 -binomially equivalent.

In this paper, considering pure morphic words, we prove that 2-binomial squares (resp. cubes) are avoidable over a 3-letter (resp. 2-letter) alphabet. The sizes of the alphabets are optimal.

Keywords: Combinatorics on words; binomial coefficient; binomial equivalence; avoidance; squarefree; cubefree.

1. Introduction

A square (resp. cube) is a non-empty word of the form $x x$ (resp. $x x x$). Since the work of Thue, it is well-known that there exists an infinite squarefree word over a ternary alphabet, and an infinite cubefree word over a binary alphabet [13, 14]. A main direction of research in combinatorics on words is about the avoidance of a pattern, and the size of the alphabet is a parameter of the problem.

A possible and widely studied generalization of squarefreeness is to consider an abelian framework. A non-empty word is an abelian square (resp. abelian cube) if it is of the form $x y$ (resp. $x y z$) where y is a permutation of x (resp. y and z are permutations of x). Erdös raised the question whether abelian squares can be avoided by an infinite word over an alphabet of size 4 [3]. Keränen answered positively to this question, with a pure morphic word [9]. Moreover Dekking has previously obtained an infinite word over a 3-letter alphabet that avoids abelian

[^0]cubes, and an infinite binary word that avoids abelian 4-powers [2]. (Note that in all these results, the size of the alphabet is optimal.)

In this paper, we are dealing with another generalization of squarefreeness and cubefreeness. We consider the 2-binomial equivalence which is a refinement of the abelian equivalence, i.e., if two words x and y are 2 -binomially equivalent, then x is a permutation of y (but in general, the converse does not hold, see Example 1 below). This equivalence relation is defined thanks to the binomial coefficient $\binom{u}{v}$ of two words u and v which is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword). For more on these binomial coefficients, see for instance [10, Chap. 6]. Based on this classical notion, the m-binomial equivalence of two words has been recently introduced [12].

Definition 1. Let $m \in \mathbb{N} \cup\{+\infty\}$ and u, v be two words over the alphabet A. We let $A^{\leq m}$ denote the set of words of length at most m over A. We say that u and v are m-binomially equivalent if

$$
\binom{u}{x}=\binom{v}{x}, \forall x \in A^{\leq m} .
$$

We simply write $u \sim_{m} v$ if u and v are m-binomially equivalent. The word u is obtained as a permutation of the letters in v if and only if $u \sim_{1} v$. In that case, we say that u and v are abelian equivalent and we write instead $u \sim_{a b} v$. Note that if $u \sim_{k+1} v$, then $u \sim_{k} v$, for all $k \geq 1$.

Example 1. The four words $0101110,0110101,1001101$ and 1010011 are 2binomially equivalent. Let u be any of these four words. We have

$$
\binom{u}{0}=3,\binom{u}{1}=4,\binom{u}{00}=3,\binom{u}{01}=7,\binom{u}{10}=5,\binom{u}{11}=6 .
$$

For instance, the word 0001111 is abelian equivalent to 0101110 but these two words are not 2-binomially equivalent. Let a be a letter. It is clear that $\binom{u}{a a}$ and $\binom{u}{a}$ carry the same information, i.e., $\binom{u}{a a}=\binom{|u|_{a}}{2}$ where $|u|_{a}$ is the number of occurrences of a in u.

A 2-binomial square (resp. 2-binomial cube) is a non-empty word of the form $x y$ where $x \sim_{2} y$ (resp. $x \sim_{2} y \sim_{2} z$). For instance, the prefix of length 12 of the Thue-Morse word: 011010011001 is a 2 -binomial cube. Squares are avoidable over a 3-letter alphabet and abelian squares are avoidable over a 4letter alphabet. Since 2-binomial equivalence lies between abelian equivalence and equality, the question is to determine whether or not 2-binomial squares are avoidable over a 3-letter alphabet. We answer positively to this question in Section 2. The fixed point of the morphism $g: 0 \mapsto 012,1 \mapsto 02,2 \mapsto 1$ avoids 2-binomial squares.

In a similar way, cubes are avoidable over a 2-letter alphabet and abelian squares are avoidable over a 3 -letter alphabet. The question is to determine
whether or not 2-binomial cubes are avoidable over a 2-letter alphabet. We also answer positively to this question in Section 3. The fixed point of the morphism $h: 0 \mapsto 001,1 \mapsto 011$ avoids 2-binomial cubes.

Remark 1. The m-binomial equivalence is not the only way to refine the abelian equivalence. Recently, a notion of m-abelian equivalence has been introduced [8]. To define this equivalence, one counts the number $|u|_{x}$ of occurrences in u of all factors x of length up to m (it is meant factors made of consecutive letters). That is, u and v are m-abelian equivalent if $|u|_{x}=|v|_{x}$ for all $x \in A^{\leq m}$. In that context, the results on avoidance are quite different. Over a 3 -letter alphabet 2-abelian squares are unavoidable: the longest ternary word which is 2-abelian squarefree has length 537 [6], and pure morphic words cannot avoid k-abelian-squares for every $k[7]$. On the other hand, it has been shown that there exists a 3 -abelian squarefree morphic word over a 3 -letter alphabet [11]. Moreover 2-abelian-cubes can be avoided over a binary alphabet by a morphic word [11].

The number of occurrences of a letter a in a word u will be denoted either by $\binom{u}{a}$ or $|u|_{a}$. Let $A=\{0,1, \ldots, k\}$ be an alphabet. The Parikh map is an application $\Psi: A^{*} \rightarrow \mathbb{N}^{k+1}$ such that $\Psi(u)=\left(|u|_{0}, \ldots,|u|_{k}\right)^{T}$. Note that we will deal with column vectors (when multiplying a square matrix with a column vector on its right). In particular, two words are abelian equivalent if and only if they have the same Parikh vector. The mirror of the word $u=u_{1} u_{2} \cdots u_{k}$ is denoted by $\widetilde{u}=u_{k} \cdots u_{2} u_{1}$.

2. Avoiding 2-binomial squares over a 3-letter alphabet

Let $A=\{0,1,2\}$ be a 3-letter alphabet. Let $g: A^{*} \rightarrow A^{*}$ be the morphism defined by

$$
g:\left\{\begin{array}{lll}
0 & \mapsto & 012 \\
1 & \mapsto & 02 \\
2 & \mapsto & 1
\end{array} \text { and thus, } g^{2}:\left\{\begin{array}{lll}
0 & \mapsto & 012021 \\
1 & \mapsto & 0121 \\
2 & \mapsto & 02 .
\end{array}\right.\right.
$$

It is prolongable on $0: g(0)$ has 0 as a prefix. Hence the limit $\mathbf{x}=\lim _{n \rightarrow+\infty} g^{n}(0)$ is a well-defined infinite word

$$
\mathbf{x}=g^{\omega}(0)=012021012102012021020121 \cdots
$$

which is a fixed point of g. Since the original work of Thue, this word \mathbf{x} is well-known to avoid (usual) squares. It is sometimes referred to as the ternary Thue-Morse word. We will make use of the fact that $X=\{012,02,1\}$ is a prefix-code and thus an ω-code: Any finite word in X^{*} (resp. infinite word in X^{ω}) has a unique factorization as a product of elements in X. Let us make an obvious but useful observation.

Observation 1. The factorization of \mathbf{x} in terms of the elements in X permits to write \mathbf{x} as

$$
\mathbf{x}=0 \alpha_{1} 2 \alpha_{2} 0 \alpha_{3} 2 \alpha_{4} 0 \alpha_{5} 2 \alpha_{6} 0 \cdots
$$

where, for all $i \geq 1, \alpha_{i} \in\{\varepsilon, 1\}$. That is, the image of \mathbf{x} by the morphism $e: 0 \mapsto 0,1 \mapsto \varepsilon, 2 \mapsto 2$ (which erases all the 1 's) is $e(\mathbf{x})=(02)^{\omega}$.

The next property is well known. For example, it comes from the fact that the image of the ternary Thue-Morse word by the morphism $0 \mapsto 011,1 \mapsto$ $01,2 \mapsto 0$ is the Thue-Morse word. However, for the sake of completeness, we give a direct proof here.

Lemma 1. A word u is a factor occurring in \mathbf{x} if and only if \widetilde{u} is a factor occurring in \mathbf{x}.

Proof. We define the morphism $\widetilde{g}: A^{*} \rightarrow A^{*}$ by considering the mirror images of the images of the letters by g,

$$
\tilde{g}:\left\{\begin{array}{lll}
0 & \mapsto & 210 \\
1 & \mapsto & 20 \\
2 & \mapsto & 1
\end{array} \text { and thus, } \tilde{g}^{2}:\left\{\begin{array}{rll}
0 & \mapsto & 120210 \\
1 & \mapsto & 1210 \\
2 & \mapsto & 20 .
\end{array}\right.\right.
$$

Note that \widetilde{g} is not prolongable on any letter. But the morphism \widetilde{g}^{2} is prolongable on the letter 1 . We consider the infinite word

$$
\mathbf{y}=\left(\widetilde{g}^{2}\right)^{\omega}(1)=1210201210120210201202101210 \cdots
$$

If $v \in A^{*}$ is a non-empty word ending with $a \in A$, i.e., $v=u a$ for some word $u \in A^{*}$, we denote by $v a^{-1}$ the word obtained by removing the suffix a from v. So $v a^{-1}=u$.

For every words r and s we have $r=g^{2}(s) \Leftrightarrow \widetilde{r}=\widetilde{g}^{2}(\widetilde{s})$. Obviously, u is a factor occurring in \mathbf{x} if and only if \widetilde{u} is a factor occurring in \mathbf{y}.

On the other hand, \widetilde{g}^{2} is a cyclic shift of g^{2}, since $g^{2}(a)=0 \widetilde{g}^{2}(a) 0^{-1}$ for every $a \in\{0,1,2\}$. Thus u is a factor occurring in \mathbf{x} if and only if u is a factor occurring in \mathbf{y}. To summarize, u is a factor occurring in \mathbf{x} if and only if u is a factor occurring in \mathbf{y}, and u is a factor occurring in \mathbf{y} if and only if \widetilde{u} is a factor occurring in \mathbf{x}. This concludes the proof.

We will be dealing with 2-binomial squares so, in particular, with abelian squares. The next lemma permit to "desubstitute", meaning that we are looking for the inverse image of a factor under the considered morphism.

Lemma 2. Let $u, v \in A^{*}$ be two abelian equivalent non-empty words such that $u v$ is a factor occurring in \mathbf{x}. There exists $u^{\prime}, v^{\prime} \in A^{*}$ such that $u^{\prime} v^{\prime}$ is a factor of \mathbf{x}, and either:

1. $u=g\left(u^{\prime}\right)$ and $v=g\left(v^{\prime}\right)$;
2. or, $\widetilde{u}=g\left(v^{\prime}\right)$ and $\widetilde{v}=g\left(u^{\prime}\right)$.

Proof. We will make an extensive use of Observation 1. Note that u and v must contain at least one 0 or one 2 . Obviously $e(u v)$ is an abelian square of $(02)^{\omega}$, thus either $e(u)=e(v)=(02)^{i}$ or $e(u)=e(v)=(20)^{i}$ for an $i>0$.

If $e(u)=e(v)=(02)^{i}$, then we have $u=a 0 \cdots 2 b$ and $v=c 0 \cdots 2 d$ with $a, b, c, d \in\{\varepsilon, 1\}$. In this case, we deduce that u and v belong to X^{*}. Otherwise stated, since $u v$ is a factor of \mathbf{x}, there exists a factor $u^{\prime} v^{\prime}$ in \mathbf{x} such that $g\left(u^{\prime}\right)=u$ and $g\left(v^{\prime}\right)=v$.

Otherwise we have $e(u)=e(v)=(20)^{i}$. Thanks to Lemma 1, $\widetilde{v} \widetilde{u}$ is a factor occurring in \mathbf{x}, and $e(\widetilde{u})=e(\widetilde{v})=(02)^{i}$. Thus we are reduced to the previous case, and there is a factor u^{\prime}, v^{\prime} in \mathbf{x} such that $g\left(u^{\prime}\right)=\widetilde{v}$ and $g\left(v^{\prime}\right)=\widetilde{u}$.

Let u be a word. We set

$$
\lambda_{u}:=\binom{u}{01}-\binom{u}{12} .
$$

When we use the desubstitution provided by the previous lemma, the shorter factors u^{\prime} and v^{\prime} derived from u and v keep properties from their ancestors.

Lemma 3. Let $u, v \in A^{*}$ be two abelian equivalent non-empty words such that $u v$ is a factor occurring in \mathbf{x}. Let u^{\prime}, v^{\prime} be given by Lemma 2. If $\lambda_{u}=\lambda_{v}$, then u^{\prime} and v^{\prime} are abelian equivalent and $\lambda_{u^{\prime}}=\lambda_{v^{\prime}}$.

Proof. If we are in the second situation described by Lemma 2, then $\widetilde{v} \widetilde{u}$ is also a factor occurring in \mathbf{x}. Obviously \widetilde{v} and \widetilde{u} are also abelian equivalent, $\lambda_{\widetilde{v}}=\lambda_{\widetilde{u}}$ and the case is reduced to the first situation.

Assume now w.l.o.g. that we are in the first situation, that is, $u=g\left(u^{\prime}\right)$ and $v=g\left(v^{\prime}\right)$. First observe that we have, for all $a, b \in A, a \neq b$,

$$
\begin{equation*}
\binom{u^{\prime}}{a b}=\binom{\left|u^{\prime}\right|_{a}+\left|u^{\prime}\right|_{b}}{2}-\binom{\left|u^{\prime}\right|_{a}}{2}-\binom{\left|u^{\prime}\right|_{b}}{2}-\binom{u^{\prime}}{b a} . \tag{1}
\end{equation*}
$$

Since $u=g\left(u^{\prime}\right)$, we derive that

$$
\begin{aligned}
\binom{u}{01}= & \left|u^{\prime}\right|_{0}+\binom{u^{\prime}}{00}+\binom{u^{\prime}}{02}+\binom{u^{\prime}}{12}+\binom{\left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{1}}{2}-\binom{\left|u^{\prime}\right|_{0}}{2}-\binom{\left|u^{\prime}\right|_{1}}{2}-\binom{u^{\prime}}{01}, \\
\binom{u}{12}= & \left|u^{\prime}\right|_{0}+\binom{u^{\prime}}{00}+\binom{u^{\prime}}{01}+\binom{\left|u^{\prime}\right|_{1}+\left|u^{\prime}\right|_{2}}{2}-\binom{\left|u^{\prime}\right|_{1}}{2}-\binom{\left|u^{\prime}\right|_{2}}{2}-\binom{u^{\prime}}{12} \\
& +\binom{\left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{2}}{2}-\binom{\left|u^{\prime}\right|_{0}}{2}-\binom{\left|u^{\prime}\right|_{2}}{2}-\binom{u^{\prime}}{02} .
\end{aligned}
$$

Hence
$\lambda_{u}=2\left[\binom{u^{\prime}}{02}-\binom{u^{\prime}}{01}+\binom{u^{\prime}}{12}-\binom{\left|u^{\prime}\right|_{2}}{2}\right]+\binom{\left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{1}}{2}-\binom{\left|u^{\prime}\right|_{1}+\left|u^{\prime}\right|_{2}}{2}-\binom{\left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{2}}{2}$.
Similar relations hold for v.

Since u^{\prime} and v^{\prime} occur in \mathbf{x}, from Observation 1, we get

$$
\begin{equation*}
\|\left. u^{\prime}\right|_{0}-\left|u^{\prime}\right|_{2} \mid \leq 1 \text { and } \|\left. v^{\prime}\right|_{0}-\left|v^{\prime}\right|_{2} \mid \leq 1 \tag{2}
\end{equation*}
$$

Since $u \sim_{\mathrm{ab}} v$, we have $|u|_{1}=|v|_{1}$. Hence, from the definition of $g,\left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{2}=$ $\left|v^{\prime}\right|_{0}+\left|v^{\prime}\right|_{2}$. In the same way, $|u|_{2}=|v|_{2}$ implies that $\left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{1}=\left|v^{\prime}\right|_{0}+\left|v^{\prime}\right|_{1}$ or equivalently, $\left|u^{\prime}\right|_{1}-\left|v^{\prime}\right|_{1}=\left|v^{\prime}\right|_{0}-\left|u^{\prime}\right|_{0}$. From the above relation and (2), we get

$$
\left|\left|v^{\prime}\right|_{0}-\left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{2}-\left|v^{\prime}\right|_{2}\right| \leq 2 \text { and }\left|u^{\prime}\right|_{2}-\left|v^{\prime}\right|_{2}=\left|v^{\prime}\right|_{0}-\left|u^{\prime}\right|_{0} .
$$

Hence the difference of the following two Parikh vectors can only take three values

$$
\Psi\left(u^{\prime}\right)-\Psi\left(v^{\prime}\right) \in\left\{\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)\right\} .
$$

To prove that u^{\prime} and v^{\prime} are abelian equivalent, we will rule out the last two possibilities.

By assumption, $\lambda_{u}=\lambda_{v}$. So this relation also holds modulo 2. Hence

$$
\begin{aligned}
& \binom{\left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{1}}{2}-\binom{\left|u^{\prime}\right|_{1}+\left|u^{\prime}\right|_{2}}{2}-\binom{\left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{2}}{2} \\
\equiv & \binom{\left|v^{\prime}\right|_{0}+\left|v^{\prime}\right|_{1}}{2}-\binom{\left|v^{\prime}\right|_{1}+\left|v^{\prime}\right|_{2}}{2}-\binom{\left|v^{\prime}\right|_{0}+\left|v^{\prime}\right|_{2}}{2}(\bmod 2) .
\end{aligned}
$$

Assume that we have

$$
\Psi\left(u^{\prime}\right)-\Psi\left(v^{\prime}\right)=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right), \text { i.e., } \begin{aligned}
& \left|u^{\prime}\right|_{0}+\left|u^{\prime}\right|_{1}=\left|v^{\prime}\right|_{0}+\left|v^{\prime}\right|_{1}, \\
& \\
& \left|u^{\prime}\right|_{1}+\left.\left|u^{\prime}\right|_{2}\right|_{2}=\left|v^{\prime}\right|_{0}+\left|v^{\prime}\right|_{2}, \\
& \left.v^{\prime}\right|_{1}+\left|v^{\prime}\right|_{2}-2 .
\end{aligned}
$$

This leads to a contradiction because then

$$
\binom{\left|u^{\prime}\right|_{1}+\left|u^{\prime}\right|_{2}}{2} \not \equiv\binom{\left|v^{\prime}\right|_{1}+\left|v^{\prime}\right|_{2}}{2} \quad(\bmod 2) .
$$

Indeed, it is easily seen that $\binom{4 n}{2} \equiv 0(\bmod 2),\binom{4 n+1}{2} \equiv 0(\bmod 2),\binom{4 n+2}{2} \equiv 1$ $(\bmod 2)$ and $\binom{4 n+3}{2} \equiv 1(\bmod 2)$.

The case $\Psi\left(u^{\prime}\right)-\Psi\left(v^{\prime}\right)=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$ is handled similarly. So we can assume now that $\Psi\left(u^{\prime}\right)=\Psi\left(v^{\prime}\right)$, that is, $u^{\prime} \sim_{\mathrm{ab}} v^{\prime}$. It remains to prove that $\lambda_{u^{\prime}}=\lambda_{v^{\prime}}$. By assumption $\lambda_{u}=\lambda_{v}$, and from the above formula describing λ_{u} (resp. λ_{v}) we get

$$
\binom{u^{\prime}}{02}-\binom{u^{\prime}}{01}+\binom{u^{\prime}}{12}=\binom{v^{\prime}}{02}-\binom{v^{\prime}}{01}+\binom{v^{\prime}}{12}
$$

To conclude that $\lambda_{u^{\prime}}=\lambda_{v^{\prime}}$, we should simply show that $\binom{u^{\prime}}{02}=\binom{v^{\prime}}{02}$. But $u^{\prime} v^{\prime}$ is a factor occurring in \mathbf{x} (from Observation 1, when discarding the 1's in $u^{\prime} v^{\prime}$ we just get a word made of alternating 0 's and 2) and $u^{\prime} \sim_{a b} v^{\prime}$. This concludes the proof.

Theorem 4. The word $\mathbf{x}=g^{\omega}(0)=012021012102012021020121 \cdots$ avoids 2 binomial squares.

Proof. Assume to the contrary that \mathbf{x} contains a 2 -binomial square $u v$ where u and v are 2 -binomially equivalent. In particular, u and v are abelian equivalent and moreover $\lambda_{u}=\lambda_{v}$. We can therefore apply iteratively Lemma 2 and the above lemma to words of decreasing lengths and get finally a repetition $a a$ with $a \in A$ in \mathbf{x}. But \mathbf{x} does not contain any such factor.

Remark 2. The fixed point of g is a 2 -binomial-squarefree word, i.e., it does not contain any 2-binomial square, but g is not a 2-binomial-squarefree morphism: the image of a 2-binomial-squarefree word may contain a 2-binomial-square (e.g., $g(010)=01202012$ contains the square 2020).

3. Avoiding 2-binomial cubes over a 2-letter alphabet

Consider the morphism $h: 0 \mapsto 001$ and $h: 1 \mapsto 011$. A word is 2-binomialcubefree if it does not contain any 2 -binomial cube. In this section, we show that h is a 2-binomial-cubefree morphism: for every 2-binomial-cubefree binary word $w, h(w)$ is 2-binomial-cubefree. As a direct corollary, we get that the fixed point of h,

$$
\mathbf{z}=h^{\omega}(0)=001001011001001011001011011 \cdots
$$

avoids 2-binomial cubes.
Let u be a word over $\{0,1\}$. The extended Parikh vector of u is

$$
\Psi_{2}(u)=\left(|u|_{0},|u|_{1},\binom{u}{00},\binom{u}{01},\binom{u}{10},\binom{u}{11}\right)^{T} .
$$

Observe that two words u and v are 2-binomially equivalent if and only if $\Psi_{2}(u)=\Psi_{2}(v)$.

Consider the matrix M_{h} given by

$$
M_{h}=\left(\begin{array}{llllll}
2 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 \\
1 & 0 & 4 & 2 & 2 & 1 \\
2 & 2 & 2 & 4 & 1 & 2 \\
0 & 0 & 2 & 1 & 4 & 2 \\
0 & 1 & 1 & 2 & 2 & 4
\end{array}\right) .
$$

One can check that M_{h} is invertible. We will make use of the following observations:

Proposition 5. For every $u \in\{0,1\}^{*}$,

$$
\Psi_{2}(h(u))=M_{h} \Psi_{2}(u) .
$$

Proposition 6. Let $u=1 x$ and $u^{\prime}=x 1$ be two words over $\{0,1\}$. We have $|u|_{0}=\left|u^{\prime}\right|_{0},|u|_{1}=\left|u^{\prime}\right|_{1}$,

$$
\binom{u}{00}=\binom{u^{\prime}}{00},\binom{u}{11}=\binom{u^{\prime}}{11},\binom{u^{\prime}}{01}=\binom{u}{01}+|u|_{0},\binom{u^{\prime}}{10}=\binom{u}{10}-|u|_{0}
$$

In particular, if $1 x \sim_{2} 1 y$, then $x 1 \sim_{2} y 1$. Similar relations hold for $0 x$ and $x 0$. In particular, if $x 0 \sim_{2} y 0$, then $0 x \sim_{2} 0 y$.

Let $x, y \in\{0,1\}$. We set $\delta_{x, y}=1$, if $x=y$; and $\delta_{x, y}=0$, otherwise.
Lemma 7. Let p^{\prime}, q^{\prime} and r^{\prime} be binary words, and let $a, b \in\{0,1\}$. Let $p=$ $h\left(p^{\prime}\right) 0, q=a 1 h\left(q^{\prime}\right) 0 b$ and $r=1 h\left(r^{\prime}\right)$. Then either $p \not \chi_{2} q$ or $p \not \chi_{2} r$.
Proof. Assume, for the sake of contradiction, that $p \sim_{2} q \sim_{2} r$. Then $\left|p^{\prime}\right|=$ $\left|q^{\prime}\right|+1=\left|r^{\prime}\right|=n$. The following relations can mostly be derived from the coefficients of M_{h} (we also have to take into account the extra suffix 0 of p, respectively the extra prefix 1 in r):

$$
\begin{aligned}
&\binom{p}{01}= 2\binom{p^{\prime}}{0}+2\binom{p^{\prime}}{1}+2\binom{p^{\prime}}{00}+4\binom{p^{\prime}}{01}+\binom{p^{\prime}}{10}+2\binom{p^{\prime}}{11}, \\
&\binom{p}{10}=\binom{p^{\prime}}{0}+2\binom{p^{\prime}}{1}+2\binom{p^{\prime}}{00}+\binom{p^{\prime}}{01}+4\binom{p^{\prime}}{10}+2\binom{p^{\prime}}{11}, \\
& \Rightarrow\binom{p}{01}-\binom{p}{10}=\binom{p^{\prime}}{0}+3\binom{p^{\prime}}{01}-3\binom{p^{\prime}}{10} ; \\
&\binom{r}{01}=2\binom{r^{\prime}}{0}+2\binom{r^{\prime}}{1}+2\binom{r^{\prime}}{00}+4\binom{r^{\prime}}{01}+\binom{r^{\prime}}{10}+2\binom{r^{\prime}}{11}, \\
&\binom{r}{10}=2\binom{r^{\prime}}{0}+\binom{r^{\prime}}{1}+2\binom{r^{\prime}}{00}+\binom{r^{\prime}}{01}+4\binom{r^{\prime}}{10}+2\binom{r^{\prime}}{11}, \\
& \Rightarrow\binom{r}{01}-\binom{r}{10}=\binom{r^{\prime}}{1}+3\binom{r^{\prime}}{01}-3\binom{r^{\prime}}{10} .
\end{aligned}
$$

We also get the following relations:

$$
\begin{aligned}
\binom{q}{01}= & 2\binom{q^{\prime}}{0}+2\binom{q^{\prime}}{1}+2\binom{q^{\prime}}{00}+4\binom{q^{\prime}}{01}+\binom{q^{\prime}}{10}+2\binom{q^{\prime}}{11} \\
& +\delta_{a, 0}\left[1+\binom{q^{\prime}}{0}+2\binom{q^{\prime}}{1}+\delta_{b, 1}\right]+\delta_{b, 1}\left[1+2\binom{q^{\prime}}{0}+\binom{q^{\prime}}{1}\right] \\
\binom{q}{10}= & 3\binom{q^{\prime}}{0}+3\binom{q^{\prime}}{1}+2\binom{q^{\prime}}{00}+\binom{q^{\prime}}{01}+4\binom{q^{\prime}}{10}+2\binom{q^{\prime}}{11}+1 \\
& +\delta_{a, 1}\left[1+\delta_{b, 0}+2\binom{q^{\prime}}{0}+\binom{q^{\prime}}{1}\right]+\delta_{b, 0}\left[1+\binom{q^{\prime}}{0}+2\binom{q^{\prime}}{1}\right] \\
= & \left(6-2 \delta_{a, 0}-\delta_{b, 1}\right)\binom{q^{\prime}}{0}+\left(6-\delta_{a, 0}-2 \delta_{b, 1}\right)\binom{q^{\prime}}{1}+4-2 \delta_{a, 0}-2 \delta_{b, 1}+\delta_{a, 0} \delta_{b, 1} \\
& +2\binom{q^{\prime}}{00}+\binom{q^{\prime}}{01}+4\binom{q^{\prime}}{10}+2\binom{q^{\prime}}{11} .
\end{aligned}
$$

Where for the last equality, we have used the fact that $\delta_{a, 1}=1-\delta_{a, 0}$ and $\delta_{b, 0}=1-\delta_{b, 1}$. Finally, we obtain

$$
\binom{q}{01}-\binom{q}{10}=\left(-4+3 \delta_{a, 0}+3 \delta_{b, 1}\right)\left[\binom{q^{\prime}}{0}+\binom{q^{\prime}}{1}\right]+3\binom{q^{\prime}}{01}-3\binom{q^{\prime}}{10}-4+3 \delta_{a, 0}+3 \delta_{b, 1}
$$

Since $p \sim_{2} q \sim_{2} r$, we have $\binom{p}{10}-\binom{p}{01}=\binom{q}{10}-\binom{q}{01}=\binom{r}{10}-\binom{r}{01}$. In particular, these equalities modulo 3 give

$$
\begin{equation*}
\binom{p^{\prime}}{0} \equiv\binom{r^{\prime}}{1} \equiv 2\left[\binom{q^{\prime}}{0}+\binom{q^{\prime}}{1}+1\right] \equiv 2 n \quad(\bmod 3) . \tag{3}
\end{equation*}
$$

Now, we take into account the fact that p and r are abelian equivalent to get a contradiction. Since $p=h\left(p^{\prime}\right) 0$ and $r=1 h\left(r^{\prime}\right)$, we get

$$
\binom{|p|_{0}}{|p|_{1}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{\left|p^{\prime}\right|_{0}}{\left|p^{\prime}\right|_{1}}+\binom{1}{0},\binom{|r|_{0}}{|r|_{1}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{\left|r^{\prime}\right|_{0}}{\left|r^{\prime}\right|_{1}}+\binom{0}{1}
$$

Hence, we obtain

$$
\binom{|p|_{0}-|r|_{0}}{|p|_{1}-|r|_{1}}=\binom{0}{0}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{\left|p^{\prime}\right|_{0}-\left|r^{\prime}\right|_{0}}{\left|p^{\prime}\right|_{1}-\left|r^{\prime}\right|_{1}}+\binom{1}{-1} .
$$

We derive that $\left|p^{\prime}\right|_{0}-\left|r^{\prime}\right|_{0}=-1$ and $\left|p^{\prime}\right|_{1}-\left|r^{\prime}\right|_{1}=1$. Recall that $\left|p^{\prime}\right|_{0}+\left|p^{\prime}\right|_{1}=n$. If we subtract the last two equalities, we get $\left|p^{\prime}\right|_{0}+\left|r^{\prime}\right|_{1}=n-1$. From (3), we know that $\left|p^{\prime}\right|_{0} \equiv\left|r^{\prime}\right|_{1}(\bmod 3)$. Hence $2\left|p^{\prime}\right|_{0} \equiv n-1(\bmod 3)$ and thus

$$
\left|p^{\prime}\right|_{0} \equiv 2 n-2 \quad(\bmod 3)
$$

This contradicts the fact again given by (3) that $\left|p^{\prime}\right|_{0} \equiv 2 n(\bmod 3)$.
Similarly, one get the following lemma.
Lemma 8. Let p^{\prime}, q^{\prime} and r^{\prime} be binary words, and let $a, b \in\{0,1\}$. Let $p=$ $h\left(p^{\prime}\right) 0 a, q=1 h\left(q^{\prime}\right) 0$ and $r=b 1 h\left(r^{\prime}\right)$. Then either $p \not \chi_{2} q$ or $p \not \chi_{2} r$.

Proof. Assume, for the sake of contradiction, that $p \sim_{2} q \sim_{2} r$. Then $\left|p^{\prime}\right|=$ $\left|q^{\prime}\right|=\left|r^{\prime}\right|=n$. Taking into account the special form of p and q, we get

$$
\begin{gathered}
\binom{p}{01}=2\binom{p^{\prime}}{0}+2\binom{p^{\prime}}{1}+2\binom{p^{\prime}}{00}+4\binom{p^{\prime}}{01}+\binom{p^{\prime}}{10}+2\binom{p^{\prime}}{11}+\delta_{a, 1}\left(1+2\binom{p^{\prime}}{0}+\binom{p^{\prime}}{1}\right), \\
\binom{p}{10}=\binom{p^{\prime}}{0}+2\binom{p^{\prime}}{1}+2\binom{p^{\prime}}{00}+\binom{p^{\prime}}{01}+4\binom{p^{\prime}}{10}+2\binom{p^{\prime}}{11}+\delta_{a, 0}\left(\binom{p^{\prime}}{0}+2\binom{p^{\prime}}{1}\right), \\
\binom{q}{01}=2\binom{q^{\prime}}{0}+2\binom{q^{\prime}}{1}+2\binom{q^{\prime}}{00}+4\binom{q^{\prime}}{01}+\binom{q^{\prime}}{10}+2\binom{q^{\prime}}{11} \\
\binom{q}{10}=3\binom{q^{\prime}}{0}+3\binom{q^{\prime}}{1}+2\binom{q^{\prime}}{00}+\binom{q^{\prime}}{01}+4\binom{q^{\prime}}{10}+2\binom{q^{\prime}}{11}+1 .
\end{gathered}
$$

Hence, we get

$$
\begin{gathered}
\binom{p}{01}-\binom{p}{10}=-2\binom{p^{\prime}}{1}+3\binom{p^{\prime}}{01}-3\binom{p^{\prime}}{10}+\delta_{a, 1}\left(1+3\binom{p^{\prime}}{0}+3\binom{p^{\prime}}{1}\right), \\
\binom{q}{01}-\binom{q}{10}=-\binom{q^{\prime}}{0}-\binom{q^{\prime}}{1}+3\binom{q^{\prime}}{01}-3\binom{q^{\prime}}{10}-1 .
\end{gathered}
$$

Since, $p \sim_{2} q$, the last two relations evaluated modulo 3 give

$$
\begin{equation*}
\left|p^{\prime}\right|_{1}+\delta_{a, 1} \equiv 2 n+2 \quad(\bmod 3) \tag{4}
\end{equation*}
$$

Similarly, the form of r gives the following relations

$$
\begin{aligned}
& \binom{r}{01}=2\binom{r^{\prime}}{0}+2\binom{r^{\prime}}{1}+2\binom{r^{\prime}}{00}+4\binom{r^{\prime}}{01}+\binom{r^{\prime}}{10}+2\binom{r^{\prime}}{11}+\delta_{b, 0}\left(1+\binom{r^{\prime}}{0}+2\binom{r^{\prime}}{1}\right), \\
& \binom{r}{10}=2\binom{r^{\prime}}{0}+\binom{r^{\prime}}{1}+2\binom{r^{\prime}}{00}+\binom{r^{\prime}}{01}+4\binom{r^{\prime}}{10}+2\binom{r^{\prime}}{11}+\delta_{b, 1}\left(2\binom{r^{\prime}}{0}+\binom{r^{\prime}}{1}\right), \\
& \binom{r}{01}-\binom{r}{10}=-2\binom{r^{\prime}}{0}+3\binom{r^{\prime}}{01}-3\binom{r^{\prime}}{10}+\delta_{b, 0}\left(1+3\binom{r^{\prime}}{0}+3\binom{r^{\prime}}{1}\right)
\end{aligned}
$$

Since, $p \sim_{2} r$, the last two relations evaluated modulo 3 give

$$
\begin{equation*}
\left|p^{\prime}\right|_{1}+\delta_{a, 1} \equiv\left|r^{\prime}\right|_{0}+\delta_{b, 0} \quad(\bmod 3) \tag{5}
\end{equation*}
$$

Now, we take into account the fact that p, q and r are abelian equivalent to get a contradiction. The following two vectors are equal:

$$
\binom{|p|_{0}}{|p|_{1}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{\left|p^{\prime}\right|_{0}}{\left|p^{\prime}\right|_{1}}+\binom{1+\delta_{a, 0}}{\delta_{a, 1}},\binom{|r|_{0}}{|r|_{1}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{\left|r^{\prime}\right|_{0}}{\left|r^{\prime}\right|_{1}}+\binom{\delta_{b, 0}}{1+\delta_{b, 1}} .
$$

We derive easily that

$$
\left|p^{\prime}\right|_{1}-\left|r^{\prime}\right|_{1}=1+\delta_{a, 0}-\delta_{b, 0} .
$$

On the one hand, using the latter relation and (5)

$$
\left|r^{\prime}\right|_{1}+1+\delta_{a, 0}-\delta_{b, 0}+\delta_{a, 1}=\left|p^{\prime}\right|_{1}+\delta_{a, 1} \equiv\left|r^{\prime}\right|_{0}+\delta_{b, 0} \quad(\bmod 3)
$$

Replacing $\left|r^{\prime}\right|_{0}$ by $n-\left|r^{\prime}\right|_{1}$, we get $2\left|r^{\prime}\right|_{1}+2 \equiv n+2 \delta_{b, 0}(\bmod 3)$, or equivalently

$$
\left|r^{\prime}\right|_{1}+1 \equiv 2 n+\delta_{b, 0} \quad(\bmod 3)
$$

On the other hand, using (4),

$$
\left|r^{\prime}\right|_{1}+1+\delta_{a, 0}-\delta_{b, 0}+\delta_{a, 1}=\left|p^{\prime}\right|_{1}+\delta_{a, 1} \equiv 2 n+2 \quad(\bmod 3)
$$

and thus,

$$
\left|r^{\prime}\right|_{1} \equiv 2 n+\delta_{b, 0} \quad(\bmod 3)
$$

We get a contradiction, $2 n+\delta_{b, 0}$ should be congruent to both $\left|r^{\prime}\right|_{1}$ and $\left|r^{\prime}\right|_{1}+1$ modulo 3.

We are ready to prove the main theorem of this section.
Theorem 9. Let $h: 0 \mapsto 001,1 \mapsto 011$. For every 2-binomial-cubefree word $w \in\{0,1\}^{*}, h(w)$ is 2-binomial-cubefree.
Proof. Let w be a 2-binomial-cubefree binary word. Assume that $h(w)=$ $z_{0} \ldots z_{3|w|-1}$ contains a 2 -binomial cube $p q r$ occurring in position i, i.e., $p \sim_{2}$ $q \sim_{2} r$ and $w=w^{\prime} p q r w^{\prime \prime}$, where $\left|w^{\prime}\right|=i$. We consider three cases depending on the size of p modulo 3 .

As a first case, assume that $|p|=3 n$. We consider three sub-cases depending on the position i modulo 3 .
1.a) Assume that $i \equiv 2(\bmod 3)$. Then p, q, r have 1 as a prefix and the letter following r in $h(w)$ is the symbol $z_{i+9 n}=1$. Hence, the word $1^{-1} p q r 1$ occurs in $h(w)$ in position $i+1$ and it is again a 2 -binomial cube. Indeed, thanks to Proposition 6, we have $1^{-1} p 1 \sim_{2} 1^{-1} q 1 \sim_{2} 1^{-1} r 1$. This case is thus reduced to the case where $i \equiv 0(\bmod 3)$.
1.b) Assume that $i \equiv 1(\bmod 3)$. Then p, q, r have 0 as a suffix and the letter preceding p in $h(w)$ is the symbol $z_{i-1}=0$. Hence, the word $0 p q r 0^{-1}$ occurs in $h(w)$ in position $i-1$ and it is also a 2-binomial cube. Thanks to Proposition 6, we have $0 p 0^{-1} \sim_{2} 0 q 0^{-1} \sim_{2} 0 r 0^{-1}$. Again this case is reduced to the case where $i \equiv 0(\bmod 3)$.
1.c) Assume that $i \equiv 0(\bmod 3)$. In this case, we can desubstitute: there exist three words $p^{\prime}, q^{\prime}, r^{\prime}$ of length n such that $h\left(p^{\prime}\right)=p, h\left(q^{\prime}\right)=q, h\left(r^{\prime}\right)=r$ and $p^{\prime} q^{\prime} r^{\prime}$ is a factor occurring in w. We have $\Psi_{2}(p)=\Psi_{2}(q)=\Psi_{2}(r)$. By Proposition 5, and since M_{h} is invertible, we have $\Psi_{2}\left(p^{\prime}\right)=\Psi_{2}\left(q^{\prime}\right)=\Psi_{2}\left(r^{\prime}\right)$, meaning that w contains a 2 -binomial cube $p^{\prime} q^{\prime} r^{\prime}$.

As a second case, assume that $|p|=3 n+1$. In this case, one of p, q and r occur in position 0 modulo 3 , one in position 1 modulo 3 , and one in position 2 modulo 3. Suppose w.l.o.g. that p occur in position 0 modulo 3 , and q in position 1 modulo 3. Then there are three factors p^{\prime}, q^{\prime} and r^{\prime} in w, and $a, b \in\{0,1\}$ such that $p=h\left(p^{\prime}\right) 0, q=a 1 h\left(q^{\prime}\right) 0 b$ and $r=1 h\left(r^{\prime}\right)$. By Lemma 7, this is impossible.

For the final case, assume that $|p|=3 n+2$. In this case again, one of p, q and r occur in position 0 modulo 3 , one in position 1 modulo 3 , and one in position 2 modulo 3 . Suppose w.l.o.g. that p occur in position 0 modulo 3 , and q in position 1 modulo 3 . Then there are three factors p^{\prime}, q^{\prime} and r^{\prime} in w, and $a, b \in\{0,1\}$ such that $p=h\left(p^{\prime}\right) 0 a, q=1 h\left(q^{\prime}\right) 0$ and $r=b 1 h\left(r^{\prime}\right)$. By Lemma 8, this is impossible.

Corollary 10. The infinite word $\mathbf{z}=001001011 \cdots$ fixed point of $h: 0 \mapsto$ $001,1 \mapsto 011$ avoids 2 -binomial cubes.

4. Open problems

There are sufficient conditions for a morphism to be abelian or k-abelianpowerfree $[1,2,11]$. It seems more difficult to find sufficient conditions for a morphism to be k-binomial-powerfree. One can raise the following question.

Question 1. Give a non-trivial 2-binomial-squarefree morphism (that is, a morphism f such that $f(w)$ is 2-binomial-squarefree if w is 2-binomial-squarefree).

As shown in Section 3, the morphism $0 \mapsto 001,1 \mapsto 011$ is 2-binomial-cubefree.
Every infinite binary word contains arbitrarily long abelian squares, while ones exist which avoid squares of period at least 3 [4]. Moreover, it is possible to construct a binary word with only 3 squares: 00,11 and 0101 [5]. A computer experiment shows the following.

Fact 1. It is impossible to construct an infinite binary word with only 3 different 2-binomial-squares.

One can then ask the following questions.
Question 2. Is there $k \geq 3$ such that one can construct an infinite binary word with only 3 different k-binomial-squares?

Question 3. Is there $k \geq 4$ such that one can construct an infinite binary word with only k different 2 -binomial-squares ?

References

[1] A. Carpi, On Abelian Power-Free Morphisms, Int. J. Algebra Comput. 3 (1993), 151-167.
[2] F. M. Dekking, Strongly nonrepetitive sequences and progression-free sets, J. Combin. Theory Ser. A 27 (1979), 181-185.
[3] P. Erdös, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961), 221-254.
[4] R.C Entringer, D.E Jackson, J.A Schatz. On nonrepetitive sequences. J. Combin. Theory Ser. A 16, (1974), 159-164.
[5] A. S. Fraenkel, R. J. Simpson, How Many Squares Must a Binary Sequence Contain?, The Electronic Journal of Combinatorics, 2, (1995).
[6] M. Huova, J. Karhumäki, Observations and problems on k-abelian avoidability, In Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081), (2011) 2215-2219.
[7] M. Huova, J. Karhumäki, On unavoidability of k-abelian squares in pure morphic words, J. Integer Seq. 16 (2013), no. 2, Article 13.2.9.
[8] J. Karhumäki, A. Saarela, L. Q. Zamboni, On a generalization of Abelian equivalence and complexity of infinite words, J. Combin. Theory Ser. A 120 (2013), 2189-2206.
[9] V. Keränen, Abelian squares are avoidable on 4 letters, Lecture Notes in Comput. Sci. 623 (1992), 41-52.
[10] M. Lothaire, Combinatorics on Words, Cambridge Mathematical Library, Cambridge University Press, (1997).
[11] M. Rao, On some generalizations of abelian power avoidability, preprint (2013).
[12] M. Rigo, P. Salimov, Another generalization of abelian equivalence: binomial complexity of infinite words, WORDS 2013, Lect. Notes in Comput. Sci. 8079, 217-228, Springer Verlag (2013), J. Karhumäki, L. Zamboni (Eds.).
[13] A. Thue, Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906), 1-22.
[14] A. Thue,Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1-67.

[^0]: * Corresponding author
 ${ }^{1}$ The third author is supported by the Russian President's grant no. MK-4075.2012.1 and Russian Foundation for Basic Research grants no. 12-01-00089 and no. 11-01-00997 and by a University of Liège post-doctoral grant.

