Avoiding 2-binomial squares and cubes
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Abstract

Two finite words u, v are 2-binomially equivalent if, for all words x of length at
most 2, the number of occurrences of x as a (scattered) subword of u is equal
to the number of occurrences of x in v. This notion is a refinement of the
usual abelian equivalence. A 2-binomial square is a word uv where u and v are
2-binomially equivalent.

In this paper, considering pure morphic words, we prove that 2-binomial
squares (resp. cubes) are avoidable over a 3-letter (resp. 2-letter) alphabet.
The sizes of the alphabets are optimal.

Keywords: Combinatorics on words; binomial coefficient; binomial
equivalence; avoidance; squarefree; cubefree.

1. Introduction

A square (resp. cube) is a non-empty word of the form zx (resp. zxx).
Since the work of Thue, it is well-known that there exists an infinite square-
free word over a ternary alphabet, and an infinite cubefree word over a binary
alphabet [13, 14]. A main direction of research in combinatorics on words is
about the avoidance of a pattern, and the size of the alphabet is a parameter of
the problem.

A possible and widely studied generalization of squarefreeness is to consider
an abelian framework. A non-empty word is an abelian square (resp. abelian
cube) if it is of the form zy (resp. xyz) where y is a permutation of 2 (resp. y and
z are permutations of z). Erdos raised the question whether abelian squares can
be avoided by an infinite word over an alphabet of size 4 [3]. Kerénen answered
positively to this question, with a pure morphic word [9]. Moreover Dekking has
previously obtained an infinite word over a 3-letter alphabet that avoids abelian
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cubes, and an infinite binary word that avoids abelian 4-powers [2]. (Note that
in all these results, the size of the alphabet is optimal.)

In this paper, we are dealing with another generalization of squarefreeness
and cubefreeness. We consider the 2-binomial equivalence which is a refinement
of the abelian equivalence, i.e., if two words x and y are 2-binomially equivalent,
then z is a permutation of y (but in general, the converse does not hold, see
Example 1 below). This equivalence relation is defined thanks to the binomial
coefficient (:j) of two words v and v which is the number of times v occurs as
a subsequence of u (meaning as a “scattered” subword). For more on these
binomial coefficients, see for instance [10, Chap. 6]. Based on this classical
notion, the m-binomial equivalence of two words has been recently introduced

12].

Definition 1. Let m € NU {400} and u,v be two words over the alphabet A.
We let AS™ denote the set of words of length at most m over A. We say that
u and v are m-binomially equivalent if

(0) =0 e

We simply write u ~,, v if v and v are m-binomially equivalent. The word w is
obtained as a permutation of the letters in v if and only if u ~1 v. In that case,
we say that v and v are abelian equivalent and we write instead u ~,p v. Note
that if u ~;4+1 v, then u ~y v, for all k£ > 1.

Example 1. The four words 0101110, 0110101, 1001101 and 1010011 are 2-
binomially equivalent. Let u be any of these four words. We have

(6)== (1) =+ (o) == () == (o)== (1) =+

For instance, the word 0001111 is abelian equivalent to 0101110 but these two
words are not 2-binomially equivalent. Let a be a letter. It is clear that (;fl)
and (Z) carry the same information, i.e., (;ﬁl) = (|“2‘“) where |u|, is the number
of occurrences of a in u.

A 2-binomial square (resp. 2-binomial cube) is a non-empty word of the
form zy where x ~9 y (resp. x ~go y ~2 z). For instance, the prefix of length
12 of the Thue-Morse word: 011010011001 is a 2-binomial cube. Squares are
avoidable over a 3-letter alphabet and abelian squares are avoidable over a 4-
letter alphabet. Since 2-binomial equivalence lies between abelian equivalence
and equality, the question is to determine whether or not 2-binomial squares
are avoidable over a 3-letter alphabet. We answer positively to this question in
Section 2. The fixed point of the morphism ¢ : 0 — 012,1 +— 02,2 — 1 avoids
2-binomial squares.

In a similar way, cubes are avoidable over a 2-letter alphabet and abelian
squares are avoidable over a 3-letter alphabet. The question is to determine



whether or not 2-binomial cubes are avoidable over a 2-letter alphabet. We also
answer positively to this question in Section 3. The fixed point of the morphism
h:0~ 001,1+ 011 avoids 2-binomial cubes.

Remark 1. The m-binomial equivalence is not the only way to refine the
abelian equivalence. Recently, a notion of m-abelian equivalence has been intro-
duced [8]. To define this equivalence, one counts the number |u|, of occurrences
in u of all factors x of length up to m (it is meant factors made of consecutive
letters). That is, u and v are m-abelian equivalent if |u|, = |v|, for all z € AS™,
In that context, the results on avoidance are quite different. Over a 3-letter al-
phabet 2-abelian squares are unavoidable: the longest ternary word which is
2-abelian squarefree has length 537 [6], and pure morphic words cannot avoid
k-abelian-squares for every k [7]. On the other hand, it has been shown that
there exists a 3-abelian squarefree morphic word over a 3-letter alphabet [11].
Moreover 2-abelian-cubes can be avoided over a binary alphabet by a morphic
word [11].

The number of occurrences of a letter a in a word u will be denoted either
by (Z) or |ul,. Let A ={0,1,...,k} be an alphabet. The Parikh map is an
application ¥ : A* — N¥*1 guch that U(u) = (|ulo, ..., |ulx)T. Note that we
will deal with column vectors (when multiplying a square matrix with a column
vector on its right). In particular, two words are abelian equivalent if and only
if they have the same Parikh vector. The mirror of the word u = uwqus - - - ug is
denoted by u = ug - - - usuq.

2. Avoiding 2-binomial squares over a 3-letter alphabet

Let A = {0,1,2} be a 3-letter alphabet. Let g : A* — A* be the morphism
defined by

0 — 012 0 +— 012021
g 1 +— 02 andthus, g?:¢ 1 ~ 0121
2 = 1 2 — 02

It is prolongable on 0: ¢(0) has 0 as a prefix. Hence the limit x = lim,,—, 4o, ¢™(0)
is a well-defined infinite word

x = ¢*(0) = 012021012102012021020121 - - -

which is a fixed point of g. Since the original work of Thue, this word x is
well-known to avoid (usual) squares. It is sometimes referred to as the ternary
Thue—Morse word. We will make use of the fact that X = {012,02,1} is a
prefix-code and thus an w-code: Any finite word in X* (resp. infinite word in
X%) has a unique factorization as a product of elements in X. Let us make an
obvious but useful observation.



Observation 1. The factorization of x in terms of the elements in X permits
to write X as
x=0012a20a32a40a52a0---

where, for all i > 1, a; € {e,1}. That is, the image of x by the morphism
e:0— 0,1+ ¢,2— 2 (which erases all the 17s) is e(x) = (02)~.

The next property is well known. For example, it comes from the fact that
the image of the ternary Thue-Morse word by the morphism 0 — 011,1 —
01,2 + 0 is the Thue-Morse word. However, for the sake of completeness, we
give a direct proof here.

Lemma 1. A word u is a factor occurring in x if and only if w is a factor
occurring in X.

ProOF. We define the morphism g : A* — A* by considering the mirror images
of the images of the letters by g,

0 — 210 0 ~— 120210
G:¢{ 1 +— 20 andthus,g?:{ 1 — 1210
2 = 1 2 —  20.

Note that § is not prolongable on any letter. But the morphism §? is prolongable
on the letter 1. We consider the infinite word

y = (32)¥(1) = 1210201210120210201202101210 - - - .

If v € A* is a non-empty word ending with a € A, i.e., v = ua for some word
u € A*, we denote by va~! the word obtained by removing the suffix a from v.
Sova~! = u.

For every words r and s we have r = g%(s) & 7 = g2(5). Obviously, u is a
factor occurring in x if and only if % is a factor occurring in y.

On the other hand, g2 is a cyclic shift of g2, since g?(a) = 0g%(a)0~! for
every a € {0,1,2}. Thus u is a factor occurring in x if and only if u is a factor
occurring in y. To summarize, u is a factor occurring in x if and only if u is a
factor occurring in y, and w is a factor occurring in y if and only if u is a factor
occurring in x. This concludes the proof.

We will be dealing with 2-binomial squares so, in particular, with abelian
squares. The next lemma permit to “desubstitute”, meaning that we are looking
for the inverse image of a factor under the considered morphism.

Lemma 2. Let u,v € A* be two abelian equivalent non-empty words such that
uv 1s a factor occurring in x. There exists u',v' € A* such that u'v' is a factor
of x, and either:

1. u=g) and v =g(');
2. or, u=g(v') and v = g(u').



Proor. We will make an extensive use of Observation 1. Note that u and v
must contain at least one 0 or one 2. Obviously e(uv) is an abelian square of
(02)«, thus either e(u) = e(v) = (02)* or e(u) = e(v) = (20)* for an i > 0.

If e(u) = e(v) = (02)%, then we have u = a0 --- 2b and v = ¢0 - -- 2d with
a,b,c,d € {e,1}. In this case, we deduce that u and v belong to X*. Otherwise
stated, since uv is a factor of x, there exists a factor v'v’ in x such that g(u’) = u
and g(v') = v.

Otherwise we have e(u) = e(v) = (20)?. Thanks to Lemma 1, 0% is a factor
occurring in x, and e(u) = e(v) = (02)°. Thus we are reduced to the previous
case, and there is a factor v/, v’ in x such that g(u’) =¥ and ¢g(v') = @.

v ) - ()

When we use the desubstitution provided by the previous lemma, the shorter
factors ' and v’ derived from u and v keep properties from their ancestors.

Let u be a word. We set

Lemma 3. Let u,v € A* be two abelian equivalent non-empty words such that
uv 18 a factor occurring in x. Let u’,v’ be given by Lemma 2. If Ay = Ay, then
u' and v' are abelian equivalent and Ay = Ay .

PrOOF. If we are in the second situation described by Lemma 2, then vu is also
a factor occurring in x. Obviously v and w are also abelian equivalent, Ay = Ay
and the case is reduced to the first situation.

Assume now w.l.o.g. that we are in the first situation, that is, v = g(u’) and
v = g(v'). First observe that we have, for all a,b € A, a # b,

()= (M W) - (Y (M () W

Since u = g(u’), we derive that

m B , u/ u/ u/ |’U/|0 _"_ |,u//|1 B |’U/|0 B |,u//|1 B u/
(01) = lu |0+(00)+(02)+(12)+( 2 2 2 01)°

w\ u u’ e A P A U 'R A VA A WA TS
<12) = [wlo+ (00) + <01) + ( 2 2 2 12

. [Wlo + [u'l2)  [lulo)  [lu'l2) (v
2 2 2 02)°

Hence

) (G () () (1),

Similar relations hold for v.



Since ¢’ and v’ occur in x, from Observation 1, we get
[[u'lo = |u']2] < 1 and [['o —[0']o] < 1. (2)

Since u ~,p v, we have |uly = |v]|;. Hence, from the definition of g, |u'|o+|u'|2 =
[v']o 4+ |[v']2. In the same way, |u|2 = |v|s implies that |u'|o + |u'|1 = |[v']|o + |V']1
or equivalently, |u'|; — |v'|1 = |v'|o — |u/]o. From the above relation and (2), we
get

[[V'lo = [u'Jo + 'z = [v'[2] < 2 and [u'lz = [v'[2 = [v'[o — [0

Hence the difference of the following two Parikh vectors can only take three
values

0 1 -1
Uu')—-T@)e< 0], -1],|1
0 -1 1

To prove that v’ and v’ are abelian equivalent, we will rule out the last two
possibilities.
By assumption, A\, = A,. So this relation also holds modulo 2. Hence

o+ /Y _ (Wl ol _ (1ol + bl
2 2 2
SN GO0 I G W O I

Assume that we have

1 [u'lo + [u'[s = [v']o+[v']1,
V) =)= |-1],ie, Wo+]u]s = |v]o+[V]a,
O I 7 s

This leads to a contradiction because then

w1 + [l [0l + [Vl
( 5 ) = ( 5 ) (mod 2).

Indeed, it is easily seen that (%) =0 (mod 2), (") =0 (mod 2), (*;?)

(mod 2) and (*?) =1 (mod 2).
1

1

The case ¥(u') — ¥(v') = (E ) is handled similarly. So we can assume now

that U(u') = U(v'), that is, v’ ~ap v'. It remains to prove that A, = A, By
assumption A, = A,, and from the above formula describing X, (resp. \,) we

get
u’ u’ u v v v
<02) ; <o1> * <12) B <02) a <01> * (12)'
To conclude that A, = \,/, we should simply show that (g;) = (8’;) But u'v’
is a factor occurring in x (from Observation 1, when discarding the 1’s in w'v’

we just get a word made of alternating 0’s and 2) and u' ~,p v. This concludes
the proof.



Theorem 4. The word x = ¢*(0) = 012021012102012021020121 - - - avoids 2-

binomial squares.

PRrROOF. Assume to the contrary that x contains a 2-binomial square uv where u
and v are 2-binomially equivalent. In particular, v and v are abelian equivalent
and moreover A\, = \,. We can therefore apply iteratively Lemma 2 and the
above lemma to words of decreasing lengths and get finally a repetition aa with
a € A in x. But x does not contain any such factor.

Remark 2. The fixed point of g is a 2-binomial-squarefree word, i.e., it does not
contain any 2-binomial square, but ¢ is not a 2-binomial-squarefree morphism:
the image of a 2-binomial-squarefree word may contain a 2-binomial-square (e.g.,
¢(010) = 01202012 contains the square 2020).

3. Avoiding 2-binomial cubes over a 2-letter alphabet

Consider the morphism A : 0 — 001 and A : 1+ 011. A word is 2-binomial-
cubefree if it does not contain any 2-binomial cube. In this section, we show
that h is a 2-binomial-cubefree morphism: for every 2-binomial-cubefree binary
word w, h(w) is 2-binomial-cubefree. As a direct corollary, we get that the fixed
point of h,

z = h*(0) = 001001011001001011001011011 - - -

avoids 2-binomial cubes.
Let u be a word over {0,1}. The extended Parikh vector of u is

watu) = (Il (4 )+ (31): (15): (ﬁ))T'

Observe that two words w and v are 2-binomially equivalent if and only if
\IJQ(U) = \IJQ(’U).
Consider the matrix M}, given by

My, =

SO - =N
— o N O N
NN OO
N =N OO
N = =N OO
NN = OO

One can check that M}, is invertible. We will make use of the following obser-
vations:

Proposition 5. For every u € {0,1}*,

Wo(h(u)) = MpUs(u).



Proposition 6. Let u = 1z and v = z1 be two words over {0,1}. We have
lulo = |u'lo, [uly = [u'1,

w) (u\ [u\ [ u’7u+|| u’7u7||

00) ~ \oo)’ \11) = \11)> \o1) = \or) "™ \10) = \10) ~ ™
In particular, if 1o ~9 ly, then x1 ~q yl. Similar relations hold for 0x and z0.
In particular, if 0 ~9 y0, then Ox ~9 Oy.

Let z,y € {0,1}. We set 6., =1, if x = y; and J, , = 0, otherwise.

Lemma 7. Let p/, ¢’ and r' be binary words, and let a,b € {0,1}. Let p
h(p)0, ¢=alh(q)0b and r = 1h(r"). Then either p o q or p Lo r.

PROOF. Assume, for the sake of contradiction, that p ~o ¢ ~o r. Then |p'| =
|¢'| + 1 = |r'| = n. The following relations can mostly be derived from the
coefficients of M} (we also have to take into account the extra suffix 0 of p,
respectively the extra prefix 1 in r):

() =2() w2() w2l) +a(0n) + (o) +2(20):
(1) = (5) +2(7) #2(60) + (&) + (1) +2(1)
= ()~ (o) = () +(6) —=(5o)

() =2(0) +2(7) +2(00) ~2(0) + (1) (1)
() =2(5)+ (1) +2(50) + (6) (o) +2(00)

= (1)~ (o) = (1) +9(61) (o)

6) - o)) o) o) () ()
roaal 1 () +2(7) # o o2 + (7))

(o) = a(0)=3(5) +2(0n) = () (o) +2()

haa 1o 2(0) + ()] + o1+ (1) +2(7)

/ /

= (6—2040— &,g(‘é) + (6= 040 — 25b,1>(q1) 4= 2640 — 2051 + 640001

2(g0) + (0) () +2(0)



Where for the last equality, we have used the fact that d,1 = 1 — .0 and
0p,0 = 1 — 0p,1. Finally, we obtain

q ) _, 7\, (¢ I\ _of7)_
<01)<10> =( 4+35a70+35b,1)[<0>+<1>]+3<01> 3(10 44304,0+30p,1-

(0q1) = (jo) = (o) Im

Since p ~2 q ~2 7, we have (1po) - (51) = (1q0) -

particular, these equalities modulo 3 give

(-0 E) () fm wen

Now, we take into account the fact that p and r are abelian equivalent to get a
contradiction. Since p = h(p’)0 and r = 1 h(r’), we get

lplo) _ (2 1Y\ (Ir'lo (! Irlo) _ (2 1Y (I"]o (Y
Iph 1 2)\Ip'h 0/ \Irh 1 2)\I"'[ 1)
Hence, we obtain
plo—1Irlo) _ (0Y _ (2 1\ [[P'lo—I""lo L1t
Ipl — Irh 0 L2/ \[p'h = 'l -1
We derive that |p’|o—|7"|o = —1 and [p’|1 —|r’|1 = 1. Recall that [p'|o+|p'|1 = n.

If we subtract the last two equalities, we get [p’|o + |r|1 = n — 1. From (3), we
know that [p'|o = |r'|1 (mod 3). Hence 2|p’|o =n — 1 (mod 3) and thus

IP'lo=2n—2 (mod 3).
This contradicts the fact again given by (3) that [p|o = 2n (mod 3).
Similarly, one get the following lemma.

Lemma 8. Let p’, ¢’ and r' be binary words, and let a,b € {0,1}. Let p =
h(p")0a, g=1h(¢")0 and r = b1 h(r"). Then either p o q or p #a .

PROOF. Assume, for the sake of contradiction, that p ~3 ¢ ~2 r. Then |p/| =
|¢'| = || = n. Taking into account the special form of p and ¢, we get

() =2(0) (52 o)+ o)+ (o) #2(0)#oma (12(5) ()
(i) = (5) 2 (5)#2(00) = (2) +4(G) w20 #oen ((5) #2(5) ),
() =2(5) +2(4) +2(i) +a(2) + (1) (%),
(o) =3(5) #3(1) +2(a0) = () +2(5) (1)



Hence, we get

()~ () ==2(3) +3(5) ~2(50) = o (10(5) +2(5))
(o)~ (1) =~(0) - (1) =) —2(5o) -+

Since, p ~9 g, the last two relations evaluated modulo 3 give

P/ + 001 =2n+2 (mod 3). (4)

Similarly, the form of r gives the following relations

(o) =20) () 2 (in) 40+ (o) 20 1o 1+ (5) (1))
(1) =20) () 2 lia) () r4Go) 2 o () + (1)
(o) = o) =20 +3(0) ~2) #8043 +5(1))

Since, p ~o 7, the last two relations evaluated modulo 3 give

<
— 3

IP'|1 + 6a1 = |70+ o (mod 3). (5)

Now, we take into account the fact that p, ¢ and r are abelian equivalent to get
a contradiction. The following two vectors are equal:

(|p|0) _ (2 1) (|p/|0)+(1+5a,0> (|7’|0) _ (2 1) (|7’/|0)_|_( db,0 ) _
Ipl1 1 2/ \Ip'h da1 )7 \Irh 1 2)\|[r'h 1+ 6p,1
We derive easily that

|1 —r'li = 14840 — dbo-
On the one hand, using the latter relation and (5)

I7"]1 + 1+ 64,0 — b0+ a1 = [P'l1 +0a1 =|r"l0o+ o (mod 3)
Replacing |r'|o by n—|r'|1, we get 2|r'|1 +2 = n+28,0 (mod 3), or equivalently
I"'l1+1=2n+d,0 (mod 3).

On the other hand, using (4),
711 + 1+ 60— 0b0+ a1 =Pl + a1 =2n+2 (mod 3)

and thus,
[']1 =2n+0p0 (mod 3).

We get a contradiction, 2n + dp,¢ should be congruent to both [r'|; and |r/|; +1
modulo 3.

10



We are ready to prove the main theorem of this section.

Theorem 9. Let h : 0 — 001,1 — 011. For every 2-binomial-cubefree word
w € {0,1}*, h(w) is 2-binomial-cubefree.

PROOF. Let w be a 2-binomial-cubefree binary word. Assume that h(w) =
20 ... 23w|—1 contains a 2-binomial cube pgr occurring in position i, i.e., p ~2
q ~2 r and w = w pgrw”, where |w'| = i. We consider three cases depending
on the size of p modulo 3.

As a first case, assume that |p| = 3n. We consider three sub-cases depending
on the position ¢ modulo 3.

1.a) Assume that ¢ = 2 (mod 3). Then p,q,r have 1 as a prefix and the
letter following 7 in h(w) is the symbol z;19, = 1. Hence, the word 1~ !pgrl
occurs in h(w) in position ¢+ 1 and it is again a 2-binomial cube. Indeed, thanks
to Proposition 6, we have 17'pl ~5 17 1¢ql ~5 17 1. This case is thus reduced
to the case where i =0 (mod 3).

1.b) Assume that ¢ = 1 (mod 3). Then p,q,r have 0 as a suffix and the
letter preceding p in h(w) is the symbol z;_; = 0. Hence, the word Opgr0—1
occurs in h(w) in position ¢ — 1 and it is also a 2-binomial cube. Thanks to
Proposition 6, we have 0p0~! ~5 0g0~! ~5 0r0~!. Again this case is reduced
to the case where ¢ =0 (mod 3).

1.c) Assume that ¢ = 0 (mod 3). In this case, we can desubstitute: there
exist three words p’,¢’, 7’ of length n such that h(p') = p, h(¢’) = ¢, h(+') =r
and p'q'r’ is a factor occurring in w. We have Wa(p) = Uy(q) = Uy(r). By
Proposition 5, and since M), is invertible, we have ¥y(p') = Wa(q') = Pa(r'),
meaning that w contains a 2-binomial cube p’¢’r’.

As a second case, assume that |p| = 3n + 1. In this case, one of p, ¢ and r
occur in position 0 modulo 3, one in position 1 modulo 3, and one in position 2
modulo 3. Suppose w.l.o.g. that p occur in position 0 modulo 3, and ¢ in position
1 modulo 3. Then there are three factors p’, ¢’ and ' in w, and a,b € {0,1}
such that p = h(p')0, ¢ = alh(¢’)0b and » = 1 k(). By Lemma 7, this is
impossible.

For the final case, assume that |p| = 3n + 2. In this case again, one of p,
q and r occur in position 0 modulo 3, one in position 1 modulo 3, and one in
position 2 modulo 3. Suppose w.l.o.g. that p occur in position 0 modulo 3,
and ¢ in position 1 modulo 3. Then there are three factors p’, ¢’ and ' in w,
and a,b € {0,1} such that p = h(p)0a, ¢ = 1h(¢’)0 and r = b1 h(r'). By
Lemma 8, this is impossible.

Corollary 10. The infinite word z = 001001011 --- fized point of h : 0 +—
001,1+ 011 avoids 2-binomial cubes.

4. Open problems

There are sufficient conditions for a morphism to be abelian or k-abelian-
powerfree [1, 2, 11]. It seems more difficult to find sufficient conditions for a
morphism to be k-binomial-powerfree. One can raise the following question.
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Question 1. Give a non-trivial 2-binomial-squarefree morphism (that is, a mor-
phism f such that f(w) is 2-binomial-squarefree if w is 2-binomial-squarefree).

As shown in Section 3, the morphism 0 — 001, 1+ 011 is 2-binomial-cubefree.

Every infinite binary word contains arbitrarily long abelian squares, while
ones exist which avoid squares of period at least 3 [4]. Moreover, it is possible to
construct a binary word with only 3 squares: 00, 11 and 0101 [5]. A computer
experiment shows the following.

Fact 1. It is impossible to construct an infinite binary word with only 3 different
2-binomial-squares.

One can then ask the following questions.

Question 2. Is there k > 3 such that one can construct an infinite binary word
with only 3 different k-binomial-squares ¢

Question 3. Is there k > 4 such that one can construct an infinite binary word
with only k different 2-binomial-squares ¢
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