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cSobolev Institute of Math., 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia

Abstract

Two finite words u, v are 2-binomially equivalent if, for all words x of length at
most 2, the number of occurrences of x as a (scattered) subword of u is equal
to the number of occurrences of x in v. This notion is a refinement of the
usual abelian equivalence. A 2-binomial square is a word uv where u and v are
2-binomially equivalent.

In this paper, considering pure morphic words, we prove that 2-binomial
squares (resp. cubes) are avoidable over a 3-letter (resp. 2-letter) alphabet.
The sizes of the alphabets are optimal.

Keywords: Combinatorics on words; binomial coefficient; binomial
equivalence; avoidance; squarefree; cubefree.

1. Introduction

A square (resp. cube) is a non-empty word of the form xx (resp. xxx).
Since the work of Thue, it is well-known that there exists an infinite square-
free word over a ternary alphabet, and an infinite cubefree word over a binary
alphabet [13, 14]. A main direction of research in combinatorics on words is
about the avoidance of a pattern, and the size of the alphabet is a parameter of
the problem.

A possible and widely studied generalization of squarefreeness is to consider
an abelian framework. A non-empty word is an abelian square (resp. abelian
cube) if it is of the form xy (resp. xyz) where y is a permutation of x (resp. y and
z are permutations of x). Erdös raised the question whether abelian squares can
be avoided by an infinite word over an alphabet of size 4 [3]. Keränen answered
positively to this question, with a pure morphic word [9]. Moreover Dekking has
previously obtained an infinite word over a 3-letter alphabet that avoids abelian
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cubes, and an infinite binary word that avoids abelian 4-powers [2]. (Note that
in all these results, the size of the alphabet is optimal.)

In this paper, we are dealing with another generalization of squarefreeness
and cubefreeness. We consider the 2-binomial equivalence which is a refinement
of the abelian equivalence, i.e., if two words x and y are 2-binomially equivalent,
then x is a permutation of y (but in general, the converse does not hold, see
Example 1 below). This equivalence relation is defined thanks to the binomial
coefficient

(
u
v

)
of two words u and v which is the number of times v occurs as

a subsequence of u (meaning as a “scattered” subword). For more on these
binomial coefficients, see for instance [10, Chap. 6]. Based on this classical
notion, the m-binomial equivalence of two words has been recently introduced
[12].

Definition 1. Let m ∈ N ∪ {+∞} and u, v be two words over the alphabet A.
We let A≤m denote the set of words of length at most m over A. We say that
u and v are m-binomially equivalent if

(
u

x

)
=

(
v

x

)
, ∀x ∈ A≤m.

We simply write u ∼m v if u and v are m-binomially equivalent. The word u is
obtained as a permutation of the letters in v if and only if u ∼1 v. In that case,
we say that u and v are abelian equivalent and we write instead u ∼ab v. Note
that if u ∼k+1 v, then u ∼k v, for all k ≥ 1.

Example 1. The four words 0101110, 0110101, 1001101 and 1010011 are 2-
binomially equivalent. Let u be any of these four words. We have

(
u

0

)
= 3,

(
u

1

)
= 4,

(
u

00

)
= 3,

(
u

01

)
= 7,

(
u

10

)
= 5,

(
u

11

)
= 6.

For instance, the word 0001111 is abelian equivalent to 0101110 but these two
words are not 2-binomially equivalent. Let a be a letter. It is clear that

(
u

aa

)

and
(
u
a

)
carry the same information, i.e.,

(
u
aa

)
=

(
|u|a
2

)
where |u|a is the number

of occurrences of a in u.

A 2-binomial square (resp. 2-binomial cube) is a non-empty word of the
form xy where x ∼2 y (resp. x ∼2 y ∼2 z). For instance, the prefix of length
12 of the Thue–Morse word: 011010011001 is a 2-binomial cube. Squares are
avoidable over a 3-letter alphabet and abelian squares are avoidable over a 4-
letter alphabet. Since 2-binomial equivalence lies between abelian equivalence
and equality, the question is to determine whether or not 2-binomial squares
are avoidable over a 3-letter alphabet. We answer positively to this question in
Section 2. The fixed point of the morphism g : 0 7→ 012, 1 7→ 02, 2 7→ 1 avoids
2-binomial squares.

In a similar way, cubes are avoidable over a 2-letter alphabet and abelian
squares are avoidable over a 3-letter alphabet. The question is to determine
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whether or not 2-binomial cubes are avoidable over a 2-letter alphabet. We also
answer positively to this question in Section 3. The fixed point of the morphism
h : 0 7→ 001, 1 7→ 011 avoids 2-binomial cubes.

Remark 1. The m-binomial equivalence is not the only way to refine the
abelian equivalence. Recently, a notion of m-abelian equivalence has been intro-
duced [8]. To define this equivalence, one counts the number |u|x of occurrences
in u of all factors x of length up to m (it is meant factors made of consecutive
letters). That is, u and v are m-abelian equivalent if |u|x = |v|x for all x ∈ A≤m.
In that context, the results on avoidance are quite different. Over a 3-letter al-
phabet 2-abelian squares are unavoidable: the longest ternary word which is
2-abelian squarefree has length 537 [6], and pure morphic words cannot avoid
k-abelian-squares for every k [7]. On the other hand, it has been shown that
there exists a 3-abelian squarefree morphic word over a 3-letter alphabet [11].
Moreover 2-abelian-cubes can be avoided over a binary alphabet by a morphic
word [11].

The number of occurrences of a letter a in a word u will be denoted either
by

(
u

a

)
or |u|a. Let A = {0, 1, . . . , k} be an alphabet. The Parikh map is an

application Ψ : A∗ → N
k+1 such that Ψ(u) = (|u|0, . . . , |u|k)

T . Note that we
will deal with column vectors (when multiplying a square matrix with a column
vector on its right). In particular, two words are abelian equivalent if and only
if they have the same Parikh vector. The mirror of the word u = u1u2 · · ·uk is
denoted by ũ = uk · · ·u2u1.

2. Avoiding 2-binomial squares over a 3-letter alphabet

Let A = {0, 1, 2} be a 3-letter alphabet. Let g : A∗ → A∗ be the morphism
defined by

g :






0 7→ 012
1 7→ 02
2 7→ 1

and thus, g2 :






0 7→ 012021
1 7→ 0121
2 7→ 02.

It is prolongable on 0: g(0) has 0 as a prefix. Hence the limit x = limn→+∞ gn(0)
is a well-defined infinite word

x = gω(0) = 012021012102012021020121 · · ·

which is a fixed point of g. Since the original work of Thue, this word x is
well-known to avoid (usual) squares. It is sometimes referred to as the ternary
Thue–Morse word. We will make use of the fact that X = {012, 02, 1} is a
prefix-code and thus an ω-code: Any finite word in X∗ (resp. infinite word in
Xω) has a unique factorization as a product of elements in X . Let us make an
obvious but useful observation.
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Observation 1. The factorization of x in terms of the elements in X permits
to write x as

x = 0α1 2α2 0α3 2α4 0α5 2α6 0 · · ·

where, for all i ≥ 1, αi ∈ {ε, 1}. That is, the image of x by the morphism
e : 0 7→ 0, 1 7→ ε, 2 7→ 2 (which erases all the 1’s) is e(x) = (02)ω.

The next property is well known. For example, it comes from the fact that
the image of the ternary Thue–Morse word by the morphism 0 7→ 011, 1 7→
01, 2 7→ 0 is the Thue–Morse word. However, for the sake of completeness, we
give a direct proof here.

Lemma 1. A word u is a factor occurring in x if and only if ũ is a factor
occurring in x.

Proof. We define the morphism g̃ : A∗ → A∗ by considering the mirror images
of the images of the letters by g,

g̃ :





0 7→ 210
1 7→ 20
2 7→ 1

and thus, g̃2 :





0 7→ 120210
1 7→ 1210
2 7→ 20.

Note that g̃ is not prolongable on any letter. But the morphism g̃2 is prolongable
on the letter 1. We consider the infinite word

y = (g̃2)ω(1) = 1210201210120210201202101210 · · · .

If v ∈ A∗ is a non-empty word ending with a ∈ A, i.e., v = ua for some word
u ∈ A∗, we denote by va−1 the word obtained by removing the suffix a from v.
So va−1 = u.

For every words r and s we have r = g2(s) ⇔ r̃ = g̃2(s̃). Obviously, u is a
factor occurring in x if and only if ũ is a factor occurring in y.

On the other hand, g̃2 is a cyclic shift of g2, since g2(a) = 0g̃2(a)0−1 for
every a ∈ {0, 1, 2}. Thus u is a factor occurring in x if and only if u is a factor
occurring in y. To summarize, u is a factor occurring in x if and only if u is a
factor occurring in y, and u is a factor occurring in y if and only if ũ is a factor
occurring in x. This concludes the proof.

We will be dealing with 2-binomial squares so, in particular, with abelian
squares. The next lemma permit to “desubstitute”, meaning that we are looking
for the inverse image of a factor under the considered morphism.

Lemma 2. Let u, v ∈ A∗ be two abelian equivalent non-empty words such that
uv is a factor occurring in x. There exists u′, v′ ∈ A∗ such that u′v′ is a factor
of x, and either:

1. u = g(u′) and v = g(v′);

2. or, ũ = g(v′) and ṽ = g(u′).
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Proof. We will make an extensive use of Observation 1. Note that u and v

must contain at least one 0 or one 2. Obviously e(uv) is an abelian square of
(02)ω, thus either e(u) = e(v) = (02)i or e(u) = e(v) = (20)i for an i > 0.

If e(u) = e(v) = (02)i, then we have u = a 0 · · · 2 b and v = c 0 · · · 2 d with
a, b, c, d ∈ {ε, 1}. In this case, we deduce that u and v belong to X∗. Otherwise
stated, since uv is a factor of x, there exists a factor u′v′ in x such that g(u′) = u

and g(v′) = v.
Otherwise we have e(u) = e(v) = (20)i. Thanks to Lemma 1, ṽũ is a factor

occurring in x, and e(ũ) = e(ṽ) = (02)i. Thus we are reduced to the previous
case, and there is a factor u′, v′ in x such that g(u′) = ṽ and g(v′) = ũ.

Let u be a word. We set

λu :=

(
u

01

)
−

(
u

12

)
.

When we use the desubstitution provided by the previous lemma, the shorter
factors u′ and v′ derived from u and v keep properties from their ancestors.

Lemma 3. Let u, v ∈ A∗ be two abelian equivalent non-empty words such that
uv is a factor occurring in x. Let u′, v′ be given by Lemma 2. If λu = λv, then
u′ and v′ are abelian equivalent and λu′ = λv′ .

Proof. If we are in the second situation described by Lemma 2, then ṽũ is also
a factor occurring in x. Obviously ṽ and ũ are also abelian equivalent, λṽ = λũ

and the case is reduced to the first situation.
Assume now w.l.o.g. that we are in the first situation, that is, u = g(u′) and

v = g(v′). First observe that we have, for all a, b ∈ A, a 6= b,

(
u′

ab

)
=

(
|u′|a + |u′|b

2

)
−

(
|u′|a
2

)
−

(
|u′|b
2

)
−

(
u′

ba

)
. (1)

Since u = g(u′), we derive that

(
u

01

)
= |u′|0+

(
u′

00

)
+

(
u′

02

)
+

(
u′

12

)
+

(
|u′|0 + |u′|1

2

)
−

(
|u′|0
2

)
−

(
|u′|1
2

)
−

(
u′

01

)
,

(
u

12

)
= |u′|0 +

(
u′

00

)
+

(
u′

01

)
+

(
|u′|1 + |u′|2

2

)
−

(
|u′|1
2

)
−

(
|u′|2
2

)
−

(
u′

12

)

+

(
|u′|0 + |u′|2

2

)
−

(
|u′|0
2

)
−

(
|u′|2
2

)
−

(
u′

02

)
.

Hence

λu = 2

[(
u′

02

)
−

(
u′

01

)
+

(
u′

12

)
−

(
|u′|2
2

)]
+

(
|u′|0 + |u′|1

2

)
−

(
|u′|1 + |u′|2

2

)
−

(
|u′|0 + |u′|2

2

)
.

Similar relations hold for v.
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Since u′ and v′ occur in x, from Observation 1, we get

||u′|0 − |u′|2| ≤ 1 and ||v′|0 − |v′|2| ≤ 1. (2)

Since u ∼ab v, we have |u|1 = |v|1. Hence, from the definition of g, |u′|0+ |u′|2 =
|v′|0 + |v′|2. In the same way, |u|2 = |v|2 implies that |u′|0 + |u′|1 = |v′|0 + |v′|1
or equivalently, |u′|1 − |v′|1 = |v′|0 − |u′|0. From the above relation and (2), we
get

||v′|0 − |u′|0 + |u′|2 − |v′|2| ≤ 2 and |u′|2 − |v′|2 = |v′|0 − |u′|0.

Hence the difference of the following two Parikh vectors can only take three
values

Ψ(u′)−Ψ(v′) ∈







0
0
0


 ,




1
−1
−1


 ,



−1
1
1






 .

To prove that u′ and v′ are abelian equivalent, we will rule out the last two
possibilities.

By assumption, λu = λv. So this relation also holds modulo 2. Hence
(
|u′|0 + |u′|1

2

)
−

(
|u′|1 + |u′|2

2

)
−

(
|u′|0 + |u′|2

2

)

≡

(
|v′|0 + |v′|1

2

)
−

(
|v′|1 + |v′|2

2

)
−

(
|v′|0 + |v′|2

2

)
(mod 2).

Assume that we have

Ψ(u′)−Ψ(v′) =




1
−1
−1



 , i.e.,

|u′|0 + |u′|1 = |v′|0 + |v′|1,
|u′|0 + |u′|2 = |v′|0 + |v′|2,
|u′|1 + |u′|2 = |v′|1 + |v′|2 − 2.

This leads to a contradiction because then
(
|u′|1 + |u′|2

2

)
6≡

(
|v′|1 + |v′|2

2

)
(mod 2).

Indeed, it is easily seen that
(
4n
2

)
≡ 0 (mod 2),

(
4n+1

2

)
≡ 0 (mod 2),

(
4n+2

2

)
≡ 1

(mod 2) and
(
4n+3

2

)
≡ 1 (mod 2).

The case Ψ(u′)−Ψ(v′) =
(

−1
1
1

)
is handled similarly. So we can assume now

that Ψ(u′) = Ψ(v′), that is, u′ ∼ab v′. It remains to prove that λu′ = λv′ . By
assumption λu = λv, and from the above formula describing λu (resp. λv) we
get (

u′

02

)
−

(
u′

01

)
+

(
u′

12

)
=

(
v′

02

)
−

(
v′

01

)
+

(
v′

12

)
.

To conclude that λu′ = λv′ , we should simply show that
(
u′

02

)
=

(
v′

02

)
. But u′v′

is a factor occurring in x (from Observation 1, when discarding the 1’s in u′v′

we just get a word made of alternating 0’s and 2) and u′ ∼ab v
′. This concludes

the proof.

6



Theorem 4. The word x = gω(0) = 012021012102012021020121 · · · avoids 2-
binomial squares.

Proof. Assume to the contrary that x contains a 2-binomial square uv where u
and v are 2-binomially equivalent. In particular, u and v are abelian equivalent
and moreover λu = λv. We can therefore apply iteratively Lemma 2 and the
above lemma to words of decreasing lengths and get finally a repetition aa with
a ∈ A in x. But x does not contain any such factor.

Remark 2. The fixed point of g is a 2-binomial-squarefree word, i.e., it does not
contain any 2-binomial square, but g is not a 2-binomial-squarefree morphism:
the image of a 2-binomial-squarefree word may contain a 2-binomial-square (e.g.,
g(010) = 01202012 contains the square 2020).

3. Avoiding 2-binomial cubes over a 2-letter alphabet

Consider the morphism h : 0 7→ 001 and h : 1 7→ 011. A word is 2-binomial-
cubefree if it does not contain any 2-binomial cube. In this section, we show
that h is a 2-binomial-cubefree morphism: for every 2-binomial-cubefree binary
word w, h(w) is 2-binomial-cubefree. As a direct corollary, we get that the fixed
point of h,

z = hω(0) = 001001011001001011001011011 · · ·

avoids 2-binomial cubes.
Let u be a word over {0, 1}. The extended Parikh vector of u is

Ψ2(u) =

(
|u|0, |u|1,

(
u

00

)
,

(
u

01

)
,

(
u

10

)
,

(
u

11

))T

.

Observe that two words u and v are 2-binomially equivalent if and only if
Ψ2(u) = Ψ2(v).

Consider the matrix Mh given by

Mh =




2 1 0 0 0 0
1 2 0 0 0 0
1 0 4 2 2 1
2 2 2 4 1 2
0 0 2 1 4 2
0 1 1 2 2 4




.

One can check that Mh is invertible. We will make use of the following obser-
vations:

Proposition 5. For every u ∈ {0, 1}∗,

Ψ2(h(u)) = MhΨ2(u).
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Proposition 6. Let u = 1x and u′ = x1 be two words over {0, 1}. We have
|u|0 = |u′|0, |u|1 = |u′|1,
(
u

00

)
=

(
u′

00

)
,

(
u

11

)
=

(
u′

11

)
,

(
u′

01

)
=

(
u

01

)
+ |u|0,

(
u′

10

)
=

(
u

10

)
− |u|0.

In particular, if 1x ∼2 1y, then x1 ∼2 y1. Similar relations hold for 0x and x0.
In particular, if x0 ∼2 y0, then 0x ∼2 0y.

Let x, y ∈ {0, 1}. We set δx,y = 1, if x = y; and δx,y = 0, otherwise.

Lemma 7. Let p′, q′ and r′ be binary words, and let a, b ∈ {0, 1}. Let p =
h(p′) 0, q = a 1 h(q′) 0 b and r = 1 h(r′). Then either p 6∼2 q or p 6∼2 r.

Proof. Assume, for the sake of contradiction, that p ∼2 q ∼2 r. Then |p′| =
|q′| + 1 = |r′| = n. The following relations can mostly be derived from the
coefficients of Mh (we also have to take into account the extra suffix 0 of p,
respectively the extra prefix 1 in r):

(
p

01

)
= 2

(
p′

0

)
+ 2

(
p′

1

)
+ 2

(
p′

00

)
+ 4

(
p′

01

)
+

(
p′

10

)
+ 2

(
p′

11

)
,

(
p

10

)
=

(
p′

0

)
+ 2

(
p′

1

)
+ 2

(
p′

00

)
+

(
p′

01

)
+ 4

(
p′

10

)
+ 2

(
p′

11

)
,

⇒

(
p

01

)
−

(
p

10

)
=

(
p′

0

)
+ 3

(
p′

01

)
− 3

(
p′

10

)
;

(
r

01

)
= 2

(
r′

0

)
+ 2

(
r′

1

)
+ 2

(
r′

00

)
+ 4

(
r′

01

)
+

(
r′

10

)
+ 2

(
r′

11

)
,

(
r

10

)
= 2

(
r′

0

)
+

(
r′

1

)
+ 2

(
r′

00

)
+

(
r′

01

)
+ 4

(
r′

10

)
+ 2

(
r′

11

)
,

⇒

(
r

01

)
−

(
r

10

)
=

(
r′

1

)
+ 3

(
r′

01

)
− 3

(
r′

10

)
.

We also get the following relations:
(
q

01

)
= 2

(
q′

0

)
+ 2

(
q′

1

)
+ 2

(
q′

00

)
+ 4

(
q′

01

)
+

(
q′

10

)
+ 2

(
q′

11

)

+δa,0

[
1 +

(
q′

0

)
+ 2

(
q′

1

)
+ δb,1

]
+ δb,1

[
1 + 2

(
q′

0

)
+

(
q′

1

)]
,

(
q

10

)
= 3

(
q′

0

)
+ 3

(
q′

1

)
+ 2

(
q′

00

)
+

(
q′

01

)
+ 4

(
q′

10

)
+ 2

(
q′

11

)
+ 1

+δa,1

[
1 + δb,0 + 2

(
q′

0

)
+

(
q′

1

)]
+ δb,0

[
1 +

(
q′

0

)
+ 2

(
q′

1

)]

= (6− 2δa,0 − δb,1)

(
q′

0

)
+ (6− δa,0 − 2δb,1)

(
q′

1

)
+ 4− 2δa,0 − 2δb,1 + δa,0δb,1

+2

(
q′

00

)
+

(
q′

01

)
+ 4

(
q′

10

)
+ 2

(
q′

11

)
.

8



Where for the last equality, we have used the fact that δa,1 = 1 − δa,0 and
δb,0 = 1− δb,1. Finally, we obtain

(
q

01

)
−

(
q

10

)
= (−4+3δa,0+3δb,1)

[(
q′

0

)
+

(
q′

1

)]
+3

(
q′

01

)
−3

(
q′

10

)
−4+3δa,0+3δb,1.

Since p ∼2 q ∼2 r, we have
(
p

10

)
−

(
p

01

)
=

(
q

10

)
−

(
q

01

)
=

(
r

10

)
−

(
r

01

)
. In

particular, these equalities modulo 3 give

(
p′

0

)
≡

(
r′

1

)
≡ 2

[(
q′

0

)
+

(
q′

1

)
+ 1

]
≡ 2n (mod 3). (3)

Now, we take into account the fact that p and r are abelian equivalent to get a
contradiction. Since p = h(p′) 0 and r = 1 h(r′), we get

(
|p|0
|p|1

)
=

(
2 1
1 2

)(
|p′|0
|p′|1

)
+

(
1
0

)
,

(
|r|0
|r|1

)
=

(
2 1
1 2

)(
|r′|0
|r′|1

)
+

(
0
1

)
.

Hence, we obtain

(
|p|0 − |r|0
|p|1 − |r|1

)
=

(
0
0

)
=

(
2 1
1 2

)(
|p′|0 − |r′|0
|p′|1 − |r′|1

)
+

(
1
−1

)
.

We derive that |p′|0−|r′|0 = −1 and |p′|1−|r′|1 = 1. Recall that |p′|0+|p′|1 = n.
If we subtract the last two equalities, we get |p′|0 + |r′|1 = n− 1. From (3), we
know that |p′|0 ≡ |r′|1 (mod 3). Hence 2|p′|0 ≡ n− 1 (mod 3) and thus

|p′|0 ≡ 2n− 2 (mod 3).

This contradicts the fact again given by (3) that |p′|0 ≡ 2n (mod 3).

Similarly, one get the following lemma.

Lemma 8. Let p′, q′ and r′ be binary words, and let a, b ∈ {0, 1}. Let p =
h(p′) 0 a, q = 1 h(q′) 0 and r = b 1 h(r′). Then either p 6∼2 q or p 6∼2 r.

Proof. Assume, for the sake of contradiction, that p ∼2 q ∼2 r. Then |p′| =
|q′| = |r′| = n. Taking into account the special form of p and q, we get

(
p

01

)
= 2

(
p′

0

)
+2

(
p′

1

)
+2

(
p′

00

)
+4

(
p′

01

)
+

(
p′

10

)
+2

(
p′

11

)
+δa,1

(
1+2

(
p′

0

)
+

(
p′

1

))
,

(
p

10

)
=

(
p′

0

)
+2

(
p′

1

)
+2

(
p′

00

)
+

(
p′

01

)
+4

(
p′

10

)
+2

(
p′

11

)
+δa,0

((
p′

0

)
+2

(
p′

1

))
,

(
q

01

)
= 2

(
q′

0

)
+ 2

(
q′

1

)
+ 2

(
q′

00

)
+ 4

(
q′

01

)
+

(
q′

10

)
+ 2

(
q′

11

)
,

(
q

10

)
= 3

(
q′

0

)
+ 3

(
q′

1

)
+ 2

(
q′

00

)
+

(
q′

01

)
+ 4

(
q′

10

)
+ 2

(
q′

11

)
+ 1.
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Hence, we get
(
p

01

)
−

(
p

10

)
= −2

(
p′

1

)
+ 3

(
p′

01

)
− 3

(
p′

10

)
+ δa,1

(
1 + 3

(
p′

0

)
+ 3

(
p′

1

))
,

(
q

01

)
−

(
q

10

)
= −

(
q′

0

)
−

(
q′

1

)
+ 3

(
q′

01

)
− 3

(
q′

10

)
− 1.

Since, p ∼2 q, the last two relations evaluated modulo 3 give

|p′|1 + δa,1 ≡ 2n+ 2 (mod 3). (4)

Similarly, the form of r gives the following relations
(
r

01

)
= 2

(
r′

0

)
+2

(
r′

1

)
+2

(
r′

00

)
+4

(
r′

01

)
+

(
r′

10

)
+2

(
r′

11

)
+δb,0

(
1+

(
r′

0

)
+2

(
r′

1

))
,

(
r

10

)
= 2

(
r′

0

)
+

(
r′

1

)
+2

(
r′

00

)
+

(
r′

01

)
+4

(
r′

10

)
+2

(
r′

11

)
+δb,1

(
2

(
r′

0

)
+

(
r′

1

))
,

(
r

01

)
−

(
r

10

)
= −2

(
r′

0

)
+ 3

(
r′

01

)
− 3

(
r′

10

)
+ δb,0

(
1 + 3

(
r′

0

)
+ 3

(
r′

1

))

Since, p ∼2 r, the last two relations evaluated modulo 3 give

|p′|1 + δa,1 ≡ |r′|0 + δb,0 (mod 3). (5)

Now, we take into account the fact that p, q and r are abelian equivalent to get
a contradiction. The following two vectors are equal:
(
|p|0
|p|1

)
=

(
2 1
1 2

)(
|p′|0
|p′|1

)
+

(
1 + δa,0
δa,1

)
,

(
|r|0
|r|1

)
=

(
2 1
1 2

)(
|r′|0
|r′|1

)
+

(
δb,0

1 + δb,1

)
.

We derive easily that

|p′|1 − |r′|1 = 1 + δa,0 − δb,0.

On the one hand, using the latter relation and (5)

|r′|1 + 1 + δa,0 − δb,0 + δa,1 = |p′|1 + δa,1 ≡ |r′|0 + δb,0 (mod 3)

Replacing |r′|0 by n−|r′|1, we get 2|r
′|1+2 ≡ n+2δb,0 (mod 3), or equivalently

|r′|1 + 1 ≡ 2n+ δb,0 (mod 3).

On the other hand, using (4),

|r′|1 + 1 + δa,0 − δb,0 + δa,1 = |p′|1 + δa,1 ≡ 2n+ 2 (mod 3)

and thus,
|r′|1 ≡ 2n+ δb,0 (mod 3).

We get a contradiction, 2n+ δb,0 should be congruent to both |r′|1 and |r′|1 +1
modulo 3.
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We are ready to prove the main theorem of this section.

Theorem 9. Let h : 0 7→ 001, 1 7→ 011. For every 2-binomial-cubefree word
w ∈ {0, 1}∗, h(w) is 2-binomial-cubefree.

Proof. Let w be a 2-binomial-cubefree binary word. Assume that h(w) =
z0 . . . z3|w|−1 contains a 2-binomial cube pqr occurring in position i, i.e., p ∼2

q ∼2 r and w = w′ p q r w′′, where |w′| = i. We consider three cases depending
on the size of p modulo 3.

As a first case, assume that |p| = 3n. We consider three sub-cases depending
on the position i modulo 3.

1.a) Assume that i ≡ 2 (mod 3). Then p, q, r have 1 as a prefix and the
letter following r in h(w) is the symbol zi+9n = 1. Hence, the word 1−1pqr1
occurs in h(w) in position i+1 and it is again a 2-binomial cube. Indeed, thanks
to Proposition 6, we have 1−1p1 ∼2 1−1q1 ∼2 1−1r1. This case is thus reduced
to the case where i ≡ 0 (mod 3).

1.b) Assume that i ≡ 1 (mod 3). Then p, q, r have 0 as a suffix and the
letter preceding p in h(w) is the symbol zi−1 = 0. Hence, the word 0pqr0−1

occurs in h(w) in position i − 1 and it is also a 2-binomial cube. Thanks to
Proposition 6, we have 0p0−1 ∼2 0q0−1 ∼2 0r0−1. Again this case is reduced
to the case where i ≡ 0 (mod 3).

1.c) Assume that i ≡ 0 (mod 3). In this case, we can desubstitute: there
exist three words p′, q′, r′ of length n such that h(p′) = p, h(q′) = q, h(r′) = r

and p′q′r′ is a factor occurring in w. We have Ψ2(p) = Ψ2(q) = Ψ2(r). By
Proposition 5, and since Mh is invertible, we have Ψ2(p

′) = Ψ2(q
′) = Ψ2(r

′),
meaning that w contains a 2-binomial cube p′q′r′.

As a second case, assume that |p| = 3n+ 1. In this case, one of p, q and r

occur in position 0 modulo 3, one in position 1 modulo 3, and one in position 2
modulo 3. Suppose w.l.o.g. that p occur in position 0 modulo 3, and q in position
1 modulo 3. Then there are three factors p′, q′ and r′ in w, and a, b ∈ {0, 1}
such that p = h(p′) 0, q = a 1 h(q′) 0 b and r = 1 h(r′). By Lemma 7, this is
impossible.

For the final case, assume that |p| = 3n + 2. In this case again, one of p,
q and r occur in position 0 modulo 3, one in position 1 modulo 3, and one in
position 2 modulo 3. Suppose w.l.o.g. that p occur in position 0 modulo 3,
and q in position 1 modulo 3. Then there are three factors p′, q′ and r′ in w,
and a, b ∈ {0, 1} such that p = h(p′) 0 a, q = 1 h(q′) 0 and r = b 1 h(r′). By
Lemma 8, this is impossible.

Corollary 10. The infinite word z = 001001011 · · · fixed point of h : 0 7→
001, 1 7→ 011 avoids 2-binomial cubes.

4. Open problems

There are sufficient conditions for a morphism to be abelian or k-abelian-
powerfree [1, 2, 11]. It seems more difficult to find sufficient conditions for a
morphism to be k-binomial-powerfree. One can raise the following question.
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Question 1. Give a non-trivial 2-binomial-squarefree morphism (that is, a mor-
phism f such that f(w) is 2-binomial-squarefree if w is 2-binomial-squarefree).

As shown in Section 3, the morphism 0 7→ 001, 1 7→ 011 is 2-binomial-cubefree.
Every infinite binary word contains arbitrarily long abelian squares, while

ones exist which avoid squares of period at least 3 [4]. Moreover, it is possible to
construct a binary word with only 3 squares: 00, 11 and 0101 [5]. A computer
experiment shows the following.

Fact 1. It is impossible to construct an infinite binary word with only 3 different
2-binomial-squares.

One can then ask the following questions.

Question 2. Is there k ≥ 3 such that one can construct an infinite binary word
with only 3 different k-binomial-squares ?

Question 3. Is there k ≥ 4 such that one can construct an infinite binary word
with only k different 2-binomial-squares ?
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[6] M. Huova, J. Karhumäki, Observations and problems on k-abelian avoid-
ability, In Combinatorial and Algorithmic Aspects of Sequence Processing
(Dagstuhl Seminar 11081), (2011) 2215-2219.
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