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The purpose of this work is to study heat conduction in systems that are composed out of spherical 
micro-and nanoparticles dispersed in a bulk matrix. Special emphasis will be put on the dependence of 
the effective heat conductivity on various selected parameters as dimension and density of particles, 
interface interaction with the matrix. This is achieved by combining the effective medium approximation 
and extended irreversible thermodynamics, whose main feature is to elevate the heat flux vector to the 
status of independent variable. The model is illustrated by three examples: Silicium-Germanium, Silica-
epoxy-resin and Copper-Silicium systems. Predictions of our model are in good agreement with other 
theoretical models, Monte-Carlo simulations and experimental data. 
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1.   Introduction 

We investigate in this work some particular properties 
of heat conduction in nanocomposites. Nanocomposites 
know a huge variety of applications, such as heat 
conduction enhancement in polyesters (see Ref. 1) or 
energy storage systems (see Ref. 2), to mention a few. 
The change in thermal conductivity has also been 
exploited to increase the figure of merit ZT of 
thermoelectric materials which behaves as the inverse 
of the heat conductivity.3 The nanocomposite is 
generally made out of a homogeneous matrix in which 
nanoparticles are dispersed. For particles with 
diameters of the same order of magnitude or smaller 
than the phonon mean free path, the Fourier theory, 
based on the classical approach of thermodynamics, is 
not able to predict the heat flux thermal interactions 
between the matrix and the nanoparticles. Therefore, we 
propose to investigate the problem of heat conduction 
in nanocomposites by a more sophisticated 

thermodynamic formalism, namely Extended 
Irreversible Thermodynamics (EIT).4 In this approach, 
the heat flux is elevated to the status of independent 
variable at the same footing as the temperature. EIT has 
been successfully applied to transient heat transport in 
nanofilms in a previous paper.5  
The main problem investigated in the present work is 
the determination of the effective heat conductivity for 
several nanocomposites. We will make use of the 
effective-medium approach (see Ref. 6) which provides 
a process of homogenization of the heterogeneous 
medium formed by the matrix and the particles. The 
basic formula for the effective heat conductivity 
coefficient ݇௘௙௙ is Maxwell’s relation (see Refs. 7 and 
8) 
 

݇௘௙௙ = ݇௠
ଶ௞೘ା(ଵାଶఈ)௞೛ାଶఝൣ(ଵିఈ)௞೛ି௞೘൧
ଶ௞೘ା(ଵାଶఈ)௞೛ିఝൣ(ଵିఈ)௞೛ି௞೘൧

.            (1) 
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In this expression, ݇௠ and ݇௣ designate the heat 
conductivities of the matrix and the suspended particles 
respectively, ߮ is the volume fraction of the particles 
and ߙ is a dimensionless parameter describing the 
particle-matrix interaction: 
 
ߙ = ܴ݇௠/ܽ௣,௦.        (2) 
 
The quantity ܴ is the thermal boundary resistance 
coefficient (see Ref. 9) given by  
 
  
ܴ = ௠ݒ௠ܥ/4 +  ௣,     (3)ݒ௣ܥ/4
 
 while ap,s is the so-called  “specular” radius  defined by  
 
ܽ௣,௦ = ܽ௣(1 + −1)/(ݏ  (4)   ,(ݏ
 
with ܽ௣ the radius of the nanoparticle. The symbols ܥ௠, 
  ௣ in (3) stand for the specific heat capacitiesݒ ௣andܥ ,௠ݒ
and  group velocities of the bulk matrix and the 
particles, respectively. In expression (4) of  ܽ௣,௦, the 
symbol 0) ݏ ≤ ݏ ≤ 1) denotes the surface specularity of 
the nano-particles, expressing the probability of 
specular scattering of phonons on the particle-matrix 
interface. For ݏ = 0, the surface is called diffuse, 
meaning that the direction of phonons after impact is 
independent of the direction of the impacting phonons, 
in which case ܽ௣,௦ is simply the particle radius ܽ௣. For 
ݏ → 1, we have a surface on which the impacting 
phonons influence the direction of the out coming 
phonons and the surface is said to be perfectly specular. 
Note that the result (3) was established in the case of 
diffusive surfaces.10 

An expression for ݇௠ is established in the framework 
of the effective-medium approach (see Refs. 6, 9, 11 
and 12), while ݇௣ will be derived from EIT. In the next 
section, we propose expressions for the matrix and 
particle thermal conductivities and discuss the use of 
EIT. Our model will be applied to a Silicium-
Germanium system (Si-Ge), comparing it to Monte-
Carlo simulations from the literature. Subsequently, the 
model is compared to two theoretical models for a 
Copper-Silicium (Cu-Si) mixture and finally the results 
for a Silica-epoxy-resin system (SiO2-epoxy-resin)  are 
faced  to experimental results. 

2.   Methods: Thermal Conductivity by 
Extended Irreversible Thermodynamics  

For the heat conductivity of the matrix, we use the 
classical Boltzmann-Peierls phonon  expression  
 
݇௠ = ଵ

ଷ
ೝ೐೑்|(௠Λ௠ݒ௠ܥ) .     (5)

   
௥ܶ௘௙  is the reference temperature, say the room 

temperature. Within the matrix, the phonons experience 
phonon-phonon interactions and the mean free path is 
given by the Matthiessen rule: 
 
ଵ
ஃ೘

= ଵ
ஃ೘,್

+ ଵ
ஃ೘,೎೚೗೗

.       (6)  

 
with Λ௠,௕ designating the mean free path in the bulk 
and Λ௠,௖௢௟௟  the supplementary contribution due to the 
interactions at the particle-matrix interface given by 
(see Ref. 9) 
 
Λ௠,௖௢௟௟ = 4ܽ௣,௦/3߮.     (7) 
 
Concerning the derivation of ݇௣, we propose a new 
closed-form formula   
 
݇௣ = ݇௣଴	݂(݊ܭ,  (8)     ,(ݏ

 
wherein ݇௣଴ is the value of  the thermal conductivity for 
the bulk material of which the particle is composed of  
and given  by an expression similar to (5): 
 
݇௣଴ = ଵ

ଷ
ೝ೐೑்|(௣Λ௣,௕ݒ௣ܥ) ,    (9) 

  
the quantity ݂(݊ܭ,  a correction factor, taking into (ݏ
account the dimension of the nanoparticles and their 
specularity,	݊ܭ is the Knudsen number defined as the 
ratio of the mean free path of the phonons inside the 
particle Λ௣,௕, and the “specular” radius a௣,௦ of the 
particle: 
 
݊ܭ = Λ௣,௕/a௣,௦.       (10) 
 
Expression (9) is analogous to that used for the matrix 
with the exception that now the mean free path is the 
bulk one (so that Λ௣ = Λ௣,௕), the contribution of the 
collisions being hidden in the correction factor ݂(݊ܭ). 
The latter will be determined by referring to EIT.  
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At nanoscales, heat transport is mostly influenced by 
non-local effects. Non-local effects are introduced in 
the framework of EIT by appealing to a hierarchy of 
fluxes ࡽ(ଵ), ࡽ(ଶ), ..., ࡽ(௡) with ࡽ(ଵ) being identified 
with the heat flux vector ࡽ ,ࢗ(ଶ) (a tensor of rank two) 
being the flux of the heat flux, ࡽ(ଷ) the flux of ࡽ(ଶ) and 
so on. From the kinetic theory point of view, the 
quantities ࡽ(ଶ)and ࡽ(ଷ) represent the higher moments 
of the velocity distribution. Omitting non-linear 
contributions in the fluxes, the hierarchy of equations 
can be cast in the form (see for more details chapter 4 
in Ref. 4) 
 
∇ܶିଵ − (ଵ)ࡽଵ߲௧ߙ + ∇ଵߚ ∙ (ଶ)ࡽ =  (11)             ,(ଵ)ࡽଵߤ
 
(௡ିଵ)ࡽ∇௡ିଵߚ − (௡)ࡽ௡߲௧ߙ + ∇௡ߚ ∙ (௡ାଵ)ࡽ =  ,(௡)ࡽ௡ߤ
(݊ = 2,3, …),      (12)
        
where ߲௧ stands for the time derivative, and ߙ௜, ߚ௜ and 
 ௜ are phenomenological coefficients related to theߤ
relaxation times, correlation lengths and transport 
coefficients, respectively. Equation (11) reduces to the 
well-known law of Cattaneo (see Ref. 13) when the 
term ∇ ∙  is omitted. We now consider an infinite (ଶ)ࡽ
number of flux variables (݊ → ∞) and apply the spatial 
Fourier transform  
 
,࢑)ෝࢗ (ݐ = ∫ ,࢘)ࢗ ାஶ࢘⋅௜࢑ି݁(ݐ

ିஶ ݀࢘           (13) 
 
to Eqs. (11) and (12), with ࢗෝ the Fourier transform of ࢗ, 
࢘ the spatial variable, ݐ the time and ࢑ the wavenumber 
vector. This procedure results into obtaining the 
following time-evolution equation for the heat flux: 
 
߬̅(࢑)߲௧ࢗෝ(࢑, (ݐ + ,࢑)ෝࢗ (ݐ = −݅࢑݇௣(࢑) ෠ܶ(࢑,  (14)    (ݐ
 
where ߬̅(࢑) =  ଵ designates a renormalizedߤ/ଵߙ
relaxation time depending generally on ࢑. ݇௣(࢑) is 
given by the continued-fraction for the ࢑–dependent 
effective thermal conductivity: 
 

݇௣(࢑) = ௞೛బ

ଵା ࢑૛೗భ
మ

భశ
࢑૛೗మ

మ

૚శ
࢑૛೗య

మ
૚శ⋯

,     (15) 

 
with ݇௣଴ the classical bulk thermal conductivity, given 
by Eq. (9),  independent of the dimension of the system, 

݈௡ is the correlation length of order n defined by ݈௡ଶ =
 Here, it is assumed that the relaxation .(௡ାଵߤ௡ߤ)/௡ଶߚ
times ߬௡ (݊ > 1) corresponding to higher order fluxes 
are negligible with respect to ߬ଵ, which is a hypothesis 
generally admitted in kinetic theories. In the present 
problem, there is only one dimension, namely the radius 
ܽ௣,௦ of the spheres, so that it is natural to define ݇ ≡
௣,௦. The correlation lengths selected as ݈௡ଶܽ/ߨ2 =
ܽ௡ାଵ݈ଶ, with ܽ௡ = ݊ଶ/(4݊ଶ − 1) and ݈ identified as the 
mean free path independently of the order of 
approximation. This is a rather natural choice for 
phonons as shown by Dreyer and Struchtrup.14 With 
these resukts in mind, the continued fraction (15) 
reduces to an asymptotic limit (see Ref. 15), leading 
finally to the following expression for ݇௣: 
 

݇௣ = 	 ଷ௞೛బ

ସగమ௄௡మ
ቂ ଶగ௄௡
௔௥௖௧௔௡(ଶగ௄௡)

− 1ቃ.     (16) 
 

3.   Results 

In this section, the model is applied to the Si-Ge and 
Cu-Si composites and SiO2-epoxy-resin. The results are 
compared to Monte Carlo simulations, theoretical 
models and experimental results. 
 
3.1.   Si-Ge Composite; Comparison with Monte 

Carlo Simulations 

The model is firstly applied to Si spherical 
nanoparticles dispersed into a Ge matrix. The values for 
the specific heat capacity, phonon group velocity and 
bulk mean free path for these two components are given 
in Table 1, evaluated at room temperature. Most of the 
values in this table are obtained from the so-called 
dispersion model as proposed by Chen.10 

 
Table1: Phonon properties for bulk materials at room 
temperature ( ௥ܶ௘௙) 

Material Heat 
capacity  
[MJ/(m3K)] 

Group 
velocity  
[m/s] 

Mean free 
path  
[nm] 

Si  0.93a  1804a 268a 
Ge  0.87a 1042a 171a 
SiO2 1.687b 4400b 0.558b 

Epoxy resin 1.91c 2400c 0.11d 

Cu 3.47e 7723f 45g 

aRefs. 11, 12 and 16 
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bRef. 17 
cRef. 18 
dRef. 10 
eRef. 19 
fCalculated from ݒ = -Λ௕ by considering ݇=402 Wmܥ/3݇

1K-1 from Ref. 20 
gRef. 20 
 
For this example, we consider four values of the particle 
radius ܽ௣ (5, 25, 50 and 100 nm) and four values for the 
specularity parameter ݏ (0.5 ,0.2 ,0 and 1), note that all 
the values of the particles radii are smaller than the 
mean free path of phonons in Si. The results for the 
effective thermal conductivity as a function of the 
volume fraction of the nanoparticle are reported on 
Figs. 1 through 4. Results from Monte-Carlo 
simulations (see Ref. 21) are shown for comparison for 
particle radii ܽ௣ of 5, 25 and 100 nm. Although the Si 
nanoparticles have a larger bulk heat conductivity than 
the matrix Ge, one observes a decrease of the effective 
thermal conductivity of the whole system, whereas one 
should expect an increase. However, according to (16), 
the main cause of variation of the thermal conductivity 
is, besides the thermal boundary resistance of the 
interface, the dimension of the nanoparticles:  the 
smaller is the radius, the smaller is the effective  heat 
conductivity. 
Comparison with values from the literature (see Refs. 9 
and 11) shows a good correspondence for several 
particle radii and surface specularities, except for large 
particle radii and high values of the specularity  
parameter for which higher effective thermal 
conductivities are predicted. Monte-Carlo simulations 
indicate a good agreement with our model for 
specularities ranging from ݏ = 0 to ݏ = 0.2, depending 
on the particle radius. This implies that for Si-Ge 
systems, the specularity parameter should be 
approximately between s=0 and s=0.2, so that a rather 
diffuse surface is expected.  
 

 
Fig. 1: Effective thermal conductivity of the nano-
composite Si-Ge as a function of the volume fraction 
(߮) of Si particles for different ݏ values with radius: 
ܽ௣ = 5 nm. Monte Carlo simulations (see Ref. 21) are 
shown in filled circles. 
 

 
Fig. 2:  Effective thermal conductivity of the nano-
composite Si-Ge as a function of the volume fraction 
(߮) of Si particles for different ݏ values with radius: 
ܽ௣ = 25 nm. Monte Carlo simulations (see Ref. 21) are 
shown in filled circles. 
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Fig. 3:  Effective thermal conductivity of the nano-
composite Si-Ge as a function of the volume fraction 
(߮) of Si particles for different ݏ values with radius: 
ܽ௣ = 50 nm.  
 
 

 
Fig. 4: Effective thermal conductivity of the nano-
composite Si-Ge as a function of the volume fraction 
(߮) of Si particles for different ݏ values with radius: 
ܽ௣ = 100 nm. Monte Carlo simulations (see Ref. 21) 
are shown in filled circles. 
 

3.2.   Cu-Si Composite; Comparison with Recent 
Models  

 
 

 
Fig. 5: Effective thermal conductivity of the nano-
composite Cu-Si as a function of the volume fraction 
(߮) of Cu particles for different particle radii: ܽ௣ = 50, 
500, 900 and 3000 nm ( ݏ = 0). Comparison with 
theoretical models (see Refs. 6 and 20). 

 
A further check of the validity of the model is provided 
by calculating the effective heat conductivity of a 
different material, namely Cu particles dispersed in a Si 
matrix, see Fig. 5 where the results of our approach are 
compared with those of Nan et al. (see Ref. 6) and 
Ordonez and Alvarado (see Ref. 20). The values for the 
specific heat capacity, phonon group velocity and bulk 
mean free path for Cu and Si are given in Table 1, four 
values of the particle radius are considered (ܽ௣= 50, 
500, 900 and 3000 nm), ranging from nano- to micro-
dimensions. The specularity parameter is ݏ = 0. It is 
observed that the agreement with Ordonez and 
Alvarado (see Ref. 20) is satisfactory but weak 
concerning Nan et al. (see Ref. 6), especially for small 
particles (ܽ௣ < 500 nm). The expression for ݇௘௙௙ 
obtained by Nan et al. is based on Fourier’s law whose 
validity is questionable at small length scales. It is 
worth to stress that our model leads to good results, 
even within the Fourier limit.  
  

3.3.   SiO2-Epoxy Resin; Comparison with 
Experimental Results 

The system with SiO2 nanoparticles embedded in an 
epoxy resin is investigated because it offers the 
opportunity to compare with experimental data.22 The 
values for the specific heat capacity, phonon group 
velocity and bulk mean free path for SiO2 and the epoxy 
resin are given in Table 1. Fig. 6 shows the results for 
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ܽ௣ = 10 nm, while Fig. 7 presents a zoom for volume 
fractions between ߮ = 0 and ߮ = 0.1.  
 

 
Fig. 6: Effective thermal conductivity of SiO2-epoxy-
resin as a function of the volume fraction (߮) of SiO2 

particles for different ݏ values with radius ܽ௣ = 10 nm. 
Experimental observations at the same radius (see Ref. 
22) are shown in filled circles. 
 

 
Fig. 7: Effective thermal conductivity of SiO2-epoxy-
resin as a function of the volume fraction (߮) of SiO2 
particles for different ݏ values with radius ܽ௣ = 10 nm, 
zooming between ߮ = 0 and 0.1. Experimental 
observations (see Ref. 22) are shown in filled circles for 
ܽ௣ = 10 nm. 
 
Good agreement is obtained between our model and the 
experimental data. It appears that for this system the 
influence of specularity is very small but nevertheless 
ݏ = 0 gives the best results (Fig. 7). Another interesting 
effect is that the effective thermal conductivity is now 
increasing with the volume fraction, while decreasing 
for Si-Ge.  
 

4.   Discussion and Conclusion 

To study heat conduction in heterogeneous media 
composed out of spherical nanoparticles dispersed into 
a homogeneous matrix, we have followed a route 
combining the effective-medium approach with 
extended irreversible thermodynamics. We have 
studied the influence of several parameters on the 
effective heat conductivity (keff) and validated our 
model against others, Monte-Carlo simulations and 
experimental observations for three different 
nanocomposites. It is shown that for Si-Ge, the value of 
݇௘௙௙ decreases with the volume fraction of 
nanoparticles, while the opposite is observed for SiO2-
epoxy-resin.  In the Cu-Si system, both behaviors are 
observed depending on the particle size and volume 
fraction. A larger particle radius (ܽ௣) and a higher 
surface specularity result into a higher ݇௘௙௙. Larger  ܽ௣ 
and ݏ-values will tend to decrease the particle-matrix 
interface, which is the main obstacle that the phonons 
encounter in the nanocomposites. As such, the phonons 
experience less obstacles and the thermal conductivity 
increases.  
Good accord is obtained between our model and other 
theoretical ones as well as with experimental data and 
Monte-Carlo simulations. Our analysis has shown that 
diffuse scattering is dominant, though some specular 
scattering can still be present. A reduction of the 
thermal conductivity as observed in Si-Ge  is also  
found in other systems, for instance ErAs nanoparticles 
in In0.53Ga0.47.3 In contrast, in   SiO2-epoxy resin 
composite, ݇௘௙௙ is increasing with the nanoparticle 
volume fraction. Such a behavior may be interpreted by 
the much smaller value of the dimensionless ߙ-
parameter  in the case of SiO2-epoxy resin than for Si-
Ge, due to a smaller mean free path.  
No general rule concerning the behavior of the effective 
thermal conductivity with respect to the volume fraction 
can be drawn; indeed, it may either increase or decrease 
depending on the particle radius, the characteristics of 
its surface, and the thermal boundary resistance. 
For the sake of completeness, we would like to briefly 
comment about two papers akin to the present one 
wherein the authors used a hierarchy of fluxes similar 
to the relations (11) and (12).  In the first work, Alvarez 
and Jou (see Ref. 23) establish an expression of the heat 
conductivity of a thin layer of thickness smaller than the 
mean free path of phonons. In the second one, Alvarez 

    

104 0.001 0.01 0.1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Volume fraction

Th
erm

al
co

nd
uc

tiv
ity

W
m

1 K


1 










0.00 0.02 0.04 0.06 0.08 0.10
0.16

0.17

0.18

0.19

0.20

0.21

Volume fraction

Th
erm

al
co

nd
uc

tiv
ity

W
m

1 K


1 

ݏ = 0 
ݏ = 0.2 
ݏ → 1 

 ݏݐ݊݁݉݅ݎ݁݌ݔܧ              
 

ݏ = 0 
ݏ = 0.2 
ݏ → 1 

 ݏݐ݊݁݉݅ݎ݁݌ݔܧ              
 



Effective Thermal Conductivity of Spherical Particulates Nanocomposites: Comparison with Theoretical Models, Monte Carlo Simulations 
and Experiments 7 

et al (see Ref. 24) generalize their approach to the 
problem of heat conduction in superlattices formed by 
the succession of layers of Si and Ge. There are two 
main differences with the present work. First, the 
geometries are different and more particular:  plane 
layers instead of spheres embedded in a matrix. Second, 
Alvarez  and collaborators (see Refs. 23 and 24) assume 
that all the mean free paths ln  are equal, whatever the 
order n from which follows that they  obtain  an 
expression slightly different from (16)  given by  
 

݇௣ = 	 ௞೛బ

ଶగమ௄௡మ
ൣ√1 + ଶ݊ܭଶߨ4 − 1൧.          

       
In the future, it is our purpose to generalize the present 
study to other shapes as cylindrical or ellipsoidal 
geometries, extending the study also to porous media. 
Another important effect to be analyzed next is the 
particles agglomerations which may play an important 
role. Moreover, in this work, it was assumed that the 
spheres are randomly distributed, it would be 
interesting to consider more specific configurations as 
for instance spheres distributed in a regular array.  
 

List of symbols 

ܽ௣                            Particle radius [nm] 
ܽ௣,௦ Particle specular radius [nm] 
 Specific heat capacity [MJ K-1 m-3]  ܥ
݇  Thermal conductivity [W m-1 K-1] 
࢑  Wavenumber [m-1] 
 Knudsen number  ݊ܭ
݈  Correlation length [m] 
 Heat flux [W/m2]  ࢗ
 Higher order flux  ࡽ
࢘  Position vector [m] 
ܴ  Thermal resistance [m2K/W] 
 Time [s]  ݐ
ܶ  Temperature [K] 
 Phonon group velocity [m/s]  ݒ
Greek symbols 
 Dimensionless thermal resistance ߙ
 ௜ Phenomenological relaxation timeߙ
௜ߚ  Phenomenological correlation length 
Λ Mean free path [nm] 
 ௜ Phenomenological transport coefficientߤ
߮ Volume fraction [-] 
߱ Frequency 

Superscripts 
0 Base state of the bulk material 
݂݂݁ Effective 
 Nth order flux (࢔)

^ Fourier transform 
Subscripts 
ܾ Bulk phonons 
 Collisional phonons at interface ݈݈݋ܿ
݉ Matrix 
 Particle ݌
 Reference state ݂݁ݎ
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