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Summary 

The aim of this paper is to study a beam extracted from a frame and subjected to blast loading. The 
demand of ductility depends on six dimensionless parameters: two related to the blast loading, two 
referring to the bending behaviour of the beam and two corresponding to the dynamic behaviour of 
the rest of the structure. We develop a full analytical procedure that provides the ductility demand 
as a function of these six dimensionless parameters. 
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1. Introduction 

Recent standards or norms are concerned about the need to confer robustness to structures subjected 
to exceptional events such as natural catastrophes, explosions or impacts, in order to avoid their 
progressive collapse. 

An accurate finite element modelling of frame structures under explosion is expensive and simpler 
analysis tools are welcome. A simple model of the system is developed with a condensation of the 
rest of the structure usually referred to as the Indirectly Affected Part (I.A.P.). In this perspective, 
this paper focuses on the determination of the required ductility of frame beams subjected to a blast 
loading considering the effects of lateral inertia and restraint. 

In the literature, the conversion of a continuous beam to an equivalent elastic perfectly-plastic 
single-degree-of-freedom (SDOF) system is suggested in order to develop its corresponding p-I 
diagram [1]. Some full analytical formulae are proposed to derive the p-I diagram curves [2]. 
However, the development of internal forces is assumed to be elastic perfectly plastic curve, 
neglecting any hardening effect such as the development of the membrane action.  

Langdon and Schleyer presented a model of a beam subjected to blast loading, including some 
lateral and rotation restraints at the ends as well as the action of the membrane force [3]. Fallah and 
Louca proposed to derive a p-I diagram for an equivalent softening or hardening SDOF models 
substituting the structural behaviour of a corrugated wall by an equivalent bi-linear resistance vs. 
displacement curve [4]. 

The aim of this paper is to establish the 
p-I diagram of a frame beam subjected 
to a close-field local internal blast 
loading including the effect of 
nonlinear membrane action, the 
bending moment-axial plastic 
resistance interaction curve of the 
beam as well as the dynamic 
interaction with the reduced model of 
the I.A.P. of the structure. A full 
analytical iterative procedure is 
provided depending on six 
dimensionless parameters. 

 
Fig. 1: (a) Sketch of the considered problem, (b) Idealized 

blast loading, (c) Axial force-bending moment interaction 

law. 
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2. Problem formulation 

2.1 Description of the problem 

The main challenge is to develop a full analytical procedure to design a beam extracted from a 
frame and subjected to blast loading. We considered that the I.A.P. of the structure provides a lateral 
restraint and inertia to the beam. Moreover, the beam is studied in large displacements and small 
rotations. 

The beam is assumed to be under a uniformly distributed blast loading p(x,t), see Fig. 1. The beam 
has a length 2l and is characterized by a lineic mass ms, and an equivalent elastic bending stiffness 
ks.  

Specific to this problem is the lateral restrain K* and the mass M* that materializes a horizontal 

restraint as well as a participating mass; they model the passive interaction of this beam with the 

I.A.P. of the structure. The loading is assumed to develop synchronously along the beam and is 

idealized as a triangular pulse, see Fig. 1, so that 

  0 1
d

t
p t p

t

 
  

 
   (1) 

where t represents the time variable, p0 is the peak blast pressure and td is the positive phase 
duration. The momentum I associated with this pressure field is thus given by 

0 .dI p t l    (2) 

This problem has been studied numerically by performing the (p0,I) diagram [5] which gives the 
maximum response of the beam for various blast durations and intensities.  

Further to the explosion, the bending plastic mechanism is formed and the membrane force rises 
while the mid-span displacement becomes larger. A general M-N plastic interaction between the 
bending moment M and the axial force N is introduced in the model 
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where Mpl and Npl are the plastic bending and axial resistances. Symbols α, β and γ depend on the 
shape of the cross-section properties [6]-[7]. 

Several assumptions are adopted: (i) the lateral restraint remains elastic; (ii) the beam-to-column 
joints are perfectly rigid; (iii) the axial elongation of the beam is neglected; (iv) the material is 
elastic-perfectly plastic; (v) the strain rate effect is not considered; (vi) the travelling hinges as well 
as the shear mode failure are not included in our study; (vii) the analysis is performed in large 
displacements/small rotations. 

2.2 Equations of motion 

The equation of motion is obtained by differentiating the energy conservation law with respect to 
time and dividing by the velocity 
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where Ms=2msl/3 is the generalized mass corresponding to the assumed kinematics. The equivalent 
internal force in the beam, the lateral restraint and the membrane force are respectively given by 
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where Xy is the displacement of the beam when the plastic mechanism is formed. 

2.3 Scaling and dimensionless formulation 

Introducing reference scales, in length Xy and in time M /s sT k  (which corresponds to the 
characteristic period of the elastic beam without lateral restraint and inertia), the dimensionless 
equation of motion of the structure can be written as 
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where / yX X X  is the dimensionless displacement, τ=t/T is the dimensionless time, τd=td/T is the 
dimensionless loading duration, ψM=4M*/Ms is the ratio of the lateral mass to the mass of the beam, 
ψK=K*/ks is the ratio of the lateral restraint to the stiffness of the beam, θy=Xy/l is the yield rotation, 

0 / sp p p  is the dimensionless peak overpressure of the blast loading, ps=4Mpl/l² is the static 
pressure at which the plastic beam mechanism is formed and, 

 

   
,b

,b

for 1

for 1a, 0, nd

int
int

s

X X

m n X X X X X

F
F

p l

 


  
  

  


   (9) 

,K 2 3

,K 2
int

int K y
s

F
F

p
X

l
ψ θ     (10) 

The dimensionless axial force n=N/Npl and its interaction with the dimensionless bending moment 
m=M/Mpl are given by: 
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1m n β αγ    (12) 

where ξ=(Mpl/2l)/Npl is the ratio of bending to axial strengths. 

The set of Equations (8), (11) and (12) is solved by using the nonlinear Newmark algorithm in order 
to obtain the maximum response of the beam , i.e. the demand of ductility of the beam.  

In our model, the demand of ductility μ is only ruled out by these dimensionless numbers 
, , , , ,yK M dpψ ψ ξ θ τ .  

US Army Standards [8] provide guidelines regarding the targeted ductility demand μ for steel beam 
that should not exceed 10 to ensure 
the protection of staff and equipment 
(category 1) and 20 for the protection 
of structural elements themselves 
(category 2). 

The dimensionless parameters ψK and 
ψM depend on the stiffness and the 
inertia offered by the I.A.P. of the 
structure and can be determined by 
carrying out a static condensation of 

Fig. 2: Steel structure configurations with IPE 270 beams 

(5,4 m), HEA240 columns (4,5 m), CHS 175x5 braces 

and a linear mass of the floor equal to 2500 kg/m.  

Table 1: Orders of magnitude of the parameters  ψK and 

ψM  for the example structures in Fig. 2. 

(a) (b) (c) 



 

the mass and stiffness matrices of the 
structure.  

 In Fig. 2 (a), the structure present a low 
lateral restraint and inertia. At the 
opposite, the braced frame in Fig. 2 (c) 
offers a large stiffness to the relative 
chord elongation of the beam. The 
values of the parameters ψK and ψM are 
given in Table 1. 

The dimensionless parameters ξ and θy 
depend only on the properties of the 
profile and its span.  

 shows the orders of magnitude of these 
parameters according to the ratio of the 

span-to-depth ratio 2l/h of the beam. These figures are obtained by considering class-1 S355 steel-
grade steel profile (such as I, H-shaped 
or tubular profiles). 

Three regimes exist depending on the 

parameter τd, which is the ratio of the 

duration of the blast loading to the natural period of the beam. If τd is very low (τd<<1) or very high 

(τd>>1), the regime is quasi-static or impulsive respectively and these asymptotic solutions can be 

obtained explicitly by writing the energy conservation. If τd is close to the unity, the beam has an 

intermediate dynamic behavior and the set of Equations (18), (21) and (22) must be solved numeri-

cally. 

3. Numerical solution 

The dynamic structural behaviour of 
the substructure has been studied in [8] 
and will not be analyzed again in this 
paper.  

P-I diagrams are illustrated for ψK=0 
and ψK=1 in Fig. 3 (a) and (b) 
respectively, while other parameters 
are chosen as follows ψM=10, ξ=2%, 
θy=13 mrad. Each curve represents the 
required ductility of the beam. The 
asymptotes of the curves are obtained 
from the analytical equations 
described in the section 4. 

The case ψK=0 does not develop any membrane force (the effect of the lateral inertia is indeed 
much less influent when ψK is low) contrary to the other case. As a result, the maximum allowable 
blast loading to reach a given ductility is lower for the first case. 

4. Analytical solution 

4.1 Quasi-static asymptotic solution 

The quasi-static asymptote (τd<<1) is obtained by equating the work done by external forces to the 
strain energy stored in the structure as it deforms. In the quasi-static (Q.-S.) regime, the 
dimensionless work done by the blast loading at maximum displacement Xm is 
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Structure ψK ψM 

(a) 0.3 6.2 

(b) 0.64 14.8 

(c) 1.17 24.5 

Table 2: Minimum and maximum values of the dimen-

sionless parameters  ξ and θy [mrad] for steel beams 

with S355 steel grade according to span-to-depth ratio.   

Ratio 2l/h [-] 15 20 30 

min(ξ) [%] 2.2 1.7 1.1 

max(ξ) [%] 2.8 2.1 1.4 

min(θy) [mrad] 9.3 12.4  18.7 

max(θy) [mrad] 11 14.6 22 

Table 2: Minimum and maximum values of the 
dimensionless parameters  ξ and θy [mrad] for steel 
beams with S355 steel grade according to span-to-
depth ratio.   

Fig. 3:   Normalized p-I diagrams in logarithmic axes for 

(a) ψK =0 and (b) ψK=1 (ψM=10, ξ=2%, θy=13 mrad, 

α=2, β=1, γ=1). 

(a) (b) 



 

where U1(Xy)=1/2ksXy² and W(Xm)=p0lXm are respectively the strain energy dissipated in the beam 
at yielding and the work done by the blast loading. 

Assuming β=1, the total strain energy at maximum displacement for Q.-S. loading can be written as 
below  
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where U(Xm) is the total energy dissipated in the beam and stored in the lateral restraint, A1=4ξθy, 
A2=8ψKξθy and   2 1 1 2,1  ;2 ; /F A A   α α α χ  is the hypergeometric function. 

In particular cases such as α=1 or 2, the function Φp,α (χ) can be simplified as: 
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Equating now the external work to the strain energy gives  
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Knowing that psl=ksXy, the quasi-static asymptote can be derived 
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4.2 Impulsive asymptotic solution 

When an impulse is delivered to a structure, it produces an instantaneous velocity change; 
momentum is acquired and the structure gains kinetic energy which is converted to strain energy [1]. 
The initial dimensionless kinetic energy is given by 
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where K0 and 0 / sX I M  are the initial kinetic energy and the initial velocity at mid-span. 

Thus, equating the dimensionless kinetic energy to the dimensionless strain energy gives: 
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where the dimensionless total strain energy at maximum displacement for impulsive loading can be 
written as below (assuming β=1) 
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The impulsive asymptote can be derived  
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where I  is the dimensionless impulse delivered to the beam. 

However, the function ΦI,α does not present analytical solution and should therefore be simplified. 
The transverse velocity varies from I  to 0 while the displacement rises from 0 to μ. In order to 
compute the above integral, it is assumed that the velocity evolves as a linear law of the 
displacement 
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Moreover, it is assumed that 2XX X , so that function ΦI,α simplifies in 
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In particular cases such as α=1 or 2, the function ΦI,α further simplifies in 
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which is an explicit solution for the right-hand side of (24). 

Finally, the impulsive solution can be determined as  
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An iterative procedure should be used to obtain the impulsive solution. A first approximation of the 
solution can be assessed by neglecting the effects of the lateral inertia in (29), imposing therefore 
that ψM=0. Then, iterations may be carried out with a fixed-point algorithm and (29). 

4.3 Accuracy of the impulsive asymptotic solution 

 

The impulsive solution can be 
approximated by using (29) and the 
corresponding error is computed in this 
section.  

The first step is to target a given level 
of damage such as the threshold values 
corresponding to the two levels of 
protection described in Section 2.3. 
Then, the impulsive loading I  is 
computed for one level of protection 
and introduced in our numerical model 
by considering a sharp blast loading, 

Fig. 4: Relative error on ductility obtained by the ap-

proximate impulsive solution for the second category of 

protection (a) ξ=1 %, θy=22 mrad; (b) ξ=2 %, θy=13 

mrad and (c) ξ=2.8 %, θy=9 mrad. (ψM=20, ψK variable, 

α=2, β=1, γ=1). 

(b) (a) (c) 



 

i.e. a short load duration (τd=1/40) at which a high overpressure is applied on the beam 
(  2 / dp I τ ). Finally, the required ductility of the beam can be computed numerically and 
compared with the corresponding level of protection by writing the relative error defined as 

  /target targetμ μ με      (30) 

where μ and μtarget are respectively the ductility under the impulsive load I  and the target level of 
ductility. 

For the second level of protection (μtarget =20), the maximum relative error stands at 5 % (Fig. 4) 
when a M-N parabolic plastic interaction is taken into account in the model (α=2, β=1, γ=1), the 
span-to-depth ratio varies from 15 to 30, the variable ψM takes its maximum value of 20 and the 
parameter ψK  fluctuates within its practical range. It should be noted that if ψM=0, there is not any 
approximation in the assessment of the impulsive solution. Moreover, if an M-N linear plastic 
interaction is selected, α=1, β=1, γ=1, the relative error is below 5.5 %. 

4.4 Intermediate dynamic regime 

The general formulae proposed to fit the numerical results is written in a traditional interaction way 
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where / 2dI pτ  is the impulsive solution, a and b are real coefficients.  

The two coefficients a and b are 
determined by using the least mean 
square, with a focus on the dynamic 
part of the iso-damage curves.  

 Fig. 5 (a) and (b) illustrate the iso-
damage curves in both logarithmic 
and cartesian axes for ξ=2%, θy=13 
mrad, ψM=20, ψK=1. The lines fit 
well the iso-damage curves (Fig. 5 (a)) 
although there is an increasing error 
for extreme behaviour.  

An extensive simulation study 
covering the practical ranges of the 
dimensionless parameters has resulted 

in these analytical expressions of the coefficients a and b: 

3 2

1 2 36,7.10 0,7332 ;a b B B Bμ μ μ        (32) 

where B1, B2 and B3 are coefficients depending on ψK, ξ and α (assumption that β=1 and γ=1).  

This analytical procedure is valid for 5≤ μ≤ 20; 15≤ 2l/h≤ 30; 0.5≤ ψK≤ 2; 5≤ ψM≤ 20 and 0.4≤ τd ≤ 40. 
If τd<0.4 or τd>40, the asymptotic solutions should be preferred since they give accurate results. 

4.5 Accuracy of the dynamic regime solution 

We proceed in the same way to assess 
the error of the solution (31) in the 
dynamic regime. First, the iso-damage 
curve corresponding to a level of 
protection is computed numerically. 
Then, this curve is read from the 
impulsive case (τd =0.4) to the Q.-S. 

Fig. 5: Iso-damage curves for ξ=2%, θy=13 mrad, ψM=20, 

ψK=1, α=2, β=1, γ=1 (a) in logarithmic and (b) cartesian 

axes. Numerical result: •; Linear fitting of curves: — . 

 

(a) (b) 

(a) (b) 



 

limit (τd =40) in order to collect a series of blast loadings  ,p I . 
Finally, for each couple  ,p I , the demand of ductility is computed 
by using the analytical procedure (31).  

Fig. 6 illustrates the relative error on the ductility for variable 
parameters ψK (ψM=20), ξ and a parabolic M-N plastic interaction, 
α=2, β=1, γ=1. Only the second level of protection is considered 
since the relative error increases with ductility. The relative error is 
higher at extreme behaviour, it peaks at 4 %. The coefficients a and 

b are fitted by considering that ψM is 
equal to 20. If this parameter is 
decreased to 5, the relative error is 
still bounded to 5 %. Moreover, if an 
M-N linear plastic interaction is 
selected, α=1, β=1, γ=1, the relative 
error remains below 5 %. 

5. Conclusions 

In this paper, we have derived analytical solutions for the response of a beam subjected blast 
loading taking into account the lateral restraint and inertia offered by the rest of the structure. The 
main goal was to propose a full analytical method depending on the six dimensionless parameters 
of this well-posed problem. We came up with an analytical formulation for the quasi-static 
assumption (τd>40), an iterative analytical procedure for the impulsive asymptote (τd<0.4), and an 
analytical solution in the intermediate dynamic regime. In all cases, the relative error on ductility is 
shown not to exceed 6 % for realistic ranges of values of the dimensionless parameters. 
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Fig. 6:  Relative error on ductility obtained by the approx-

imate dynamic solution for the second category of protec-

tion (a) ξ=1 %, θy=15 mrad and (b) ξ=2 %, θy=10 mrad 

(c) ξ=2.8 %, θy=9 mrad. (ψM=20, ψK variable, α=2, β=1, 

γ=1) 

(c) 


