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Abstract— This paper addresses the problem of model
reduction for dynamical system models that describe
biochemical reaction networks. Inherent in such models
are properties such as stability, positivity and network
structure. Ideally these properties should be preserved by
model reduction procedures, although traditional projec-
tion based approaches struggle to do this. We propose a
projection based model reduction algorithm which uses
generalised block diagonal Gramians to preserve structure
and positivity. Two algorithms are presented, one provides
more accurate reduced order models, the second provides
easier to simulate reduced order models.

I. INTRODUCTION

Biochemical reaction networks are most appropriately
modelled as stochastic systems. Typically they take
the form of an infinite dimensional, continuous time
Markov Chain which describes the time evolution of a
probability density function of the number of molecules
of the reactants. The Chemical Master Equation (CME)

∂P(n, t)

∂t
= Ω

R∑
i=1

f̂(n− Si,Ω)− f̂(n,Ω))P(n, t)

describes how a reaction network composed of: R
reactions, in a compartment of volume Ω with a sto-
ichiometry matrix S (Si denoting the ith column); f̂
the flux vector; n the vector containing the number of
molecules ni of species i; and P(n, t) is the probability
of the vector of molecules n at time t changes with time.

For reaction networks with just a few species even
simulating the CME can be intractable. This paper is a
first step towards an automated procedure to compute
efficient reduced order models for stochastic biochem-
ical models. It is assumed that the starting point for
the algorithms presented here is a nonlinear, possibly
high dimensional, but deterministic dynamical system.
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Part 2 of this paper1 [1] describes how and under
what assumptions one can approximate the CME by a
deterministic dynamical system.

The focus of this paper is to describe a projection
based algorithm for reducing the state dimension of
a dynamical system while preserving certain desirable
features such as stability, positivity and network struc-
ture. Standard model reduction techniques make use of
the fact that frequently states evolve over multiple time
scales [2], [3].

More common in the control literature is the use of
projection based model order reduction [4]–[7] which
typically follows a two step procedure; first a state-space
transformation is found which aligns the controllability
and observability ellipsoids, then the states which are
least controllable and observable are truncated yielding
a reduced order model. In some cases, provided the
initial full order model was stable it can be shown that
the reduced model is stable too. It is often possible to
a priori determine the error bound in an appropriate
choice of norm between the full and reduced model.
The major drawback of projection approaches is that
the states in the transformed coordinate system are
linear combinations of all the other states, thus the
physical meaning of a state is lost. Recently structure
preserving reduction algorithms have been proposed
using structured Gramians [8], H∞ optimisation [9],
[10] and novel energy functions [11] that attempt to
avoid such problems. The work in this paper most
closely resembles the spirit of [8], however in addition
to preserving network structure would like to preserve
the monotonicity, when possible.

II. PROBLEM STATEMENT

The standard model reduction problem takes the fol-
lowing form: given a stable dynamical system

ẋ = f(x, u)

y = h(x)
(1)

where x ∈ Rn is the state vector, the equilibrium point
of interest is without loss of generality xss = 0n×1.

1This paper is completely self-contained and does not require any
of the material from Part II.



Construct a dynamical system

˙̃x = f̃(x̃, u)

ỹ = h̃(x̃)
(2)

where x̃ ∈ Rk with k < n and the error between
(1)–(2) is small in some appropriate norm. When f is
nonlinear the reduction problem is in general intractable,
see [5], [6] for direct approaches. In this paper we
shall deal with linearisations about a given operating
point and input and adapt classical methods (cf. [12]) to
preserve desirable system properties as outlined in the
next section. In order to simplify some derivations, we
assume that h(x) = Cx, where C is a constant matrix.

A. Structured Projectors

We approximate the system (1) around the stable
steady-state xss with a constant control signal uss.

Consider a system

ẋ = Ax+Bu

y = Cx
(3)

where the drift matrix A and input map B are given by

A =
∂f(x, u)

∂x

∣∣∣
x=xss,u=uss

, B =
∂f(x, u)

∂u

∣∣∣
x=xss,u=uss

.

Note that A is Hurwitz by assumption. The linearised
system (3) can then be partitioned as follows:

x =

(
x1

x2

)
A =

(
A11 A12

A21 A22

)
B =

(
B1

B2

)
CT =

(
CT

1

CT
2

)
,

(4)
where x1 ∈ Rn−k, x2 ∈ Rk, and the matrices A, B
and C are partitioned conformally. The next step is to
compute structured (generalised) Gramians, which are
obtained as solutions to Lyapunov inequalities

AP + PAT +BBT ≤ 0

QA+ATQ+ CTC ≤ 0
(5)

with P ≥ 0, Q ≥ 0, subject to the same partitioning as
the states:

P =

(
P11 0n−k,k

0k,n−k P22

)
, Q =

(
Q11 0n−k,k

0k,n−k Q22

)
.

(6)
In the following section, we make a case why con-
straining the generalised Gramians P and Q to be block
diagonal is not a restrictive assumption for biochemical
networks.

If the states x2 are to be approximated, the transfor-
mation T is composed as follows:

T =

(
In−k 0n−k,k

0n−k,k T22

)
, (7)

where T22 is such that

T−122 P22T
−T
22 = TT

22Q22T22 = Σ22,

and Σ22 is diagonal. According to standard tools [8], we
choose the states to truncate according to the magnitude
of the values of the diagonal of Σ22. Assume r states
are to be reduced, let W22 be the first k− r columns of
T22, while W r

22 are the rest r columns of T22, let also
V22 be the first k − r columns of T−122 , while W r

22 are
the rest r columns of T−122 . Now, the projectors can be
obtained as follows

W =

(
In−k 0n−k,k−r

0k−r,n−k W22

)
Wr =

(
0n−k,r

W r
22

)
V =

(
In−k 0n−k,k−r

0k−r,n−k V22

)
Vr =

(
0n−k,r

V r
22

) (8)

B. Computing a transformation for networks with mono-
tone dynamics

It is assumed that the dynamics of the biochemical
network models we are interested in can be captured
via a stoichiometric matrix S ∈ Rn×m and flux vector
f(x) ∈ Rm×1, where n is the number of species, m
the number of reactions that take place and x the vector
of species concentrations. The uncontrolled system then
takes the form ẋ = Sf(x). We limit our focus to
systems with cooperative or monotone with respect to
the positive orthant Rn

≥0 dynamics. This means that
the stoichiometry matrix S and the fluxes f(x) form a
cooperative dynamical system. The following definitions
make the preceding comments precise.

Definition 1: Consider the dynamical system ẋ =
r(x) where r is locally Lipschitz, r : Rn

≥0 → Rn and
r(0) = 0. The associated flow map is ρ : R≥0×Rn

≥0 →
Rn. The system is said to be monotone (w.r.t. Rn

≥0) if
x ≤ y ⇒ ρ(t, x) ≤ ρ(t, y) for all t ∈ R≥0.

Definition 2: A matrix M ∈ Rn×n = {mij} is said
to be Metzler if mij ≥ 0 for all i 6= j.

The following proposition is a simplified reformula-
tion of a known result (cf. [13]), which establishes a
straightforward test for cooperativity:

Proposition 1: A system ẋ = r(x) is monotone with
respect to the positive orthant if and only if

∂(ri(x))

∂xj
≥ 0 ∀i 6= j∀x

Or simply put, the Jacobian of r(x) is a Metzler matrix
for all x in Rn

≥0.
A generalisation can be defined with respect to any

orthant by mapping this orthant onto the positive one
by a linear transformation P : Rn → Rn, where P =
diag((−1)ε1 , . . . , (−1)εn) for some εi.



Hence, after linearisation around a steady-state we
have system (3) with additional constraint that the drift
matrix A is Metzler. We do not require B and C to be
nonnegative matrices.

In this setting our model reduction problem is for-
mulated as replacing the states x2 with a single state,
while preserving stability and the Metzler property of
the drift matrix. In order to obtain the reduced order
model, the generalised Lyapunov equations with block-
diagonal Gramians are employed. Hence the first task is
to ensure the existence of such generalised Gramians.

Lemma 1: Consider the system (3) with an asymp-
totically stable, Metzler drift matrix. Let the system
(3) be partioned as in (4). Let P , Q be generalised
Gramians satisfying the Lyapunov inequalities (5). Then
there always exist diagonal nonnegative and nonnegative
semidefinite matrices P and Q satisfying (5). Conse-
quently, there exist P and Q satisfying the partionining
as in (6).
The proof is found in appendix. Given these properties
we are ready to produce a model reduction algorithm:
Reduction Algorithm:

1) Solve (5) and obtain the matrices P and Q with
the structure described by (6).

2) Compute a balancing transformation T22 for ma-
trices P22 and Q22 as in (7).

3) Define the projectors W and V as in (8) for r
equal to one, let w = W22 and v = V22.

4) Compute the matrices of the truncated reduced
order model as follows

At = V TAW, Bt = V TB, Ct = CW.

The exact expression for matrices At, Bt and Ct are

At =

(
A11 A12w
vTA21 vTA22w

)
Bt =

(
B1

vTB2

)
CT

t =

(
CT

1

wTCT
2

)
.

(9)

Lemma 2: Let P and Q be block-diagonal matrices
satisfying the conditions of Lemma 1. Assume the ma-
trix P22Q22 is irreducible. Let T22 be a transformation
such that T−122 P22T

−T
22 = TT

22Q22T22 = Σ, where Σ is
diagonal and Σ11 ≥ Σ22 ≥ · · · ≥ Σkk. Let w be the
first column of T and v be the first column of T−T22 .
There exist such a balancing transformation T22 that

1) The vectors w and v are nonnegative.
2) The matrix At from (9) is stable and Metzler.
3) Let G be the full order model with a state-space

realisation A, B, C and Gr be the reduced order
model with a state-space realisation At, Bt, Ct

defined in (9). Then ‖G−Gr‖∞ ≤ 2
k∑

i=2

Σii.

Proof: See appendix.

C. Approximation Procedures

The idea of using generalised structured Gramians for
structured reduction is not new (cf. [8]). In the context
of biochemical networks for systems with monotone
dynamics block diagonal Gramians always exist (as was
just shown). Moreover, there are biochemical networks,
which are not monotone, but block-diagonal Gramians
still exist. Indeed it is believed that many biochemical
reaction networks which do not posses the monotonicity
property are actually near monotone [14]. In Section III-
B we show that a model of yeast glycolysis is not
monotone, but admits a diagonal Gramian.

Define the transformed variable as z = Tx and denote
by zr be the species to be removed from the model,
and zm the states of the reduced order model. Now the
equations approximating the full order dynamics can be
computed as follows:

żm = V T f(Wzm +Wrzr, u)

żr = V T
r f(Wzm +Wrzr, u) = 0

ydr = ΩC(Wzm +Wrzr)

(10)

Computing the root zr satisfying the algebraic-
differential equation can be a computationally expensive
task. Therefore, we also propose a truncation method,
where we assume that the system is near the steady-
state z0r :

żm = V T f(Wzm +Wrz
0
r , u)

ydr = C(Wzm +Wrz
0
r )

(11)

For future reference we will refer to (10) as the
reduction method and (11) as the truncation method.

Observe that preservation of the (global) monotonicity
of the reduced nonlinear system is probably not possi-
ble in general using static space-space transformations.
Consider the dynamics of zm in (10) with u = 0. Let
Γ = Wzm + Wrzr. By assumption we have that f is
monotonic. In order for the unforced system in (10) to
be monotonic it needs to be shown that the Jacobian of
żm = V T

22f1(Γ, 0) given by

∂V T
22f

i
1(Γ(zm), 0)

∂(zm)j
≥ 0 ∀i 6= j and ∀zm (12)

where the vector field f is partitioned into [fT1 , f
T
2 ]T

conformally with [zTm, z
T
r ]. Even for the simple case of

k−r = 1 where V22 is simply the first column of T−122 it
is difficult to determine the underlying assumptions one
would need to impose on f to ensure (12) is satisfied.
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lumped together, while
reducing two states

Fig. 1. Different configurations for reduction in the toy example.

III. EXAMPLES

A. A Cautionary Toy Example: Topology Matters

The first network we consider consists of four species,
see Figure 1(a). One can interpret the species S1 and
S3 as mRNA, and S2 and S4 as the corresponding
proteins. As a consequence, we set the degradation rates
of species S1 and S3 to be larger than the degradation
rates of species S2 and S4. We apply the standard time-
scale separation technique to the network as well as
the proposed reduction method (10) with different ad-
hoc partitions of the states2: lump together species S1

and S3 (see, Figure 1(b)), lump together S1 and S2

(see, Figure 1(c)), and finally, lump together S1 and
S2, and simultaneously lump together S3 and S4 (see,
Figure 1(d)). The purpose of this example is signify the
importance of an appropriate partitioning. The model of
the network is as follows:

ṁi =
ci1

1 + p2j
− ci2mi + ci5ui

ṗi = ci3mi − ci4pi

where ci1 are constants, mi are mRNA concentrations,
pi are protein concentrations, ui are exogenous control
inputs. i, j ∈ {1, 2} and i 6= j. If the state-space
is written in the following form

(
p1 m1 p2 m2

)
,

then this model is monotone with respect to the orthant
diag(

(
1 1 − 1 − 1

)
)R4
≥0 for all values of parameters.

2Determining a priori appropriate partitions of a dynamical system
is an open research question, see [15] for example.

TABLE I
REDUCTION OF THE TOY NETWORK. THE ERROR IN THE

MACROSCOPIC CONCENTRATIONS.

Method \ Error L1 L2 L∞

QSSA 67.3 11.9 3.2
Configuration in Fig. 1(b) 61.0 8.1 2.2
Configuration in Fig. 1(c) 1.9 0.59 1.1
Configuration in Fig. 1(d) 13.8 2.3 0.79

The parameters are chosen as follows:

c1· =
(
3 1 1 0.2 1

)
c2· =

(
10 2 1 0.5 1

)
This model has two stable steady-states and the state-
space is separated into two regions serving as basins
of attraction for these steady-states. We compute the
reduced order model using a linearisation around a
steady-state xss =

(
0.14 9.8 0.03 4.9

)T
, and we

choose the initial state x0 from the basin of attraction
of xss : x01 =

(
1 10 1 1

)T
.

In all the simulations presented in Table I, we set
u = 0, which should give an advantage to the time-
scale separation, since in our methods we take into
account control signals. Surprisingly, the difference in
the error between QSSA and reduction according to the
configuration in Figure 1(b) is marginal, even though
QSSA removes two states and reduction according to the
configuration in Figure 1(b) just one. On the other hand
other types of reduction provide much better models if
two states (as in the configuration from Figure 1(d))
or one state (as in the configuration from Figure 1(c))
are removed. We suppose that the topology of the
network has influence on the quality of reduction in
this case. The reduction according to the configurations
from Figures 1(c),1(d) simply removes connections in
the network. While the reduction according to the con-
figuration in Figure 1(b) destroys the topology of the
original network.

B. Kinetic Model of Yeast Glycolysis. Non-Monotone
Dynamics

This model was published in [16], it consists of twelve
metabolites and four boundary fluxes. As in [17], we
treat levels of ATP and glycose GLCo as control inputs,
and at time zero we change the levels of ATP and GLCo
from 3 to 1.5 and 0.25 to 5 respectively.

Note that the Jacobian of the dynamics is not Metzler,
but there are only five negative off-diagonal elements.
Moreover, if we knock out only one one-directional
and one bi-directional reaction, then this network will
have monotone dynamics with respect to the orthant
diag(

(
1 1 1 1 1 1 1 1 1 1 1 − 1

)
)R12
≥0.
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Fig. 2. The yeast glycolysis kinetic model. In the left panel
the biochemical graph, and in the right panel a graph of dynamic
interactions between metabolites are depicted. If the red connections
are removed the dynamics of the network would become monotone.

TABLE II
DETERMINISTIC REDUCTION OF THE GLYCOLYSIS MODEL. THE

ERROR OF THE OUTPUT IS GIVEN IN DIFFERENT NORMS.

II-1. QSSA

States \ Error L1 L2 L∞ t(s)

F6P, 2PG, PEP 1.21 0.75 0.98 163
G6P, F6P, 3PG, 2PG, PEP 2.05 1.16 1.59 214

TABLE II-2. REDUCTION BY {k1, k2} STATES IN EVERY REGION

Lumped Region(s) {k1, k2} L1 L2 L∞ t(s)

{G6P, F6P}, {2PG-PEP} {1, 2} 1.18 0.79 1.03 161
{GLCi-F6P}, {BPG-PEP} {2, 3} 1.05 0.57 0.78 260
{GLCi-F6P}, {3PG-PEP} {2, 1} 0.47 0.3 0.4 137
{GLCi-F6P}, {3PG-PEP} {1, 1} 0.14 0.07 0.09 116

TABLE II-3. TRUNCATION BY {k1, k2} STATES IN EVERY REGION

Lumped Region(s) {k1, k2} L1 L2 L∞ t(s)

{G6P, F6P}, {2PG-PEP} {1, 2} 15.1 3.2 6.1 14
{GLCi-F6P}, {BPG-PEP} {2, 3} 5.9 2.8 2.9 14
{GLCi-F6P}, {3PG-PEP} {2, 1} 4.1 1.9 1.9 14
{GLCi-F6P}, {3PG-PEP} {1, 1} 4.0 1.8 1.6 15

Using this intuition, it was not a great surprise that
a linearised model around a steady-state would have
block-diagonal Gramians with a sparsity pattern accord-
ing to some state partitioning. However, the existence
of diagonal Gramians was surprising. This meant that
without any reservation we could approximate any group
of states, while preserving the other states intact.

The simulation results are presented in Table II for
various reduction configurations. We apply QSSA to
metabolite concentrations, while using the proposed
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Fig. 3. (Top) The errors between the Method 1 reduced and the
full order models. (Bottom) The error between the Method 2 reduced
and the full order models are depicted. Blue line is the concentration
of F16P metabolite, green is TRIO, red - PYR, cyan - AcAld,
purple - NADH. For the methods 1 and 2 we considered the regions
{GLCi-F6P}, {BPG-PEP} together and reduced two and three states,
correspondingly in each region.

methods we try to lump those metabolites into one new
state, so that the number of reduced states is similar in
both cases. The simulation time in seconds is denoted
as t. First two rows of each subtable in Table II can
be compared directly, and it is clear that the reduction
method performs better in terms of quality than QSSA.

The proposed reduction method is also more flexible
in terms of reduction choices. In the third row of
Subtable II-2, the region {3PG-PEP} contains three
metabolites; however, we reduced only two states af-
ter computing the state-space transformation. In the
fourth row, additionally to reducing only one state in
region{3PG-PEP}, in the region {GLCi-F6P} we reduce
only one state. This provides us with the best model
among all the reduction attempts.

The results of the truncation method (Table II-2) may
seem unattractive due to lower approximation quality;
however, the difference in terms of qualitative behaviour
of the full and the truncated reduced models is not as
substantial as the numbers suggest. This is illustrated in
Figure 3. The simulation time of the truncated reduced
order model is lower by an order of magnitude in
comparison with QSSA and the reduction method.

IV. CONCLUSION

We have presented a method for obtaining structured
reduced order models of biochemical reaction networks.
The algorithm involves computation of a state-space



transformation around a steady-state, followed by a
truncation and/or lumping procedure which preserves
structure and local monotonicity and stability of the
system. The algorithm was illustrated on two numerical
examples, one of which was not monotone and com-
pared with a standard QSSA based reduction.

REFERENCES

[1] A. Sootla and J. Anderson, “On projection-based model reduc-
tion of biochemical networks– Part II: The stochastic case,” in
Proc. 48th Conf. Decision Control, Los Angeles, CA, 2014.

[2] A. Tikhonov, “Systems of differential equations containing small
parameters in the derivatives,” Mat. Sbornik, vol. 73, no. 3, pp.
575–586, 1952.

[3] P. Kokotovic, H. K. Khalil, and J. O’Reilly, Singular perturbation
methods in control: analysis and design. SIAM, 1987, vol. 25.

[4] B. Moore, “Principal component analysis in linear systems:
Controllability, observability, and model reduction,” IEEE Trans.
Autom. Control, vol. 26, no. 1, pp. 17–32, Feb 1981.

[5] J. M. Scherpen, “Balancing for nonlinear systems,” Systems and
Control Letters, vol. 21, pp. 143–153, 1993.

[6] A. Astolfi, “Model reduction by moment matching for linear and
nonlinear systems,” IEEE Trans. Autom. Control, vol. 55, no. 10,
pp. 2321 –2336, oct. 2010.

[7] A. C. Antoulas, Approximation of Large-Scale Dynamical Sys-
tems (Advances in Design and Control). SIAM, 2005.

[8] H. Sandberg and R. M. Murray, “Model reduction of intercon-
nected linear systems,” Optimal control applications & methods,
vol. 30, no. 3, pp. 225–245, 2009.

[9] A. Sootla and A. Rantzer, “Convenient representations of struc-
tured systems for model order reduction,” in Proc. Am. Control
Conf., 2012, pp. 3427–3432.

[10] P. Apkarian and D. Noll, “Nonsmooth H-infinity synthesis,”
IEEE Trans. Autom. Control, vol. 51, no. 1, pp. 71 – 86, jan.
2006.

[11] A. Sootla and A. Rantzer, “Scalable positivity preserving model
reduction using linear energy functions,” in Proc. Conf. Decision
Control, Dec. 2012, pp. 4285–4290.

[12] K. Glover, “All optimal Hankel-norm approximations of linear
multivariable systems and their L∞-error bounds,” Int. J. Con-
trol, vol. 39, pp. 1115–1193, 1984.

[13] H. L. Smith, Monotone dynamical systems: an introduction to
the theory of competitive and cooperative systems. American
Mathematical Soc., 2008, vol. 41.

[14] E. D. Sontag, “Monotone and near-monotone biochemical net-
works,” Systems and Synthetic Biology, vol. 1, no. 2, pp. 59–87,
2007.

[15] J. Anderson and A. Papachristodoulou, “A decomposition tech-
nique for nonlinear dynamical system analysis,” IEEE Trans.
Autom. Control, vol. 57, no. 6, pp. 1516–1521, 2012.

[16] K. van Eunen, J. A. Kiewiet, H. V. Westerhoff, and B. M. Bakker,
“Testing biochemistry revisited: how in vivo metabolism can be
understood from in vitro enzyme kinetics,” PLoS Comp. Biol.,
vol. 8, no. 4, p. e1002483, 2012.

[17] S. Rao, A. van der Schaft, K. van Eunen, B. M. Bakker,
and B. Jayawardhana, “Model-order reduction of biochemical
reaction networks,” in Proc. European Control Conf., Zurich,
Switzerland, July 2012.

[18] K. Zhou and J. C. Doyle, Essentials of Robust Control. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.

[19] C. Grussler and T. Damm, “A symmetry approach for balanced
truncation of positive linear systems,” in 51st IEEE Conference
on Decision and Control, Maui, Hi, USA, Dec. 2012.

APPENDIX

Proof of Lemma 1. It suffices to show that there
exist a strictly diagonal P satisfying the controllabil-
ity Lyapunov inequality. Similar arguments hold for a
diagonal Q with satisfying the observability Lyapunov
inequality. It is known that there exist a diagonal P
satisfying the following inequality AP + PAT ≤ −δI
for a positive δ, given an asymptotically stable matrix A.
Let X = AP + PAT . Set γ = σ̄(BBT )/δ, clearly γ is
such that γX +BBT is a negative semidefinite matrix.
Therefore exist a diagonal P satisfying the Lyapunov
inequality, which completes the proof.

Proof of Lemma 2. 1) The existence of a balancing
transformation is an established result (cf. [18]). P22Q22

is an irreducible matrix with nonnegative entries, there-
fore by Perron-Frobenius theorem there exist a positive
eigenvector w such that P22Q22w = Σ2

11w where Σ2
11

is the entry (1, 1) of the matrix Σ2 and the largest
eigenvalue of P22Q22. From the existence of T , it
follows that TΣ2T−1 = P22Q22, where Σ2 is a diagonal
matrix. Hence T contains right eigenvectors to a matrix
P22Q22 and without loss of generality w is the first
column of T . Similarly it can be shown that v the first
column of T−T is nonnegative.

2) Stability of the matrix At is a collection of known
results, but it is presented for completeness. Let T be
diag(In−k, T22). Introduce the following partitioning of
these matrices:

T−1AT =

(
At Atr

Art Arr

)
T−1PT−1 =

(
P̃ 0

0 Σ̃

)
P̃ =

(
P11 0
0 Σ11

)
Σ̃ = diag (Σ22,Σnn)

Now stability of At can be established by simply writing
the Lyapunov inequalities in the new variables.

T−1ATT−1PT−T + T−1PT−TT ′A′T ′ ≤ 0(
At Atr

Art Arr

)(
P̃ 0

0 Σ̃

)
+

(
P̃ 0

0 Σ̃

)(
A′t A′rt
A′tr A′rr

)
≤ 0(

AtP̃ + P̃A′t AtrΣ̃ + P̃A′rt
∗ ArrΣ + ΣA′rr

)
≤ 0

Proving that At is Metzler is also straightforward. A12w
v′A21 are nonnegative since w, v, A12, A21 are individ-
ually nonnegative [19]. All is left to show that v′A22w
is a negative scalar. Since AtP̃ + P̃A′t ≤ 0 then(
A11P11 + P11A

′
11 A12wΣ11 + P11A

′
21v

∗ v′A22wΣ11 + Σ11w
′A′22v

)
≤ 0

and hence v′A22wΣ11 + Σ11w
′A′22v < 0. This implies

that v′A22w is negative since Σ11 > 0.
3) This result is shown in [8].


