

## Leaf area and leaf orientation measurement by using stereovision

#### Vincent Leemans, Benjamin Dumont, Marie-France Destain





### Introduction









# Introduction

#### Ecotron

- Limited cultivated area
  - $\Rightarrow$  Limited possibilities for sampling
  - ⇒ Needs for a non-destructive measurement technique, dedicated for scientist who are not expert in the measurement system (Image analysis)

Aerial parts

- Leaf area index : LAI
- Average leaf angle : ALA
- N, ...
- Root system





## Introduction

- Ecotron
- Field measurements
  - Leaf Area Index (LAI) is an important measurement for agronomist and modellers
  - Its measure is destructive, tedious and expensive









![](_page_7_Picture_0.jpeg)

## Material

- Stereo images acquisition :
  - Two cameras 1024\*768 or 1280 \* 960 pix
  - Base distance : 115 mm
  - Distance camera-crop :+/- 1.3 m
  - Focal length : 16 mm
  - Vergence : 3.5°
  - Disparity of 1 pixel ≈
     ∆z 2 mm

![](_page_7_Picture_9.jpeg)

![](_page_7_Picture_10.jpeg)

![](_page_8_Picture_0.jpeg)

![](_page_9_Picture_0.jpeg)

gembloux

agro bio tech

# Method

- Measurements were made on 8 plots dedicated to N application assessment in order to have different LAI references
  - 2 N applications
  - 4 plot repetitions
  - 3 dates (8thApril, 6th May, 4th June)
  - 5 stereo image couples per plots
  - 1 destructive reference measures on 50 cm for each plot

 $\Rightarrow$  Quantification of the accuracy and the precision

![](_page_10_Picture_0.jpeg)

gembloux

agro bio tech

## Method

#### Error quantification

 Accuracy and precision were assessed by using 5 pattern of known "leaf" area (0.0155m<sup>2</sup>) :

![](_page_10_Picture_4.jpeg)

![](_page_11_Picture_0.jpeg)

Principle

![](_page_11_Figure_3.jpeg)

![](_page_11_Picture_4.jpeg)

![](_page_12_Picture_0.jpeg)

#### Principle

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

#### Algorithm

Université 🔰 🧕

de Liège

- Histogram equalisation \*
- Image rectification \*
  - To have the same points on the same lines on both images

![](_page_13_Picture_5.jpeg)

gembloux agro bio tech

: Openev Libraries

#### Algorithm

Université de Liège

- Histogram equalisation \*
- Image rectification \*
- Measurement of the disparities in pixels \*
  - "modified H. Hirschmuller algorithm"
  - For each pixel of the left image, research in the right image the best match of a block centred on the pixel
  - Block size, MinDisparity, DisparityRange are parameters to be given to the software

![](_page_14_Picture_8.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

gembloux

irschmuller algorithm"

of the left image, research in the he best match of a block centred

Disparity, DisparityRange are o be given to the software

#### Algorithm

Université de Liège

- Histogram equalisation \*
- Image rectification \*
- Measurement of the disparities in pixels \*
- Post treatments \*
  - Eliminate doubtful data and hidden pixels
  - Compute xyz in "human" coordinates \*

xyd [pixels]  $\rightarrow$  xyz [m]

![](_page_16_Picture_9.jpeg)

Algorithm

gembloux

agro bio tech

Université de Liège

- Histogram equalisation \*
- Image rectification \*
- Measurement of the disparities in pixels \*
- Post treatments \*
  - Eliminate doubtful data and hidden pixel
  - Compute xyz in "human" coordinates \*
    - xyd [pixels]  $\rightarrow$  xyz [m]

Calibration setup by using calibration \* (indoor, check-board)

![](_page_17_Picture_11.jpeg)

#### Algorithm

Université de Liège

- Histogram equalisation \*
- Image rectification \*
- Measurement of the disparities in pixels \*
- Post treatments \*
- Image segmentation (Leaves/Soil)
  - Linear discriminant analysis \* on RGB

![](_page_18_Picture_8.jpeg)

![](_page_19_Picture_0.jpeg)

#### **Method** Université de Liège Algorithm Image segmentation (Leaves/Soil) Computation of the areas • Leaves $\sum_{triangles} |\overrightarrow{AB} \times \overrightarrow{AC}|/2$ sensors optics 🔶 Total : based on the mean leave z plane LAI = Leave Area / Total Area Z • ALA : mean of $\alpha$ $CP = \overrightarrow{AB} \times \overrightarrow{AC}$ $\alpha = acos\left(\frac{CP_z}{|CP|}\right)$ gembloux \* : OpenCV Libraries

agro bio tech

- Possible sources of error
  - Measurement noise in z
  - Leaves criss-crossing
  - Angle with the optical axis
  - ⇒ Angle between normal to the leaf and optical axis has been limited : cos(α) >0.2

B

 Because of the high variability of the LAI in the field, estimation of the reference LAI was based on stereo vision LAI by using regression

![](_page_21_Picture_8.jpeg)

Université de Liège

![](_page_22_Picture_0.jpeg)

#### Results

![](_page_22_Picture_2.jpeg)

- Analysis of the errors
  - Only the noise is considered here
  - Correlation between estimated and true distance (based on the patterns) : r = 0.9997, slope= 1.0003

![](_page_22_Figure_6.jpeg)

![](_page_22_Picture_7.jpeg)

![](_page_23_Picture_0.jpeg)

#### Results

![](_page_23_Picture_2.jpeg)

- Analysis of the errors
  - Only the noise is considered here
  - Correlation between estimated and true distance (based on the patterns) : r = 0.9997, slope= 1.0003
  - Accuracy and precision (patterns ref. area = 0.0155)

| Resolution | 1024*768     |        | 1280*960     |        |
|------------|--------------|--------|--------------|--------|
|            | relative (%) | m²     | relative (%) | m²     |
| Accuracy   | 34           | 0.0053 | 49           | 0.0075 |
| Precision  | 10.9         | 0.0017 | 15.8         | 0.0024 |

Error analysis showed that standard deviation on z should be respectively around 3 10<sup>-4</sup> m and 5 10<sup>-4</sup> m to achieve the given precision Necessity of a regression to estimate Ref LAI

![](_page_23_Picture_9.jpeg)

2

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

- Repetitions on the same spot
  - 5 repetitions
  - standard deviation on LAI = 0.09 ( $m_{IAI} \approx 1$ )
  - standard deviation on ALA = 0.02 rad ( $m_{ALA} \approx 1.3$ )

![](_page_24_Picture_7.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

#### Estimation of the LAI (Ref LAI = f (3D-LAI))

![](_page_25_Picture_4.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

- Estimation of the LAI (Ref LAI = f (3D-LAI))
  - Linear regression is correct (no saturation observed)
  - standard deviation for the reference (4 plots) : 0.23
  - standard deviation for the estimation based on 1 stereo vision measurement : 0.22
  - correlation coefficient (3D, Ref) : 0.88
  - standard deviation for the estimation based on 5 stereo vision measurement : 0.14
  - correlation coefficient (5 \* 3D, Ref) : 0.91

![](_page_27_Picture_10.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_30_Picture_0.jpeg)

Softwares

- Sofware developped using OpenCv and GTKmm libraries
- Two software are warped in an "easy to use GUI" aimed to be a tool for scientist having no direct interest in Image analysis
  - LAI/ALA measurement
  - Image segmentation
- Two software are still "PhD student versions"
  - Acquisition

![](_page_30_Picture_8.jpeg)

![](_page_31_Picture_0.jpeg)

View All Left Right Disparity Probabilities Data & Config

![](_page_31_Picture_2.jpeg)

LAI : 3.65927 Données du pointeur : Abscisse : 808 Disparité : 257

Ordonée : 552 x: 0.183; y: 0.0839; z (dst pix-cam) : 1.23

Left : R : 111; G : 132; B : 65 Probabilité pix->plante : 1 Right : R : 123; G : 153; B : 63

![](_page_31_Picture_7.jpeg)

Université de Liège

Two :

GUI"

direct

LA

Ima

Acc

Cal

Two :

/home/vincent/Projects/StereoLAI/ListLiroux1024\_04062013.txt /home/vincent/Ecotron/Stereo/Images/Liroux040613\_1024/Triti0\_3.tiff 4/40

|                                      | View All Left Right Disparity Probabilities Data & Config                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Université<br>de Liège               | Data       LAI : 3.48004       ALA : 1.31271       Coverage Ratio : 0.460247       Nombre de ligne de culture observées : 38         Distance caméra-plantes : 1.07781       Aire observée : 0.11205       Aire des feuilles : 0.140418       Proportion de pixels correctement mesurés : 0.360101                                                                     |
|                                      | Configuration         Egalisation de l'histogramme         Image: Station avant segmentation         Image: Station avant segmentation         Image: Paramètres stéréoscopiques                                                                                                                                                                                       |
| GUI"                                 | Minimum disparity:       240       Number of disparities:       192       Disparité maximale:       432       Matched block size:       5       \$         Fichiers       Noms d'images:       /home/vincent/Projects/StereoLAI/ListLiroux1024_04062013.txt       5       \$                                                                                           |
| direct                               | Paramètres extrinsèques : /home/vincent/Projects/Calib/extrinsics1024_MaiJuin13_355.yml<br>Paramètres intrinsèques : /home/vincent/Projects/Calib/intrinsics1024_MaiJuin13_355.yml<br>Paramètres de segmentation : /home/vincent/Projects/ClrDiscrim/ModeleNBLiroux040613.yml<br>Image de gauche : /home/vincent/Ecotron/Stereo/Images/Liroux040613_1024/Triti0_1.tiff |
| = LAI                                | Image de droite : /home/vincent/Ecotron/Stereo/Images/Liroux040613_1024/Triti1_1.tiff<br>Fichier de données (sortie) : /home/vincent/Projects/StereoLAI/LAILiroux1024_040613.txt                                                                                                                                                                                       |
| • Ima                                |                                                                                                                                                                                                                                                                                                                                                                        |
| IWO S                                |                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Act</li> <li>Cal</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                        |
| Cu                                   |                                                                                                                                                                                                                                                                                                                                                                        |
|                                      | LAI: 3.48004 ALA: 1.31271<br>Données du pointeur:<br>Absice: Ordonée: Left: R:: G:: B:: Right: R:: G:: B::                                                                                                                                                                                                                                                             |
| gembloux<br>agro bio tech            | Disparité :       z (dst pix-cam) :       Probabilité pix->plante :         /home/vincent/Projects/StereoLAI/ListLiroux1024_04062013.txt       /home/vincent/Ecotron/Stereo/Images/Liroux040613_1024/Triti0_1.tiff       2/40                                                                                                                                          |
|                                      |                                                                                                                                                                                                                                                                                                                                                                        |

![](_page_33_Picture_0.jpeg)

Vue d'ensemble Image Classement Données & Configuration

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

Ground
 Leaves

140 samples 89 samples

Abscisse: 614

Ordonée : 450

R:202

G:219

B:151

Class: 255

![](_page_33_Picture_12.jpeg)

/home/vincent/Projects/ClrDiscrim/ListLiroux1024\_04062013.yml /home/vincent/Ecotron/Stereo/Images/Liroux040613\_1024/Triti0\_0.tiff 1/68

![](_page_34_Picture_0.jpeg)

## Conclusion

- The proposed method based on stereo vision system is
  - able to achieve a precision similar to the reference method
  - much quicker than the reference method
  - affordable
- It will be tested more extensively

![](_page_34_Picture_7.jpeg)

![](_page_35_Picture_0.jpeg)

#### Thank you for your attention

![](_page_35_Picture_2.jpeg)