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Space observations of fainter and more distant astronomical objects constantly require telescope pri-
mary mirrors with a larger size. The diameter of monolithic primary mirrors is limited to 10 m because
of manufacturing limitations. For space telescopes, the primary mirrors are limited to less than 5 m
due to fairing capacity. Segmented primary mirrors thus constitute an alternative solution to deal with
the steadily increase of the primary mirror size. The optical path difference between the individual
segments must be close to zero (few nm) in order to be diffraction limited. We propose in this paper
a new inter-segment piston sensor based on coherence measurement of a star image. This sensor is
intended to be used in the co-phasing system of future segmented mirrors.

1. Introduction
In order to observe fainter and more distant ce-
lestial objects with a better angular resolution,
larger telecopes are required to improve the limit
of diffraction and the quantity of light collected.
Actually, El Gran Telescopio de Canarias (GTC)
[1] with a 10.4 m diameter at La Palma Island, is
the biggest segmented telescope in the world to be
followed by the Thirty Meter Telescope (TMT) [2]
at Mauna Kea in Hawäı, the European Extremely
Large Telescope (E-ELT) [3] in Paranal and the
Giant Magellan Telescope (GMT) [4] in Las Cam-
panas, all planned to be in operation sometimes
during the next decade.
The optical path difference (OPD) between seg-
ments in such mirrors must be reduced nearly to
zero (the segments must be co-phased) depending
on the spectral requirements, in order to be diffrac-
tion limited over the whole aperture. In the visible
spectral range, this distance must be typically be-
low 10 nm. The initial OPD (before co-phasing sys-
tem is turned ON) in segmented telescopes is typi-
cally about 100 µm because of mechanical structure
tolerance. Then, two measurement sensors (coarse
and fine) must be used in order to correct from
100 µm to 10 nm OPDs. Fine measurement tech-
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niques as described in [5] and [6] have been stud-
ied. Also, two well known coarse measurement tech-
niques have been evaluated, the Multi-spectral pis-
ton sensor [7] and the Broadband phasing algorithm
[8]. These have been considered as a baseline for
this work. In the present paper, we propose a new
concept, capable to measure OPD between 0 µm
and 200 µm at a relatively low cost and with less
stringent mass constraints in comparison with other
techniques.

1.A. Broadband phasing algorithm

This technique involves some broadband input light
and measuring the coherence degree of the trans-
mitted light. This light has a coherence length (Lc)
that limits the range of possible measurement. This
length, so-called coherence length, is given by (see
[8]):

Lc =
λ2

2∆λ
(1)

where λ is the central wavelength and ∆λ is the
bandwidth of the filter. The degree of coherence,
defined as the normalized correlation of the electric
fields, is related to the OPD as a Gaussian function
of the distance between segments. Note the factor
of 2 in Eq. (1) denominator: it comes from the
input light reflection on the main mirror, giving an
OPD equal to twice the distance between segments.
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2. Proposition
We propose here a new coarse phasing method in-
volving the measure of the degree of coherence of
the reflected light. It uses the Point Spread Func-
tion (PSF) of a star in the field of view (FOV) of
the telescope. This PSF is generated by a sub-
pupil configuration that can be adapted for any
segmented telescope. For the purpose of demon-
stration, we used a three segment telescope with
the sub-pupil configuration depicted in Fig 1.

Fig. 1. Telescope segments (hexagons) and sub-pupil
(circles) configuration

The input coherent star light is reflected by the
main mirror of the telescope and after passing
through a mask with the sub-pupil configuration,
the light is focused on a CCD where the PSF is
recorded. This image, is equivalent to the square
modulus of the Fourier Transform of the sub-pupil
configuration [9]. After registration, the Inverse
Fourier Transform is performed for the CCD im-
age (PSF). This mathematical operation gives the
Optical Transfer Function (OTF) which is com-
posed of the Modulation and Phase Transfer func-
tions (MTF and PTF respectively). Finally, mea-
suring the different heights of the MTF peaks gives
the OPD between the different segments. We will
present the experimental setup and some results,
the co-phasing probability (in a specific direction
of the sky) and advantages and limitations of this
method in the next sections.

This system is based on Fourier Optics [10]. Here,
the PSF is formed by the interference of light in
the image plane of the telescope. We can define the
electric field in the sub-pupil plane by:

E(x, y) = A(x, y) · ei ·OPD(x,y) · 2π
λ (2)

where (x, y) are the coordinates in the sub-pupil
plane. When the coherent light (star light) im-

pinges the telescope, it is reflected several times and
finally reaches a CCD sensor placed in the image
plane. This PSF is defined as:

PSF (u, v) = |(FT (E(x, y)))|2 (3)

PSF (u, v) = |(FT (A(x, y) · ei ·OPD(x,y) · 2π
λ ))|2

(4)
where FT is the Fourier Transform and (u, v)

are the spatial frequency coordinates in the image
plane. When we apply the Inverse Fourier Trans-
form on the acquired CCD PSF, we obtain the
OTF. OTF is a complex number, that is composed
of an amplitude and phase. The PTF gives sev-
eral information about the OPD of sub-pupils when
it is in the (−λ/2,+λ/2) range including Piston,
Tip/Tilt and higher order aberrations, but recent
experimental results show that the MTF also gives
information about the OPD when it is in the range
of the coherence length of the filter (Eq. (1)). The
method which exploits these results and leads to
the measurement of the OPD (Piston only), is de-
scribed hereunder. Tip/Tilt and higher order aber-
rations are not concerned by this paper.

2.A. Theory
The MTF is the amplitude part of the OTF, and is
given by:

MTF (x, y) = |FT−1(PSF (u, v))| (5)

where (x, y) are the MTF coordinates. In the
MTF, the heights of the surrounding peaks (not
the central peak), are related to the coherence de-
gree of the PSF, and the coherence degree is related
to the OPD. Thus, by measuring the height of the
MTF surrounding peaks, we can retrieve the OPD
between the segments. Figure 2 shows a simulation
of different MTF for various PSF and a spectral fil-
ter centered at λ = 632.8 nm with ∆λ = 1 nm: we
see that when the OPD is null, the fringe contrast
is 1 and that the MTF peaks are maximum, but as
the OPD increases, the MTF peaks become smaller
and smaller, until they completely disappear. We
put the OPD in abscissa and the MTF peaks height
in ordinates and fitted it with Gaussian, Cardinal
sinus (Sinc), Linear and Parabola functions, and
the best fitted function was the Gaussian function.

According to the fitting procedure, the MTF nor-
malized peak heights (MTFnph), are related to the
OPD by means of the following Gaussian relation:



3

Fig. 2. Simulation of the PSF (left column) and MTF
(right column) for a spectral filter centered at λ =
632.8 nm with ∆λ = 1 nm for different OPD values of a
single pupil

MTFnph = e−(OPDPAR )
2

(6)

where PAR is a fitting parameter. Then, the
OPD is merely given by:

OPD = PAR ·
√
− ln(MTFnph) (7)

Note that the MTF central peak height
(MTFcph) is always the same regardless the coher-
ence degree, the MTFcph is too the cross correlation

of all sub-pupils [9], so its height is the maximum
height of a single peak multiplied by the number of
sub-pupils and is given by:

MTFcph = maxph ·n (8)

where maxph is the maximum surrounding peak
height and n is the number of sub-pupils. Then,
the expression of MTFnph is given by:

MTFnph =
MTFph

maxph
(9)

and following Eqs. (8) and (9):

MTFnph =
MTFph

MTFcph
·n (10)

where MTFph is the non-normalized surrounding
peak height.

Finally, using Eqs. (7) and (10), we obtain:

OPD = PAR ·

√
− ln

(
MTFph

MTFcph
·n
)

(11)

This equation gives the OPD in terms of the fit-
ting parameter, the surrounding peak height, the
central peak height and the number of sub-pupils.
The OPD is thus not sensitive to the input light
power because if the light power changes, the sur-
rounding and the central peaks also change in the
same proportion, and thus, the resulting OPD re-
mains the same.

We define MTFnph = 0.5 when the OPD is equal
to 0.5Lc, then, PAR is given by:

PAR =
0.5Lc√
− ln 0.5

(12)

Remember that Lc depends on the bandwidth of
the input spectrum. Thus, for the data simulated
in Fig. 2, PAR = 120.24 µm.

3. Experimental results

3.A. Optical setup

Figure 3 shows the optical demonstration bench
used for this experiment.
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Fig. 3. Optical demonstration bench

Optical setup components

- Halogen lamp (250W bulb)

- Converging lens

- Pin Hole (20 µm diameter)

- Off axis parabola (10 cm diameter)

- Sub-pupil mask (3 holes of 8 mm diameter each one)

- Flat mirrors

- Piezo electric actuator (400 µm displacement)

- Spectral filter (λ = 632.8 nm, BandWidth = 1 nm)

- CCD Camera (AVT Pike F-032B)

Table 1. Optical setup components

3.A.1. Components

The optical setup was elaborated with the compo-
nents in the table 1.

A halogen lamp, a converging lens and a pin hole
simulate a star. An off-axis parabola simulates
a telescope’s main mirror and the sub-pupil mask
serves as the telescope’s sampling mask (sub-pupil).
The mirrors and a single piezo electric actuator are
used to introduce a known piston error and the im-
age filtered by the spectral filter is recorded by the
CCD camera in the focal plane.

3.A.2. Optical Setup Explanation

When the light coming from a star (pin hole) im-
pinges the off-axis parabola, it is reflected and con-
verges on the CCD (focal plane), reflected by the
mirrors equipped with a single piezo electric actu-
ator. The CCD recorded image is the PSF of the
sub-pupil configuration deformed by a known pis-
ton error (introduced by the piezo electric actua-
tor) and filtered. Then, mathematically, the inverse
fast Fourier transform (IFFT) is performed over the
PSF in order to obtain the OTF, and finally, ana-
lyzing the heights of the MTF, we retrieve the OPD
between the actuated mirror and the non actuated
mirrors of the parabola.

3.B. Measurements

Table 2 and Fig. 4 summarize a set of piston mea-
surements, performed with the optical bench in or-
der to estimate the measurement errors.
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Fig. 4. Graphic representation of sets of optical bench
measurements
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Settled piston AVG Difference Standard dev

(nm) (nm) (%) (nm (%))

412 3027 634,71 720 (23,79)

5465 5995 9,70 683 (11,39)

10877 9831 -9,62 437 (4,45)

15129 11349 -24,99 392 (3,45)

20622 18541 -10,09 347 (1,87)

40200 37105 -7,70 279 (0,75)

59487 60088 1,01 184 (0,31)

79945 80184 0,30 158 (0,20)

99992 100791 0,80 191 (0,19)

120659 120717 0,05 348 (0,29)

140994 141412 0,30 515 (0,36)

161163 158457 -1,68 701 (0,44)

177285 180081 1,58 792 (0,44)

186920 190299 1,81 954 (0,50)

190235 193032 1,47 1319 (0,68)

195518 192418 -1,59 1593 (0,83)

200391 201864 0,74 1932 (0,96)

Table 2. Set of optical bench measurements, settled
piston (first column), average measured piston (sec-
ond column), difference (AVG compared to settled pis-
ton) (third column), and measured standard deviation
(fourth column)

3.B.1. Measurement Analysis

In Table 2 and Fig. 4 we observe that the Difference
(Accuracy) and the Standard Deviation (Stability)
are degraded at the extremes of the measurement
range. It is due to the Gaussian shape of the signal.

In Fig. 4, there is a dotted curve (piston without
errors) and a solid curve (measured piston), the
differences between them are the Measurement
Errors. The coherence of the signal is Gaussian (as
a function of the distance between the segments).
At the extremes of the range the non linearities of
the Gaussian become more important and then the
method gets more unstable. That is to say that
for the same measurement error over the whole
measurement range and after application of Eq.
(11), we obtain an error increase at the extremes
of the measurement range. This effect has been
simulated in Fig. 5 where we can observe the
distance error and how this error is amplified.

The Fig. 5 is the graphic representation
of the equation |F (MTFnph) − F (MTFnph −
errorMTFnph)| where F is the Eq. (7), and
errorMTFnph is a constant value over the whole

Fig. 5. Error amplification effect: in abscissa the settled
piston (m ) and in ordinates the simulated error (m )

measurement range.

The error seems to be infinite at OPD near to 0,
because the Eq. (7) is undefined (complex solution)
for MTFnph values bigger than 1 (OPD = 0 when
MTFnph = 1).

This error can be reduced by performing more
measurements and averaging them.

4. Co-phasing probability

In order to realize the co-phasing task, it is manda-
tory to have a sufficiently bright star that the tele-
scope can detect. The apparent magnitude (Mv) of
the required star has to be calculated. The com-
putation indicates that for our camera sensitivity
and GTC and E-ELT telescope, the required Mv

must be brighter than 15 for GTC and 12 for E-
ELT for a coherence diameter of 12 cm (normally
at all observation places chosen for big telescopes)
with 10 min of integration time. In order to find
the probability to find such stars, we used a stel-
lar population algorithm depending on, the field of
view (FOV), direction (galactic coordinates) and
observation band. This probability is the proba-
bility to achieve the co-phasing in the specified di-
rection. Table 3 shows different probabilities calcu-
lated for FOV = 15′ (GTC), FOV = 5′ (E-ELT),
Band = R and BW = 10 nm for different galactic
coordinates. This study has been carried out in or-
der to verify that this method can be implemented
with actual segmented mirror sizes and sensitivi-
ties. For a TMT, E-ELT or any other future giant
telescope, this would mean that the probability of
finding a sufficiently bright star would be near from
100% but due to the FOV smaller than 15′ (e.g. E-
ELT), the telescope will shall be directed towards
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a known position with a sufficiently bright star.

Lon (◦) Lat (◦) GTC Prob E-ELT Prob

30 0 1 0.9850

60 0 1 0.9474

135 0 1 0.7406

180 0 1 0.6909

0 10 1 0.7804

30 10 1 0.7305

60 10 1 0.6556

90 10 1 0.5763

135 10 1 0.4877

180 10 1 0.4553

0 30 1 0.2705

30 30 1 0.2587

60 30 1 0.2387

90 30 1 0.2184

135 30 1 0.1957

180 30 1 0.1888

30 60 0.9974 0.1194

60 60 0.9964 0.1159

90 60 0.9948 0.1116

135 60 0.9919 0.1063

180 60 0.9904 0.1042

90 90 0.9775 0.0916

Table 3. Co-phasing success probability for the GTC
(FOV = 15’) [1] and the E-ELT (FOV = 5’) [3] telescopes
and the sensitivity of an AVT Pike F-032B camera

5. Advantages and limitations

5.A. Advantages

- This method is not perturbed by the segment
edges.

- By combining this method with two wave-
length equations (see [11]) and the method
described in [5], it is possible to perform the
whole co-phasing task from 200 µm down to
10 nm with two spectral filters and one opti-
cal setup.

- This method uses one Fast Fourier transform
(FFT) and some arithmetic functions, and
therefore requires modest computer perfor-
mances.

- It is a lightweight optical setup (one mask, two
spectral filters, one shutter and one CCD cam-
era, to perform the whole co-phasing task).

- The optical setup is separated from the main
optical path, then, the mirrors are not manip-
ulated during the mounting of the sensor.

- No laser source is required. Mass, cost and
temperature performances are better in com-
parison to laser systems.

5.B. Limitations
- The precision of this method is limited, but

when combining with [11] and [5] the whole
co-phasing task can be performed.

- The co-phasing capability depends on the star
brightness and the CCD sensitivity. It is lim-
ited by the field of view of the telescope. This
limitation can be overcome by changing the
sub-pupil size or redirecting the telescope to a
known star coordinate.

6. Conclusions
- This method maximizes the OPD measure-

ment range because it uses the whole coher-
ence length of the filter. It measures the abso-
lute piston value instead of differential piston
values.

- This method does not perturb the telescope
main mirror, is easier to mount than capac-
itive methods, and can be easily combined
with similar fine measure techniques in order
to achieve the whole co-phasing task.
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