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A B S T R A C T

The glycosyltransferases of family 51 (GT51) catalyze the polymerization of lipid II to form linear glycan

chains, which, after cross linking by the transpeptidases, form the net-like peptidoglycan macromole-

cule. The essential function of the GT makes it an attractive antimicrobial target; therefore a better

understanding of its function and its mechanism of interaction with substrates could help in the design

and the development of new antibiotics.

In this work, we have used a surface plasmon resonance Biacore1 biosensor, based on an amine

derivative of moenomycin A immobilized on a sensor chip surface, to investigate the mechanism of

binding of substrate analogous inhibitors to the GT. Addition of increasing concentrations of

moenomycin A to the Staphylococcus aureus MtgA led to reduced binding of the protein to the sensor

chip as expected. Remarkably, in the presence of low concentrations of the most active disaccharide

inhibitors, binding of MtgA to immobilized moenomycin A was found to increase; in contrast

competition with moenomycin A occurred only at high concentrations. This finding suggests that at low

concentrations, the lipid II analogs bind to the acceptor site and induce a cooperative binding of

moenomycin A to the donor site. Our results constitute the first indication of the existence of a positive

cooperativity between the acceptor and the donor sites of peptidoglycan GTs.

In addition, our study indicates that a modification of two residues (L119N and F120S) within the

hydrophobic region of MtgA can yield monodisperse forms of the protein with apparently no change in

its secondary structure content, but this is at the expense of the enzyme function.

� 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The glycosyltransferases of family 51 (GT51) are essential enzymes
found in bacteria with peptidoglycan cell wall [1]. They exist in two
forms: as a monofunctional domain or linked to the N-terminal end of
penicillin-binding (PB) domain in bifunctional PB proteins (PBPs)
[1]. Both forms catalyze the polymerization of lipid II (undecaprenyl
pyrophosphate-MurNAc(pentapeptide)-GlcNAc) precursor to form
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linear glycan chains which, after cross linking by the transpeptidases,
form the net-like peptidoglycan macromolecule that encases bacteria
and protects them from rupture under their high cytoplasmic
pressure. Inhibition of the GT blocks peptidoglycan synthesis and
leads to bacterial lysis and death, therefore the GT is a promising
target in the search for new antibacterial agents to counter the arising
antibiotic resistant strains.

Two main strategies are being followed to identify novel
pharmacophore lead molecules for the design and synthesis of new
GT inhibitors that could be developed as antibiotics: high
throughput screening of chemical libraries [2–4] and rational
synthesis of substrate and moenomycin (GT inhibitor) analogs [5–
8]. The second strategy requires a deep understanding of the GT
mechanism and structural data on protein–ligand complexes.
Substantial progress has been made in the biochemistry of the GT
[9–14] and several crystal structures have been determined, both
tivity between acceptor and donor sites of the peptidoglycan
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in the apo form and in complex with moenomycin A and a lipid II
analog [15–20]. These structures show that the GT is composed of a
lysozyme-like globular domain and a small hydrophobic domain
(called jaw domain) with a deep cleft between them containing the
active site (Fig. 1). The extended active site is divided into two
subsites, separated by a mobile region (composed of an alpha helix
and a beta-hairpin), a donor site for the growing glycan chain
binding and an acceptor site for lipid II binding. Elongation of the
growing chain is achieved by the addition of disaccharide unit
MurNAc-GlcNAc of lipid II in a processive way. Comparison of the
apo and moenomycin A bound structures shows that the head
domain remains unchanged after moenomycin A binding whereas
a major conformational change occurs in the jaw subdomain with
partial restructuration of the mobile region [15].

At the initiation phase of polymerization, the lipid II substrate
molecules bind to the donor and acceptor sites which makes
binding studies to determine the affinity of the substrate for each
site particularly complex. Differences in affinity would determine
the order of binding in the initiation stage and might consequently
affect the affinity for the second site by an allosteric effect. We have
used lipid II mimic inhibitors and moenomycin A, which is
proposed to mimic the growing chain, to investigate these
questions. An assay was developed by a modification of the SPR
method described by Welzel and colleagues [21]. This technique is
based on the interaction of an immobilized moenomycin A amino
derivative with peptidoglycan glycosyltransferase and was origi-
nally used to test moenomycin derivatives for their inhibitory
activity. We improved the sensitivity of this assay and used it to
characterize several lipid II analog inhibitors as well as enzymati-
cally inactive GT mutants as to their donor site functionality.
Moenomycin A necessary for the synthesis of the amino derivative
is not commercially available. Hence we also developed a method
to isolate moenomycin A in good purity and yields from a
Flavomycin1 standard containing a mixture of moenomycin
congeners.

We show that in the presence of low concentrations of lipid II
analogs, supposedly bound to the acceptor site, moenomycin A
binding to the donor site of the GT increased, indicating an
allosteric activation of the donor site. At higher concentrations of
these analogs, lower GT binding levels were observed, indicating
competition with moenomycin A at the donor site.

All GTs contain a conserved hydrophobic surface (Fig. 1) that
mediates their interaction with the cytoplasmic membrane and
renders the purified proteins polydisperse [18,22]. This property
Fig. 1. (a) Ribbon representation of the structure of MtgA-E100Q in complex with moenom

shown in stick. (b) Electrostatic surface representation of MtgA with positively charged r

residues of the hydrophobic surface are indicated. Figures were generated by The PyM
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makes a thorough quantitative binding study of the MtgA by SPR
complex. The possibility to improve the solubility (monodisper-
sity) of the protein by modification of residues in the hydrophobic
surface was investigated. A monodisperse form of the protein was
obtained without detergent and characterized.

2. Materials and methods

2.1. Materials

Surface plasmon resonance (SPR) biosensor analyses were
performed on a Biacore Q1 (Biacore AB, Uppsala, Sweden). Semi-
preparative HPLC (high performance liquid chromatography) was
performed using an HPLC consisting of a Merck-Hitachi LaChrom1

Pump L7100 (Hitachi Ltd., Tokyo, Japan), a manual sample injector
valve model 7125 (Rheodyne Inc., Cotati, USA), a NUCLEODUR1

C18 HTec column (dimensions: 250 � 10 mm, particle size: 5 mm)
(Macherey-Nagel GmbH & Co. KG, Düren, Germany) in a
thermostated column compartment model ERC 125 (ERC GmbH,
Riemerling, Germany), a Merck-Hitachi LaChrom1 UV–vis Detec-
tor L-7420 with semi-micro flow cell (Hitachi Ltd., Tokyo, Japan),
and a 162 chromatography signal interface (Autochrom Inc.,
Milford, USA). Analytical HPLC was performed using an HPLC
consisting of a Merck-Hitachi LaChrom1 Pump L7100 (Hitachi Ltd.,
Tokyo, Japan), a Merck-Hitachi LaChrom1 Programmable Auto-
sampler L-7250 (Hitachi Ltd., Tokyo, Japan), a NUCLEODUR1 C18
HTec column (dimensions: 250 � 4 mm, particle size: 5 mm)
(Macherey-Nagel GmbH & Co. KG, Düren, Germany) in a Merck
LaChrom1 Column Oven L-7350 (Merck KGaA, Darmstadt,
Germany), a Merck-Hitachi LaChrom1 Diode Array Detector L-
7450 (Hitachi Ltd. Tokyo, Japan), and a Merck-Hitachi Interface D-
7000 (Hitachi Ltd., Tokyo, Japan). HPLC eluents and SPR running
buffers were filtered through a Whatman1 OE 67 cellulose acetate
membrane filter (pore size 0.45 mm; Whatman GmbH, Dassel,
Germany) and degassed prior to use.

High-purity water was produced from deionized water using a
Milli-Q1 Gradient A10 (Millipore, Molsheim, France). Acetonitrile
(Fisher Scientific UK Limited, Loughborough, UK), methanol (VWR
International, Fontenais-Sous-Bois, France), acetone (VWR Inter-
national, Fontenais-Sous-Bois, France), and chloroform (Fisher
Scientific UK Limited, Loughborough, UK) were HPLC grade.
Acetonitrile (puriss.) for semi-preparative HPLC, dimethyl sulfox-
ide (p.a.), 25% ammonia, sodium hydroxide (�99%), sodium
chloride (p.a.), HEPES (p.a.), TRIS (�99.9%), and EDTA (disodium
ycin A bound to the donor site (PDB 3HZS). The modified residues L119N, F120S are

esidues in blue, negatively charged residues in red and neutral residues in grey. The

OL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC).
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salt, dihydrate; p.a.) were purchased from Carl Roth GmbH + Co
(Karlsruhe, Germany). Ethanolamine (�98%), potassium dihydro-
gen phosphate (puriss, p.a.), anhydrous dipotassium hydrogen
phosphate (purum, p.a.), TWEEN1 20, SDS (�99.0%), 5-amino-2-
nitrobenzoic acid (97%), 1,10-carbonyldiimidazole (>90%), N-(3-
dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride
(purum) and N-hydroxysuccinimide (98%) were purchased from
Sigma-Aldrich Chemie GmbH (Steinheim, Germany). 85% ortho-
phosphoric acid (p.a.), ammonium hydrogen carbonate (puriss.),
sodium acetate trihydrate (p.a.) and sodium nitrite (p.a.) were
purchased from Merck KGaA (Darmstadt, Germany). Anhydrous
pyridine (p.a.) was obtained from Fluka (Seelze, Germany),
hydrochloric acid (�36%) from Fisher Scientific UK Limited
(Loughborough, UK), and CHAPS (�98.0%) from A.G. Scientific,
Inc. (San Diego, USA). Flavomycin1 reference standard was
purchased from biovet1 (Peshtera, Bulgaria).

Unlabled lipid II was prepared as described [23]. The syntheses
of lipid II analogs 21, 43, 44, 56, 57 61, 62 have been described in
[5].

2.2. Preparation of moenomycin A

Moenomycin A was isolated from the Flavomycin1 reference
standard as previously reported [24] by semi-preparative HPLC
followed by desalting via SPE. The HPLC separation was performed
with 6 mL/min 50 mM KH2PO4 pH 2.3/acetonitrile 58:42 (v/v) at
45 8C and a detection wavelength of 280 nm. With each
chromatographic run approximately 35 mg Flavomycin1 in
100 mL water/acetonitrile 8:2 (v/v) were injected. Fractions
containing moenomycin A were analyzed via analytical HPLC
(1 mL/min 100 mM NH4HCO3 pH 8.0/acetonitrile 55:45 (v/v) at
45 8C) and chromatographically pure moenomycin A fractions
were combined, diluted 1:2 with 50 mM phosphate buffer pH 7.0
(to improve retention on the SPE phase) and desalted via SPE on
CHROMABOND1 HR-X SPE cartridges (1000 mg sorbent)
(Macherey-Nagel GmbH & Co. KG, Düren, Germany). After
conditioning with methanol, followed by water and 50 mM
phosphate buffer pH 7.0 (15 mL each), on each SPE cartridge the
combined moenomycin A fractions from three chromatographic
separations (corresponding to approximately 100 mg Flavomy-
cin1) were loaded with 10 mL/min. After washing with water
(3 times 5 mL), moenomycin A was eluted with acetone/water 6:4
(v/v) with 1 mL/min at maximum (2 times 10 mL have proven to be
sufficient). Acetone was removed via rotary evaporator and the
remaining solutions were lyophilized.

2.3. Synthesis of moenomycin A amino derivative

5-Amino-N-(2-amino-ethyl)-2-nitrobenzamide was synthe-
sized according to Stembera et al. [25] except for the activated
5-amino-2-nitrobenzoic acid being slowly added to the cooled
solution of ethylene diamine and the product being purified by
column chromatography on silica gel (washed with HCl and the
water content set to 1.5% (w/w) according to [26]) with 25%
ammonia/methanol 1:25 (v/v).

Compound 3b in [25] was synthesized from 100 mg moeno-
mycin A according to Stembera et al. [25] except that no shield gas
was used and except for cleanup, which was performed by SPE on
CHROMABOND1 HR-X SPE cartridges (3 cartridges with 1000 mg
sorbent each) (Macherey-Nagel GmbH & Co. KG, Düren, Germany)
after adjusting the pH to 7.5 (the amino derivative is poorly soluble
in acidic solution). After washing with 50 mM K2HPO4 pH 7.5/
acetonitrile 8:2 (v/v) (2 times 5 mL per cartridge) and subsequent
washing with water (5 mL per cartridge), the product was eluted
with acetone/water 6:4 (v/v) (4 times 10 mL per cartridge).
Acetone was removed via rotary evaporator and the remaining
Please cite this article in press as: Bury D, et al. Positive coopera
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solution was lyophilized to yield 87 mg of the desired product.
Identity was confirmed by its measured accurate mass (negative
mode ESI–ToF–MS). The residual moenomycin A content was
determined via HPLC with 1 mL/min 50 mM KH2PO4 pH 2.3/
acetonitrile 47:53 (v/v) after dissolving an aliquot of the product in
the eluent mixture and membrane filtration (CHROMAFIL1 Xtra
PET-45/25 (Macherey-Nagel GmbH & Co. KG, Düren, Germany) to
remove undissolved product. Residual content of 5-amino-N-(2-
amino-ethyl)-2-nitrobenzamide was determined by HPLC with
1 mL/min 100 mM NH4HCO3/acetonitrile 95:5 (v/v) (detection
wavelength: 380 nm). The product contained 4% (w/w) moeno-
mycin A and <0.1% (w/w) 5-amino-N-(2-amino-ethyl)-2-nitro-
benzamide (corresponding to <1% mole fraction).

2.4. Preparation of SPR biosensor chip surface

The moenomycin A amino derivative was tethered to the
surface of a Sensor Chip CM5 (GE Healthcare Bio-Sciences AB,
Uppsala, Sweden) as described by Stembera et al. [25].

2.5. Direct SPR biosensor assay for determining glycosyltransferase

binding activity

The glycosyltransferases (GT) were diluted in SPR running
buffer (25 mM Tris buffer pH 7.5 containing 300 mM NaCl and 0.3%
CHAPS) and injected over the sensor chip surface for 120 s.
Regeneration was performed by injection of 1% SDS in running
buffer for 30 s followed by a 60 s injection of pure running buffer.
All steps were performed at a flow rate of 40 mL/min. For each GT a
dilution series was analyzed.

Since a CHAPS molecule was found in the crystal structure of
PBP1a [20], we verified its effect on the GT activity and found no
effect for up to 2 times the concentration used in the assay (data
not shown), showing that CHAPS does not interfere with our assay.

The SPR biosensor used for our experiments cannot simulta-
neously inject a solution over different chip surfaces, thus
subtraction of data from a reference cell could not be performed
in real-time. To compensate possible baseline shift during analysis,
sensorgrams are expressed as relative response values (actual
response minus response 10 s before main injection of the
respective cycle) versus time instead of absolute response values
versus time (the same applies to Section 2.6).

2.6. Competitive SPR biosensor assay on inhibitor activity

For each inhibitor a dilution series was prepared in running
buffer ((25 mM Tris buffer pH 7.5; 300 mM NaCl)/DMSO 9:1 (v/v)
containing 0.3% CHAPS). The solutions were mixed with a stock
solution of Staphylococcus aureus MtgA wild type (in running
buffer) resulting in a final MtgA concentration of 400 nM. Each of
these mixtures was injected over the sensor chip surface for 150 s
with a flow rate of 10 mL/min. GT binding levels were calculated
from the response 30 s after the end of the injection (to eliminate
the bulk effect of the solution) minus the response 10 s before start
of the injection (to account for baseline shift in the course of the
analysis). Regeneration was performed by injection of 1% SDS in
running buffer for 30 s followed by a 60 s injection of pure running
buffer (both steps at 40 mL/min).

2.7. Site-directed mutagenesis and purification of proteins

Single and double mutations were generated using Quick-
Change site directed mutagenesis method (Agilent Technologies)
using the oligonucleotides in Table 1 and the plasmid pDML2004
as template [27]. All constructs were checked by sequencing. For
the exchange of 6 amino acids (MtgA-6M: L112N, L119N, F120S,
tivity between acceptor and donor sites of the peptidoglycan
.1016/j.bcp.2014.11.003
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Table 1
Sequences of oligonucleotides used for mutagenesis.

mtgA mutants Oligonucleotides

L119N-F120S 50-GGTACAACTAGAGTCAACTCTTCAACGATTAGCGAC-30

50-GTCGCTAATCGTTGAAGAGTTGACTCTAGTTGTACC-30

F120S 50-CTGTCGCTAATCGTTGAAGATAAAGCTCTAGTTGTAC-30

50-GTACAACTAGAGCTTTATCTTCAACGATTAGCGACAG-30

F150S 50-GATAATGATCGCAGCTTCACCCGCAAAAGCAAAG-30

50-CTTTGCTTTTGCGGGTGAAGCTGCGATCATTATC-30

F104A 50-CAATGGAAGATGAACGAGCCTACAATCATCATGGAT-30

50-GTTACCTTCTACTTGCTCGGATGTTAGTAGTACCTA-30
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F150S, V154S, F158S), a modified mtgA gene was ordered from
GeneArt (Life technologies).

Escherichia coli PBP1b was expressed and purified using the
pDML924 plasmid as previously described [11].

S. aureus MtgA and its mutants were prepared, purified and
their activities tested as previously described [27]. MtgA mutants
were purified under the same conditions as the wild type unless
indicated. All the MtgA variants used are without transmembrane
(TM) segment, this deletion does not affect the structure of the
enzyme [18]. Deletion of the TM region was found to reduce the
activity of the enzyme, most probably because TM contributes to
the hydrophobic interaction with the substrate [19]. This construct
is more suited for our studies because it will better highlight the
specificities of the enzyme for the polar regions (sugars, peptide
and phosphates) of substrate analogs.

2.8. Analysis of MtgA and mutants by gel filtration

Gel filtration of MtgA and mutants MtgA-NS and MtgA-F120S
(2 mg/mL) was performed on a 24 mL Superdex-75 column (GE
healthcare) in buffer 25 mM Tris–HCl pH 8, 500 mM NaCl, 10%
glycerol using Akta Explorer (GE healthcare). Protein fractions
were collected and analyzed by SDS-PAGE.

2.9. Circular dichroism (CD)

Far-UV CD spectra (200–260 nm) were recorded with a Jasco J-
810 spectropolarimeter at 20 8C in 25 mM Tris–HCl pH 8, 500 mM
NaCl, using a 1 mm pathlength quartz Suprasil cell (Hellma), with
protein concentrations of ca. 0.1 mg/mL (i.e. 4 mM). Four scans
(10 nm/min, 1 nm bandwidth, 0.1 nm data pitch and 1 s DIT) were
averaged, base lines were substracted and no smoothing was
applied. Data are presented as the residue ellipticity ([u]MRW),
calculated using the molar concentration of protein and number of
residues.

2.10. Large unilamellar vesicle (LUV) preparation and interaction

with MtgA-WT and variants

E. coli lipids extract (20 mg) solutions in chloroform (Avanti
Polar lipids Inc., Alabama, USA) were mixed and evaporated under
a gentle stream of nitrogen. The lipid film was subsequently dried
for 20 min under vacuum. The film was hydrated by the addition of
the buffer (25 mM Hepes pH 7.5, 150 mM NaCl, 10 mM MgCl2)
under mechanical agitation and submitted to 10 freeze–thaw
cycles using liquid nitrogen and a water bath. The lipid suspension
was then extruded 10 times through a polycarbonate membrane
filter with a pore size of 200 nm (Whatman International).

MtgA and variants at 80 mM or lysozyme used as control were
preincubated with or without LUV for 30 min at 4 8C under gentle
mixing. The mixture was ultracentrifuged at 122,000 � g, 14 8C for
30 min. The supernatant and pellet fractions were separated and
the pellet was washed 3 times in 25 mM Tris buffer pH 8,
containing 300 mM NaCl following the same procedure. Fractions
Please cite this article in press as: Bury D, et al. Positive coopera
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recovered after each centrifugation step were analyzed by SDS-
PAGE and the amount of bound (pellet) and unbound (superna-
tant) proteins were estimated.

3. Results

3.1. Isolation of moenomycin A from the mixture of congeners

Moenomycin A was obtained as a colorless powder with a
purity >99% (HPLC-UV, 258 nm, Fig. 2). Due to the use of basic
buffer as eluent for the analytical HPLC instead of acidic buffer (as
used for semi-preparative HPLC), the elution order is changed
making it easy to identify any remaining moenomycin A12 in the
isolated moenomycin A. Overall 225 mg moenomycin A were
isolated from 1050 mg Flavomycin1. By HPLC-UV we determined a
moenomycin A content of 30% in the starting material, accordingly
the yield was >70%. Identity of the isolated moenomycin A was
confirmed by 1H NMR (conditions as described by Hennig et al.
[28]) and ESI–MS in negative mode (data not shown).

3.2. Optimization of the SPR assay and analysis of GT binding to

moenomycin A

Moenomycin A inhibits the transglycosylation step by binding
to the donor site of the glycosyltransferase. Thus, the ability of a GT
to bind moenomycin A corresponds to its ability to bind its natural
donor substrate (i.e. the growing glycan chain) and indicates that
the donor site is correctly folded and functional.

Stembera et al. [21,25] described an SPR biosensor assay
utilizing a moenomycin A amino derivative tethered to the chip
surface and successfully applied it to test different moenomycin A
analogs for their relative affinity towards E. coli PBP1b [21] (the
analogs in solution compete with immobilized moenomycin A for
the GT donor sites). We have optimized this assay by comparing
PBP1b and S. aureus MtgA and found conditions, where MtgA was
more sensitive and data more reproducible than with PBP1b
(probably due to the presence of the transmembrane segment in
PBP1b and requirement of higher detergent concentrations for
solubility). Under these conditions moenomycin A at concentra-
tions as low as 0.5 mM caused a clear inhibition of MtgA binding
(Fig. 3a). In Stembera et al. [21] 100 mM moenomycin A clearly
inhibited PBP1b binding, whereas 10 mM did not cause any
inhibition. We reproduced their experiments and confirmed this
lower sensitivity for PBP1b. Therefore MtgA was chosen to analyze
its interaction with substrate analogs.

First, 2-fold dilution series of MtgA from two different batches
ranging from 125 nM to 2 mM were used to analyze its binding to
immobilized moenomycin A. Clear concentration dependent
binding responses were observed (Fig. 3b). However, the
sensorgrams obtained cannot be described by a single exponential
function (yet this should be possible for a simple 1:1 interaction
without mass transport limitation [29]). They do not reach a steady
state for any concentration (thus equilibrium analysis cannot be
performed to calculate dissociation constants). Instead, after a first
exponential phase, the binding curves reach a phase with
practically constant (yet in comparison flat) slope, which cannot
be explained by a 1:1 interaction. This complexity in the binding
responses was also observed on a flow cell with low ligand density
(310 RU moenomycin A amino derivative compared to 720 RU for
the other experiments) and even at low MtgA concentrations
(Fig. 3c). Even here and despite the prolonged injection (300 s
instead of 120 s) a steady state was not reached. Since non-specific
binding of GTs was not observed at concentrations below 5 mM,
we presume this complexity of binding responses is caused
by aggregation of GTs to one another after reaching a critical
concentration on the chip surface most likely via the hydrophobic
tivity between acceptor and donor sites of the peptidoglycan
.1016/j.bcp.2014.11.003
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Fig. 2. (a) Structures of the moenomycin main congeners in Flavomycin1. (b) Chromatogram of the semi-preparative HPLC (pH 2.3) separation of 35 mg Flavomycin1.

(c) Chromatogram of the analytical HPLC separation (pH 8.0) of Flavomycin1 in comparison to the isolated moenomycin A. MA, MA12, MC1, MC3, MC4: Moenomycin A, A12,

C1, C3, C4.
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jaw region (attempts to improve solubility of MtgA have been
investigated; see below). Since rate constants values derived from
such complex binding data are known to provide ambiguous
results [30], we do not present any value for association and
dissociation rate constants characteristic of the interaction
between the GTs and moenomycin A, but instead limit ourselves
to qualitative or at most semi-quantitative conclusions.

3.3. Modification of the hydrophobic region in MtgA and

characterization of the mutants

The GTs are characterized by a hydrophobic surface that
mediates the interaction of the proteins with the cytoplasmic
membrane (Fig. 1b). MtgA devoid of its transmembrane (TM)
segment has tendency to aggregate due to its hydrophobic region.
This behavior and the need of high concentrations of detergent
prevent from detailed kinetic and binding characterization in vitro.
We have tried to reduce the polydispersity of the protein through
mutagenesis of the residues in the hydrophobic surface to facilitate
in vitro study by SPR. In MtgA, this surface includes F110, L112,
L119, F120, F150, V154, L157, F158. The following single mutations
Fig. 3. Sensorgrams of S. aureus MtgA binding to moenomycin chip. (a) Sensorgrams of a 

solutions starts at 0 s and lasts for 150 s. (b) MtgA concentration series; injection of the

Please cite this article in press as: Bury D, et al. Positive coopera
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F143T, V154T, L157T or F158T have no effect on the activity of
MtgA but did not improve the solubility of the protein significantly
[18]. F110 may be essential for binding of lipid II and its
modification would affect activity [18]. We have prepared the
following single mutations F120S and F150S, the double mutation
L119N-F120S (MtgA-NS) and the multiple mutations simulta-
neously MtgA-6M (L112N, L119N, F120S, F150S, V154S, F158S).
The mutant F150S and MtgA-6M could not be expressed in soluble
form (e.g. presence in the supernatant fraction without detergent
after cell lysis and centrifugation) using different expression
conditions (18–37 8C). Since a Phe at position 150 seems to be
important for proper folding of the protein, another mutant of all
6 residues, but F150 was prepared and also found insoluble.

The single mutant F120S and the double mutant L119N-F120S
could be expressed in soluble form. Analysis of the double mutant
(2 mg/mL) by gel filtration without detergent showed the protein
eluted as a monomer in a single peak without any aggregate
(Fig. 4a). Under these conditions the wild type MtgA was entirely
found in the void volume with high molecular mass (Fig. 4a).
Without detergent, monodispersity of the single mutant F120S
was in between that of wild type MtgA and MtgA-NS. In the
concentration series of moenomycin A in presence of 400 nM MtgA; injection of the

 solutions starts at 0 s and lasts for 120 s. (c) complex binding responses of MtgA.

tivity between acceptor and donor sites of the peptidoglycan
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Fig. 4. Comparative analysis of MtgA and the mutants MtgA-NS and F120S by gel

filtration and circular dichroism. (a) Size exclusion profile of MtgA, mutants MtgA-

NS and F120S on Superdex 75 column. (b) Far UV CD spectra of MtgA, mutants

MtgA-NS and F120S.
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presence of CHAPS about 80% of the wild type protein was
monodisperse and 20% aggregate (data not shown). Despite its
monodispersity MtgA-NS was still able to bind lipid vesicles (LUV)
(data not shown). Far-UV circular dichroism (CD) comparison of
MtgA-NS and MtgA-F120S with the wild type MtgA showed similar
spectra (Fig. 4b), characteristic of a-helices profile with two
characteristic minima at 208 nm and 222 nm, in agreement with
the protein structure. This result suggests that the mutation did
not modify the secondary structures of the protein significantly.
The mutants MtgA-NS and MtgA-F120S were unable to convert
radioactive lipid II substrate to polymeric peptidoglycan even at
high protein concentration indicating that they were inactive.
Previous results showed that the MtgA mutant E100Q which
retains 0.2% of the wild type activity binds to moenomycin A
[18,27]. Comparison of E100Q with another MtgA mutant F104A
(1% of wild type activity) by SPR (at 400 nM), showed that E100Q
binds moenomycin A in the same order of magnitude as the wild
type while the binding response for F104A was drastically
decreased (Fig. 5a). Binding responses of both mutants were
specific via their donor site as was tested by analyzing GT binding
to the chip surface in presence of moenomycin A (data not shown).
This data shows that inactive or barely active MtgA mutants could
still be able to bind moenomycin A indicating that at least the
donor site is functional. To test this possibility in the case of the
most soluble mutant L119N-F120S, we studied its interaction with
moenomycin A using SPR.

When tested at 125 nM to 2 mM, MtgA-NS did not show any
binding responses, it was then analyzed at higher concentrations
Please cite this article in press as: Bury D, et al. Positive coopera
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(Fig. 5b and c; additional experiment with double referencing:
Fig. 5d–f). The binding responses were rather random than
concentration dependent, strongly suggesting non-specific bind-
ing of MtgA-NS to moenomycin A (e.g. binding of hydrophobic
regions of the GT to the moenocinol moiety) (Fig. 5). Hence the
amino acid exchanges L119N and F120S in the membrane binding
surface of MtgA resulted in monodisperse protein and a complete
loss of specific moenomycin A binding capability. These results
suggest that the hydrophobicity of this region is important to
maintain the correct structure of the jaw subdomain and/or for the
interaction with the substrate and moenomycin. Another possi-
bility could be that the two mutations (L119N, F120S) may affect
the outer helix transition/conformational change during catalysis.

3.4. Positive cooperativity between the acceptor and donor sites of the

GT

Several analogs of GT’s lipid II substrate (21, 43, 44, 56, 57, 61,
and 62) (Fig. 6) have been synthesized previously and found to
inhibit the GT activity in vitro and cause bacterial growth defect
[5]. These compounds are valuable tools for understanding the
complex catalytic mechanism of the GT. However, their precise
mode of action remains elusive, such as their specificity for the
donor and/or acceptor sites. In order to answer these questions we
have analyzed their effect on moenomycin A binding of MtgA using
SPR. In this assay, inhibitors capable of binding to the donor site of
GTs should compete for this binding site with the moenomycin A
amino derivative tethered to the sensor chip surface, resulting in a
decreased GT binding response (Fig. 3a).

Mixtures of MtgA with varying concentrations of the com-
pounds were tested for their effect on MtgA binding to a sensor
chip surface modified with the moenomycin A amino derivative. In
addition, the natural substrate lipid II (Fig. 6) was analyzed in the
presence of EDTA in the running buffer to avoid polymerization. All
substances were analyzed in 3-fold dilution series and measured in
duplicate. For inhibitors 21, 43, 44, and 62 the concentration range
was 7 nM to 400 mM, for inhibitors 57 and 61 it was 3 nM to
200 mM, for inhibitor 56 it was 3 nM to 148 mM, and for lipid II
2 nM to 120 mM. All substances tested showed inhibition of MtgA
binding at high concentrations (Fig. 7a–d). Interestingly, at
concentrations below approximately 50 mM, the disaccharide
analogs 21, 44, and 62 clearly showed an increased binding
response in comparison to MtgA in absence of inhibitor (Fig. 7a).
Inhibitor 57 (below approximately 10 mM) and lipid II might have
the same enhancement effect, but to a lesser extent (Fig. 7c and d).
In case of lipid II, the binding responses had a high spread,
preventing a thorough interpretation, most likely due to poor
solubility. Enhancing solubility of lipid II by increasing the DMSO
content in the running buffer did result in a drastic change in
refractive index leading to SPR angles outside the detector range.
Also, EDTA is known to form complexes with moenomycins [31]
which might add to the poor quality of the data. The monosaccha-
ride analogs 43, 56, and 61 clearly showed a concentration
dependent inhibition but increased binding was not observed with
these compounds (Fig. 7b), thus indicating a simple competition
with moenomycin A for the donor site of the GT. Non-specific
binding of the inhibitors to the sensor chip surface can be ruled out
as a cause for the increased binding behavior, because it would not
explain the decrease of binding responses at higher inhibitor
concentrations. From the structural similarity of the disaccharide
analogs with lipid II substrate they are expected to bind to the
acceptor site of MtgA. Therefore, we suggest that at low
concentrations the disaccharide compounds bind selectively to
the acceptor site and increase the affinity of the donor site to
moenomycin A by heteroallosteric activation leading to an
increased MtgA binding response. This effect is rivaled by the
tivity between acceptor and donor sites of the peptidoglycan
.1016/j.bcp.2014.11.003
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Fig. 5. Sensorgrams of S. aureus MtgA mutants binding to moenomycin A chip. (a) Wild type MtgA and mutants E100Q and F104A analyzed at 400 nM; injection of MtgA

solutions starts at 0 s and lasts for 150 s. (b) Concentration series of MtgA-NS; injection starts at 0 s and lasts for 120 s. (c) Dissociation phase of the sensorgrams in b).

(d–f) Test of S. aureus MtgA-NS for specificity of binding with MtgA as positive control: Binding data from the reaction cell with moenomycin A amino derivative

tethered to the chip surface (d) was corrected for bulk shift and baseline drift by subtraction of data from an unmodified reference cell (e) and buffer blank subtraction to

yield the pure binding responses (f). The spikes at the beginning and the end of the GT injections in (f) are caused by a slight misalignment between the data from both

chip surfaces.
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ability of the inhibitors to bind to the GT’s donor site at higher
concentration, which explains the decrease in the binding
responses (competition for the donor site outweighs the enhanced
binding). Such an allosteric activation would affect the association
and/or dissociation rates for interactions with the donor site. Fig. 8
shows an overlay of sensorgrams for inhibitor 62 in the
concentration range around the maximum of MtgA binding. The
highest binding response was obtained at an inhibitor concentra-
tion of 4.9 mM. From there on the binding responses decreased
both with increasing and decreasing inhibitor concentration. Since
dissociation of the GT-inhibitor complexes follows a first order
kinetic (i.e. dependent on the complex’ concentration, d[LA]/
dt = �kd � [LA]), the sensorgram for the highest GT binding
response (4.9 mM) should have the steepest slope in dissociation
phase, unless kd had changed. The sensorgrams for the two highest
inhibitor concentrations (44 and 133 mM), however, feature the
steepest slope in the dissociation phase (most clearly observed
after 180 s), suggesting that kd has changed, hence supporting our
hypothesis.

4. Discussion

In terms of GT activity inhibition, the studied compounds can be
ranked as follows from the best active to the least active
62 > 44 > 43 > 21 > 61 = 57 > 56 (Fig. 6) [5]. Compounds 21 and
57 differ in the dipeptide moiety LAla-DGlu in 57. Compound
21 showed better enzymatic inhibition and higher MtgA binding
enhancement to moenomycin A (cooperative effect) than com-
pound 57. This shows that the peptide affects at least partially the
binding to the acceptor site. Compounds 62 and 57 both have a
dipeptide moiety but differ in the phosphate linker, 57 has a
monophosphate group and 62 has a phosphoglycerate, a mimic of
the pyrophosphate of the substrate. 62 causes higher increase in
GT binding to moenomycin A than 57. This difference suggests that
Please cite this article in press as: Bury D, et al. Positive coopera
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the phosphoglycerate group may be an important determinant for
binding to the acceptor site. Compound 43 is a monosaccharide-
phosphoglycerate with GT inhibition activity comparable to 44 and
62 but did not show any enhancing effect on moenomycin A
binding, yet only inhibits binding at higher concentration. These
results suggest that 43 may have a poor affinity for the acceptor
site and higher binding affinity to the donor site. It is noticeable
that the four lipid II analogs with disaccharide structure (inhibitors
21, 44, 57 and 62) were the ones enhancing MtgA binding at low
concentrations. Therefore it seems likely that the disaccharide
moiety is more important for the affinity towards the acceptor
site than for the affinity towards the donor site. A disaccharide
compound such as 44, without a peptide and with phosphoglyc-
erate-lipid group, seems to be the best ligand to target both the
donor and acceptor sites. Co-crystallization of a GT with this
compound would provide valuable information to better under-
stand the catalytic mechanism and could help in the design of new
inhibitors.

Most of the crystal structures of GT in apo form or in complex
with moenomycin A, show an unstructured or mobile region in the
jaw domain between donor and acceptor sites. This region
(Ser121-Gly130) located between conserved motifs 1 and 2 was
proposed to have an important role in the binding of the acceptor
substrate [16]. We propose that the disaccharide analogs (or lipid
II) bind preferentially to the acceptor site and stabilize the mobile
region which induces local structure rearrangement in the donor
site increasing its affinity for moenomycin A (or the second lipid II).
This mechanism may be particularly critical during the initiation
stage (lipid II in the donor site). The allosteric activation of binding
in the donor site could also apply to the elongating glycan chain
and would play an important role in the processive elongation
mechanism. Consequently, after each catalytic cycle the translo-
cation of the product from the acceptor site to the donor site is
concomitant with the unfolding or movement of the mobile region,
tivity between acceptor and donor sites of the peptidoglycan
.1016/j.bcp.2014.11.003
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Fig. 6. Lipid II and glycosyltransferase inhibitors mimicking lipid II [5].
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which contribute to this process before a new lipid II molecule
binds and stabilizes it again to start a new catalytic reaction.

The bi-substrate reaction of the GT at initiation stage of
polymerization makes distinction between the affinities for the
substrate of the donor site and acceptor site complex. Moenomycin
A binds to the donor site of the GT and is proposed to mimic the
growing chain. Lipid II binds to both sites as would do its analogs.
The concentration dependent effect of lipid II analogs on
moenomycin A binding indicates the presence of allosteric
activation of the donor site following ligand binding to the
acceptor site. Due to structural similarities between lipid II and the
investigated inhibitors and based on the obtained data we expect
the same behavior for lipid II itself. Solubility problems however,
resulting in a high spread of the binding responses, prevented a
thorough investigation for this compound.

This effect has great impact on the catalytic mechanism and
could explain the role of the mobile region between the two sites.
Please cite this article in press as: Bury D, et al. Positive coopera
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The binding of lipid II to the acceptor site could induce local
structural rearrangement, which also affects the donor site via the
mobile region. During elongation phase, stabilization of the mobile
region would increase binding to the elongating chain and
contribute to the processive polymerization. After each catalytic
cycle, product translocation from acceptor to donor site is assisted
by higher affinity of the pyrophosphate-lipid moiety (larger
positively charged patches inside the donor site) and the mobility
of the unstructured region, concomitant with the vacancy of the
acceptor site.

So far we showed enhancement of MtgA binding to moeno-
mycin A, which is supposed to mimic the growing glycan chain.
Further studies using other approaches are needed to better
characterize the postulated cooperativity mechanism by investi-
gating the interaction between lipid II and MtgA and eventually
other GTs. To be biologically relevant for peptidoglycan synthesis,
such an enhancement should also increase the affinity of the donor
tivity between acceptor and donor sites of the peptidoglycan
.1016/j.bcp.2014.11.003
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Fig. 7. Binding levels of MtgA in presence of lipid II analogs or lipid II: MtgA preincubated with varying concentrations of lipid II or the different lipid II analogs was injected

over the sensor chip surface modified with the moenomycin A amino derivative. MtgA binding levels were calculated from the response 30 s after the end of the injection

minus the response 10 s before start of the injection. (a) Disaccharide inhibitors 21, 44, and 62; (b) monosaccharide inhibitors 43, 56, and 61; (c) disaccharide inhibitor 57;

(d) lipid II.

Fig. 8. Sensorgrams of MtgA (400 nM) in presence of 0.02 mM to 133 mM inhibitor 62. (a) Complete sensorgrams. (b) Dissociation phase of the sensorgrams in (a). The box

marks the time frame for calculation of the binding responses. Injection of the solutions starts at 0 s and lasts for 150 s. The offset in the sensorgram for 133 mM during

injection is due to a slight mismatch in DMSO content between the injected solution and the running buffer.
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site of MtgA to the growing glycan chain itself. SPR experiments
with the tetrasaccharide lipid IV tethered to the sensor chip surface
instead of moenomycin A could prove beneficial here.
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