Three-node zero-thickness hydro-mechanical interface finite element for geotechnical applications

Benjamin Cerfontaine

University of Liege

30th of January, 2015
Outline

1. Context
2. Modelling interfaces
3. Application
4. Conclusions
1. Context
2. Modelling interfaces
3. Application
4. Conclusions
Suction caisson

- Foundation for offshore structures
- Hollow cylinder open towards the bottom
- Made of steel

- Installed by suction
- Increased transient resistance to pull and push loads
- Crucial role of interfaces
Interface in geomechanics

Interface

Surface between two media (=discontinuity)

Soil

Caisson

Interface

B. Cerfontaine
Groupe de contact FNRS
Interface in geomechanics

- Interface: Surface between two media (=discontinuity)
- Contact: Shearing, Sliding, Unsticking, Flow

Push load
Contact pressure
Soil
Interface in geomechanics

- Interface
- Contact
- Shearing

Surface between two media (=discontinuity)

Pull load
Shear stresses
Soil
Interface in geomechanics

- **Interface**
- **Contact**
- **Shearing**
- **Sliding**

Surface between two media (=discontinuity)

Diagram:
- Pull load
- Sliding in soil
Interface in geomechanics

- **Interface**
- **Contact**
- **Shearing**
- **Sliding**
- **Unsticking**

Surface between two media (=discontinuity)

- **Unsticking**
- **Pull load**
- **Soil**
- **Sliding**
Interface in geomechanics

- Interface
- Contact
- Shearing
- Sliding
- Unsticking
- Flow

Surface between two media (=discontinuity)

- Pull load
- Fluid flow
- Soil
- Unsticking
- Sliding
1. Context

2. Modelling interfaces
 - Mechanical problem
 - Hydraulic problem
 - Coupled problem

3. Application

4. Conclusions
Normal behaviour

Contact

\[p_N \geq 0 \quad g_N \geq 0 \quad p_N g_N = 0 \]
Normal behaviour

Contact

\[p_N \geq 0 \quad g_N \geq 0 \quad p_N g_N = 0 \]

Approaches

- Regularisation
 \[p_N = f(g_N) \]
- Discretisation

1. Thin layer
2. Zero-thickness

- No contact
- Contact

Thin layer elements

Medium 1

Medium 2

Medium 3

Boundary elements

Medium 1

Medium 2
Normal behaviour

Contact

\[p_N \geq 0 \quad g_N \geq 0 \quad p_N g_N = 0 \]

Approaches

- Regularisation
- Discretisation
 - Lagrange multiplier method
 - Penalty method

Regularisation

- Pressure distribution
 - No penetration
- Penetration

Zoom
Normal behaviour

- Contact
 - $p_N \geq 0$
 - $g_N \geq 0$
 - $p_N g_N = 0$

- Approaches
 - Regularisation
 - $p_N = f(g_N)$
 - Discretisation

- Intricate asperities
 - First contact point

- Compression
 - Asperities deformation

B. Cerfontaine
Groupe de contact FNRS
15/09/14
Normal behaviour

Contact

\[p_N \geq 0 \quad g_N \geq 0 \quad p_N g_N = 0 \]

Approaches

Regularisation

\[p_N = f(g_N) \]

Discretisation

Node to node

Node to segment

Segment to segment

Contact domain

Gap

Penetration

Gap interpolation
Tangential behaviour

Shearing

\[\tau \geq 0 \quad \dot{\gamma}_T \geq 0 \quad \tau \dot{\gamma}_T = 0 \]

Sticking

\[\tau = \tau_{\text{max}} \]

Sliding

\[E_1 \quad E_2 \]

B. Cerfontaine
Groupe de contact FNRS
Tangential behaviour

Shearing

\[\tau \geq 0 \quad \dot{g}_T \geq 0 \quad \tau \dot{g}_T = 0 \]

Criterion

\[f = \|\tau\| - \mu p_N \]

Sticking state

Sliding state

No contact

\(\mu \)

\(p_N \)
Fluid flows

Interface

Longitudinal and transversal flows

Discontinuity = porous medium
Modelling interfaces

Hydraulic problem

Fluid flows

Interface

Discretisation

Longitudinal and transversal flows

Single node

Double node

gN

Porous medium

Discontinuity

Finite element mesh

Triple node

B. Cerfontaine

Groupe de contact FNRS

15/09/14
Couplings

Hydro-mechanical couplings

Effective pressure

Terzaghi’s principle

\[p_N = p'_N + p_w \]

- \(p'_N \), effective pressure (mechanical behaviour)
- \(p_w \), fluid pressure inside the interface
Couplings

- Hydro-mechanical couplings
- Effective pressure
- Permeability

Cubic law

\[k_l = \begin{cases}
\frac{(D_0)^2}{12} & \text{if } g_N \leq 0 \\
\frac{(D_0 + g_N)^2}{12} & \text{otherwise.}
\end{cases} \]

- \(k_l \), longitudinal permeability
- \(D_0 \), residual hydraulic opening
Couplings

- Hydro-mechanical couplings
- Effective pressure
- Permeability
- Storage

Stored water within discontinuity

\[
\dot{M}_f = \left(\rho_w g_N + \rho_w \dot{g}_N + \rho_w g_N \frac{\dot{L}}{L} \right) L
\]

- \(L\), length of the discontinuity
- \(\rho_w\), density of water
Summary

Mechanical problem
- Zero-thickness
- Segment to segment discretisation
- Penalty method to enforce normal and tangential constraints
- Coulomb criterion

Hydraulic problem
- Three-node discretisation
- Longitudinal flow
- Transversal flows

Coupled problem
- Effective pressure
- Permeability
- Storage (transient component)
Table of contents

1. Context
2. Modelling interfaces
3. Application
4. Conclusions
Statement of the problem

- Elastic soil and caisson
- Diameter 7.8m
- Water depth 10m
- Soil permeability 1.E-11m²
- $K_0 = 1$

- Friction coefficient 0.57
- Residual hydraulic aperture 1.E-5m
- Penalty coefficient 1.E10 N/m³
- Conductivity 1.E-8m/Pa/s
Drained simulation (mechanical behaviour)

Shearing of the interface

\[\Delta F_{\text{tot}} \]
\[\Delta F_{\text{int}} \]
\[\Delta F_{\text{ext}} \]

\[\Delta y > 0 \]

Displ. [mm]
\[\Delta F \] [kN]

\[\Delta F_{\text{tot}} \]
\[\Delta F_{\text{ext}} \]
\[\Delta F_{\text{int}} \]

A

B

Groupe de contact FNRS
Drained simulation (mechanical behaviour)

![Drained simulation graph]

- **Outer friction**
- **Gap opening**

Shearing of the interface

- **Depth (m)**
- **Displacement (mm)**
- **Gap opening**

Outer friction

- **Gap opening**

B. Cerfontaine

Groupe de contact FNRS

15/09/14 13 / 16
Drained simulation (mechanical behaviour)

Shearing of the interface

- Outer friction
- Gap opening
- Inner friction
- Failure
Partially drained simulation (hydraulic behaviour)

Suction effect

Higher ΔF_{tot}
Partially drained simulation (hydraulic behaviour)

- \(\Delta F_{tot} \)
- Coupling
 \[p_N = p'_N + p_w \]
- Transient \(\Delta p_w \)

Suction effect
Partially drained simulation (hydraulic behaviour)

- Opening of a gap
- Transversal flow
- Transversal storage
- Stationary phase

\[\Delta F_{\text{tot}} \]
\[\Delta F_{\text{uw}} \]
\[\Delta y_S \]
\[\Delta y_C \]

\[v_p = 1 \text{ mm/min} \]
Partially drained simulation (hydraulic behaviour)

- Opening of a gap
- Coupling gap-permeability

Longitudinal flow f_1 along the skirt
Table of contents

1. Context
2. Modelling interfaces
3. Application
4. Conclusions
Conclusions

1. Development of a coupled hydro-mechanical interface element
 - Zero-thickness
 - Three-node flow discretisation

2. Main features of mechanical behaviour
 - Shearing
 - Sliding

3. Main features of hydraulic behaviour
 - Transversal flows
 - Longitudinal flows

4. Hydro-mechanical couplings
 - Suction effect (Terzaghi)
 - Permeability (longitudinal flow)
 - Storage (Unsticking)
Related papers

