How to use mid-infrared spectral information from milk recording system to detect the pregnancy status of dairy cows

A. Lainé, H. Bel Mabrouk, L. M. Dale, C. Bastin, and N. Gengler

University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
Context

Milk recording system

Management tool
- Mating advices
- Udder health status
- BCS monitoring
- Feeding monitoring
- Milking monitoring
- ...

Breeding evaluation
- Performances control
- Genetic improvement
- ...

Improve the sustainability of the dairy sector

4/6 weeks
- Whole lactations
- Technician/Farmer
- Morning/Evening milking or both

19th National Symposium on Applied Biological Sciences, Gembloux (Belgium), February 7th 2014
Context

Milk recording

Mid-Infrared Spectroscopy (MIR)

Spectral database

Example of a MIR spectrum of milk

Fingerprint of the whole milk composition
Context

Fertility
► key element for the dairy farm management

➢ Pregnancy diagnosis
 ✓ Echography
 ✓ Transrectal palpation
 ✓ PAG or progesterone tests
 ✓ ...

► Costs
► Risks
► Have to be done by a veterinarian or a qualified person
Objectives

Fertility tool

- Indication of the pregnancy status of the cow (pregnant vs. open)
- At the early stage of gestation → from 20 to 120 days after an insemination event
- Useful in the context of the milk recording system

Advisory tools for the farmer

“which cows should be checked?”
Principles

- Many factors influence the shape of the milk MIR spectra:
 - Days in Milk, Parity, Breed, Farm management, ...

How to observe differences in spectra due to the pregnancy?

- Literature examples:
 - Sloth et al. 2003: Adjustment of milk parameters on a subset of healthy samples applied on a whole dataset (healthy and not) to assess udder health from milk samples
 - Staib et al. 2001: Diagnosis of rheumatoid arthritis with discriminant analysis on human blood IR spectra
Principles

Observed spectrum = Milk sample on which we want to test the pregnancy
Principles

Observed spectrum = Milk sample on which we want to test the pregnancy

Expected open spectrum = Expected open spectrum for the same day in milk if the animal was not pregnant
Principles

Residual spectrum = Observed spectrum – Expected open spectrum

Reproductive status
Unaccounted factors
Errors

Residual spectra are used to perform discrimination between two groups of classification (pregnant cow and open cow)
Principles - Estimation of expected open spectra

\[y = X\beta + Z\gamma + \varepsilon \]

*\(y \): Vector of observations (spectral points)
*\(\beta \): Fixed effects
*\(\gamma \): Random effects
*\(\varepsilon \): Residual errors
*\(X \) and \(Z \): Incidence matrices

Mixed model on a subset of spectral data from open cows!

Solutions applied on the whole dataset to obtain all the expected open spectra

\[\hat{y} = X\hat{\beta} + Z\hat{\gamma} \]

*\(\hat{y} \): Vector of estimated observations
*\(\hat{\beta} \): Estimated fixed effects
*\(\hat{\gamma} \): Estimated random effects
*\(X \) and \(Z \): Incidence matrices

Residual spectral points

\[\hat{\varepsilon} = y - \hat{y} \]
Principles – Use of the residual spectra

The objective is to distinguish residual spectra coming from pregnant cow or from open cow

Discriminant analysis

\[d'_P = d_P^2 + \ln |\Sigma_P| \quad \text{with} \quad d_P^2 = (x - \mu)_P \Sigma_P^{-1} (x - \mu)_P^T \]

\[d'_O = d_O^2 + \ln |\Sigma_O| \quad \text{with} \quad d_O^2 = (x - \mu)_O \Sigma_O^{-1} (x - \mu)_O^T \]

\[P(x | j) = d'_j^2 / \sum d''^2 \quad j = \text{group of classification (P/O)} \]
Data set

- Pre-processing of spectral data
 - First derivative
 - Informative area

- Modelling the expected open spectra
 - Only spectral information coming from open cows
 - 256,238 spectra

Residual spectra

 → Discriminant function

- Calibration
 - 2,149 residual spectra (50% open and 50% pregnant)

- Validation
 - 12,179 residual spectra from 20 to 120 days after an insemination
 - New lactations regarding to the calibration set
Results – Discriminant function

- Result of classification on residual spectra from the whole validation set
 - 0.7% error of classification

Results of classification on residual spectra from the validation set by classes of 10 days after insemination

<table>
<thead>
<tr>
<th>No. of days after insemination</th>
<th>n NP</th>
<th>n P</th>
<th>Total Error (%)</th>
<th>Specificity (%)</th>
<th>Sensibility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 21 to 30</td>
<td>216</td>
<td>1,177</td>
<td>2.2</td>
<td>88.4</td>
<td>99.6</td>
</tr>
<tr>
<td>From 31 to 40</td>
<td>128</td>
<td>1,140</td>
<td>2.0</td>
<td>87.5</td>
<td>99.2</td>
</tr>
<tr>
<td>From 41 to 50</td>
<td>36</td>
<td>1,206</td>
<td>0.6</td>
<td>94.4</td>
<td>99.6</td>
</tr>
</tbody>
</table>

Specificity: Proportion of data belonging to open cows properly classified as open
Sensibility: Proportion of data belonging to pregnant cows properly classified as pregnant

- Result of classification on observed spectra from the whole validation set
 - 55.5% error of classification
Conclusion

- **Direct use of the MIR spectra**
 - Cheap
 - Easily transferable
 - Spectral data already obtained in routine

→ Adjustment for systematic factors is useful to observe fine milk changes due to the change in the pregnancy status

- **Pregnancy detection**
 - Very promising results!
 - From 20 to 50 or 120 days after insemination
 - Late stage of gestation?

→ Advisory tool
Project and Perspectives

● OptiMIR project:
 ● 17 European partners → Common database
 ● Milk recording organizations, research centers, milk analysis laboratory

"New tools for a more sustainable dairy sector”

● Based on mid-infrared spectral information from milk
 ● Fertility
 ● Feeding
 ● Health (Udder health, …)
 ● Rejection of pollutants
 ● Milk quality

www.optimir.eu
Acknowledgments

Service Public de Wallonie SPW – DGO3 and the European Commission (ERDF) through project Interreg IVb OptiMIR

Service Public de Wallonie SPW – DGO3 through project NovaUdderHealth

Author’s contact e-mail: aurelie.laine@ulg.ac.be