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Abstract 

 

The concept of Quality by Design (QbD) as published in ICH-Q8 is currently one of 

the most recurrent topics in the pharmaceutical literature. This guideline recommends 

the use of information and prior knowledge gathered during pharmaceutical 

development studies to provide a scientific rationale for the manufacturing process of 

a product and provide guarantee of future quality. This poses several challenges from 

a statistical standpoint and requires a shift in paradigm from traditional statistical 

practices. First, to provide “assurance of quality” of future lots implies the need to 

make predictions regarding quality given past evidence and data. Second, the Quality 

Attributes described in the Q8 guidelines are not always a set of unique, independent 

measurements. In many cases, these criteria are complicated longitudinal data with 

successive acceptance criteria over a defined period of time. A common example is a 

dissolution profile for a modified or extended release solid dosage form that must fall 

within acceptance limits at several time points. A Bayesian approach for longitudinal 

data obtained in various conditions of a Design of Experiment is provided to elegantly 

address the ICH-Q8 recommendation to provide assurance of quality and derive a 

scientifically sound Design Space. 
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1 Introduction 
 

The concept of Quality by Design (QbD) is a regular topic in current pharmaceutical 

literature. It is most often applied to drug discovery, method development and 

production. However, this concept is not new. Roots go back as far as the 1950s, 

when Juran [10] and Deming [3] introduced the concept within the tenets of quality 

management. More recently, Design For Six Sigma was introduced as a 

complementary method to the improvement methods of Lean Six Sigma, specifically 

to use for new product or process development.  The fundamental idea is that quality 

of a product begins, and is sustained, through rigorous product design. If each 

production process is designed to deliver robust quality, most problems related to the 

manufacturing of the product could be avoided. Business efficiency resulting from 

these design methods has led to an expansion of the QbD concept in the 

pharmaceutical industry. 

More recently, the Food and Drug Administration (FDA) and the International 

Conference for Harmonization (ICH) have seen the opportunity to apply QbD to gain 

knowledge and understanding about the products and processes of the pharmaceutical 

industry (see the following regulatory document and guidelines: Food and Drugs 

Administration, 2007, 2011) [20,21] and  (ICH Q8, 2009; ICH Q9, 2005; ICH Q10, 

2008) [9, 7, 8].  

These guidelines rely on the use of information and knowledge gathered during 

development studies, to provide a scientific rationale for the design of the 

manufacturing process for a pharmaceutical product (Yu, 2008) [25]. In these 

guidelines, the Design Space (DS) has been defined as the “the multidimensional 

combination and interaction of input variables (e.g., material attributes) and process 

parameters that have been demonstrated to provide assurance of quality” for the 

analytical outputs or processes involved in Pharmaceutical Development. This 

document is clearly devoted to optimization strategies and robustness studies for 

various processes having Quality Attributes (QA) assessed by various analytical 

procedures.  

QbD emphasizes the elements of product, process understanding, and process control. 

It advocates a systematic approach for the development of these elements based on 

clear and predefined objectives (e.g. the Quality Target Product Profile (QTPP)). 
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Particularly, the risk that a product or a process will not fulfill the quality 

requirements must be assessed. Regulatory actions now incorporate this risk-based 

approach. Hence, pharmaceutical manufacturers must fully comply with these 

guidelines to be in order to prove their ability to provide high quality medicines. See 

for instance the recent manual of policies and procedures (MaPP) published by the 

Food and Drug Administration (2011) [22]. Of course, the interest of the industries is 

high and goes beyond simply meeting evolving regulatory expectations, as QbD will 

result in improved quality control (QC). Indeed, as quality is proven during each 

production step, the final product quality requirements will be more likely met, 

although final product (release) specifications will still be mandatory. With better 

understanding and more reliable processes, both variability and rejection rates will be 

reduced which is a noticeable gain for both the consumers and the producers, in line 

with risk management expectations (ICH Q9, 2005) [7]. 

 

While conceptually meaningful and relevant to ensure future quality of products, the 

QbD recommendations pose several challenges from a statistical standpoint, and 

require a shift in paradigm from traditional statistical practices. First, the concept of 

providing “assurance of quality” for future lots implies the need to make predictions 

about the future quality given the past evidence and data. This naturally implies the 

use of Bayesian statistics to properly address this goal. Second, the Q8 guidelines 

mention Quality Attributes in general terms, as if there were a unique single attribute 

or a set of independent attributes. In many cases, the Quality Attributes may be more 

complex, with complicated correlations structures such as longitudinal data that 

should successively fall within specifications to meet their global quality requirement. 

A common example is the dissolution profile of a modified or extended release solid 

dosage form product that must fall within acceptance limits at several time points. 

Evaluating the predictive probability of success of jointly meeting each set of 

specifications given the assumed underlying model and high dependencies between 

measurements is a challenge that may prove cumbersome or even impossible using 

frequentist statistics. Bayesian approach provides elegant and natural answers.  

This work will present a practical solution for the implementation of QbD strategy for 

repeated measure data with multiple testing time points and conditional retesting of 

additional units, using dissolution profiles as supporting example. The key statistical 

challenges to overcome to make QbD a reality for such longitudinal data are critical: 
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- Multi-factorial Design of Experiments (DoE) for longitudinal responses 

- Modeling of longitudinal responses in a multi-factorial design 

- Deriving the joint predictive probability of meeting acceptance criteria at each 

testing time point and at all stages of successive testing 

- Finding the Design Space (DS) that ensures the joint probability of success of 

the multiple tests and retests 

 

It can be postulated that a Bayesian approach is the only option to practically achieve 

such an objective as required by ICH-Q8. The justification and added value of the use 

of Bayesian statistics for proper QbD implementation has been discussed extensively 

by several authors such as Peterson et al. [13-17], Miró-Quesada  [12] and Lebrun et 

al. [11].   

2 An example with Longitudinal Quality Attribute 
 

2.1 The dissolution test.  
 
For various dosage forms of products, in vitro dissolution tests or profiles are required 

for release. In particular, a dissolution profile rather than a single dissolution result is 

reported to assess the ability of the dosage form to deliver the active pharmaceutical 

ingredient (API) during an extended release time claimed. In vitro dissolution data, 

together with chemistry, manufacturing and control data, are components of new drug 

applications or release testing. The USP provides information in the way of a general 

chapter on dissolution, and chapters on disintegration and drug release (USP 32-NF 

27 <711>, 2009) [23]. The FDA and ICH also provide guidelines on development and 

validation of dissolution procedures (ICH-Q2R guideline, 2005; Guidance for 

Industry 1997, 1997)[6, 18, 19].   

The dissolution procedure has several distinct components including: a dissolution 

medium, an apparatus with vessels, and the assay (Vaghela et al. 2011) [24]. A 

dissolution test or procedure is as follows: the dosage form, such as a tablet or 

capsule, is placed into a medium to dissolve. The resulting solution is sampled over 

time, and assayed (often by HPLC) for concentration of active pharmaceutical 

ingredient (API). For extended release dosage forms, for example, measurements are 

usually performed at several time points, e.g. 2, 8 and 14 hours.  
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The USP <711> dissolution procedure allows for three successive stages of testing, 

such that if the acceptance criteria are not met at the first stage, additional units may 

be tested and modified criteria applied at the next stage.  According to USP <711>, at 

least six test units (e.g. tablets) should be tested and in the first stage of testing every 

individual concentration value should fall within the stated range at each of the time 

points. In our example, the limits for the concentration of API are successively: within 

0%-20% at 2 hours, 40%-70% at 8 hours, and 60%-100% at 14 hours. If any of the six 

test units fail to meet the criteria at any of the testing time points, then additional units 

are tested and assessed against criteria based on average and individual results. The 

details of the three stages are included into Table 1. 

These limits are product-dependent and defended by the company during the 

submission process. Since all individual measurements must fall within the limits, it is 

critical to be able to predict future individual results, instead of a (conditional) mean 

as is usually done in a frequentist approach. This is further justification for the choice 

of a Bayesian approach. 

 

<insert Table 1 here>     
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Table 1: USP <711> three stages acceptance for dissolution testing applied to 

extended release formulation. 

 

 

2.2 The design of experiments and the design space.  
 
In this example, two critical factors were identified and chosen, based on a risk 

assessment using historical process data, to analyze their impact on the dissolution 

profiles. They are named X1 and X2 for simplicity. A designed experiment was 

conducted to model the impact of X1 and X2, varying both factors across a range 

centered on the current nominal target settings. Specifically, eight commercial scale 

batches of the tablets, covering a range of X1 and X2 were used, creating a designed 

experiment over the X1 and X2 ranges. N=12 tablets were tested at each dissolution 

interval for each batch, except at the central condition where 24 tablets were analyzed.  

 

The results of one experiment over the 8 over the experimental space, the acceptance 

time points, and the individual unit dissolution results at each testing time point are 

represented in Figure 1 (simulated data). The complete experimental domain can be 

seen on Figure 2. It was observed that all six results from the first stage of testing fall 

within the limits at the center of the experimental space (X1=28 and X2=3.9). As 

conditions move away from the center into the corners of the design, results partially 

fall outside the acceptance criteria. The central objective in the experiment was to 

identify the X1 and X2 set of conditions that result in a high probability that the 

dissolution profile will pass for most future batches, i.e. to estimate a Design Space 

(DS) for this processing step.   

 

<Figure 1 here> 
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Figure 1: Representation of one of the experiments performed (simulated), the 

acceptance criteria (grey shaded area) and the individual measurements (dots) 

obtained.  

 

 

3 Methodology 
 

3.1 Bayesian regression and prediction 
 

Two main quantities are of great interest in the QbD context. First, the posterior 

distribution of the model parameters quantifies the effects of the experimental factors 

on the response(s). Second, the predictive distribution of responses Y, given a prior 

distribution and observed data is used to compute the DS. The amount of uncertainty 

in the predictive distribution and the variability in the DS provide information 

regarding the underlying process and the quality of the statistical model. A non-

hierarchical or fixed-effect linear response surface (RS) model in the form of a 

polynomial with p parameters is usually fitted to the responses. Lebrun et al. [11] 

proposed an alternative Bayesian multivariate linear model with informative priors by 

extending the non-informative models proposed by Box and Tiao [1]. When using 

conjugate prior distributions –informative or not – Lebrun et al. [11] have shown that 

the (joint) predictive distribution of the responses follows a (multivariate) non-central 

Student’s distribution.  
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Another important result is that the predictive distributions, using either non-

informative or informative priors, are of β-expectation (Guttman, 1970) [4]. This 

means that the highest probability density (HPD) intervals derived from the predictive 

distribution are the β-expectation joint tolerance intervals (Hamada et al., 2004) [5]. 

3.2     Bayesian Hierarchical longitudinal model 
 
For longitudinal Critical Quality Attributes such as dissolution profiles for extended 

or modified release dosage forms, a hierarchical (or mixed effect) response surface 

(RS) linear model (Chib and Carlin, 1999) [2] must be envisaged. When hierarchy is 

envisaged on one or several parameters of a linear model (i.e. in the presence of 

random effects), there is generally no closed form available for the predictive 

distribution of the responses, as the one described in Lebrun et al. [11].  Markov-

Chain Monte-Carlo methods (MCMC) must therefore be used to sample from the 

posterior predictive distribution.  

 

For the DoE described above and the dissolution test data shown in Figure 1, the 

following mixed-effect model was developed and applied: 

 

 
    𝑙𝑜𝑔𝑖𝑡 %𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 =    𝑏!   +   𝛽! +   𝑏! ∗ 𝑋1   +   𝑏! ∗ 𝑋2   +   𝑏! ∗ 𝑙𝑜𝑔 ℎ𝑜𝑢𝑟 + 𝑏! ∗ 𝑙𝑜𝑔 ℎ𝑜𝑢𝑟 ! + 
                                                                                        𝑏! ∗ 𝑋1 ∗   𝑋2 +   𝑏! ∗ 𝑋1 ∗ 𝑙𝑜𝑔 ℎ𝑜𝑢𝑟  + 𝑏!   +   𝛽! ∗ 𝑋2 ∗ 𝑙𝑜𝑔 𝐻𝑜𝑢𝑟𝑠 +   

𝑏! ∗ 𝑋2 ∗ 𝑙𝑜𝑔 ℎ𝑜𝑢𝑟 ! + 𝑏! ∗ 𝑋1 ∗ 𝑋2 ∗ 𝑙𝑜𝑔 ℎ𝑜𝑢𝑟 +   𝜀  , 
 

   
where      (𝛽!,𝛽!)  ~  MVNormal(𝟎,𝚺!"##"$#[!"]), 

 
𝜀!   ~Normal(0,𝜎!), and     (Equation 1) 
 
𝚺!"##"$#[!"] is structured to account for the variability of the tablets in the vessels and 

X2 levels.   

Because the percentage of API dissolved is a value bounded between 0 and 1, a logit 

transformation was applied in order to assume a normal distribution for this response. 

This has the advantage that the transformed data are well modeled by a simple linear 

regression with a small quadratic effect on the log(hour) factor. This linearization 

allows the use of a RS model with the addition of the effects and interactions for X1 

and X2. An alternative solution would have been to use a Beta distribution to model 

the percentage dissolved as a function of time, but the logit transformation was found 



 10 

simple to use and appropriate in this example. Combined with the use of the natural 

logarithm of the dissolution test time expressed in hours, it was found that the 

dissolution profile could adequately be modeled using this linear model. The 

transformed data with the fitted linear model are represented in Figure 2. 

<Figure 2 here> 

 

 
Figure 2: Model and individual data points over the complete experimental domain in 

the new transformed axes: logit(%dissolved) as a function of the ln(hour). 

 

3.3  Design Space Definition 
 
Assume a process with k process parameters (PP)  

𝜒 = {𝑥!,… , 𝑥!}, 

belonging to an experimental domain 𝜒. A definition of the Design Space has been 

proposed as (Peterson, 2008) 

𝐷𝑆 = 𝑥   ∈   𝜒   𝑃 𝑌 ∈ A 𝑥,𝑑𝑎𝑡𝑎) ≥ 𝜋}, 

where 𝑌 is a vector of responses that is likely to fall within an acceptance region (A) 

with a minimal probability or “quality level” π. Acceptance limits are usually 

previously defined or imposed by regulations before experiments and data analysis are 

performed. They reflect the quality to be achieved and maintained. The DS is then the 

set of combinations of input conditions (here, X1 and X2) where the joint posterior 

probability that future responses lie within acceptance limits is sufficiently high. The 
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effects or contributions of the factors (process parameters), i.e. model parameters, 

remain unknown and their values are estimated with uncertainty. The predictive 

posterior probability is then computed using the model estimates and incorporating 

the uncertainty of parameter estimates. This uncertainty is highest in the case of new 

product or process development or for new process validation when limited full-scale 

manufacturing data are available.  

 

 

4 Results 
 

4.1     Bayesian Hierarchical longitudinal model 
 
The model described in Section 3.2 was fit to the experimental data using the 

MCMChregress function of the MCMCpack package freely available for R. R 2.14 

has been used to compute the predictive probabilities at the specified dissolution test 

time points (hours) and the factor levels. Figure 3 illustrates the predictions of a mean 

future individual dissolution profile in the original scale, with the prediction (β-

expectation tolerance) intervals shown in red. In this last graph, the grey areas indicate 

the acceptance criteria. Confronting the model to the data allows confirming that the 

model fit well the data. The MCMC methods allow direct estimation of the predictive 

distribution and therefore the 95% joint prediction interval. It can also be seen in 

Figure 3 that the prediction interval seems to fall within specifications at this factor 

setting of X1 and X2. From the predictions, the risk for the profile to fall outside 

specification appears to be more sensitive to changes in X2 (results not presented). 

The question remains how much change in X1 and X2 would be allowed to ensure 

with a high probability that all future dissolution tests will meet acceptance criteria. 

 

 <Figure 3 here> 
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Figure 3: Mean predictions (black) and 95% β-expectation tolerance or prediction 

intervals (red) and limits or specifications (grey shaded area) for the data depicted in 

Figure 1 (simulated). 

 

4.2     Design space 
 
For any combination of the X1 and X2 factors, the predictive probability of passing 

Stage 1, 2 and 3 of the dissolution test procedure has been computed, using the 

uncertainty of the predictive distribution. For a 3-stage testing of the three time points 

simultaneously, the following predictive probabilities are computed: 

- Probability of passing Stage 1 

- Probability of passing Stage 2 conditional on Stage 1 failure 

- Probability of passing Stage 3 conditional on Stages 1 and 2 failure. 

The predictive probabilities are computed using the joint posterior distribution of the 

parameters of the model available in the form of chains produced the MCMC method. 

To identify the DS, a fine grid is created over the two factors X1 and X2.  Within each 

point of the grid, the predictive probabilities indicated above are computed, according 

to the following sequence: 
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1) Draw 1000 times 24 profiles from the predictive distribution, including back-

transformation to the original scale. 

2) For Stage 1, the probability of success was computed as follows:    

- Keep only the 6 first profiles out of 24 profiles generated; given in future 

routine only 6 units will be tested, 

- For the 1000 sets of 6 profiles, calculate the proportion of sets where the 6 

profiles satisfy the specifications jointly. This proportion is the MCMC estimate of the 

probability of success at Stage 1. 

3) For Stage 2 the probability of success was computed as follows:   

-  Add the next six profiles from each original set of 24 to obtain 1000 x 12 

profiles, 

- Compute the average dissolution profile of the 12 profiles for each of the 

1000 sets,  

- From among the sets not having passed Stage 1, compute the proportion of 

sets in which the average dissolution profile is within acceptance limits, and at 

no time point of does any result in any profile exceed the acceptance limit 

range by more than 10%. This proportion is the MCMC estimate of the 

probability of success passing Stage 2 conditional on failure in Stage 1. 

4) Finally for computing the probability of success of Stage 3:  

- Add the next twelve profiles from each original set of 24 to obtain 1000 x 24 

profiles, 

- Compute the average dissolution profile of the 24 profiles for each of the 

1000 sets, 

- From among the sets not having passed Stage 1 nor Stage 2, compute the 

proportion of sets in which the average dissolution profile is within acceptance limits, 

and at no more than two time points does any result in any profile exceed the 

acceptance limit range by more than 10%, and at no time point does any result from 

any profile exceed the stated range by more than 20%. This proportion is the MCMC 

estimate of the probability of success passing Stage 3 conditional on failure in Stage 1 

and Stage 2. 

With this approach, the implicit correlation between the Stages is accounted by the 

fact that the profiles/vessels are performed, as they would be done in laboratory 

conditions, where the results of Stage 2 are dependent on the results of Stage 1, as 6 

units are shared by both analyses. The same applies for Stage 3. However, in real 
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laboratory practice, the analysis of consecutive testing for Stage 2 and 3 are made in 

separate runs at different times. If available, data to estimate the variability due to the 

effect of the runs could be used to improve the simulations. 

 

Figure 4 represents the joint predictive probability to obtain 6 dissolutions profiles 

within joint specifications at time points of interest at Stage 1. 

 

<Figure 4 here> 

  

Figure 4 – Stage 1: joint probability of success of passing all specifications at the 

three time points. 

 

As it can be seen in Figure 4, in the center of the domain of the second factor (X2), it 

is possible to obtain the six Stage 1 profiles within specifications with a high level of 

confidence, across the full range of X1. The lighter blue area corresponds to a 
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confidence level of about 0.95. The X2 is very critical: at low and high levels of X2, 

the probability quickly drops to near 0% chance of success at any X1 level. A small 

interaction between X2 and X1 is also identified graphically since the light blue area 

is not horizontal.  Strict control of X2 is key to obtain tablets with good dissolution 

properties. For Stage 1, it is recommended to maintain X2 within 3.8 and 3.9 while 

X1 can vary within the whole domain explored, i.e. from 27.7 to 28.2. 

When considering each time point separately, then the marginal predictive 

probabilities of success over the X1 and X2 experimental domain are show in Figure 

5.   

 
 

<Figure 5 here> 

2h 

 

8h 

 
 14h 

 
 
Figure 5 – Stage 1: conditional probabilities of success by time point defining the 

Design Space 
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As it can be seen in Figure 5, there is high likelihood to pass specifications at 2 hours, 

whatever the X1 and X2 levels. However the risk of failure at 8 hours and 14 hours 

depends heavily on the level of X2, The requirement to control X2 within 3.8 and 3.9 

is essential due to these two time points in the form of a compromise. 

The predictive probabilities of passing Stage 2 or Stage 3, conditional on failure in 

Stage 1 or in Stage 1 and Stage 2, respectively, are represented in Figure 6 A and 

Figure 6 B, respectively.  

 

<Figure 6 here> 

A: Stage 2 

 

B: Stage 3 

 

      

Figure 6 – Joint probabilities of passing at Stage 2 (A) and Stage 3 (B) for all time 

points conditionally to a failure of Stage 1 or Stage 1 and 2, respectively. The grey 

area on the right figure reflects almost no chance that Stage 3 testing is required.  

 

As it can be seen in Figures 6A and 6B, the DSs for Stage 2 and Stage 3 are larger 

than the one for Stage 1 (Figure 4). The fact that the DS didn’t shrink for Stage 2 and 

3 as compared to Stage 1 suggests that, as long as the factors are within the DS, the 

main reason for Stage 1 failure is the variability of the individual dissolution results 

around the mean (i.e. variability in the test procedure). Also the prediction indicates 

that as long as tablets are produced in the X1 and X2 combinations indicated by the 

bright blue area (Figure 6, B) dissolution testing beyond Stage 2 will never be 

required. 
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5 Conclusions 
 
A mixed effects model has been used to describe the longitudinal dissolution profiles 

of extended release tablets as a function of two critical process parameters with a 

response surface type of model. 

A Bayesian approach, namely a hierarchical model with non-informative priors, 

allowed direct computation of the joint predictive probability that all the individual 

values of the six dissolution profiles will be fully within the set of three acceptance 

criteria over time. Even when only considering Stage 1, computing such a probability, 

given the correlation structure and the random effects would had been cumbersome or 

impossible to obtain using frequentist statistics. Using MCMC methods and Bayesian 

models make such a computation straightforward and consistent with the intent of the 

QbD recommendation.  

Moreover, the Bayesian modeling and the availability of the predictive distribution 

made feasible the conditional computation of passing Stage 2 or Stage 3 given a 

failure of previous stages.  

In the case presented, a non-informative prior was used, so that the mean of the 

posteriors was nearly equal to the maximum likelihood estimates of the parameters. 

The main difference was the fact that the joint distribution of the parameters was 

available to derive numerically the predictive distribution of future responses, 

whatever the transformations (and the back-transformations) performed.  

Such computation can easily be implemented using common statistical languages 

such as R or SAS, and with MCMC sampler such as MCMChregress, Winbugs or 

STAN.   
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