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anisotropy,

= increasing number of equations

Increasing complexity of studied phenomena (localization
)

complex 3D geometry

LAGASHOP 2013
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Introduction

Assembling of global stiffness tangent matrix

Solving A-x=Db

1 2 3 4
Ol@]| 6

5 6 7 8
@| 6|6

oL 1ol 11 12

Assembling example :
m 6 elements

m 12 nodes
» ldof/node
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Introduction

Assembling of global stiffness tangent matrix

Solving A-x=Db
Global stiffness matrix (12 dofs x 12 dofs) :

1 2 3
11i2i31415!6! _7__._3...941@._1_1.1.?‘
@ ® Kl N -
5 7 8 2 N P
R A A
®1®|® S N S O

4' ! LI L] '---'.--'.--.'---'---:.--.'
o101 12 BT T NN
. . I3 BN  BEEEEe

7

Local stiffness matrix (ele-

ment 1) : I L T S S S
1.2 6 5 EIER N R
1 |Cy Cro Cis Cua L O O T o
2 1C21 Cap Cas Cag L T N S SO S O A
6 |Ca1 Caz Cas Cug 120
5 C41 C42 C43 C44

(coloured non-zero entries)
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Introduction

Assembling of global stiffness tangent matrix

Solving A-x=Db
Global stiffness matrix (12 dofs x 12 dofs) :

1 2 3
101112
;
® | ® RN R
oL 1ol 11 12 a1~ g Ao

______________

Local stiffness matrix (ele-
ment 2) :

2 3 7 6
Cys Cyz Cy3 Cug
Cz1 Cp Cp3 Cpy dedld

Cs31 Cyp Ca3 Cyy
Ca1 Cuz Cy3 Cuy

DADNWN

................................................

(coloured non-zero entries)
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Introduction

Assembling of global stiffness tangent matrix

Solving A-x=Db
] 5 3 4 Global stiffness matrix (12 dofs x 12 dofs) :
1234 1567 89101112

K
2
3

Properties of the matrix :
m sparse

m potentially symmetric
m potentially band

(coloured non-zero entries)
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Direct methods

Triangular systems

Let's consider the following system L-x=b (N =4):

/11 0 0 0 X1 b1
/21 /22 0 0 ) X2 . b2
ki ha ks 0 X3 bs
lag laz laz lag X4 by
m exact solution by
m ~ O(N?) operations = hy
m easy to implement Xy = by — b1 x
m forward (L matrix) or backward k2
(U matrix) substitution i1
bi — > lkxk
k=1
X = .
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Direct methods

Gaussian elimination

Let's consider the following system A-x=b (n=14)

ail
azi
as1
a41

a2
a?
as2
dg?

ai3
azs
as3
d43

aia
asa
as4
da4

X1 by
x| )b
x3[ ) bs
X4 b4

Gaussian elimination transforms A-x = b into L - x = b’
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Direct methods

Gaussian elimination

Elimination of ap; :

a1l ax a1z as X1 by
2 (2 .2 (2)
0 ay a3 ay X\ _ )b
a1 azx a3z azs X3 bs
asl  ag2 a3 as X4 by
) a1 @, a1
s < ayy— —-a;1=0 ayy <~ adxp — —
E alt
ani 2 ari
3()<—823——~813 a5y ax— — -
23 24
ai ai

b2y — 22
ail

by
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Direct methods

Gaussian elimination

Elimination of a3; and a4

d11 a2 a13 a4 X1 by
2 2 2 2
0 ) el [u
EEE RN
0 a3y a3 ay x by
mip = 2L for i=3,4 and j=2,.4
, 91 )
af.j)<—a,-j—m,-1~a1j b§)<—bi—mi1'b1
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Direct methods

Gaussian elimination

Elimination of asp, az> and a3

ail a;x 313 au X1 b

2) (2 (2 2
0 &) & Y| Jel| )b
0 0 a2 AP 1x b
0o 0o 0o &Y la b

then the remaining upper triangular matrix has to be solved.

m exact solution

m ~ O(N3) operations

m pivoting if a; = 0 (or a;; << for numerical stability)

m best method for dense A matrices

m implemented in LAGAMINE for sparse systems (KNSYM= 4)

B. Cerfontaine LAGASHOP 2013
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Reordering

Definitions

Principle : rearranging the equations in order to minimize the number of
operations to carry
N
Ordering efficiency parameter : 0 = > /\/l,-2
i=1
where M = number of off-diagonal term during the elimination of node i

:1:2:3:4:5:6:7:8
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Definitions

Principle : rearranging the equations in order to minimize the number of
operations to carry
N
Ordering efficiency parameter : 0 = > /\/l,-2
i=1
where M = number of off-diagonal term during the elimination of node i

:1:2:3:4:5.6:7:8 Elimination of node 1 :

m red : entries to be cancelled
m green : previously zero entries
m purple : modified entries

M’ =5 (in red)

= 25 operations (green + purple)
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Definitions

Principle : rearranging the equations in order to minimize the number of
operations to carry
N
Ordering efficiency parameter : 0 = > /\/l,-2
i=1
where M = number of off-diagonal term during the elimination of node i

:1:2:3:4:5.6:7:8 Elimination of node 2 :

m red : entries to be cancelled
m green : previously zero entries
m purple : modified entries

M’ = 4 (in red)

= 16 operations (green + purple)

B. Cerfontaine LAGASHOP 2013 11/09/2013 10 / 34



Reordering

Basic Algorithm

Starting from one node to be eliminated
(blue, to be adequately chosen)
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Basic Algorithm

Starting from one node to be eliminated
(blue, to be adequately chosen)
Chosing the next one
m several possibilities (green)
m for each possibility : how many new
active nodes (red)?
m the next node is the one which leads
to minimum new active nodes
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Basic Algorithm

Starting from one node to be eliminated
(blue, to be adequately chosen)
Chosing the next one

m several possibilities (green)

m for each possibility : how many new
active nodes (red)?

m the next node is the one which leads
to minimum new active nodes

m if equality chose the one which is
active since the greater number of
steps

B. Cerfontaine LAGASHOP 2013



Basic Algorithm

Starting from one node to be eliminated
(blue, to be adequately chosen)
Chosing the next one

m several possibilities (green)

m for each possibility : how many new
active nodes (red)?

m the next node is the one which leads
to minimum new active nodes

m if equality chose the one which is
active since the greater number of
steps

B. Cerfontaine LAGASHOP 2013



Basic Algorithm

Starting from one node to be eliminated
(blue, to be adequately chosen)
Chosing the next one

m several possibilities (green)

m for each possibility : how many new
active nodes (red)?

m the next node is the one which leads
to minimum new active nodes

m if equality chose the one which is
active since the greater number of
steps

B. Cerfontaine LAGASHOP 2013



Basic Algorithm

Starting from one node to be eliminated
(blue, to be adequately chosen)
Chosing the next one

m several possibilities (green)

m for each possibility : how many new
active nodes (red)?

m the next node is the one which leads
to minimum new active nodes

m if equality chose the one which is
active since the greater number of
steps

B. Cerfontaine LAGASHOP 2013



Basic Algorithm

Starting from one node to be eliminated
(blue, to be adequately chosen)
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Basic Algorithm

Starting from one node to be eliminate

(blue, to be adequately chosen)
Chosing the next one

several possibilities (green)

for each possibility : how many new
active nodes (red)?

the next node is the one which leads
to minimum new active nodes

if equality chose the one which is
active since the greater number of
steps

Reorder following the sequence of
eliminated nodes

d Sequence : 5,3,2,1,6,4,7,8

B. Cerfontaine LAGASHOP 2013



Reordering

Relation between adjacent nodes and number of operations

Number of adjacent nodes = M’ then minimizing it minimizes o and cpu
time

B. Cerfontaine LAGASHOP 2013 11/09/2013 12 / 34



Comparison between old and new matrices

Without renum o = 87 With renum o = 40

11:2:3: 8. 11:2:3: a1 a1
1

B. Cerfontaine LAGASHOP 2013 11/09/2013 13/ 34



Non zero entries of matrices (before and after renum)

Types of reordering widely used in LAGAMINE :
oil stain (ITYREN= 1)

m efficient for every mesh;
m parameters needed ;
directional reordering (ITYREN= 2)
m efficient for rectangular meshes;;
m need a direction in which the structure has the greatest number of
nodes.
based on Sloan method : improved oil stain (ITYREN= 3)
includes algorithm for best start node;
m efficient for every mesh;
E no parameter needed;
m fastest than oil stain (7).

B. Cerfontaine LAGASHOP 2013



Reordering

Non zero entries of matrices (before and after renum)

Size 619x619 Size : 10505x10505

~

B. Cerfontaine LAGASHOP 2013 11/09/2013 14 / 34



Example

Oedometer test : with/without reordering (and comparison
directional /Sloan)

10° ¢ 1000
{900
10°
{800
700
10° b
- {600
o =z
£k +s00 .2
o ]
o 14
) {400
10°
{300
- | —#—CPU time normal {200
107 - CPU time Dir.
| =4 CPU time Sloan +100
o --4--Ratio
il ¥ . . ; . .
0 2000 4000 6000 8000 10000 12000
Ndofs [-]
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Iterative methods Introduction and principles

Example : Jacobi iterations

Principle : finding the new value of ¢*) that annihilates the i-th
component of the residual vector r; = (b — A - xx);

S (k)
= a,-,---—i—Za,-j-ﬁj -6 =0 for i=1,...,n
j=1

J#i

r A X b
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Iterative methods Introduction and principles

Example : Jacobi iterations

Principle : finding the new value of ¢*) that annihilates the i-th
component of the residual vector r; = (b — A - xx);

= 0 = 3fi'-+23fj-£}k)—ﬂ;
j=1

J#i
1 n
N £I§k+1) _ — | Bi=>a- §J§k) for i=1,...n
ajj j=1
J#i
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Iterative methods

Example : Jacobi iterations

Principle : finding the new value of ¢*) that annihilates the i-th
component of the residual vector r; = (b — A - xx);

f(kH) Zau §(k) for i=1,...n
J#l
A Rewritten in vector form
F
xij1=D"'-(E+F)-x+D"-b
D
where
-E m D : diagonal of A
m —E : lower triangular part of A
A=D-E-F m —F : upper triangular part of A

B. Cerfontaine LAGASHOP 2013



Iterative methods

Preconditioning

Principle : " preconditioning is a means of transforming the original linear
system into one which has the same solution, but which is likely to be
easier to solve with an iterative solver” (Saad, 2003)
Preconditioning matrix M :

m close to A;

m nonsingular;

m inexpensive to solve linear system M - x = b.

One of the simplest ways of defining a preconditioner is to perform an
incomplete factorization of the matrix A

A=L-U-R

B. Cerfontaine LAGASHOP 2013



Iterative methods

Preconditioning

Principle : " preconditioning is a means of transforming the original linear
system into one which has the same solution, but which is likely to be
easier to solve with an iterative solver” (Saad, 2003)

Applied to the left
M1.A.x=M1b

or applied to the right
M.y

A-Ml.u=b x

B. Cerfontaine LAGASHOP 2013



Iterative methods GMRES method

Table of contents

Introduction
Direct methods
Reordering

@ lterative methods
Introduction and principles
o GMRES method

Practical use

Conclusion

B. Cerfontaine LAGASHOP 2013 11/09/2013 20 / 34



Iterative methods

Principle

Building iteratively a solution (X)
m to the problem A-x=0b
m from an initial guess (xg) of the solution
m and a basis of linearly independent vectors K,

m through the following linear combination :

>"<=Xo+Z}/i'Vi vice Kn
i—1

The size of the basis, m
m is unknown, a priori (iterative concept)

m is much less than N, the number of equations.

B. Cerfontaine LAGASHOP 2013



Analogy with structural analysis

There is two ways for solving the

q(t) problem of a beam submitted to an
arbitrary time-dependent loading

|

N CI) Nodal base method : solving a
NxN system

1st eigenmode : y,

h R e el

YA (@)
3rd eigenmode : y;

b Yttt -k

YA @)

B. Cerfontaine LAGASHOP 2013



Iterative methods

Analogy with structural analysis

There is two ways for solving the

q(t) problem of a beam submitted to an
arbitrary time-dependent loading

A (') Nodal base method : solving a
NxN system

1st ei de @y, . .
:elgenmoey ____________________ — Modal base method : projection
A O onto eigenmodes (increasing

2nd eigenmode : y, eigenfreq UenCieS)
AN O . m

3rd eig<e£1r>node:y3 o y(t) = Z 7’],’(t) ' yi
_|4_"‘—::__:___ _______‘_'_/_:‘:‘:__:__H_ i=1
N\ - O

m decoupled equations to be
solved <N

B. Cerfontaine LAGASHOP 2013



Which basis ?

In the following iterative method, subspace K, is a Krylov subspace, i.e.

Km(A,v) = span {V,AV,A2V, . ,Am_lv}
and specifically, GMRES uses

Km(A, ro) = span {ro, Arg, A’rg, ..., A™ 'ro}

where

I’Ozb—A-Xo

A c R™" and v,rg € R”

B. Cerfontaine LAGASHOP 2013



Which basis ?

This basis can be computed iteratively since there is a relation between two
of its consecutive vectors, i.e. v;i = A-v;_;

Then following a Gram-Schmidt procedure for orthogonal bases
ro

Vi = o
lIroll2

B. Cerfontaine LAGASHOP 2013 11/09/2013 23 / 34



Which basis ?

This basis can be computed iteratively since there is a relation between two
of its consecutive vectors, i.e. vj=A-v;_

Then following a Gram-Schmidt procedure for orthogonal bases
ro

[[roll2

actual basis of degree m, compute vp,p1 = A - vy,

Hv=
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Which basis ?

This basis can be computed iteratively since there is a relation between two
of its consecutive vectors, i.e. vj=A-v;_

Then following a Gram-Schmidt procedure for orthogonal bases
ro

[[roll2

actual basis of degree m, compute vp,p1 = A - vy,

Hv=

to be orthogonalized against v; for i =1,... m

m

Vil ‘= Vmyl — E (Vm1,Vi) - Vi
i—1

~ O(m x n) operations!

B. Cerfontaine LAGASHOP 2013



Which basis ?

This basis can be computed iteratively since there is a relation between two
of its consecutive vectors, i.e. vj=A-v;_

Then following a Gram-Schmidt procedure for orthogonal bases
ro

[[roll2

actual basis of degree m, compute vp,p1 = A - vy,

Hv=

to be orthogonalized against v; for i =1,... m

m

Vil ‘= Vmyl — E (Vm1,Vi) - Vi
i—1

Vm+1

normalize V11 = ———
[Vm+1ll2

B. Cerfontaine LAGASHOP 2013



Iterative methods

How to compute y ? How to choose the size of m?

If V,, is the n X m matrix describing the basis K, then solution is

computed as
X = X0 + !m 'y

where y minimizes

[b—A-%2=[b—A (xo0+V,-y)2=ro—A-V,y|>
which is a least square problem of size m&N
Practically the size m of K, increases iteratively up to achieve a residual

[rill2 < € [roll2

B. Cerfontaine LAGASHOP 2013



Iterative methods

Principle

GMRES method implemented in LAGAMINE (KNSYM = £6)

m approached solution (depends on the convergence norm!)
E no need to inverse the global matrix A
m best method for very big number of equations
B~ O(m+3+1/m)-N+ NZ) where
m m is the number of iterations

m N is the number of unknowns
m NZ is the number of nonzero terms in A

requires input parameters

B. Cerfontaine LAGASHOP 2013



Iterative methods Practical use
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Iterative methods | Practical use

Practical use : oedometer cube

Imposed vertical

Systematic comparison using a cubic displacement
example

m oedometric boundary conditions Blocked

horizontal
displacement

m purely mechanical/hydro-mechanical
behaviour
m 3-nodes 3D blocs

® varying mesh size N3
N € [10, 15,20, 25, 30, 35, 40, 45]

N elements

e
e
/

Blocked vertical
displacement
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Iterative methods Practical use

Practical use : oedometer cube

Minimum cpu time for solving system Cost savings using GMRES

Insufficient memory
for more dofs:
X 35

CPU time [s]

10

Direct CPU time/Iterative CPU time [/]
3

10 L L L L

1 15 . o 1 1‘.5 2 25
Number of equations [/] x10 Number of equations [/] x10°

B. Cerfontaine AGASHOP 2013



Iterative methods

Practical use : gas injection

80001

3
8

Iterative and direct methods for gas
injection : gas pressure at a given
point

S
3
g
8

4
8

m global convergence depends on
LAGAMINE criteria : PRECU
and PRECEF identical for both
methods

Gas pressure [kPa]
3
8

50001

—=— Direct
. . . m difference of convergence rate :
4500 5000 5500 Time [h] 6000 6500 7000 i )
different time steps

B. Cerfontaine LAGASHOP 2013



Iterative methods

Parameters

Preconditioning parameters : LFIL, DROPTOL

The incomplete factorization of LU follows the same steps as the gaussian
elimination.
For a given off-diagonal term to be eliminated aj

myg = 25
Akk
aij < akj — My - Ak bk<—bk—mk/-bk for _]:1,...,n

If |[my| < DROPTOL nothing is done and ay < 0

B. Cerfontaine LAGASHOP 2013



Iterative methods | Practical use

Parameters

Preconditioning parameters : LFIL, DROPTOL

2 . . i
During the LU factorization process : ~uoo10
o -
——1202020
16 e 1252525
~+-t303030
i --4--353535
; don't converge for 404040
lower Ifil value 4454545

m sort terms of row i of L and U

\

m keep the Ifil greatest in L and U;

m next row.

LU incomplete

Syst. CPU time/mean(Syst. CPU time) [/]
5

D‘AZO 30 40 50 60 7‘0 80 90 100 110 120
1fil 1]
CPU time(/fil;)
i
=+ > CPU time;
Jj=lfih
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Iterative methods

Parameters

Preconditioning parameters : LFIL, DROPTOL

m increasing LFIL

® increasing memory storage required
m increasing computational cost for computing the preconditioner
m increasing computational cost for solving the system

m decreasing LFIL

m risk of no convergence
m risk of instability during the process (observed for large
hydro-mechanical systems)

m increasing DROPTOL
m conditional decreasing of computational cost
m decreasing DROPTOL

m conditional increasing of computational cost

B. Cerfontaine LAGASHOP 2013



Iterative methods

Parameters

Resolution parameter : IM, MAXITS

If the size of the Krylov basis is greater than IM,
m initial guess of the solution is deemed too far from the actual one,

m algorithm is restarted with m = 1 and xg = x,,

B. Cerfontaine LAGASHOP 2013



Iterative methods

Parameters

Resolution parameter : IM, MAXITS

If the size of the Krylov basis is greater than IM,
m initial guess of the solution is deemed too far from the actual one,

m algorithm is restarted with m = 1 and xg = x,,

The total number of iterations (njss) is equal to the number of orthogona-
lization processes already done which is equal

m to the actual size k of the Krylov process if njs < IM;
B tO Npestart X IM + k if Njts > IM.
If no convergence occurs after njs = MAXITS

m algorithm crashes and the time step is reduced

B. Cerfontaine LAGASHOP 2013



Iterative methods | Practical use

Parameters

There is a relationship between the LFIL parameter and the number of
iterations necessary to reach convergence

404040/ Ifil = 30 1404040/ Ifil = 30
T

20p
=== ILUT
10l —©— GMRES

ifil = 60

cpu time [s] cpu time [s] cpu time [s] cpu time [s]

oo bt IO 1 Jg ]
0 :.-:::»." 15 25 3 3‘5 35
20— Ifil =75
u%&&e&o% SRS, ]
100+ o-yo—ew* 4 Lo R |
0 .--LV“-' 25 3‘0 3‘5 15 20 35
Step n° [/] Stepn® [/]
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Iterative methods

Parameters

Convergence parameters : EPS, RESTOL
The internal iterative process ends if (relative convergence)

Irill2 < EPS - [|ro]l2
or if (absolute convergence)
Irill2 < RESTOL

The smaller the EPS the higher the number of iterations to reach conver-
gence!

B. Cerfontaine LAGASHOP 2013



Iterative methods

Example of configurations

RESTOL is imposed to 10740

NDOFS | TYPE || LFIL | DROPTOL | IM | MAXITS | EPS

283544 | cube M 45 107° 200 500 107>
220940 | gallery M || 130 10-° 500 | 4000 | 107°
262236 | cube HM || 20 1076 200 500 107°
752226 | loca M 200 10-8 500 | 1000 | 10°°

High LFIL with high number of dofs to avoid instabilities !

B. Cerfontaine LAGASHOP 2013



Iterative methods

Bibliography

Mainly for GMRES and iterative methods (available online)

Y. Saad, 'lterative methods for sparse linear systems’, Society for industrial and
applied mathematics, (2003)

Or a summary
Y Saad and M.H. Schultz, 'GMRES : a generalized minimal residual algorithm for

solving nonsymmetric systems', Journal on Scientific Computing, 7, 856-869
(1986)
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Conclusion

m Increasing size of systems to be solved as a corollary effect of
increasing complexity of modelling

m High degree of sparsity of the systems to be solved leading to specific
methods

m Reordering techniques :

m very efficient

m coupled with direct solvers

= available in LAGAMINE
m lterative methods :

m approximate solution
efficient for very large number of equations
much complex algorithms

parameters : mix of art and science
available in LAGAMINE

B. Cerfontaine LAGASHOP 2013
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