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Large deviation spectra based on wavelet leaders

Frangoise Bastin, Céline Esser and Stéphane Jaffard

Abstract. We introduce a quantity that encapsulates the information
given by the distribution at each scale of the wavelet leaders of a function,
and which is independent of the chosen wavelet basis. This leads naturally
to the definition of a new multifractal formalism which allows to detect
non-concave multifractal spectra.

Introduction

Multifractal analysis is concerned with the study of everywhere irregular signals
whose pointwise regularity can change widely from one point to another. For such
data, it does not make sense to determine the pointwise regularity, and it is more
relevant to determine their multifractal spectrum, which is the Hausdorff dimension
of the set of points which have a given Holder exponent. More precisely, let « be
a non-negative real number and zy € R. A locally bounded function f : R — R
belongs to C*(zo) if there exist a polynomial P of degree less than « and a constant
C > 0 such that
(@) = P(a)] < Cla — x|

for every x in a neighborhood of zy. The Hoélder exponent hy(xo) of f at xq is
the supremum of all values of « such that f € C%(zp). Points with a given Holder
exponent can be located on fractal sets, in which case their Hausdorff dimension is
a pertinent quantity to determine. If Bj, denotes the set of points z € R for which
hy(x) = h, the multifractal spectrum of f is the function

df ch— dlm'H(Bh)

Note that h(zo) can be infinite, so that dy is defined on [0, +oc]. Furthermore, one
uses the standard convention dim()) = —oo so that dy takes values in [0, 1]U{—o00}.

The Holder exponent and hence the multifractal spectrum of many mathemat-
ical functions or stochastic models has been directly determined from their defini-
tion; usually their Holder exponent is extremely erratic, see e.g. [8, 20]. Therefore,
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for real-life signals, the Holder exponent is also expected to be very erratic and its
numerical determination is not feasible. Thus, one cannot expect to have direct
access to their spectrum. In such cases, one has to find an indirect way to estimate
it. A multifractal formalism is a formula which is expected to yield the spectrum
of a function from “global” quantities which are numerically computable. The
seminal work of G. Parisi and U. Frisch [36] led to a first formula, which related
the spectrum and the scaling function ns(p) of the signal which (using a loose
formulation) is defined by

(0.1) / f(z+h) — f(@)Pde ~ 5P when h — 0,

One expected that the Legendre transform of n

(0.2) Lp(H):= inf (1+ Hp —n5(p))

inf
peR
would yield the multifractal spectrum of f. This expectation was only partly met:
For large classes of functions and stochastic models that have a concave (increasing
and then decreasing) spectrum, this heuristic has been shown to correctly yield the
increasing part of the spectrum (where the infimum in (0.2) is attained for p >
0). Furthermore, a function space interpretation can be given to the multifractal
formalism. This interpretation leads to generic results of validity: For p > 0, (0.1)
is interpreted as stating that f belongs to an intersection of Besov spaces, see [21].
The multifractal formalism yields the increasing part of the spectrum for a subset
of the function space considered which is a comeager set from a topological point
of view or a prevalent set from a probabilistic point of view, see [18, 21].

However, this formalism proves problematic when p < 0 (which corresponds to
the decreasing part of the spectrum in the Legendre transform formula) because, in
the neighborhood of points where the increments of f vanish, the estimation of the
integral (0.1) becomes highly unstable or even divergent, leading to meaningless
values for the scaling function, and, ultimately, to the failure of the multifractal
formalism even for standard models (see [25] where this phenomenon is analyzed
in details on the example of Brownian motion).

Several approaches have been proposed in order to “renormalize” (0.1) when
p is negative. A first way, proposed by A. Arneodo, E. Bacry and J.-F. Muzy,
consists in replacing increments by a continuous wavelet transform and the integral
by a sum taken at the points of its local maxima. On the numerical side, the
wavelet transform maxima method proved extremely powerful, yielding the correct
full spectra (when concave) for large classes of synthetic signals, see [3, 34, 35].
However the main difficulty of this method is that mathematical results backing
it are extremely scarce (see however [3, 19, 30]) and far from yielding a proof
of its validity, even for standard models such as e.g. Brownian motion. This
drawback motivated the introduction of an alternative method which is based on a
similar idea, see [24, 26]: One uses an orthonormal wavelet basis, and the sum does
not bear on wavelet coefficients but on local suprema of these coefficients (called
wavelet leaders, see (0.4) below). Three types of mathematical results have been
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obtained concerning the validity of this multifractal formalism, see [1, 2, 23] and
references therein:

- It is proved for specific deterministic functions or for classes of stochastic
models (multiplicative cascades, Lévy processes without Brownian compo-
nent, random wavelet series,...) where it allows to recover the increasing and
the decreasing part of the spectrum.

- It is shown to yield an upper bound of the multifractal spectrum of any
(uniformly Hoélder) function.

- The part which has a function space interpretation (p > 0 in the cases we
mentioned, yielding the increasing part of the spectrum) is proved to hold
for a generic subset of the corresponding function space.

However, this method still presents two main drawbacks:

- The scaling function approach can encapsulate a “function space - type”
information only for p > 0, so that generic results can only concern the
increasing part of spectra.

- The Legendre transform, by construction, can only yield a concave output,
so that this multifractal formalism necessarily fails for functions with a non-
concave spectrum.

The first drawback is intrinsic to the notions of genericity which are used,
but the second one can be partly turned by using a method which differs from
the scaling function/ Legendre transform technique; the use of function spaces
which differ from Besov spaces and are based on large deviating estimates of the
repartition of wavelet coefficients (the so-called S¥ spaces [5]) allows to deal with
non-concave spectra. Our purpose in this paper is to combine this approach with
the use of wavelet leaders instead of wavelet coefficients and propose new spec-
tra derived from large deviations based on statistics of wavelet leaders. We will
show that, indeed, this method allows access to both the increasing and decreas-
ing envelopes of non-concave multifractal spectra. Note that typical examples of
stochastic models with non-concave spectra are given by Lévy processes with a
Brownian component, see [20]. They can also easily be obtained by juxtaposing
signals with different spectra, a situation commonly met in image processing, be-
cause of the occlusion phenomenon (a natural image usually is a juxtaposition of
different textures with different spectra).

In order to be more specific we start by giving some precisions about S* spaces
and we introduce some notations. We will only consider one-variable functions
(it is straightforward to generalize what follows in the case of dimension d > 1).
Since we are interested in local properties, we work with periodic functions. Let
us consider a mother wavelet ¢ in the Schwartz class, such as constructed in [29].
Together with the constant function ¢(z) := 1, the periodic functions

Yip(e) = (@ —1) — k), jeNo ke{0,...,27 1}

IEZ
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form an orthogonal basis of functions of period 1 in L?*(T), where T = R /Z. We
use the notations v, to denote the wavelet 1); ., where A is the dyadic interval

E ok+1
217 27

A:A(j,k):{ ), j €Ny, ke{0,...,27 -1}

(the interval A gives an indication concerning the position and scale of the corre-
sponding wavelet). We denote by A the set of all dyadic intervals included in [0, 1);
and if j is a non-negative integer, we denote by A; the set of all dyadic intervals of
[0,1) of size 277. Using an L°-normalization, the wavelet coefficients of a periodic
function f are

!
VA e, ey =2 /0 f@)r(x) da.

The wavelet profile of f is defined by

1 Aj:|en| > 02— (ete)i
vi(a):= lim limsup og#{A €A |c>\\‘_ ¢ i
e=0+ jtoo log 27

for all @ € R, where # A denotes the cardinality of A. This definition formalizes the
idea that there are approximately 2"/ (®)7 coefficients in modulus greater than 277,
Note that, in the setting of probability measures similar quantities are considered
in [32].

The function v is non decreasing, right-continuous and takes values in {—oo}U
[0,1]. The wavelet profile contains the maximal information which can be obtained
from the distribution of wavelet coefficients of f and which does not depend on the
chosen wavelet basis, see [22]; furthermore, if v; is not concave, then it contains
strictly more information than the knowledge of the Besov spaces to which f
belongs (which only allows to recover the concave hull of vy).

In order to obtain a framework to model this type of information, the following
definition was proposed in [22]: Given a function v defined on R, non decreasing,
right-continuous and taking values in {—oc} U [0,1], a function f belongs to the
space S” if its wavelet profile satisfies

vi(a) <v(a), VaeR.

As mentioned previously, those spaces allow to state a new multifractal formal-
ism which is fitted to non concave spectra. It is based on the estimation of the
multifractal spectrum of any function of ¥ by the increasing function

(h')

h - sup it h S hmama
d’(h) = ne(n N
1 otherwise,
where
. h :
hmaz = inf ——= and Qmin = inf{a: v(a) > 0}

h>amin V(h)
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Figure 1: Example of v (---) and d” (—)

This formalism yields an upper bound for the spectrum of all uniformly Holder
function (i.e. for functions that belong to a Holder space C"(T) for an r > 0,
see Section 1), and its validity has been proved for random wavelet series, and in
generic settings, see [4, 5, 7]. Moreover, it has been implemented and tested on
several examples [27].

Recall that the initial multifractal formalism based on increments fails to yield
the decreasing part of spectra; the same problem shows up when using wavelet
coefficients for the computation of the scaling function, i.e. if one replaces the
integral in (0.1) by the quantity

(0.3) 2793 |eal?,

AEA;

see [25]. More accurate results are obtained when, rather than using directly
wavelet coefficients, one relies on alternative quantities, namely wavelet leaders d
which are defined as follows: Let 3\ denote the interval with the same center as A
but three times larger; then

(0.4) dy= sup |en], VA€EA
N C3A

(this supremum is finite as soon as f is locally bounded) see [26]. This improvement
is due to specificities of the wavelet leaders: Given a scale, wavelet leaders take
into account a specific family of coefficients of smaller scales and located at the
same place. Thus, heuristically, if a wavelet leader is close to 0, this means that
all these wavelet coefficients are close to 0, which is much more exceptional that
just one. This explains why the computation of scaling functions for negative ps,
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which amounts to replace (0.3) by

(0.5) 2793 |da P,

AEA;

leads to more stable quantities. Additionally, wavelet leaders have adequate the-
oretical properties for the construction of a multifractal formalism, since they are
directly related with the Holder exponent, which can be recovered from wavelet
leaders by local log-log plot regressions, see [23]. A multifractal formalism, based
on a scaling function derived from (0.3) allows to estimate both the increasing and
decreasing parts of concave spectra, see [24, 26].

Of course, the question of extending the study of S spaces in the context of
the wavelet leaders was raised. These spaces, called profile spaces L”, (and which
no longer are vector spaces) yield a new multifractal formalism which allows to
detect non-concave and decreasing spectra.

This article is structured as follows: In Section 1, we introduce a large deviation
spectrum based on the wavelet leaders of a function. The relevance of this spectrum
comes from the fact that it gives an upper bound for the multifractal spectrum of
the corresponding function. In Section 2, we show a drawback of this definition:
It may depend on the wavelet basis chosen to compute it. This is why we derive
in Section 3 another quantity based on the wavelet leaders which still yield an
upper bound for the spectrum (which may however be less sharp than the one
obtained in Section 1). It is proved to be independent of the chosen wavelet basis
in Section 4. It allows to propose a new multifractal formalism and to define
in Section 5 the profile spaces £”. In Section 6, we illustrate this formalism on
examples derived from the simplest multifractal cascade models. Let us already
mention that this method is studied in practice and compared with the other
wavelet-based formalisms in [1, 16]. Topological properties of the new spaces £¥
and the comparison with the S” spaces have also already been investigated in [11].

1. Upper bound for the multifractal spectrum

In this section, we define a large deviation spectrum based on the wavelet leaders
of a function in a given wavelet basis, and we will show that this quantity yields
an upper bound for the multifractal function of the signal. A similar approach has
been followed in [9] using oscillations of the function (i.e. the difference between
the supremum and the infimum of the function on an interval) instead of wavelet
leaders. The advantage of wavelet leaders is that they allow to deal with Holder
exponents larger than 1. Note that the first ideas of deriving large deviation
estimates for models that would turn out later to be multifractal can be traced
back to the seminal note of B. Mandelbrot on cascade models for the modeling of
turbulence [31].

The following notations will be used. The set of positive natural numbers is
denoted by N, Ny = {0} UN and 2 is the set of complex sequences
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¢ = (¢j k) jeNg,kefo0,...,2i—1}- 1t will usually be interpreted as the sequence of wavelet
coefficients of a perlodic function f in a given wavelet basis.

For every r > 0 such that » ¢ N, we denote by C"(T) the space of 1-periodic
functions which are Holder continuous of order r. The wavelet characterization
of Holder spaces allows to identify this space with the subspace of 2 composed of
sequences satisfying

sup sup 2”|cj,k| < 400,

j€No ke{0,...,27 -1}
see [33]. When r € Ny, we will also denote by C™(T) the space of functions,
or wavelet coefficients, satisfying this condition (see [33] for a interpretation of
this condition using the Zygmund class). A function (or a wavelet sequence) is
uniformly Hélder if it belongs to a space C"(T), for an r > 0. Note that, if r > 0,
this is a stronger requirement than continuity. As soon as ¢ € C°(T) (which is
verified if f € L), the wavelet leaders are well defined and finite, and we denote
the corresponding collection by d= (djk)jeNg,kefo,....21—1} = (dx)reA-

Definition 1.1. Let &€ C°(T). The wavelet leaders density pz of & is defined for
every a > 0 by

1 AN 27@Fe)i <y < 2-(ae)
pz(a) :== lim limsup o8 #{ ! —— }
e=0t j 400 log 21

and for a = 400 by

1 AEA;:dy <24
pa(+00) := lim liminf o8 #1 i = J
A—+4o0 j—+oo 10g 27

From typical properties of large deviation spectra, we get that the wavelet
leaders density is upper semi-continuous on [0, +00) and its maximum on [0, +00]
is equal to 1 (see [7] for example).

In this paper, ¢ will usually denote the sequence of wavelet coefficients of a
uniformly Hoélder function f in a fixed wavelet basis. Moreover, whenever the
context is clear, we will write p instead of p; to make the notation less cluttered.
In order to prove that the wavelet leaders density has the announced property,
let us first introduce some notations. For every xy € T, we denote by A;(zo) the
dyadic interval of size 277 containing x and d;(zo) = SUPy/ ), (wo) [Cx |- For every
a € R, we set

Fia)={ke{0,....20 =1} 1dj, >27%} and EV(a)= |J A&
kEFI (o)

We also define
E(a) = limsup EY (« m U E™(«

oo JENo m2>j

Remark that, since f is uniformly Holder, there exist ap > 0 and C' > 0 such that

VieN, ke{o,...,27 —1}, leju] < C27007.
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Therefore, E(a) = 0 if o < ap.

The following result from [23] is a characterization of the Holder exponent of a
uniformly Hélder function using its wavelet leaders.

Proposition 1.2. If f is a uniformly Holder function, then

log d;
hy(xo) = liminf 08 41%o) g(ﬂﬂp)
j—+oo log2—J
Lemma 1.3. Let f be a uniformly Hélder function and let o > 0.
1. If xg € E(a), then hy(zo) < .
2. If hy(xo) < a, then zo € E(a).

Proof. 1. Let us assume that 2o € E(«). Then for every j, there exist m; > j and
kj € F™i(a) such that xg € Ay, x;. This means that dp,; (z0) = dp, k; > 2779,
It follows that

logd; logdm,. k. log 2—am;
hy(wo) = liminf 284@0)  pp J08dmok, o, log27
j—+oo log277 j—+oo log 27y j—+oo log 2™

2. Let us assume that hf(zg) < o. Then, there exists an increasing sequence
(jn)nen of natural numbers such that

log d;, (xo) <

log 2—in
Consequently, d;, (zo) > 27" and z € E'"(a).
|
Lemma 1.4. If f is a uniformly Holder function, then for every h >0
{0 hylwo) = b} = () E(h+e)\E(h —¢).
e>0
Proof. The result is obtained directly from Lemma 1.3. a

Theorem 1.5. If f is a uniformly Hélder function, then its multifractal spectrum
satisfies
dy(h) < p(h), Vh e [0,+oc].

Proof. We first consider the case where h € [0, +00). Because of Lemma 1.4, we
have to show that

dimy (ﬂ E(h+¢e)\ E(h— 5)> < p(h).

e>0

Let us consider § > 0. From the definition of the wavelet leaders density p, there
exists €9 > 0 and jg € Ny such that

” {A e Aj: 27T < gy < 2,(h,5)j} < oW+ > o
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If we set A ‘ ‘
Ego(h) =F/(h+¢e9)\ E'(h—¢ep), Vj€ Ny,
then

E(h+e)\E(h—e0) € (| U E,(h).

JENg j>J
Let us show that
() UELM | <+
JENg j=>J

where s = p(h) + 28. Remark that for every j € N, the set EJ (h) is covered by
#{)\ €A, 27(hHe0)l < gy < 2_(h_50)j} intervals of length 277, For every n > 0,
there is J(n) > jo such that 277 < n if j > J(n). Then, we have

|l W UELm | < # | U EL(0

JeNo j>J J=J(n)

< > #{ren 2 < gy <27 (i)
J=J(n)

< Z 2(p(h)+8)ig=si < Z 2% « 40,
j=J(n) j€Ng

Consequently,
el Y UEL® | = tim 3 | () JEL(R) ] <D 277 < +oo
JeNy j>J =0 JeNy j>J j€No

and it follows that

dimy, (ﬂ E(h+¢)\ E(h — 5)> <dimg [ () U EL (M) | <s=p(h)+26.

£>0 JENg §>J

Since 0 > 0 is arbitrary, we finally get

dimy <ﬂ E(h+¢)\ E(h— s)) < p(h)

e>0

which leads to the conclusion.
We now consider the case h = +oo. If we set

Ba(j) = U A
A€ dr<2-AY
then
f € C®(x0) <= VA, Vjlarge enough o € Ba(j):

Thus, for any A, the set liminf B4 (j) supplies a covering of {zg : h¢(z) = +00}.
The result follows as previously from the definition of p(400). ]
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One drawback when dealing with wavelet leaders is that the suprema corre-
sponding to two neighbors dyadic intervals overlap; for instance, in a probabilistic
framework, this will create correlations between wavelet leaders, even if they didn’t
exist between wavelet coefficients. Therefore it is natural to wonder if the develop-
ments that we pursued could be developed in a simpler framework where wavelet
leaders are replaced by restricted wavelet leaders defined by

ex = sup |ex|, €A
ANCA
As before, we can consider the function

restr
c

log #{\ € A; :27(Fe)] < ey <27 (@)
(o) = lim limsup g #1 z = A }
e=0+ jtoo log 27

Let us show that p; < pi™ but that these functions do not necessarily coincide,
i.e. there exists & such that pi" £ pe.

First, remark that dy = max{e, : p € N(\)} where N(X) denotes the set of the
3 “neighbors” of A in A; (i.e., the dyadic intervals of length 277, whose boundary
intersects the boundary of A). Therefore,

#IN e A 27@F < gy <277 <3N e Ay 27 (0FT <oy < 27 (07T

restr

and it follows that for any sequence ¢, we have p; < pX

Let us now check that these two quantities can differ. Consider the Cantor
set of ratio i: We start with the interval [0, 1], and, at each step in the standard
Cantor set construction, we keep the two outer dyadic intervals whose length is
1 times the length of the parent interval. We denote C,, (5) the subset of [0,1]

obtained at step n and we denote the Cantor set by

1 1
°(1)-Ne ()
neN
Note that the dyadic intervals A(j, k) that show up in the construction (we will

call them the “fundamental intervals”) possess an index j that is even.
We now pick a wavelet coefficient sequence as follows: Let 0 < v < a.

- Let j be even. If A(j, k) is a fundamental interval, we set ¢;p = 2779, If
A(j,k) is a subinterval of a fundamental interval of the generation j — 2
(we will call them the “secondary intervals”), then we set ¢;, = 27, and
otherwise, we set ¢ = 0.

- Let now j be odd. If A(j, k) is a subinterval of a fundamental interval of the
generation j — 1, we set ¢; , = 2777, Otherwise, we set ¢j, = 0.

One easily checks that all wavelet leaders are either of size 2777 or 0, while re-
stricted wavelet leaders associated to a secondary interval are of size 2~/ (indeed,
this is the size of the corresponding wavelet coefficients, and all wavelet coefficients

associated to proper subintervals vanish). Consequently, pf* (o) # pa(cv).
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Remark 1.6. From Theorem 1.5, if f is uniform Holder, we have dy(h) < pz(h)
for every h > 0. So, we also have dy(h) < p&s*(h) for every h > 0.

c

The example that we just exposed shows that the upper bound of the spectrum
supplied by p5™(h) can be sharpened using wavelet leaders. This explains why
one prefers the definition using wavelet leaders (see however Proposition 3.7 below,
which shows that some quantities derived from these notions actually coincide).

2. Robustness criteria

The wavelet leaders profile of a signal is defined through its wavelet coeflicients.
The independence from the sufficiently smooth wavelet basis which is chosen is a
natural requirement. In practice, one often uses a stronger requirement but easier
to handle which implies that the condition considered has some additional stability.
This notion was introduced by Meyer in [33] (Chapter 8.9) as follows.

Definition 2.1. If v is a positive number and if A = A(j, k), A’ = A(§, k) are two
dyadic intervals, let

9—(4+71i—5']

(14 (" = §)2) (1 + 20537 dist(A, )

w7(>\a A/) = ~+d’

where dist(\, ) = [k279 — k’277'|. An infinite matrix A = (A X)) (aayeaxa
belongs to A7 if there exists C' > 0 such that

|A(/\7 >\/)| < Cw'y(Aa A/)

for every A\, X' € A. We denote by ||A[|, the infimum of all possible such constants
C. A matrix is almost diagonal if it belongs to A" for every v > 0. Moreover, we
say that a matrix is quasidiagonal if it is almost diagonal, invertible on {2, and if
its inverse is also almost diagonal.

Matrices of operators which map a smooth orthonormal wavelet basis in the
Schwartz class into another orthonormal wavelet basis in the Schwartz class are
quasidiagonal, see Chapter 8.9 and 10.5 of [33]. Therefore, in order to check that a
condition defined on wavelet coefficients is independent of the chosen wavelet basis
(in the Schwartz class), one can check the stronger property that it is invariant
under the action of quasidiagonal matrices.

Definition 2.2. Let C be a collection of coefficients indexed by dyadic intervals.
A property P is robust if the following condition holds: If P(C) holds, then for any
quasidiagonal operator M, P(MC) holds.

A vector space (or, more generally a subset of a vector space) is robust if it is
invariant under the action of quasidiagonal operators.

With a slight abuse of language, we will say that the definition of a quantity Fz
which is a function of a sequence of coefficients ¢ is robust if for any quasidiagonal
operator M, Fyiz = Fo.
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Proposition 2.3. The definition of the wavelet leaders density of a function is
not robust.

Proof. We consider again the Cantor set of ratio i. We define the subset I' of
A x A by

1
.= {()\,)\’) :3n € N such that N C C, (4> ,

, , 1
(K +3)277 (K +4)277") CC, (4) and j =75 +1, k =2k + 3}.

Let us fix 8 > a > 0 and let us define the infinite matrix A indexed by dyadic
intervals by setting

1 if =N,
AN N) =S 27Figed" i (A, N) eT,
0 otherwise.

The matrix A is of the form Id + R. Remark that if (A, \) € T, then (\',\") ¢ T
for any dyadic interval A" and it follows that R? = 0. This implies that A is
invertible, with inverse I'd — R,

Clearly, the matrices A and A~! belong to A" for every v > 0. Let us fix § > 3
and let us define the sequence ¢ as follows: for every scale j and every dyadic
interval A € A, we set

272 if there exists an n € N such that A € C,, (5),
cx=¢ 0 if there exists X’ such that (A, \) € T,
279 otherwise.

It is straightforward to see that pz(8) = —oo. Let us now consider the image # of
¢ by the matrix A, that is to say

Ty — Z A()\, )\/)C)\/.

A/
Then, if A € A;, we have

27 if there is n € N such that A C C,, (%),
xy:=< 2777 if there exists \’ such that (\,\) € T,

270 otherwise;
hence pz(3) = 3. O

Remark 2.4. It follows from the proof of Proposition 2.3 that the action of a
quasidiagonal operator can lift the value of p at 8 from —oo to 1/2, which suffices
to prove the result. Note however that the value —co does not play a particular
role here: Let 7 < 1/2; we can add to the wavelet sequence considered a sequence
of [277] coefficients located among the vanishing positions, and taking value 2757,
The initial value of p at S now is 7; the action of the quasidiagonal operator defined
above leaves this new sequence of coefficients unchanged, so that the final value of
p at B is now shifted from 7 to 1/2.
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This counter-example motivates the introduction, in the next section, of an-
other notion based on the wavelet leaders of a signal which will be proved to be
robust.

3. Wavelet leaders profiles

A theoretical drawback when working with the wavelet leaders density is that it is
not a robust quantity. Consequently, it may lead to quantities that are not intrinsic,
and therefore not reliable for classification purposes. On the computational side,
another drawback comes from the double limit in Definition 1.1. In practice,
when dealing with real-life data which are known down to a given scale, one can
never really “pass to the limit” several times consecutively, and one must therefore
make simultaneously € become small and j large, and therefore introduce some
dependency between j and . However, on the mathematical side, it is easy to check
that, as soon as such a dependency between j and ¢ is introduced in Definition
1.1, the value of the corresponding limit can change radically. In other words, this
definition is numerically extremely unstable and, in practice, definitions that are
based on a single limit are the only ones that can be used. Therefore, we will define
another quantity based on the wavelet leaders density which will turn out to be
robust and which still yields an upper bound for the multifractal spectrum.

Definition 3.1. The increasing wavelet leaders profile of a sequence ¢ € C°(T) is
defined for every a € [0, +o0] by

log#{A € A;: dy > 27 ()i}

61 (a) ;= lim limsu : ,
z (@) e—0+ j_>+£ log 27
where we use the convention that 27°° = 0. Similarly, the decreasing wavelet

leaders profile of ¢ is defined for every o > 0 by

1 NEA;: dy <27(@m2)
0 () :== lim limsup o8 #1 i A= }
e—0T jotoo log 27

and for a = 400 by

1 ANEAj1dy <274
0z (+00) ;= lim liminf o8 #1{ i = }
¢ A= 400 j—+00 log 27

Remark 3.2. The limit over € which appears in the definition of the wavelet
leaders profile is required in order to derive some mathematical properties that
will be useful in the sequel; however, it is not taken into account in applications,
and the definition therefore boils down to a single limit, as required, see [16].

As done for the wavelet leaders density, if the sequence ¢ is clearly fixed, we
will write 61 and 6~ instead of 925 and 07 respectively. The next result gives the
properties of the increasing and decreasing wavelet leaders profiles of a sequence

ce C%(T).
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Proposition 3.3. Let &€ C°(T).

1. The increasing wavelet leaders profile 8 of € is increasing and right-continuous
on [0, +00], takes values in {—oo} U[0,1], and satisfies 67 (+o00) = 1.

2. The decreasing wavelet leaders profile 0~ of € is decreasing and left-continuous
on [0, +00), takes values in {—oo} U [0,1], and it satisfies 0 (0) = 1.

3. The function
0" (a) =1

a € (0,400) —
a

is decreasing.

Proof. The two first points are immediate. Let us prove the last one. We fix «, o/
such that 0 < o/ < . From the definition of the decreasing wavelet leaders profile
of ¢, we know that for every & > 0, there is g9 > 0 such that for every 0 < € < &9,
there is a sequence (j,)nen Which satisfies

#{N €A, 1 dy <27(@790n) > 20 (W=0)in - yp e N,
Then, if j > j,, we also have
#{NeN;:dy < 9~ (@=e)in} > 93 =in (07 (0)=0)jn
since dy < dy, if A C A,. For every n € N, let us set
Jo = {HJJ .
o —¢€

If n is large enough, J,, > j, and we obtain

SNEA, 1dy <20y > fAE A, dy <270
Z 2J71_j712(97(a)_5)jn.

Consequently,
lim su log #{A € Aj: dy <27(""97}}
j~>oop lOg 27
. < —(a’—€)Jn
> lim log#{)\éAJn.dA72 }}
n—00 log 2Jn .
. - Jn
> 1 1+ (0 —0—1)—
Jn (1407 (@ -5- 12
/_
21+(9*(oz)—<5—1)z_55

and it follows that
al

0 (/) >1+ (0 (a)——1) 5



LARGE DEVIATION SPECTRA BASED ON WAVELET LEADERS 15

Since 0 > 0 is arbitrary, we get that
0 () —1 S 0 (a) — 1

o - o

hence the conclusion. O

Additionally, if there exist ap > 0 and Cp > 0 (resp. a; >0 and Cy > 0) such
that | |
lejul < Co27%7  (resp. djp > C127%)

for every j € Ng, k € {0,...,27 — 1}, then 6" is identically equal to —co on
(—oo,ap) (resp. 67 is identically equal to —oo on (ay,400)). Moreover, the
increasing and decreasing wavelet profiles of a sequence of wavelet coefficients still
yield an upper bound for the spectrum of the corresponding function, as stated in
the next result.

Proposition 3.4. Let f be a uniformly Hélder function, and let 61, 0~ denote
the increasing and decreasing wavelet profiles of its sequence of wavelet coefficients
in a given wavelet basis. The multifractal spectrum of f satisfies

ds(h) <min{6*(h),0(h)} Vh € [0,+0c0)].

Proof. Tt is clear that 87 (k) > p(h) and 0~ (h) > p(h) for every h. The result
follows then directly from Theorem 1.5. O

The following lemma shows the link between the wavelet leaders density of a
function and its wavelet leaders profiles.

Lemma 3.5.
1. If ¢ € C°(T), then,

6 (o) = sup p(o/), Va € [0, +oc].

o' <a

2. Assume that ¢ € CO(T) is a sequence for which there are a; > 0 and Cy > 0
such that djj, > C127°1 for every j € No, k € {0,...,29 —1}. Then,

0~ (o) = sup p(’), Va € [0,+ox].

o' >

Proof. 1. Let ag = inf{ae > 0: 9+(oz) > 0}. The result is clear if & < . So, let
us assume that o > . Of course, we have 61 (a) > p(a). Since 6" is increasing,
we get that
0+ (a) > sup p(a’).
a'<a
For the other inequality, let us fix € > 0. By definition of p, for every o/ < a + ¢,
there exist r(a’) > 0 and J(a') € N such that

” {A €A, dy> 27<a'+r(a’>)j} _ 4 {A €A, dy> T(a’fr(a’))j} < 9p(a)+e)j
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for every j > J(a'). From the covering of the compact [ag, a4 €] by the open sets
(o/ —r(),a’ +r(a’)), we extract a finite subcovering {(a} — r(a}), o} + r(a})) :
ie€{l,...,n}}. Fix J > maxi<;<, J(c}). For every j > J, we have

#{N €A 1 dy > 27 (@Fi}

IN

Z#{/\ eNjdy> 2*(a2+r(a§))j} —#{heh;jdy> Q*(Oéi*r(ai))j}
i=1
n

< Z 9(p(e@))+e)i < po(suPar<a p(a)Fe)i
i=1

It follows directly that 67 (a) < SUP, < (). We still have to consider the case
where o = +00. It follows from the fact that 6% (4+00) = 1 and sup,>o p(a) = 1.
2. The proof of the second part is very similar.
O

Remark 3.6. Consequently, in practice, in order to estimate the multifractal spec-
trum of a function using the wavelet profile of its sequence of wavelet coefficients
in a given wavelet basis, one can proceed as follows: Denote by a, the smallest
positive number such that 6 (a,) = 1. Then, the spectrum is estimated by 67 ()
if @ < as and by 07 (a) if @ > as.

The next proposition shows that one could define equivalently the increasing
and decreasing wavelet leaders profiles of a sequence using the restricted wavelet
leaders ey instead of the wavelet leaders d.

Proposition 3.7. If ¢ € C°(T), then for every a € [0, +0o0],

1 ANEA; ey >2 (ate)
(3.1) 6" () = lim limsup o8 #1 112 = }
e=0F jotoo log 27

Moreover, for every a € [0, +00),

1 NEAj ey <2 (@8
(3.2) 0™ (o) = lim limsup o8 #1 110> }
e=0F jotoo log 27

)

and for a = 400,

1 AeA e, <2747
(3.3) 0 (+00) = lim liminf og#{NEN; xS 27N
A—r+o0 j—too log 27

Proof. 1. Define 67" (a) as the right hand side of (3.1). Then it is clear that
0T (@) < 6T () for every a € [0, +o0] since ey < dy for every dyadic interval
A. For the other inequality, let us fix @ € [0,400) and § > 0. By definition, there
exist J > 0 and € > 0 such that

#{)\ € Aj ey > 2—((1—0—5)]'} < 2(9%%5“(0‘)4‘5)]' Vi > J.
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Let us fix j > J. As before, for all A € A;, we denote N(A) the set of the 3
“neighbors” of A in A;. Then we have

dy =max{e, : p € N(\)}
and it follows that, for j large enough,

#INEA; rdy>27@TI) < 3 gINE N ey > 27 (@)
< 3.907 (@) 40)]

Thus 07 (o) < 67" (a) 4 § and since § > 0 is arbitrary, we get the conclusion
if a is finite. The result is also true for a = 400 because at this point, these two
functions take the value one.

2. The proof of the second point is similar. O

Consequently, we will often work with restricted wavelet leaders instead of
wavelet leaders. This will be the case in the next section. Both functions 7 and
61" will be denoted by 7. We use similar notations for the decreasing profile.
Let us mention that the “3)\” in the definition of the wavelet leaders comes from
Proposition 1.2, which is no longer valid in the case of restricted wavelet leaders.

Let us end this section by mentioning that the increasing leaders profile §7
(defined using wavelet leaders) of a sequence has been theoretically compared with
its wavelet profile v (defined using wavelet coefficients) in [16]: the inequality
0" < v is of course always satisfied, and a sufficient and necessary condition to
have the strict inequality has been given.

4. Robustness of the wavelet leaders profile

Let ¢ € Q and let A be a quasidiagonal matrix. We define & by setting

I\ = Z A(/\, /\/)Cx

AN eA

for every dyadic interval A. The aim of this section is to prove that 6} (o) = 03 ()
and 07 (o) = 07 () for every a € [0, +00]. Let us first recall a lemma from [33].

Lemma 4.1. Let v > |o| and A € AY. There exists a constant C such, that

<C27 Yk = vl < CA,C27 Vi k.

|cj K

This lemma expresses the fact that operators whose matrix in a wavelet ba-
sis belongs to A7 are continuous on C*(T) if |a| < v. It is a straightforward
consequence of the proof of Schur’s lemma (Lemma 4 in Chapter 8, [33]).
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Definition 4.2. Let ¢ > 0 and let A be a dyadic interval. The e-neighborhood of
A, denoted by N¢()), is the set of dyadic intervals A" such that

j =7l < &l
koK

5 " o7 22e5913,

Remark 4.3. Note that if \’ does not belong to N°()\) and if v > 72, a compu-
tation leads to 4
wary (A, N) < sy (A, N)27975,

Proposition 4.4. Let ¢ € C"(T) for some r > 0. The definition of the increasing
wavelet leaders profile of € is robust.

Proof. Let A be a quasidiagonal matrix and consider
Iy = Z A()\, /\/)C)\/
AeA

for every dyadic interval A. Let us first show that 0% (a) < 61 (a) for every a €
[0, +0c]. Let us denote aumin = inf{a : 61 (a) > 0}. Since & € C7(T), we know
that oy > 0.

1. Assume that o < qmin.

If € > 0 is such that o + ¢ < ajy, there is C; > 0 with
lcjr] < C127@+)T v e Ng k€ {0,...,27 —1}.

Therefore, Lemma 4.1 implies that |z ;| < 5\|A|\7012*(°‘+5)j for v > a+¢€ and for
every j € Ng and k € {0,...,27 — 1}. We then directly obtain that 3 (a) = —oco
for every o < aupin-

2. Assume that a > oy > 0.

Let us fix § > 0. We will prove that there exist J € N and € > 0 such that
4 {/\ €A sup |oa| > 2—(a+s)l} < 9(0F () +85)1
MCA

for all [ > J. Since § > 0 is arbitrary, we will get that 07 (o) < 61 (a).
Using the right continuity of 92'7 we choose € > 0 such that € < §, a—omin < €}

and 0 (122 ) < 6£(a) + 8. The definition of 7 gives £ > 0 and J € Ny such
that
# {)\ €Aj:sup |en| > 9~ (122 +2¢0)j } < o(0% (v22)+0)i
MCA



LARGE DEVIATION SPECTRA BASED ON WAVELET LEADERS 19

for every j > J. Of course, we can also assume that ey is small enough so that
a+eo(l—¢) — amn <e L.
For every | € Ny, we define

1 o )
A=A (le) = U {/\ €Aj:sup |ex| > ~2—(1—s+€0)3}
(1—e)I<j<(1+e)l ATEA 40| Al o
and
; ks k —l+102¢el
AQZAQ(Z,E): A€ A TN € Ay with 2?—? <2 2 .

a) Let us show that if Ao & Aa(l,€) is of size 27!, then

sup |z,| < 27 (@teo=eDl,
ACXo

It suffices to show that if A C Ay, then

1
Lo—(a+eo(1-e))l_
< 5

Z /1()\7 )\/)C)\/

2\

lzA| =

So, let us fix A = A(4, k) € Ao = A(l, ko). Remark that in particular, we have j > I.
We set

Y = Z A()‘7/\I)C>\’

NEA VAL €A, and j'>(1—e)l

and

Z\N = Z A()\,)\/)C)\/

AN CAqp with A1€A; or j/<(1—e)l
so that we have |z)| < |ya| + |2l
e If \ is such that X' € Ay for any A\; € Ay and if 7/ > (1 — €)l, then by

definition of A;(l, ), we have

1 g(rmte)a-o L (oo,
AC| Alla 4C| Ao

lex |
Using Lemma 4.1 with o > 0, we get that

~ 1
lya] < 2—(a+so(1—6))10HAHa2—03 _ 12—(a+€0(1—6))l.

4C) Al

e If ) is such that there is Ay € Aq(l,&) with X C Ay or if j/ < (1 —é&)l, let us
show that X ¢ N¢(X). First, if j/ < (1 —¢)l, then j* < (1 —€)j since j > [ and
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it follows that A" ¢ N°(\). So we can assume that X' C Ay with A\; € A;. Since
A1 € Ay and A\g ¢ Ao, we know that

ko ki

2l 2]1 2—l+1225l.

Let us first assume that
ko ﬂ 9—l+192el
2L 20

From the inclusions A C A\g and A’ C A1, we have

ko ko _k K 1 1 _k K1

ol 9 =% 3 3 T S99y Tan

and consequently, from the previous relation,

k K’ —l+192el 1
55— > -
Moreover, since A; € Aq(l,¢), we have j; > (1 —¢)l and it follows that
ﬁ _ k' > 9—l+192el _ 27((175)l) _ 2(2571)l 4 2(2571)1 _ 27((176)[)
9% 97

> 2(2571)l > 2(2571)3'

where the last inequality comes from the fact that j > [ and 2e — 1 < 0.

The second case is quite similar. Assume that

ks ko —l+162el
Using inclusions between dyadic intervals, we have

ky ko k' k 1 1 < k' k 1
T T T R e T T
and it follows that

k;’ k. S g—l+lg2el _ lz S 9(2e=1)l 5 o(2e-1);
27’ 27 20— - '

So, we have proved that A’ ¢ N°()\).

Consequently, using Remark 4.3, we get

lza| < > JANN) e

NN ENE(A)
< > Hlbeswaea (A N)len]
NN ENE(X)
< HA||2€72 Z We-2 ()\’ /\/)27j6—1|c>\/|
NN ENe(X)
< JAle22700 DS wes (A N)27

NN EN<(N)
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where ag < @iy is such that a +¢eo(1 —¢) — ap < e~ and the constant C; > 0 is
such that |cj | < C127207 for every j € N, k € {0,...,27 — 1}. Lemma 4.1 gives

~ C1y ~ -1 1
oAl < [ Alle-2C1 2+ < [ AlpemaCr G2 (00T < o (aena=l

if [ is large enough.
Finally, we have obtained

1
[al < lyal + [za] < G2ttt

if [ is large enough. It follows that if Ao ¢ A2 (l,€) is of size 27, then supycy, [za] <
o—(ateoll-a) o,

# {)\0 € Ay sup |xy,| > 2(‘”50(15))1} < #As(l,¢).
ACXo

b) Estimation of the cardinality of As(l, )
Remark first that if A\; = A(j1, k1) € A1(l,¢) is fixed, we have

kb

I R —l+162¢l
#{ke{07...,2 1} s g —gr|s272 }

# {k S {O, .. .72l _ 1} . k12l7j1 _ 9l+42el <k< k12l—j1 + 21+251}
k12l—j1 4 21+2sl _ k,12l—j1 + 21+2sl +1= 2251+2 f1< 235[

IA

if [ is large enough. Therefore, we get

1 o ,
#A2(l,e) < g 9 {)\ €Ay, :sup |en| > — (st }
(1—e)i<jr <(1+¢)l NEA 40| Alla

Moreover,

o

1 )
# {)\ € Aj, 1 sup |en| > o (=+te0)n }

NCA 4C||Alla

IN
=

A €A :sup len| > 2~ (122 +2e0)i1 }
MCA

9(0F (122)+0)i < (6% (@)+28)j1

IN
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for j; (hence [) large enough. It follows that

s {)\o €Ay sup || > 2(a+so(1g))l}

AC o

= Z o (0% (0)+26) j1 3¢l
(1—e)I<j1 <(1+e)l

< (01 (0)+26) (1+€)lo3el

B (1—8)l§jzl:§(1+a)z ’ 2

< (2el+ 1)2(93(a)+25+s(9;(a)+25+3))l

< 9elg(0F (a)+25+5e)

; o (0% (a)+83)1

if [ is large enough.

So, we have proved that for every a € [0, +0c], 0F(a) < 6F (). We have also
obtained that inf{a : 0; () > 0} > auin > 0. Since A1 is also almost diagonal,
the same proof shows that 6 (o) < 6 (a) for every a € R. The conclusion follows.

a

In order to prove the robustness of the decreasing wavelet leaders profile, let
us introduce a new notation. Let us fix a dyadic interval Ao(l, ko) and £ > 0. For
j€Ngand k €{0,...,27 — 1},

k ko

A(j, k) € Cond.(\o) <= (1—2¢)j > 1 and 27V < oH <27t_3.202- 1),

g_

Lemma 4.5. Let us fix a dyadic interval Ao(ko,1) and let us consider € > 0. If
A4, k) € Condc(Ng), then

N € N°(\(j, k) = N C \o

Proof. First, we have
> (1-e)j>(1-2e)j>1

Moreover,
/
k > ﬁ _9(2e-1)j » @
21" = 2 = 9l
Finally, we have
E+1 1 k , sk , ,
M o (2e—1)j -0 =l _ 3.9(2e=1)j (2e—1)j
5 <57 T 2 < 27442 -3 +2
ko+1 @e—1)j o ko+1
— 2l — ol
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Proposition 4.6. Let ¢ € C"(T) for somer > 0 . The definition of the decreasing
wavelet leaders profile of € is robust.

Proof. Let A be a quasidiagonal matrix and

Iy = Z A()\, )\/)C)\/
NeEA

for every dyadic interval A. Let us first remark that, as done in the case of the proof
of Proposition 4.4, since ¢ € C"(T), there exists C; > 0 such that |z; ;| < C127"
for every j € N, k € {0,...,2/ — 1}. In particular, we have 6 (a) = 05 (o) = —00
fa<r.

Let us show that 6 (o) < 07 («) for every o > r. Since A is quasidiagonal, we
will obtain the other inequality with the same arguments.

Let us fix € € (0, %) small enough so that & —r < e~!. Since o < r+e7!, there
is J € N such that

. -1 _ _
JA™ flge-2Cr27 0+ D < AT 027

for every [ > J. For g9 > 0 small enough, we have a —r +&o(1 +¢) < ¢! and for
every | > J, we define

= {/\0 €A sup leal < 25’||A1|a2(a60(1+6))l} ]
A€ Condc(Mo)

Let us show that if Ao € A; is such that supy.cy, x| < 27(@ =00+l then
Ao € Ej. Let us fix A € Cond.(A\g). We have

|C,\| < Z A_l()\,)\’)w,\/ + Z A~ .T,\/ .

NENE(N) NENe(N)

As done in Proposition 4.4, using the Remark 4.3, we have

S AT ANz | < AT |2 0102 T < G AT |2 (e,
NENE(N)

Moreover, Lemma 4.5 implies that if X' € N¢(\), then X' C )\g. Consequently, we
have |zy/| < 27 (@==0(+e)l and Lemma 4.1 gives

> AT N)zn| < O AT g2 (e =olreDt,
N ENE(N)

So, we get that _
ex] < 20 A g2~ (-0
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and )
sup  eju| < 2C||ATY|q2 (o (kD
A€ Condc (Xo)

Consequently, we have

#{Xo € Ay : sup |zy| < 27 (emraly
A CXo

< #{heN s sup  ea| 20| ATY|q2 (@D
A€ Condc(Xo)

Let us choose j; € N such that (1 —2¢)j; > 1+ 3 and j; < (1 + ¢)l. For every
Ao = A(1, ko) of size 27!, we fix k such that
(1—2¢)j; >1 and 2=Vt < kR g1y gm0
Jl = 90 ol — ’
Let us remark that in particular, we have A(j;, k) C Ao and therefore the A(ji, k)
are different for different Ao of size 27!, A simple computation shows that if
N C A(ji, k), then (§', k") € Cond.(Ag). It follows that

HIN €N sup  ey] < 20| AT |27 (e
A€ Condc(Ao)

IA

#{)\ €Ay fu;;\ lea| < 25”,4_1||a2—(a—50(1+6))l}
rc

< #{AeAy, : sup on| < 20[ A2 (T w0l
AN CA

#{)\ € Aj, :sup |en] < o (1= 7250)]',}.
ANCA

IN

So, we have obtained
(%)

#{ o € A;: sup |zy| < 2*(0‘750(1%))@ < H#{A €A, sup |ex| < 27(1(1?72€°)j‘}.
N Cho NCA

This inequality holds for every e € (0, %) such that o —r < 7! (using the cor-
responding €p and j;). Let us now consider three different cases. As usually, we
denote

Qmax = sup{a @ 0 (a) > 0},

possibly equal to +oo.

1. Assume that o < apax < +00.

Let us first fix § > 0. Using the left continuity of 87, we can assume that ¢ > 0
is small enough so that € < ¢ and

95(1i8)—6gm><&
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From the definition of 0, we can assume that

# {)\ € Aj:sup |en]| < 2(115250)1} < 2(% (+52)+0)7 < 907 (@)+20);
ACA
for j > J. We get from (%)

#{)\0 e Al :osup |x>\,| S 27(06760(14’6)”} S 2(90:(01)4’25)]'1
A CAo

o(67 (a)+26)(1+¢)l

IN

< 200z ()+50)1

2(95 () 42540 (a)+2€9)l

for every [ large enough. It follows that 6 (a) < 07 (c) .

2. Assume that apma < +00 and o > opax

This case is immediate since

#{/\ €Aj, s sup |en| < 2_(ﬁ—2sﬂ)jl} =0
A'CA

for every j large enough.

3. Assume that apmax = +00.

25

Let us fix 6 > 0. Again, we assume that ¢ < 6. From the definition of 67 (+00),

for every « large enough, we have

#{N e Aj: sup |en| < 2*(ﬁ*250)j} < 9(0z (+o0)+0)j
ANCA

for infinitely many j. Given such a j, we consider [ € N such that (1 —2¢)j >1+3

and j < (14 ¢)l. Using (), we get

IN

#{ o € A;: sup |zy| < 2*(0‘*50(1+8))l}
A CXo

907 (+60)+8);

2(9;(+oo)+26)(1+6)l

ININ A

(07 (+00)+58)1

Since it holds for infinitely many [, this concludes the proof.

#{)\ S AJ sup |C)\/‘ S 2_(#—5_250
AN CA

)J‘}

d

Consequently, given a function f, we can define its increasing (resp. decreasing)
wavelet profile 9? (resp 6 ) by setting 9? = 9; (resp. 07 = 07), where Cis the
sequence of wavelet coefficients of f in a given wavelet basis in the Schwartz class.
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5. LY profile spaces

We are now ready to define a new notion which is both robust and encapsulates
the information supplied by the increasing and decreasing wavelet leaders profiles.
In [11], the authors have investigated which ones of the results, proved in [6] in the
wavelet coefficients setting, can be extended in the wavelet leaders setting. In par-
ticular, these new spaces are compared with the S spaces, previously introduced
using wavelet coefficients. The main difference is that now the profile includes an
increasing and a decreasing part, and is therefore more realistic for most multi-
fractal models, for which the decreasing part can prove crucial for identification,
or model selection, see [28] for instance.

The properties of the wavelet leaders profiles (see Proposition 3.3) naturally
lead to the following definition: an admissible profile is a function v : [0, +00) —
{—00} U [0, 1] for which there exist 0 < apin < s < amax such that

v =—00 on [0, min) U (@max, +00],
v(as) =1,
v is increasing, right-continuous and takes values in [0, 1] on [aumin, @),

v is decreasing, left-continuous and takes values in [0, 1] on [as, max],

-1 . .
o % is decreasing on [as, max]-

We also include the cases where o or aupay is equal to +00 (if amax = +00, the left
continuity of v is only considered on (&g, max)). Let us mention that in [11, 15],
the authors have proved that for any admissible profile v with apyax < 400, there
is @€ C°(T) such that

(a) = t‘)}'(a) if a < ag,
Y= 02(@)  ifa>a,,

C

so Proposition 3.3 entirely characterizes the wavelet leaders profiles.
This leads naturally to the following definition, motivated by Remark 3.6.

Definition 5.1. Given an admissible profile v, the profile space LV is
L :={ceC’T) : 0f(a) <v(a)if @ < ay and 07 (a) < v(a)if a > a,}.

Remark 5.2. If a sequence ¢ belongs to £¥ and if ayy,,y is finite, then the hypoth-
esis of Lemma 3.5 are automatically satisfied.

Remark 5.3. In general, a profile space £ is not a vector space since 0 does
not belong to £”. Nevertheless, if one considers an admissible profile such that
v(a) = 1 for every a > as, it is easy to see that LY is a vector space. Moreover, in
this case, the definition of an admissible profile coincides with the one considered
in the case of §¥ spaces [6] (this justifies the use of the notation v).

The robustness of the wavelet leaders profiles directly implies the following
result.
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Proposition 5.4. Let v be an admissible profile. Then the profile space LV is
robust.

6. Examples

It follows from Propositions 4.4 and 4.6 that the increasing and decreasing wavelet
leaders profiles of a uniformly Hoélder function do not depend on the wavelet basis
chosen in the Schwartz class. Proposition 3.4 states that they give an upper bound
for the multifractal spectrum of this function. The wavelet leaders profiles are
therefore a “good candidate” for a multifractal formalism based on wavelet leaders,
as mentioned in Remark 3.6. In this section, we show that this formalism holds
for some classical models used in signal and image processing.

6.1. Deterministic cascades on wavelet dyadic trees

The first model we consider is a deterministic wavelet cascade; it is the simplest case
of the famous cascade models which have been introduced as turbulence models,
and are also used in financial modeling.

Let us consider the binomial measure p of parameter p € (0,1), which is the
unique measure supported on [0, 1] such that

PR (1 — )i =4GR,

1(Ajk) =p p)
where ¢(j,k) is the number of 1 among the j’s first coordinates in the dyadic
decomposition of k277. Following a general framework proposed by Barral and
Seuret in [10], let us construct the wavelet series F), by prescribing its wavelet
coefficients in a given wavelet basis as follows: for every A, we set ¢y = u(A). We
will say that F), is a deterministic Bernoulli cascade of parameter p. Remark that
the wavelet coeflicients of F}, are simply defined recursively by

CO,O = 1
(%) cjore = (1—=p)cj-_1k
Cj2k+1 = PCj-1k

forall j > 1and k € {0,...,27 —1}. At each scale j € Ny, we have (Jl) coefficients
of size p!(1—p)?~! for [ € {0,...,5}. In order to avoid trivial cases, we will assume
that p # 1/2. We will also assume that p < 1/2; the case p > 1/2 is similar.
Following the seminal work [31] the study of the multifractal spectrum and
of the large deviation properties of these functions and their underlying measures
(and of more general models of cascades) has been the subject of numerous studies
(see e.g. [10, 12, 13, 14, 17, 38] and references therein). In particular, the wavelet

series of F}, converges to a continuous function which has the following properties.
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Proposition 6.1. Let F, be a deterministic cascade of parameter p € (0,1). Then
—(Blogy(B) + (1 = B)logy(1 = B))  if a € (—logy(1 — p), —logy(p)),

dFM(O() = 0 7,fOéE {_logZ(l_p)7_1Og2(p)}7
—00 otherwise,

where
_atlog,y(1—p)
logy (1 — p) — logy(p)
Moreover, if ¢ denotes the sequence of wavelet coefficients given by (xx), then
pz=dp,.

Remark that the function dp, has a unique maximum realized at the point
oy = —3log, ((1 - p)p). We set

0F (@) if a<ag,
Or, (o) = { 9;ﬂ(a) if > as.

Note that the second assertion of Proposition 6.1 holds in the particular case where
the analyzing wavelet is the same as the synthesis one. However, since the definition
of the wavelet leaders profile is robust, the following corollary holds even if the the
analyzing and synthesis wavelets differ.

Corollary 6.2. Let p € (0,1) and oy, = —3log, ((1 — p)p). Let F, be is a
deterministic cascade of parameter p, then

0r, = dF,.
Proof. The result follows directly from Proposition 6.1 and Lemma 3.5. O

6.2. Thresholded Wavelet Series

Let f be a function whose wavelet coefficients in a wavelet basis (1) )xeca are given
by ¢ and let v > 0. Following [37], the wavelet series f! defined by

ft= Z Z chpy where ¢ = CA1|.|22—wj(C>\) VA € A,

JENg AEA;

is said to be obtained from f after a threshold of order . This method was
introduced by Seuret in order to create functions with oscillating singularities.
They also display non-concave multifractal spectra, as stated by the following
proposition [37].

Proposition 6.3. Let F,, be a deterministic Bernoulli cascade of parameter p €

(0,2). Let wy : [y, —logy(p)] — (0,+00) be the increasing function

u +logy(1 — p)
v+ logy(1 —p)

3
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0 —log, (1 —p) as v —logy(p) hinas
Figure 2: Multifractal spectrum of F,ﬁ for p=0.4 and v =1.2.

and let ht . = wi(—logy(p)). If v € [—logy(1 — p), —logy(p)], the multifractal

spectrum of Fy, takes values in [—logy(1 — p), by, ] and is equal to
d t(h): df(h) Zf h e [_IOgZ(l_p)77]7
o dy(wi () if € (7, M-

As done previously, let us denote by

1
as = =3 logy (1 =p)p),

the point at which dg, is maximum. If v > ay, the spectrum is non concave in its
decreasing part (see [37] and Figure 2) and therefore, all multifractal formalisms
proposed up to now fail for its estimation. We consider the function 6 Pt defined

by .
05 () if a < as,
O, (o) = { 0;;(04) if @ > a.

Let us show that the computation of this wavelet profile of F' ﬁ leads to the correct
spectrum.

Proposition 6.4. Let F,, be a deterministic Bernoulli cascade of parameter p €
(0, %) and let Fﬁ be the wavelet series obtained from F), after a threshold of order
v > a, where oy = —3log, ((1 — p)p). Then we have Or: = dp: .

Proof. From Proposition 3.4, it suffices to show that 6 Ft < dFﬁ . Let us denote by

ex the restricted wavelet leaders of F, and by e} the restricted wavelet leaders of
Ft.
n
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First assume that a < a;. We clearly have 05 (o) < 0;“ (o) and therefore,
0r: () < dpt (o) using Corollary 6.2.

Secondly, if @ € [as, ], we have

#{/\ €Nl < 2_(0‘_5)7} < #{/\ €Ajey < 2—(04—6)1'}.

Indeed, if ey > 27(@7)7 then ¢y = ey > 277, It follows that ¢} = c) = ey and
e} = cy. Therefore, e§ > 27(*7¢)J and O (a) < 05 () = dg(a).

Finally, assume that o > 7. Remark that if A € A; is such that e < 2~ (a=e)j
with o — & > 7, then e} = p!(1 — p)LSHU+1=7 where

o loga(1—p) —logy(p)

K ¥ 4 logy(1 — p)
and 3. ; <1 <4, where
8. = logo(1—p)+(a—e)j _ (logy(1 —p)+ (a—e)j)(y +logy(1 —p))
(1= Cy)logy(1 — p) — logy(p) 7(logy (1 — p) —logs(p)) '

Moreover, since &« > 7y > «g, such a [ is bigger than j/2 for j large enough.
Therefore,

Ty :
#{NeN; el <27l < Y J G) Sj(tﬁiﬂ)

I=|Be.;
and it follows that
log #{\ € A; : e < 27(a=e)}
log 27

Loo(f
7o (j(tﬂs,jD)
~ 1log j\/ﬁ(%)]
N T e e T A

where we have used Stirling formula. Moreover,

IN

L og ( JVITI(L)) )

- 2 - - - N

J V2 [Be ] (Lol Bes)  fom (57— [ B ;1) (2ol yi=18e.s)
_ }log Vi
B a2 [Be.i] 4 i—1Be.5]

] e ¥ - —1Be.; i

(454) " VarTAIG — 18D (5154
~ Ly Vi
o 2 N LBes) - - NI LBe.5]
LBe, 4] 1— Be,j]

1 ; g . 7

— *,logg \/j —10g2 I.BE.JJ (1 _ I.B;JJ)

\/277 LB;J‘J (1— Lﬁ;,jJ )



LARGE DEVIATION SPECTRA BASED ON WAVELET LEADERS 31

If we compute the limit for j — +o0o and € — 0T, we get that

O () < —(Bloga(B) + (1 = B) logy(1 — B))

with | )
B = lim lim éfj:a 7+ 1ogy(1 — p) .
=0+ oo ] 7(logy (1 —p) —logy(p))
The conclusion follows from Proposition 6.3. a
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