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Large deviation spectra based on wavelet leaders

Françoise Bastin, Céline Esser and Stéphane Jaffard

Abstract. We introduce a quantity that encapsulates the information
given by the distribution at each scale of the wavelet leaders of a function,
and which is independent of the chosen wavelet basis. This leads naturally
to the definition of a new multifractal formalism which allows to detect
non-concave multifractal spectra.

Introduction

Multifractal analysis is concerned with the study of everywhere irregular signals
whose pointwise regularity can change widely from one point to another. For such
data, it does not make sense to determine the pointwise regularity, and it is more
relevant to determine their multifractal spectrum, which is the Hausdorff dimension
of the set of points which have a given Hölder exponent. More precisely, let α be
a non-negative real number and x0 ∈ R. A locally bounded function f : R → R
belongs to Cα(x0) if there exist a polynomial P of degree less than α and a constant
C > 0 such that

|f(x)− P (x)| ≤ C|x− x0|α

for every x in a neighborhood of x0. The Hölder exponent hf (x0) of f at x0 is
the supremum of all values of α such that f ∈ Cα(x0). Points with a given Hölder
exponent can be located on fractal sets, in which case their Hausdorff dimension is
a pertinent quantity to determine. If Bh denotes the set of points x ∈ R for which
hf (x) = h, the multifractal spectrum of f is the function

df : h 7→ dimH(Bh).

Note that hf (x0) can be infinite, so that df is defined on [0,+∞]. Furthermore, one
uses the standard convention dim(∅) = −∞ so that df takes values in [0, 1]∪{−∞}.

The Hölder exponent and hence the multifractal spectrum of many mathemat-
ical functions or stochastic models has been directly determined from their defini-
tion; usually their Hölder exponent is extremely erratic, see e.g. [8, 20]. Therefore,
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for real-life signals, the Hölder exponent is also expected to be very erratic and its
numerical determination is not feasible. Thus, one cannot expect to have direct
access to their spectrum. In such cases, one has to find an indirect way to estimate
it. A multifractal formalism is a formula which is expected to yield the spectrum
of a function from “global” quantities which are numerically computable. The
seminal work of G. Parisi and U. Frisch [36] led to a first formula, which related
the spectrum and the scaling function ηf (p) of the signal which (using a loose
formulation) is defined by

(0.1)

∫
|f(x+ h)− f(x)|pdx ∼ hηf (p) when h→ 0.

One expected that the Legendre transform of η

(0.2) Lf (H) := inf
p∈R

(1 +Hp− ηf (p))

would yield the multifractal spectrum of f . This expectation was only partly met:
For large classes of functions and stochastic models that have a concave (increasing
and then decreasing) spectrum, this heuristic has been shown to correctly yield the
increasing part of the spectrum (where the infimum in (0.2) is attained for p >
0). Furthermore, a function space interpretation can be given to the multifractal
formalism. This interpretation leads to generic results of validity: For p > 0, (0.1)
is interpreted as stating that f belongs to an intersection of Besov spaces, see [21].
The multifractal formalism yields the increasing part of the spectrum for a subset
of the function space considered which is a comeager set from a topological point
of view or a prevalent set from a probabilistic point of view, see [18, 21].

However, this formalism proves problematic when p < 0 (which corresponds to
the decreasing part of the spectrum in the Legendre transform formula) because, in
the neighborhood of points where the increments of f vanish, the estimation of the
integral (0.1) becomes highly unstable or even divergent, leading to meaningless
values for the scaling function, and, ultimately, to the failure of the multifractal
formalism even for standard models (see [25] where this phenomenon is analyzed
in details on the example of Brownian motion).

Several approaches have been proposed in order to “renormalize” (0.1) when
p is negative. A first way, proposed by A. Arneodo, E. Bacry and J.-F. Muzy,
consists in replacing increments by a continuous wavelet transform and the integral
by a sum taken at the points of its local maxima. On the numerical side, the
wavelet transform maxima method proved extremely powerful, yielding the correct
full spectra (when concave) for large classes of synthetic signals, see [3, 34, 35].
However the main difficulty of this method is that mathematical results backing
it are extremely scarce (see however [3, 19, 30]) and far from yielding a proof
of its validity, even for standard models such as e.g. Brownian motion. This
drawback motivated the introduction of an alternative method which is based on a
similar idea, see [24, 26]: One uses an orthonormal wavelet basis, and the sum does
not bear on wavelet coefficients but on local suprema of these coefficients (called
wavelet leaders, see (0.4) below). Three types of mathematical results have been
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obtained concerning the validity of this multifractal formalism, see [1, 2, 23] and
references therein:

- It is proved for specific deterministic functions or for classes of stochastic
models (multiplicative cascades, Lévy processes without Brownian compo-
nent, random wavelet series,...) where it allows to recover the increasing and
the decreasing part of the spectrum.

- It is shown to yield an upper bound of the multifractal spectrum of any
(uniformly Hölder) function.

- The part which has a function space interpretation (p > 0 in the cases we
mentioned, yielding the increasing part of the spectrum) is proved to hold
for a generic subset of the corresponding function space.

However, this method still presents two main drawbacks:

- The scaling function approach can encapsulate a “function space - type”
information only for p > 0, so that generic results can only concern the
increasing part of spectra.

- The Legendre transform, by construction, can only yield a concave output,
so that this multifractal formalism necessarily fails for functions with a non-
concave spectrum.

The first drawback is intrinsic to the notions of genericity which are used,
but the second one can be partly turned by using a method which differs from
the scaling function/ Legendre transform technique; the use of function spaces
which differ from Besov spaces and are based on large deviating estimates of the
repartition of wavelet coefficients (the so-called Sν spaces [5]) allows to deal with
non-concave spectra. Our purpose in this paper is to combine this approach with
the use of wavelet leaders instead of wavelet coefficients and propose new spec-
tra derived from large deviations based on statistics of wavelet leaders. We will
show that, indeed, this method allows access to both the increasing and decreas-
ing envelopes of non-concave multifractal spectra. Note that typical examples of
stochastic models with non-concave spectra are given by Lévy processes with a
Brownian component, see [20]. They can also easily be obtained by juxtaposing
signals with different spectra, a situation commonly met in image processing, be-
cause of the occlusion phenomenon (a natural image usually is a juxtaposition of
different textures with different spectra).

In order to be more specific we start by giving some precisions about Sν spaces
and we introduce some notations. We will only consider one-variable functions
(it is straightforward to generalize what follows in the case of dimension d > 1).
Since we are interested in local properties, we work with periodic functions. Let
us consider a mother wavelet ψ in the Schwartz class, such as constructed in [29].
Together with the constant function ϕ(x) := 1, the periodic functions

ψj,k(x) :=
∑
l∈Z

ψ(2j(x− l)− k), j ∈ N0, k ∈
{

0, . . . , 2j − 1
}



4 F. Bastin, C. Esser and S. Jaffard

form an orthogonal basis of functions of period 1 in L2(T), where T = R /Z. We
use the notations ψλ to denote the wavelet ψj,k, where λ is the dyadic interval

λ = λ(j, k) =

[
k

2j
,
k + 1

2j

)
, j ∈ N0, k ∈ {0, . . . , 2j − 1}

(the interval λ gives an indication concerning the position and scale of the corre-
sponding wavelet). We denote by Λ the set of all dyadic intervals included in [0, 1);
and if j is a non-negative integer, we denote by Λj the set of all dyadic intervals of
[0, 1) of size 2−j . Using an L∞-normalization, the wavelet coefficients of a periodic
function f are

∀λ ∈ Λj , cλ = 2j
∫ 1

0

f(x)ψλ(x) dx.

The wavelet profile of f is defined by

νf (α) := lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : |cλ| ≥ C2−(α+ε)j}
log 2j

for all α ∈ R, where #A denotes the cardinality of A. This definition formalizes the
idea that there are approximately 2νf (α)j coefficients in modulus greater than 2−αj .
Note that, in the setting of probability measures similar quantities are considered
in [32].

The function νf is non decreasing, right-continuous and takes values in {−∞}∪
[0, 1]. The wavelet profile contains the maximal information which can be obtained
from the distribution of wavelet coefficients of f and which does not depend on the
chosen wavelet basis, see [22]; furthermore, if νf is not concave, then it contains
strictly more information than the knowledge of the Besov spaces to which f
belongs (which only allows to recover the concave hull of νf ).

In order to obtain a framework to model this type of information, the following
definition was proposed in [22]: Given a function ν defined on R, non decreasing,
right-continuous and taking values in {−∞} ∪ [0, 1], a function f belongs to the
space Sν if its wavelet profile satisfies

νf (α) ≤ ν(α), ∀α ∈ R .

As mentioned previously, those spaces allow to state a new multifractal formal-
ism which is fitted to non concave spectra. It is based on the estimation of the
multifractal spectrum of any function of Sν by the increasing function

dν(h) =

 h · sup
h′∈(0,h]

ν(h′)

h′
if h ≤ hmax,

1 otherwise,

where

hmax := inf
h≥αmin

h

ν(h)
and αmin := inf{α : ν(α) ≥ 0}.
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Figure 1: Example of ν (---) and dν (—)

This formalism yields an upper bound for the spectrum of all uniformly Hölder
function (i.e. for functions that belong to a Hölder space Cr(T) for an r > 0,
see Section 1), and its validity has been proved for random wavelet series, and in
generic settings, see [4, 5, 7]. Moreover, it has been implemented and tested on
several examples [27].

Recall that the initial multifractal formalism based on increments fails to yield
the decreasing part of spectra; the same problem shows up when using wavelet
coefficients for the computation of the scaling function, i.e. if one replaces the
integral in (0.1) by the quantity

(0.3) 2−j
∑
λ∈Λj

|cλ|p,

see [25]. More accurate results are obtained when, rather than using directly
wavelet coefficients, one relies on alternative quantities, namely wavelet leaders dλ
which are defined as follows: Let 3λ denote the interval with the same center as λ
but three times larger; then

(0.4) dλ = sup
λ′⊂3λ

|cλ′ |, ∀λ ∈ Λ

(this supremum is finite as soon as f is locally bounded) see [26]. This improvement
is due to specificities of the wavelet leaders: Given a scale, wavelet leaders take
into account a specific family of coefficients of smaller scales and located at the
same place. Thus, heuristically, if a wavelet leader is close to 0, this means that
all these wavelet coefficients are close to 0, which is much more exceptional that
just one. This explains why the computation of scaling functions for negative ps,
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which amounts to replace (0.3) by

(0.5) 2−j
∑
λ∈Λj

|dλ|p,

leads to more stable quantities. Additionally, wavelet leaders have adequate the-
oretical properties for the construction of a multifractal formalism, since they are
directly related with the Hölder exponent, which can be recovered from wavelet
leaders by local log-log plot regressions, see [23]. A multifractal formalism, based
on a scaling function derived from (0.3) allows to estimate both the increasing and
decreasing parts of concave spectra, see [24, 26].

Of course, the question of extending the study of Sν spaces in the context of
the wavelet leaders was raised. These spaces, called profile spaces Lν , (and which
no longer are vector spaces) yield a new multifractal formalism which allows to
detect non-concave and decreasing spectra.

This article is structured as follows: In Section 1, we introduce a large deviation
spectrum based on the wavelet leaders of a function. The relevance of this spectrum
comes from the fact that it gives an upper bound for the multifractal spectrum of
the corresponding function. In Section 2, we show a drawback of this definition:
It may depend on the wavelet basis chosen to compute it. This is why we derive
in Section 3 another quantity based on the wavelet leaders which still yield an
upper bound for the spectrum (which may however be less sharp than the one
obtained in Section 1). It is proved to be independent of the chosen wavelet basis
in Section 4. It allows to propose a new multifractal formalism and to define
in Section 5 the profile spaces Lν . In Section 6, we illustrate this formalism on
examples derived from the simplest multifractal cascade models. Let us already
mention that this method is studied in practice and compared with the other
wavelet-based formalisms in [1, 16]. Topological properties of the new spaces Lν
and the comparison with the Sν spaces have also already been investigated in [11].

1. Upper bound for the multifractal spectrum

In this section, we define a large deviation spectrum based on the wavelet leaders
of a function in a given wavelet basis, and we will show that this quantity yields
an upper bound for the multifractal function of the signal. A similar approach has
been followed in [9] using oscillations of the function (i.e. the difference between
the supremum and the infimum of the function on an interval) instead of wavelet
leaders. The advantage of wavelet leaders is that they allow to deal with Hölder
exponents larger than 1. Note that the first ideas of deriving large deviation
estimates for models that would turn out later to be multifractal can be traced
back to the seminal note of B. Mandelbrot on cascade models for the modeling of
turbulence [31].

The following notations will be used. The set of positive natural numbers is
denoted by N, N0 = {0} ∪ N and Ω is the set of complex sequences
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~c = (cj,k)j∈N0,k∈{0,...,2j−1}. It will usually be interpreted as the sequence of wavelet
coefficients of a periodic function f in a given wavelet basis.

For every r > 0 such that r /∈ N, we denote by Cr(T) the space of 1-periodic
functions which are Hölder continuous of order r. The wavelet characterization
of Hölder spaces allows to identify this space with the subspace of Ω composed of
sequences satisfying

sup
j∈N0

sup
k∈{0,...,2j−1}

2rj |cj,k| < +∞,

see [33]. When r ∈ N0, we will also denote by Cr(T) the space of functions,
or wavelet coefficients, satisfying this condition (see [33] for a interpretation of
this condition using the Zygmund class). A function (or a wavelet sequence) is
uniformly Hölder if it belongs to a space Cr(T), for an r > 0. Note that, if r > 0,
this is a stronger requirement than continuity. As soon as ~c ∈ C0(T) (which is
verified if f ∈ L∞), the wavelet leaders are well defined and finite, and we denote

the corresponding collection by ~d = (dj,k)j∈N0,k∈{0,...,2j−1} = (dλ)λ∈Λ.

Definition 1.1. Let ~c ∈ C0(T). The wavelet leaders density ρ~c of ~c is defined for
every α ≥ 0 by

ρ~c(α) := lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : 2−(α+ε)j ≤ dλ < 2−(α−ε)j}

log 2j

and for α = +∞ by

ρ~c(+∞) := lim
A→+∞

lim inf
j→+∞

log #
{
λ ∈ Λj : dλ ≤ 2−Aj

}
log 2j

From typical properties of large deviation spectra, we get that the wavelet
leaders density is upper semi-continuous on [0,+∞) and its maximum on [0,+∞]
is equal to 1 (see [7] for example).

In this paper, ~c will usually denote the sequence of wavelet coefficients of a
uniformly Hölder function f in a fixed wavelet basis. Moreover, whenever the
context is clear, we will write ρ instead of ρ~c to make the notation less cluttered.
In order to prove that the wavelet leaders density has the announced property,
let us first introduce some notations. For every x0 ∈ T, we denote by λj(x0) the
dyadic interval of size 2−j containing x0 and dj(x0) = supλ′⊂3λj(x0) |cλ′ |. For every
α ∈ R, we set

F j(α) =
{
k ∈ {0, . . . , 2j − 1} : dj,k ≥ 2−αj

}
and Ej(α) =

⋃
k∈F j(α)

λj,k.

We also define
E(α) = lim sup

j→+∞
Ej(α) =

⋂
j∈N0

⋃
m≥j

Em(α).

Remark that, since f is uniformly Hölder, there exist α0 > 0 and C > 0 such that

∀j ∈ N, k ∈ {0, . . . , 2j − 1}, |cj,k| ≤ C2−α0j .
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Therefore, E(α) = ∅ if α < α0.

The following result from [23] is a characterization of the Hölder exponent of a
uniformly Hölder function using its wavelet leaders.

Proposition 1.2. If f is a uniformly Hölder function, then

hf (x0) = lim inf
j→+∞

log dj(x0)

log 2−j
.

Lemma 1.3. Let f be a uniformly Hölder function and let α ≥ 0.

1. If x0 ∈ E(α), then hf (x0) ≤ α.

2. If hf (x0) < α, then x0 ∈ E(α).

Proof. 1. Let us assume that x0 ∈ E(α). Then for every j, there exist mj ≥ j and
kj ∈ Fmj (α) such that x0 ∈ λmj ,kj . This means that dmj (x0) = dmj ,kj ≥ 2−αmj .
It follows that

hf (x0) = lim inf
j→+∞

log dj(x0)

log 2−j
≤ lim
j→+∞

log dmj ,kj
log 2−mj

≤ lim
j→+∞

log 2−αmj

log 2−mj
= α.

2. Let us assume that hf (x0) < α. Then, there exists an increasing sequence
(jn)n∈N of natural numbers such that

log djn(x0)

log 2−jn
< α.

Consequently, djn(x0) > 2−αjn and x0 ∈ Ejn(α).
2

Lemma 1.4. If f is a uniformly Hölder function, then for every h ≥ 0

{x0 : hf (x0) = h} =
⋂
ε>0

E(h+ ε)\E(h− ε).

Proof. The result is obtained directly from Lemma 1.3. 2

Theorem 1.5. If f is a uniformly Hölder function, then its multifractal spectrum
satisfies

df (h) ≤ ρ(h), ∀h ∈ [0,+∞].

Proof. We first consider the case where h ∈ [0,+∞). Because of Lemma 1.4, we
have to show that

dimH

(⋂
ε>0

E(h+ ε) \ E(h− ε)

)
≤ ρ(h).

Let us consider δ > 0. From the definition of the wavelet leaders density ρ, there
exists ε0 > 0 and j0 ∈ N0 such that

#
{
λ ∈ Λj : 2−(h+ε)j ≤ dλ < 2−(h−ε)j

}
≤ 2(ρ(h)+δ)j , ∀j ≥ j0.
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If we set
Ejε0(h) = Ej(h+ ε0) \ Ej(h− ε0), ∀j ∈ N0,

then
E(h+ ε0) \ E(h− ε0) ⊆

⋂
J∈N0

⋃
j≥J

Ejε0(h).

Let us show that

Hs
 ⋂
J∈N0

⋃
j≥J

Ejε0(h)

 < +∞

where s = ρ(h) + 2δ. Remark that for every j ∈ N, the set Ejε0(h) is covered by

#
{
λ ∈ Λj : 2−(h+ε0)j ≤ dλ < 2−(h−ε0)j

}
intervals of length 2−j . For every η > 0,

there is J(η) ≥ j0 such that 2−j ≤ η if j ≥ J(η). Then, we have

Hsη

 ⋂
J∈N0

⋃
j≥J

Ejε0(h)

 ≤ Hsη

 ⋃
j≥J(η)

Ejε0(h)


≤

∑
j≥J(η)

(
#
{
λ ∈ Λj : 2−(h+ε)j ≤ dλ < 2−(h−ε)j})2−sj

≤
∑

j≥J(η)

2(ρ(h)+δ)j2−sj ≤
∑
j∈N0

2−δj < +∞.

Consequently,

Hs
 ⋂
J∈N0

⋃
j≥J

Ejε0(h)

 = lim
η→0+

Hsη

 ⋂
J∈N0

⋃
j≥J

Ejε0(h)

 ≤ ∑
j∈N0

2−δj < +∞

and it follows that

dimH

(⋂
ε>0

E(h+ ε) \ E(h− ε)

)
≤ dimH

 ⋂
J∈N0

⋃
j≥J

Ejε0(h)

 ≤ s = ρ(h) + 2δ.

Since δ > 0 is arbitrary, we finally get

dimH

(⋂
ε>0

E(h+ ε) \ E(h− ε)

)
≤ ρ(h)

which leads to the conclusion.
We now consider the case h = +∞. If we set

BA(j) =
⋃

λ∈Λj : dλ≤2−AJ

λ,

then
f ∈ C∞(x0)⇐⇒ ∀A, ∀j large enough x0 ∈ BA(j).

Thus, for any A, the set lim inf BA(j) supplies a covering of {x0 : hf (x0) = +∞}.
The result follows as previously from the definition of ρ(+∞). 2
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One drawback when dealing with wavelet leaders is that the suprema corre-
sponding to two neighbors dyadic intervals overlap; for instance, in a probabilistic
framework, this will create correlations between wavelet leaders, even if they didn’t
exist between wavelet coefficients. Therefore it is natural to wonder if the develop-
ments that we pursued could be developed in a simpler framework where wavelet
leaders are replaced by restricted wavelet leaders defined by

eλ = sup
λ′⊂λ

|cλ′ |, λ ∈ Λ.

As before, we can consider the function

ρrestr
~c (α) = lim

ε→0+
lim sup
j→+∞

log #
{
λ ∈ Λj : 2−(α+ε)j ≤ eλ < 2−(α−ε)j}

log 2j
.

Let us show that ρ~c ≤ ρrestr
~c but that these functions do not necessarily coincide,

i.e. there exists ~c such that ρrestr
~c � ρ~c.

First, remark that dλ = max{eµ : µ ∈ N(λ)} where N(λ) denotes the set of the
3 “neighbors” of λ in Λj (i.e., the dyadic intervals of length 2−j , whose boundary
intersects the boundary of λ). Therefore,

#
{
λ ∈ Λj : 2−(α+ε)j ≤ dλ < 2−(α−ε)j} ≤ 3#

{
λ ∈ Λj : 2−(α+ε)j ≤ eλ < 2−(α−ε)j}

and it follows that for any sequence ~c, we have ρ~c ≤ ρrestr
~c .

Let us now check that these two quantities can differ. Consider the Cantor
set of ratio 1

4 : We start with the interval [0, 1], and, at each step in the standard
Cantor set construction, we keep the two outer dyadic intervals whose length is
1
4 times the length of the parent interval. We denote Cn

(
1
4

)
the subset of [0, 1]

obtained at step n and we denote the Cantor set by

C

(
1

4

)
=
⋂
n∈N

Cn

(
1

4

)
.

Note that the dyadic intervals λ(j, k) that show up in the construction (we will
call them the “fundamental intervals”) possess an index j that is even.

We now pick a wavelet coefficient sequence as follows: Let 0 < γ < α.

- Let j be even. If λ(j, k) is a fundamental interval, we set cj,k = 2−γj . If
λ(j, k) is a subinterval of a fundamental interval of the generation j − 2
(we will call them the “secondary intervals”), then we set cj,k = 2−αj , and
otherwise, we set cj,k = 0.

- Let now j be odd. If λ(j, k) is a subinterval of a fundamental interval of the
generation j − 1, we set cj,k = 2−γj . Otherwise, we set cj,k = 0.

One easily checks that all wavelet leaders are either of size 2−γj or 0, while re-
stricted wavelet leaders associated to a secondary interval are of size 2−αj (indeed,
this is the size of the corresponding wavelet coefficients, and all wavelet coefficients
associated to proper subintervals vanish). Consequently, ρrestr

~c (α) 6= ρ~c(α).
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Remark 1.6. From Theorem 1.5, if f is uniform Hölder, we have df (h) ≤ ρ~c(h)
for every h ≥ 0. So, we also have df (h) ≤ ρrestr

~c (h) for every h ≥ 0.

The example that we just exposed shows that the upper bound of the spectrum
supplied by ρrestr

~c (h) can be sharpened using wavelet leaders. This explains why
one prefers the definition using wavelet leaders (see however Proposition 3.7 below,
which shows that some quantities derived from these notions actually coincide).

2. Robustness criteria

The wavelet leaders profile of a signal is defined through its wavelet coefficients.
The independence from the sufficiently smooth wavelet basis which is chosen is a
natural requirement. In practice, one often uses a stronger requirement but easier
to handle which implies that the condition considered has some additional stability.
This notion was introduced by Meyer in [33] (Chapter 8.9) as follows.

Definition 2.1. If γ is a positive number and if λ = λ(j, k), λ′ = λ(j′, k′) are two
dyadic intervals, let

ωγ(λ, λ′) =
2−( d2 +γ)|j−j′|(

1 + (j′ − j)2
) (

1 + 2inf{j,j′} dist(λ, λ′)
)γ+d

,

where dist(λ, λ′) = |k2−j − k′2−j′ |. An infinite matrix A = (A(λ, λ′))(λ,λ′)∈Λ×Λ

belongs to Aγ if there exists C ≥ 0 such that

|A(λ, λ′)| ≤ Cωγ(λ, λ′)

for every λ, λ′ ∈ Λ. We denote by ‖A‖γ the infimum of all possible such constants
C. A matrix is almost diagonal if it belongs to Aγ for every γ > 0. Moreover, we
say that a matrix is quasidiagonal if it is almost diagonal, invertible on l2, and if
its inverse is also almost diagonal.

Matrices of operators which map a smooth orthonormal wavelet basis in the
Schwartz class into another orthonormal wavelet basis in the Schwartz class are
quasidiagonal, see Chapter 8.9 and 10.5 of [33]. Therefore, in order to check that a
condition defined on wavelet coefficients is independent of the chosen wavelet basis
(in the Schwartz class), one can check the stronger property that it is invariant
under the action of quasidiagonal matrices.

Definition 2.2. Let C be a collection of coefficients indexed by dyadic intervals.
A property P is robust if the following condition holds: If P(C) holds, then for any
quasidiagonal operator M, P(MC) holds.

A vector space (or, more generally a subset of a vector space) is robust if it is
invariant under the action of quasidiagonal operators.

With a slight abuse of language, we will say that the definition of a quantity F~c
which is a function of a sequence of coefficients ~c is robust if for any quasidiagonal
operator M, FM~c = F~c.
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Proposition 2.3. The definition of the wavelet leaders density of a function is
not robust.

Proof. We consider again the Cantor set of ratio 1
4 . We define the subset Γ of

Λ× Λ by

Γ :=
{

(λ, λ′) : ∃n ∈ N such that λ′ ⊆ Cn
(

1

4

)
,

[(k′ + 3)2−j
′
, (k′ + 4)2−j

′
) ⊆ Cn

(
1

4

)
and j = j′ + 1, k = 2k′ + 3

}
.

Let us fix β > α > 0 and let us define the infinite matrix A indexed by dyadic
intervals by setting

A(λ, λ′) :=


1 if λ = λ′,

2−βj2αj
′

if (λ, λ′) ∈ Γ,
0 otherwise.

The matrix A is of the form Id+R. Remark that if (λ, λ′) ∈ Γ, then (λ′, λ′′) /∈ Γ
for any dyadic interval λ′′ and it follows that R2 = 0. This implies that A is
invertible, with inverse Id−R,

Clearly, the matrices A and A−1 belong to Aγ for every γ > 0. Let us fix δ > β
and let us define the sequence ~c as follows: for every scale j and every dyadic
interval λ ∈ Λj , we set

cλ :=

 2−αj if there exists an n ∈ N such that λ ⊆ Cn
(

1
4

)
,

0 if there exists λ′ such that (λ, λ′) ∈ Γ,
2−δj otherwise.

It is straightforward to see that ρ~c(β) = −∞. Let us now consider the image ~x of
~c by the matrix A, that is to say

xλ =
∑
λ′

A(λ, λ′)cλ′ .

Then, if λ ∈ Λj , we have

xλ :=

 2−αj if there is n ∈ N such that λ ⊆ Cn
(

1
4

)
,

2−βj if there exists λ′ such that (λ, λ′) ∈ Γ,
2−δj otherwise;

hence ρ~x(β) = 1
2 . 2

Remark 2.4. It follows from the proof of Proposition 2.3 that the action of a
quasidiagonal operator can lift the value of ρ at β from −∞ to 1/2, which suffices
to prove the result. Note however that the value −∞ does not play a particular
role here: Let τ < 1/2; we can add to the wavelet sequence considered a sequence
of b2τjc coefficients located among the vanishing positions, and taking value 2−βj .
The initial value of ρ at β now is τ ; the action of the quasidiagonal operator defined
above leaves this new sequence of coefficients unchanged, so that the final value of
ρ at β is now shifted from τ to 1/2.
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This counter-example motivates the introduction, in the next section, of an-
other notion based on the wavelet leaders of a signal which will be proved to be
robust.

3. Wavelet leaders profiles

A theoretical drawback when working with the wavelet leaders density is that it is
not a robust quantity. Consequently, it may lead to quantities that are not intrinsic,
and therefore not reliable for classification purposes. On the computational side,
another drawback comes from the double limit in Definition 1.1. In practice,
when dealing with real-life data which are known down to a given scale, one can
never really “pass to the limit” several times consecutively, and one must therefore
make simultaneously ε become small and j large, and therefore introduce some
dependency between j and ε. However, on the mathematical side, it is easy to check
that, as soon as such a dependency between j and ε is introduced in Definition
1.1, the value of the corresponding limit can change radically. In other words, this
definition is numerically extremely unstable and, in practice, definitions that are
based on a single limit are the only ones that can be used. Therefore, we will define
another quantity based on the wavelet leaders density which will turn out to be
robust and which still yields an upper bound for the multifractal spectrum.

Definition 3.1. The increasing wavelet leaders profile of a sequence ~c ∈ C0(T) is
defined for every α ∈ [0,+∞] by

θ+
~c (α) := lim

ε→0+
lim sup
j→+∞

log #
{
λ ∈ Λj : dλ ≥ 2−(α+ε)j

}
log 2j

,

where we use the convention that 2−∞ = 0. Similarly, the decreasing wavelet
leaders profile of ~c is defined for every α ≥ 0 by

θ−~c (α) := lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : dλ ≤ 2−(α−ε)j}

log 2j

and for α = +∞ by

θ−~c (+∞) := lim
A→+∞

lim inf
j→+∞

log #
{
λ ∈ Λj : dλ ≤ 2−Aj

}
log 2j

.

Remark 3.2. The limit over ε which appears in the definition of the wavelet
leaders profile is required in order to derive some mathematical properties that
will be useful in the sequel; however, it is not taken into account in applications,
and the definition therefore boils down to a single limit, as required, see [16].

As done for the wavelet leaders density, if the sequence ~c is clearly fixed, we
will write θ+ and θ− instead of θ+

~c and θ−~c respectively. The next result gives the
properties of the increasing and decreasing wavelet leaders profiles of a sequence
~c ∈ C0(T).
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Proposition 3.3. Let ~c ∈ C0(T).

1. The increasing wavelet leaders profile θ+ of ~c is increasing and right-continuous
on [0,+∞], takes values in {−∞} ∪ [0, 1], and satisfies θ+(+∞) = 1.

2. The decreasing wavelet leaders profile θ− of ~c is decreasing and left-continuous
on [0,+∞), takes values in {−∞} ∪ [0, 1], and it satisfies θ−(0) = 1.

3. The function

α ∈ (0,+∞) 7→ θ−(α)− 1

α

is decreasing.

Proof. The two first points are immediate. Let us prove the last one. We fix α, α′

such that 0 < α′ < α. From the definition of the decreasing wavelet leaders profile
of ~c, we know that for every δ > 0, there is ε0 > 0 such that for every 0 < ε < ε0,
there is a sequence (jn)n∈N which satisfies

#{λ ∈ Λjn : dλ ≤ 2−(α−ε)jn} ≥ 2(θ−(α)−δ)jn , ∀n ∈ N .

Then, if j ≥ jn, we also have

#{λ ∈ Λj : dλ ≤ 2−(α−ε)jn} ≥ 2j−jn2(θ−(α)−δ)jn

since dλ ≤ dλn if λ ⊆ λn. For every n ∈ N, let us set

Jn =

⌊
α− ε
α′ − ε

jn

⌋
.

If n is large enough, Jn ≥ jn and we obtain

#{λ ∈ ΛJn : dλ ≤ 2−(α′−ε)Jn} ≥ #{λ ∈ ΛJn : dλ ≤ 2−(α−ε)jn}
≥ 2Jn−jn2(θ−(α)−δ)jn .

Consequently,

lim sup
j→∞

log #{λ ∈ Λj : dλ ≤ 2−(α′−ε)j}}
log 2j

≥ lim
n→∞

log #{λ ∈ ΛJn : dλ ≤ 2−(α′−ε)Jn}}
log 2Jn

≥ lim
n→∞

(
1 + (θ−(α)− δ − 1)

jn
Jn

)
≥ 1 + (θ−(α)− δ − 1)

α′ − ε
α− ε

and it follows that

θ−(α′) ≥ 1 + (θ−(α)− δ − 1)
α′

α
.
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Since δ > 0 is arbitrary, we get that

θ−(α′)− 1

α′
≥ θ−(α)− 1

α

hence the conclusion. 2

Additionally, if there exist α0 > 0 and C0 > 0 (resp. α1 > 0 and C1 ≥ 0) such
that

|cj,k| ≤ C02−α0j (resp. dj,k ≥ C12−α1j)

for every j ∈ N0, k ∈ {0, . . . , 2j − 1}, then θ+ is identically equal to −∞ on
(−∞, α0) (resp. θ− is identically equal to −∞ on (α1,+∞)). Moreover, the
increasing and decreasing wavelet profiles of a sequence of wavelet coefficients still
yield an upper bound for the spectrum of the corresponding function, as stated in
the next result.

Proposition 3.4. Let f be a uniformly Hölder function, and let θ+, θ− denote
the increasing and decreasing wavelet profiles of its sequence of wavelet coefficients
in a given wavelet basis. The multifractal spectrum of f satisfies

df (h) ≤ min{θ+(h), θ−(h)} ∀h ∈ [0,+∞].

Proof. It is clear that θ+(h) ≥ ρ(h) and θ−(h) ≥ ρ(h) for every h. The result
follows then directly from Theorem 1.5. 2

The following lemma shows the link between the wavelet leaders density of a
function and its wavelet leaders profiles.

Lemma 3.5.

1. If ~c ∈ C0(T), then,

θ+(α) = sup
α′≤α

ρ(α′), ∀α ∈ [0,+∞].

2. Assume that ~c ∈ C0(T) is a sequence for which there are α1 > 0 and C1 ≥ 0
such that dj,k ≥ C12−α1j for every j ∈ N0, k ∈ {0, . . . , 2j − 1}. Then,

θ−(α) = sup
α′≥α

ρ(α′), ∀α ∈ [0,+∞].

Proof. 1. Let α0 = inf{α ≥ 0 : θ+(α) ≥ 0}. The result is clear if α < α0. So, let
us assume that α ≥ α0. Of course, we have θ+(α) ≥ ρ(α). Since θ+ is increasing,
we get that

θ+(α) ≥ sup
α′≤α

ρ(α′).

For the other inequality, let us fix ε > 0. By definition of ρ, for every α′ ≤ α + ε,
there exist r(α′) > 0 and J(α′) ∈ N such that

#
{
λ ∈ Λj : dλ ≥ 2−(α′+r(α′))j

}
−#

{
λ ∈ Λj : dλ ≥ 2−(α′−r(α′))j

}
≤ 2(ρ(α′)+ε)j
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for every j ≥ J(α′). From the covering of the compact [α0, α+ ε] by the open sets
(α′ − r(α′), α′ + r(α′)), we extract a finite subcovering {(α′i − r(α′i), α′i + r(α′i)) :
i ∈ {1, . . . , n}}. Fix J ≥ max1≤i≤n J(α′i). For every j ≥ J , we have

#
{
λ ∈ Λj : dλ ≥ 2−(α+ε)j

}
≤

n∑
i=1

#
{
λ ∈ Λj : dλ ≥ 2−(α′i+r(α

′
i))j
}
−#

{
λ ∈ Λj : dλ ≥ 2−(α′i−r(α

′
i))j
}

≤
n∑
i=1

2(ρ(α′i)+ε)j ≤ n2(supα′≤α ρ(α
′)+ε)j .

It follows directly that θ+(α) ≤ supα′≤α ρ(α′). We still have to consider the case

where α = +∞. It follows from the fact that θ+(+∞) = 1 and supα≥0 ρ(α) = 1.
2. The proof of the second part is very similar.

2

Remark 3.6. Consequently, in practice, in order to estimate the multifractal spec-
trum of a function using the wavelet profile of its sequence of wavelet coefficients
in a given wavelet basis, one can proceed as follows: Denote by αs the smallest
positive number such that θ+(αs) = 1. Then, the spectrum is estimated by θ+(α)
if α < αs and by θ−(α) if α ≥ αs.

The next proposition shows that one could define equivalently the increasing
and decreasing wavelet leaders profiles of a sequence using the restricted wavelet
leaders eλ instead of the wavelet leaders dλ.

Proposition 3.7. If ~c ∈ C0(T), then for every α ∈ [0,+∞],

(3.1) θ+(α) = lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : eλ ≥ 2−(α+ε)j

}
log 2j

.

Moreover, for every α ∈ [0,+∞),

(3.2) θ−(α) = lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : eλ ≤ 2−(α−ε)j}

log 2j
,

and for α = +∞,

(3.3) θ−(+∞) = lim
A→+∞

lim inf
j→+∞

log #
{
λ ∈ Λj : eλ ≤ 2−Aj

}
log 2j

.

Proof. 1. Define θ+,restr(α) as the right hand side of (3.1). Then it is clear that
θ+,restr(α) ≤ θ+(α) for every α ∈ [0,+∞] since eλ ≤ dλ for every dyadic interval
λ. For the other inequality, let us fix α ∈ [0,+∞) and δ > 0. By definition, there
exist J ≥ 0 and ε > 0 such that

#
{
λ ∈ Λj : eλ ≥ 2−(α+ε)j

}
≤ 2(θ+,restr(α)+δ)j ∀j ≥ J.
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Let us fix j ≥ J . As before, for all λ ∈ Λj , we denote N(λ) the set of the 3
“neighbors” of λ in Λj . Then we have

dλ = max{eµ : µ ∈ N(λ)}

and it follows that, for j large enough,

#
{
λ ∈ Λj : dλ ≥ 2−(α+ε)j

}
≤ 3 ·#

{
λ ∈ Λj : eλ ≥ 2−(α+ε)j

}
≤ 3 · 2(θ+,restr(α)+δ)j .

Thus θ+(α) ≤ θ+,restr(α) + δ and since δ > 0 is arbitrary, we get the conclusion
if α is finite. The result is also true for α = +∞ because at this point, these two
functions take the value one.

2. The proof of the second point is similar. 2

Consequently, we will often work with restricted wavelet leaders instead of
wavelet leaders. This will be the case in the next section. Both functions θ+ and
θ+,restr will be denoted by θ+. We use similar notations for the decreasing profile.
Let us mention that the “3λ” in the definition of the wavelet leaders comes from
Proposition 1.2, which is no longer valid in the case of restricted wavelet leaders.

Let us end this section by mentioning that the increasing leaders profile θ+

(defined using wavelet leaders) of a sequence has been theoretically compared with
its wavelet profile ν (defined using wavelet coefficients) in [16]: the inequality
θ+ ≤ ν is of course always satisfied, and a sufficient and necessary condition to
have the strict inequality has been given.

4. Robustness of the wavelet leaders profile

Let ~c ∈ Ω and let A be a quasidiagonal matrix. We define ~x by setting

xλ =
∑
λ′∈Λ

A(λ, λ′)cλ′

for every dyadic interval λ. The aim of this section is to prove that θ+
~c (α) = θ+

~x (α)
and θ−~c (α) = θ−~x (α) for every α ∈ [0,+∞]. Let us first recall a lemma from [33].

Lemma 4.1. Let γ > |α| and A ∈ Aγ . There exists a constant C̃ such that

|cj,k| ≤ C2−αj ∀j, k ⇒ |xj,k| ≤ C̃‖A‖γC2−αj ∀j, k.

This lemma expresses the fact that operators whose matrix in a wavelet ba-
sis belongs to Aγ are continuous on Cα(T) if |α| < γ. It is a straightforward
consequence of the proof of Schur’s lemma (Lemma 4 in Chapter 8, [33]).
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Definition 4.2. Let ε > 0 and let λ be a dyadic interval. The ε-neighborhood of
λ, denoted by Nε(λ), is the set of dyadic intervals λ′ such that

|j − j′| ≤ εj,∣∣∣∣ k2j − k′

2j′

∣∣∣∣ ≤ 22εj2−j .

Remark 4.3. Note that if λ′ does not belong to Nε(λ) and if γ ≥ ε−2, a compu-
tation leads to

ω2γ(λ, λ′) ≤ ωγ(λ, λ′)2−j/ε.

Proposition 4.4. Let ~c ∈ Cr(T) for some r > 0. The definition of the increasing
wavelet leaders profile of ~c is robust.

Proof. Let A be a quasidiagonal matrix and consider

xλ =
∑
λ′∈Λ

A(λ, λ′)cλ′

for every dyadic interval λ. Let us first show that θ+
~x (α) ≤ θ+

~c (α) for every α ∈
[0,+∞]. Let us denote αmin = inf{α : θ+

~c (α) ≥ 0}. Since ~c ∈ Cr(T), we know
that αmin > 0.

1. Assume that α < αmin.

If ε > 0 is such that α+ ε < αmin, there is C1 > 0 with

|cj,k| ≤ C12−(α+ε)j ∀j ∈ N0, k ∈ {0, . . . , 2j − 1}.

Therefore, Lemma 4.1 implies that |xj,k| ≤ C̃‖A‖γC12−(α+ε)j for γ > α+ε and for
every j ∈ N0 and k ∈ {0, . . . , 2j − 1}. We then directly obtain that θ+

~x (α) = −∞
for every α < αmin.

2. Assume that α ≥ αmin > 0.

Let us fix δ > 0. We will prove that there exist J ∈ N and ε > 0 such that

#

{
λ ∈ Λl : sup

λ′⊆λ
|xλ′ | ≥ 2−(α+ε)l

}
≤ 2(θ+

~c
(α)+8δ)l

for all l ≥ J . Since δ > 0 is arbitrary, we will get that θ+
~x (α) ≤ θ+

~c (α).
Using the right continuity of θ+

~c , we choose ε > 0 such that ε < δ, α−αmin < ε−1

and θ+
~c

(
α

1−ε

)
≤ θ+

~c (α) + δ. The definition of θ+
~c gives ε0 > 0 and J ∈ N0 such

that

#

{
λ ∈ Λj : sup

λ′⊆λ
|cλ′ | ≥ 2−( α

1−ε+2ε0)j

}
≤ 2(θ+~c ( α

1−ε )+δ)j
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for every j ≥ J . Of course, we can also assume that ε0 is small enough so that
α+ ε0(1− ε)− αmin < ε−1.

For every l ∈ N0, we define

Λ1 = Λ1(l, ε) =
⋃

(1−ε)l≤j≤(1+ε)l

{
λ ∈ Λj : sup

λ′⊆λ
|cλ′ | ≥

1

4C̃‖A‖α
2−( α

1−ε+ε0)j

}

and

Λ2 = Λ2(l, ε) =

{
λ ∈ Λl : ∃λ1 ∈ Λ1 with

∣∣∣∣ k1

2j1
− k

2l

∣∣∣∣ ≤ 2−l+122εl

}
.

a) Let us show that if λ0 /∈ Λ2(l, ε) is of size 2−l, then

sup
λ⊆λ0

|xλ| < 2−(α+ε0(1−ε))l.

It suffices to show that if λ ⊆ λ0, then

|xλ| =

∣∣∣∣∣∑
λ′

A(λ, λ′)cλ′

∣∣∣∣∣ < 1

2
2−(α+ε0(1−ε))l.

So, let us fix λ = λ(j, k) ⊆ λ0 = λ(l, k0). Remark that in particular, we have j ≥ l.
We set

yλ =
∑

λ′*λ1∀λ1∈Λ1 and j′≥(1−ε)l

A(λ, λ′)cλ′

and

zλ =
∑

λ′⊆λ1 with λ1∈Λ1 or j′<(1−ε)l

A(λ, λ′)cλ′

so that we have |xλ| ≤ |yλ|+ |zλ|.

• If λ′ is such that λ′ * λ1 for any λ1 ∈ Λ1 and if j′ ≥ (1 − ε)l, then by
definition of Λ1(l, ε), we have

|cλ′ | <
1

4C̃‖A‖α
2−( α

1−ε+ε0)l(1−ε) =
1

4C̃‖A‖α
2−(α+ε0(1−ε))l.

Using Lemma 4.1 with α > 0, we get that

|yλ| ≤
1

4C̃‖A‖α
2−(α+ε0(1−ε))lC̃‖A‖α2−0j =

1

4
2−(α+ε0(1−ε))l.

• If λ′ is such that there is λ1 ∈ Λ1(l, ε) with λ′ ⊆ λ1 or if j′ < (1− ε)l, let us
show that λ′ /∈ Nε(λ). First, if j′ < (1 − ε)l, then j′ < (1 − ε)j since j ≥ l and
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it follows that λ′ /∈ Nε(λ). So we can assume that λ′ ⊆ λ1 with λ1 ∈ Λ1. Since
λ1 ∈ Λ1 and λ0 /∈ Λ2, we know that∣∣∣∣k0

2l
− k1

2j1

∣∣∣∣ > 2−l+122εl.

Let us first assume that
k0

2l
− k1

2j1
> 2−l+122εl.

From the inclusions λ ⊂ λ0 and λ′ ⊂ λ1, we have

k0

2l
− k1

2j1
≤ k

2j
− k′

2j′
− 1

2j′
+

1

2j1
≤ k

2j
− k′

2j′
+

1

2j1

and consequently, from the previous relation,

k

2j
− k′

2j′
> 2−l+122εl − 1

2j1
.

Moreover, since λ1 ∈ Λ1(l, ε), we have j1 ≥ (1− ε)l and it follows that

k

2j
− k′

2j′
> 2−l+122εl − 2−((1−ε)l) = 2(2ε−1)l + 2(2ε−1)l − 2−((1−ε)l)

≥ 2(2ε−1)l ≥ 2(2ε−1)j

where the last inequality comes from the fact that j ≥ l and 2ε− 1 < 0.

The second case is quite similar. Assume that

k1

2j1
− k0

2l
> 2−l+122εl.

Using inclusions between dyadic intervals, we have

k1

2j1
− k0

2l
≤ k′

2j′
− k

2j
− 1

2j
+

1

2l
≤ k′

2j′
− k

2j
+

1

2l

and it follows that

k′

2j′
− k

2j
> 2−l+122εl − 1

2l
≥ 2(2ε−1)l ≥ 2(2ε−1)j .

So, we have proved that λ′ /∈ Nε(λ).

Consequently, using Remark 4.3, we get

|zλ| ≤
∑

λ′:λ′ /∈Nε(λ)

|A(λ, λ′)||cλ′ |

≤
∑

λ′:λ′ /∈Nε(λ)

‖A‖2ε−2ω2ε−2(λ, λ′)|cλ′ |

≤ ‖A‖2ε−2

∑
λ′:λ′ /∈Nε(λ)

ωε−2(λ, λ′)2−jε
−1

|cλ′ |

≤ ‖A‖2ε−22−jε
−1

C1

∑
λ′:λ′ /∈Nε(λ)

ωε−2(λ, λ′)2−α0j
′
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where α0 < αmin is such that α+ ε0(1− ε)−α0 < ε−1 and the constant C1 > 0 is
such that |cj,k| ≤ C12−α0j for every j ∈ N, k ∈ {0, . . . , 2j − 1}. Lemma 4.1 gives

|zλ| ≤ ‖A‖2ε−2C1C̃2−(α0+ε−1)j ≤ ‖A‖2ε−2C1C̃2−(α0+ε−1)l <
1

4
2−(α+ε0(1−ε))l

if l is large enough.

Finally, we have obtained

|xλ| ≤ |yλ|+ |zλ| ≤
1

2
2−(α+ε0(1−ε))l

if l is large enough. It follows that if λ0 /∈ Λ2(l, ε) is of size 2−l, then supλ⊆λ0
|xλ| <

2−(α+ε0(1−ε))l. So,

#

{
λ0 ∈ Λl : sup

λ⊆λ0

|xλ0 | ≥ 2−(α+ε0(1−ε))l
}
≤ #Λ2(l, ε).

b) Estimation of the cardinality of Λ2(l, ε)

Remark first that if λ1 = λ(j1, k1) ∈ Λ1(l, ε) is fixed, we have

#

{
k ∈ {0, . . . , 2l − 1} :

∣∣∣∣ k2l − k1

2j1

∣∣∣∣ ≤ 2−l+122εl

}
= #

{
k ∈ {0, . . . , 2l − 1} : k12l−j1 − 21+2εl ≤ k ≤ k12l−j1 + 21+2εl

}
≤ k12l−j1 + 21+2εl − k12l−j1 + 21+2εl + 1 = 22εl+2 + 1 ≤ 23εl

if l is large enough. Therefore, we get

#Λ2(l, ε) ≤
∑

(1−ε)l≤j1≤(1+ε)l

#

{
λ ∈ Λj1 : sup

λ′⊆λ
|cλ′ | ≥

1

4C̃‖A‖α
2−( α

1−ε+ε0)j1

}
.

Moreover,

#

{
λ ∈ Λj1 : sup

λ′⊆λ
|cλ′ | ≥

1

4C̃‖A‖α
2−( α

1−ε+ε0)j1

}

≤ #

{
λ ∈ Λj1 : sup

λ′⊆λ
|cλ′ | ≥ 2−( α

1−ε+2ε0)j1

}
≤ 2(θ+~c ( α

1−ε )+δ)j1 ≤ 2(θ+
~c

(α)+2δ)j1
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for j1 (hence l) large enough. It follows that

#

{
λ0 ∈ Λl : sup

λ⊆λ0

|xλ| ≥ 2−(α+ε0(1−ε))l
}

≤
∑

(1−ε)l≤j1≤(1+ε)l

2(θ+~c (α)+2δ)j123εl

≤
∑

(1−ε)l≤j1≤(1+ε)l

2(θ+~c (α)+2δ)(1+ε)l23εl

≤ (2εl + 1)2(θ+~c (α)+2δ+ε(θ+~c (α)+2δ+3))l

≤ 2εl2(θ+~c (α)+2δ+5ε)l

≤ 2(θ+~c (α)+8δ)l

if l is large enough.
So, we have proved that for every α ∈ [0,+∞], θ+

~x (α) ≤ θ+
~c (α). We have also

obtained that inf{α : θ+
~x (α) ≥ 0} ≥ αmin > 0. Since A−1 is also almost diagonal,

the same proof shows that θ+
~c (α) ≤ θ+

~x (α) for every α ∈ R. The conclusion follows.
2

In order to prove the robustness of the decreasing wavelet leaders profile, let
us introduce a new notation. Let us fix a dyadic interval λ0(l, k0) and ε > 0. For
j ∈ N0 and k ∈ {0, . . . , 2j − 1},

λ(j, k) ∈ Condε(λ0)⇐⇒ (1−2ε)j > l and 2(2ε−1)j ≤ k

2j
− k0

2l
≤ 2−l−3 ·2(2ε−1)j .

Lemma 4.5. Let us fix a dyadic interval λ0(k0, l) and let us consider ε > 0. If
λ(j, k) ∈ Condε(λ0), then

λ′ ∈ Nε(λ(j, k)) =⇒ λ′ ⊂ λ0

Proof. First, we have
j′ ≥ (1− ε)j ≥ (1− 2ε)j > l.

Moreover,
k′

2j′
≥ k

2j
− 2(2ε−1)j ≥ k0

2l
.

Finally, we have

k′ + 1

2j′
≤ 1

2j′
+

k

2j
+ 2(2ε−1)j ≤ 2−j

′
+
k0

2l
+ 2−l − 3 · 2(2ε−1)j + 2(2ε−1)j

≤ k0 + 1

2l
− 2(2ε−1)j ≤ k0 + 1

2l
.

2
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Proposition 4.6. Let ~c ∈ Cr(T) for some r > 0 . The definition of the decreasing
wavelet leaders profile of ~c is robust.

Proof. Let A be a quasidiagonal matrix and

xλ =
∑
λ′∈Λ

A(λ, λ′)cλ′

for every dyadic interval λ. Let us first remark that, as done in the case of the proof
of Proposition 4.4, since ~c ∈ Cr(T), there exists C1 > 0 such that |xj,k| ≤ C12−rj

for every j ∈ N, k ∈ {0, . . . , 2j − 1}. In particular, we have θ−~x (α) = θ−~c (α) = −∞
if α ≤ r.

Let us show that θ−~x (α) ≤ θ−~c (α) for every α > r. Since A is quasidiagonal, we
will obtain the other inequality with the same arguments.

Let us fix ε ∈ (0, 1
2 ) small enough so that α− r < ε−1. Since α < r+ ε−1, there

is J ∈ N such that

‖A−1‖2ε−2C12−(r+ε−1)l ≤ ‖A−1‖α2−αl

for every l ≥ J . For ε0 > 0 small enough, we have α− r+ ε0(1 + ε) < ε−1 and for
every l ≥ J , we define

El =

{
λ0 ∈ Λl : sup

λ∈ Condε(λ0)

|cλ| ≤ 2C̃‖A−1‖α2−(α−ε0(1+ε))l

}
.

Let us show that if λ0 ∈ Λl is such that supλ′⊂λ0
|xλ′ | ≤ 2−(α−ε0(1+ε))l, then

λ0 ∈ El. Let us fix λ ∈ Condε(λ0). We have

|cλ| ≤

∣∣∣∣∣∣
∑

λ′∈Nε(λ)

A−1(λ, λ′)xλ′

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

λ′ /∈Nε(λ)

A−1(λ, λ′)xλ′

∣∣∣∣∣∣ .
As done in Proposition 4.4, using the Remark 4.3, we have∣∣∣∣∣∣

∑
λ′ /∈Nε(λ)

A−1(λ, λ′)xλ′

∣∣∣∣∣∣ ≤ ‖A−1‖2ε−2C1C̃2−(r+ε−1)l ≤ C̃‖A−1‖α2−(α−ε0(1+ε))l.

Moreover, Lemma 4.5 implies that if λ′ ∈ Nε(λ), then λ′ ⊂ λ0. Consequently, we
have |xλ′ | ≤ 2−(α−ε0(1+ε))l and Lemma 4.1 gives∣∣∣∣∣∣

∑
λ′∈Nε(λ)

A−1(λ, λ′)xλ′

∣∣∣∣∣∣ ≤ C̃‖A−1‖α2−(α−ε0(1+ε))l.

So, we get that

|cλ| ≤ 2C̃‖A−1‖α2−(α−ε0(1+ε))l
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and
sup

λ∈ Condε(λ0)

|cj,k| ≤ 2C̃‖A−1‖α2−(α−ε0(1+ε))l.

Consequently, we have

#
{
λ0 ∈ Λl : sup

λ′⊂λ0

|xλ′ | ≤ 2−(α−ε0(1+ε))l
}

≤ #

{
λ0 ∈ Λl : sup

λ∈ Condε(λ0)

|cλ| ≤ 2C̃‖A−1‖α2−(α−ε0(1+ε))l

}
.

Let us choose jl ∈ N such that (1 − 2ε)jl ≥ l + 3 and jl ≤ (1 + ε)l. For every
λ0 = λ(l, k0) of size 2−l, we fix k such that

(1− 2ε)jl > l and 2(2ε−1)jl ≤ k

2jl
− k0

2l
≤ 2−l − 4 · 2(2ε−1)j .

Let us remark that in particular, we have λ(jl, k) ⊂ λ0 and therefore the λ(jl, k)
are different for different λ0 of size 2−l. A simple computation shows that if
λ′ ⊂ λ(jl, k), then (j′, k′) ∈ Condε(λ0). It follows that

#

{
λ0 ∈ Λl : sup

λ∈ Condε(λ0)

|cλ| ≤ 2C̃‖A−1‖α2−(α−ε0(1+ε))l

}
≤ #

{
λ ∈ Λjl : sup

λ′⊂λ
|cλ′ | ≤ 2C̃‖A−1‖α2−(α−ε0(1+ε))l

}
≤ #

{
λ ∈ Λjl : sup

λ′⊂λ
|cλ′ | ≤ 2C̃‖A−1‖α2−( α

1+ε−ε0)jl
}

≤ #
{
λ ∈ Λjl : sup

λ′⊂λ
|cλ′ | ≤ 2−( α

1+ε−2ε0)jl}.
So, we have obtained
(∗)
#
{
λ0 ∈ Λl : sup

λ′⊂λ0

|xλ′ | ≤ 2−(α−ε0(1+ε))l
}
≤ #

{
λ ∈ Λjl : sup

λ′⊂λ
|cλ′ | ≤ 2−( α

1+ε−2ε0)jl}.
This inequality holds for every ε ∈ (0, 1

2 ) such that α − r < ε−1 (using the cor-
responding ε0 and jl). Let us now consider three different cases. As usually, we
denote

αmax = sup{α : θ−~c (α) ≥ 0},

possibly equal to +∞.

1. Assume that α ≤ αmax < +∞.

Let us first fix δ > 0. Using the left continuity of θ−~c , we can assume that ε > 0
is small enough so that ε < δ and

θ−~c

(
α

1 + ε

)
− θ−~c (α) ≤ δ.
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From the definition of θ−~c , we can assume that

#

{
λ ∈ Λj : sup

λ′⊂λ
|cλ′ | ≤ 2−( α

1+ε−2ε0)j
}
≤ 2(θ−~c ( α

1+ε )+δ)j ≤ 2(θ−
~c

(α)+2δ)j

for j ≥ J . We get from (∗)

#
{
λ0 ∈ Λl : sup

λ′⊂λ0

|xλ′ | ≤ 2−(α−ε0(1+ε))l
}
≤ 2(θ−

~c
(α)+2δ)jl

≤ 2(θ−
~c

(α)+2δ)(1+ε)l

= 2(θ−
~c

(α)+2δ+ε θ−
~c

(α)+2εδ)l

≤ 2(θ−
~c

(α)+5δ)l

for every l large enough. It follows that θ−~x (α) ≤ θ−~c (α) .

2. Assume that αmax < +∞ and α > αmax

This case is immediate since

#
{
λ ∈ Λjl : sup

λ′⊂λ
|cλ′ | ≤ 2−( α

1+ε−2ε0)jl} = 0

for every j large enough.

3. Assume that αmax = +∞.

Let us fix δ > 0. Again, we assume that ε < δ. From the definition of θ−~c (+∞),
for every α large enough, we have

#{λ ∈ Λj : sup
λ′⊂λ

|cλ′ | ≤ 2−( α
1+ε−2ε0)j} ≤ 2(θ−

~c
(+∞)+δ)j

for infinitely many j. Given such a j, we consider l ∈ N such that (1− 2ε)j ≥ l+ 3
and j ≤ (1 + ε)l. Using (∗), we get

#
{
λ0 ∈ Λl : sup

λ′⊂λ0

|xλ′ | ≤ 2−(α−ε0(1+ε))l
}
≤ #

{
λ ∈ Λj : sup

λ′⊂λ
|cλ′ | ≤ 2−( α

1+ε−2ε0)j}
≤ 2(θ−

~c
(+∞)+δ)j

≤ 2(θ−
~c

(+∞)+2δ)(1+ε)l

≤ 2(θ−
~c

(+∞)+5δ)l.

Since it holds for infinitely many l, this concludes the proof. 2

Consequently, given a function f , we can define its increasing (resp. decreasing)
wavelet profile θ+

f (resp θ−f ) by setting θ+
f = θ+

~c (resp. θ−f = θ−~c ), where ~c is the
sequence of wavelet coefficients of f in a given wavelet basis in the Schwartz class.
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5. Lν profile spaces

We are now ready to define a new notion which is both robust and encapsulates
the information supplied by the increasing and decreasing wavelet leaders profiles.
In [11], the authors have investigated which ones of the results, proved in [6] in the
wavelet coefficients setting, can be extended in the wavelet leaders setting. In par-
ticular, these new spaces are compared with the Sν spaces, previously introduced
using wavelet coefficients. The main difference is that now the profile includes an
increasing and a decreasing part, and is therefore more realistic for most multi-
fractal models, for which the decreasing part can prove crucial for identification,
or model selection, see [28] for instance.

The properties of the wavelet leaders profiles (see Proposition 3.3) naturally
lead to the following definition: an admissible profile is a function ν : [0,+∞) →
{−∞} ∪ [0, 1] for which there exist 0 ≤ αmin ≤ αs ≤ αmax such that

ν = −∞ on [0, αmin) ∪ (αmax,+∞],

ν(αs) = 1,

ν is increasing, right-continuous and takes values in [0, 1] on [αmin, αs],

ν is decreasing, left-continuous and takes values in [0, 1] on [αs, αmax],

α 7→ ν(α)−1
α is decreasing on [αs, αmax].

We also include the cases where αs or αmax is equal to +∞ (if αmax = +∞, the left
continuity of ν is only considered on (αs, αmax)). Let us mention that in [11, 15],
the authors have proved that for any admissible profile ν with αmax < +∞, there
is ~c ∈ C0(T) such that

ν(α) =

{
θ+
~c (α) if α < αs,
θ−~c (α) if α ≥ αs,

so Proposition 3.3 entirely characterizes the wavelet leaders profiles.
This leads naturally to the following definition, motivated by Remark 3.6.

Definition 5.1. Given an admissible profile ν, the profile space Lν is

Lν :=
{
~c ∈ C0(T) : θ+

~c (α) ≤ ν(α) if α < αs and θ−~c (α) ≤ ν(α) if α > αs
}
.

Remark 5.2. If a sequence ~c belongs to Lν and if αmax is finite, then the hypoth-
esis of Lemma 3.5 are automatically satisfied.

Remark 5.3. In general, a profile space Lν is not a vector space since 0 does
not belong to Lν . Nevertheless, if one considers an admissible profile such that
ν(α) = 1 for every α ≥ αs, it is easy to see that Lν is a vector space. Moreover, in
this case, the definition of an admissible profile coincides with the one considered
in the case of Sν spaces [6] (this justifies the use of the notation ν).

The robustness of the wavelet leaders profiles directly implies the following
result.
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Proposition 5.4. Let ν be an admissible profile. Then the profile space Lν is
robust.

6. Examples

It follows from Propositions 4.4 and 4.6 that the increasing and decreasing wavelet
leaders profiles of a uniformly Hölder function do not depend on the wavelet basis
chosen in the Schwartz class. Proposition 3.4 states that they give an upper bound
for the multifractal spectrum of this function. The wavelet leaders profiles are
therefore a “good candidate” for a multifractal formalism based on wavelet leaders,
as mentioned in Remark 3.6. In this section, we show that this formalism holds
for some classical models used in signal and image processing.

6.1. Deterministic cascades on wavelet dyadic trees

The first model we consider is a deterministic wavelet cascade; it is the simplest case
of the famous cascade models which have been introduced as turbulence models,
and are also used in financial modeling.

Let us consider the binomial measure µ of parameter p ∈ (0, 1), which is the
unique measure supported on [0, 1] such that

µ(λj,k) = pφ(j,k)(1− p)j−φ(j,k),

where φ(j, k) is the number of 1 among the j’s first coordinates in the dyadic
decomposition of k2−j . Following a general framework proposed by Barral and
Seuret in [10], let us construct the wavelet series Fµ by prescribing its wavelet
coefficients in a given wavelet basis as follows: for every λ, we set cλ = µ(λ). We
will say that Fµ is a deterministic Bernoulli cascade of parameter p. Remark that
the wavelet coefficients of Fµ are simply defined recursively by

(∗∗)

 c0,0 = 1
cj,2k = (1− p)cj−1,k

cj,2k+1 = pcj−1,k

for all j ≥ 1 and k ∈ {0, . . . , 2j − 1}. At each scale j ∈ N0, we have
(
j
l

)
coefficients

of size pl(1−p)j−l for l ∈ {0, . . . , j}. In order to avoid trivial cases, we will assume
that p 6= 1/2. We will also assume that p < 1/2; the case p > 1/2 is similar.

Following the seminal work [31] the study of the multifractal spectrum and
of the large deviation properties of these functions and their underlying measures
(and of more general models of cascades) has been the subject of numerous studies
(see e.g. [10, 12, 13, 14, 17, 38] and references therein). In particular, the wavelet
series of Fµ converges to a continuous function which has the following properties.
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Proposition 6.1. Let Fµ be a deterministic cascade of parameter p ∈ (0, 1
2 ). Then

dFµ(α) =


−
(
β log2(β) + (1− β) log2(1− β)

)
if α ∈ (− log2(1− p),− log2(p)),

0 if α ∈ {− log2(1− p),− log2(p)},

−∞ otherwise,

where

β =
α+ log2(1− p)

log2(1− p)− log2(p)
.

Moreover, if ~c denotes the sequence of wavelet coefficients given by (∗∗), then
ρ~c = dFµ .

Remark that the function dFµ has a unique maximum realized at the point
αs = − 1

2 log2

(
(1− p)p

)
. We set

θFµ(α) =

{
θ+
Fµ

(α) if α < αs,

θ−Fµ(α) if α ≥ αs.

Note that the second assertion of Proposition 6.1 holds in the particular case where
the analyzing wavelet is the same as the synthesis one. However, since the definition
of the wavelet leaders profile is robust, the following corollary holds even if the the
analyzing and synthesis wavelets differ.

Corollary 6.2. Let p ∈ (0, 1) and αs = − 1
2 log2

(
(1 − p)p

)
. Let Fµ be is a

deterministic cascade of parameter p, then

θFµ = dFµ .

Proof. The result follows directly from Proposition 6.1 and Lemma 3.5. 2

6.2. Thresholded Wavelet Series

Let f be a function whose wavelet coefficients in a wavelet basis (ψλ)λ∈Λ are given
by ~c and let γ > 0. Following [37], the wavelet series f t defined by

f t =
∑
j∈N0

∑
λ∈Λj

ctλψλ where ctλ = cλ1|·|≥2−γj (cλ) ∀λ ∈ Λj ,

is said to be obtained from f after a threshold of order γ. This method was
introduced by Seuret in order to create functions with oscillating singularities.
They also display non-concave multifractal spectra, as stated by the following
proposition [37].

Proposition 6.3. Let Fµ be a deterministic Bernoulli cascade of parameter p ∈
(0, 1

2 ). Let ωt : [γ,− log2(p)] → (0,+∞) be the increasing function

u 7→ γ
u+ log2(1− p)
γ + log2(1− p)

,



Large deviation spectra based on wavelet leaders 291

γ− log2(1− p) − log2(p) htmax0
0

1

αs

Figure 2: Multifractal spectrum of F tµ for p = 0.4 and γ = 1.2.

and let htmax = ωt(− log2(p)). If γ ∈ [− log2(1 − p),− log2(p)], the multifractal
spectrum of F tµ takes values in [− log2(1− p), htmax] and is equal to

dF tµ(h) =

{
df (h) if h ∈ [− log2(1− p), γ],
df (ω−1

t (h)) if h ∈ (γ, htmax].

As done previously, let us denote by

αs = −1

2
log2

(
(1− p)p

)
,

the point at which dFµ is maximum. If γ > αs, the spectrum is non concave in its
decreasing part (see [37] and Figure 2) and therefore, all multifractal formalisms
proposed up to now fail for its estimation. We consider the function θF tµ defined
by

θF tµ(α) =

{
θ+
F tµ

(α) if α < αs,

θ−F tµ
(α) if α ≥ αs.

Let us show that the computation of this wavelet profile of F tµ leads to the correct
spectrum.

Proposition 6.4. Let Fµ be a deterministic Bernoulli cascade of parameter p ∈
(0, 1

2 ) and let F tµ be the wavelet series obtained from Fµ after a threshold of order

γ > αs where αs = − 1
2 log2

(
(1− p)p

)
. Then we have θF tµ = dF tµ .

Proof. From Proposition 3.4, it suffices to show that θF tµ ≤ dF tµ . Let us denote by

eλ the restricted wavelet leaders of Fµ and by etλ the restricted wavelet leaders of
F tµ.
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First assume that α < αs. We clearly have θF tµ(α) ≤ θ+
Fµ

(α) and therefore,

θF tµ(α) ≤ dF tµ(α) using Corollary 6.2.

Secondly, if α ∈ [αs, γ], we have

#
{
λ ∈ Λj : etλ ≤ 2−(α−ε)j} ≤ #

{
λ ∈ Λj : eλ ≤ 2−(α−ε)j}.

Indeed, if eλ > 2−(α−ε)j , then cλ = eλ ≥ 2−γj . It follows that ctλ = cλ = eλ and
etλ = cλ. Therefore, etλ > 2−(α−ε)j and θF tµ(α) ≤ θ−Fµ(α) = df (α).

Finally, assume that α > γ. Remark that if λ ∈ Λj is such that etλ ≤ 2−(α−ε)j

with α− ε > γ, then etλ = pl(1− p)bCγ lc+1−j , where

Cγ =
log2(1− p)− log2(p)

γ + log2(1− p)
and βε,j ≤ l ≤ j, where

βε,j =
log2(1− p) + (α− ε)j

(1− Cγ) log2(1− p)− log2(p)
=

(log2(1− p) + (α− ε)j)(γ + log2(1− p))
γ(log2(1− p)− log2(p))

.

Moreover, since α > γ > αs, such a l is bigger than j/2 for j large enough.
Therefore,

#
{
λ ∈ Λj : etλ ≤ 2−(α−ε)j} ≤ j∑

l=bβε,jc

(
j

l

)
≤ j
(

j

bβε,jc

)
and it follows that

log #{λ ∈ Λj : etλ ≤ 2−(α−ε)j}
log 2j

≤ 1

j
log2

(
j

(
j

bβε,jc

))
∼ 1

j
log2

(
j
√

2πj( je )j√
2πbβε,jc( bβε,jce )bβε,jc

√
2π(j − bβε,jc)( j−bβε,jce )j−bβε,jc

)
where we have used Stirling formula. Moreover,

1

j
log2

(
j
√

2πj( je )j√
2πbβε,jc( bβε,jce )bβε,jc

√
2π(j − bβε,jc)( j−bβε,jce )j−bβε,jc

)

=
1

j
log2

 j
√
j(

bβε,jc
j

)bβε,jc√
2πbβε,jc(j − bβε,jc)

(
j−bβε,jc

j

)j−bβε,jc


=
1

j
log2

 √
j(

bβε,jc
j

)bβε,jc√
2π
bβε,jc
j (1− bβε,jcj )

(
1− bβε,jcj

)j−bβε,jc


=
1

j
log2

 √
j√

2π
bβε,jc
j (1− bβε,jcj )

− log2

bβε,jc
j

bβε,jc
j
(

1− bβε,jc
j

)1−
bβε,jc
j

.
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If we compute the limit for j → +∞ and ε→ 0+, we get that

θF tµ(α) ≤ −
(
β log2(β) + (1− β) log2(1− β)

)
with

β = lim
ε→0+

lim
j→+∞

βε,j
j

= α
γ + log2(1− p)

γ
(

log2(1− p)− log2(p)
) .

The conclusion follows from Proposition 6.3. 2
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[31] B. Mandelbrot. Multiplications aléatoires itérées et distributions invariantes par
moyennes pondérées. C.R. Acad. Sci. Paris, 278:289–292 and 355–358, 1974.



Large deviation spectra based on wavelet leaders 33

[32] P. Mannersalo, I. Norros, and R. Riedi. Multifractal analysis of infinite products of
stationary jump processes. J. Probability and Statistics, ID 807491:1–26, 2010.

[33] Y. Meyer. Ondelettes et oprateurs. Hermann, 1990.

[34] J. F. Muzy, E. Bacry, and A. Arneodo. Multifractal formalism for fractal signals: The
structure-function approach versus the wavelet-transform modulus-maxima method.
Phys. Rev. E, 47(2):875, 1993.

[35] J. F. Muzy, E. Bacry, and A. Arneodo. The multifractal formalism revisited with
wavelets. Int. J. Bifurcation and Chaos, 4:245–302, 1994.

[36] G. Parisi and U. Frisch. Fully developed turbulence and intermittency. In M. Ghil,
R. Benzi, and G. Parisi, editors, Turbulence and Predictability in geophysical Fluid
Dynamics and Climate Dynamics, Proc. of Int. School, page 84, Amsterdam, 1985.
North-Holland.

[37] S. Seuret. Detecting and creating oscillations using multifractal methods. Math.
Nachr., 279(11):1195–1211, 2006.

[38] T. Tell. Fractals, multifractals, and thermodynamics. Z. Naturforsch. A, 43:1154–
1174, 1988.

Received ??
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E-mail: Celine.Esser@ulg.ac.be

S. Jaffard: University Paris-Est - Laboratoire d’Analyse et de Mathématiques Ap-
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