

Progress Report

Grégoire Léonard

Table of Content

- 1. Introduction
- 2. Objectives
- 3. Modeling and optimal design
- 4. Solvent degradation
- 5. Planning and perspectives
- 6. General conclusion

1. Introduction

1. Introduction

- PhD thesis in the field of chemical engineering
- Partnership between Laborelec and the University of Liège
- Subject divided into two main parts:
 - 1. Simulation and optimal conception of the post-combustion CO₂ capture process
 - 2. Experimental study of solvent degradation

2. Objectives

2. Objectives

- Establishing a link between those two parts is finally the main objective of this PhD thesis
- The result will be
 - \Rightarrow a proposal
 - ⇒ for optimal operative conditions in the CO₂ capture process
 - ⇒ taking into account process efficiency and solvent degradation
 - ⇒ i.e. cost and environmental impacts of post-combustion capture

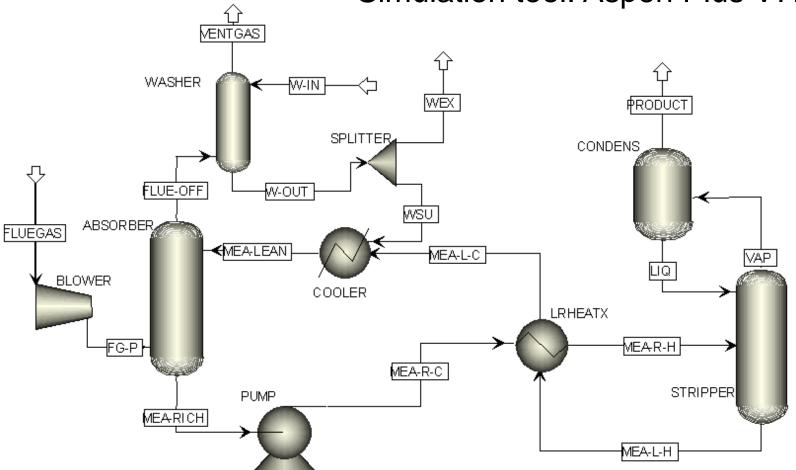
3. Modeling and optimal design

LABORELEC ODE SOEZ Université de Liège

3.1 Objectives

- Modeling and optimization of the existing carbon capture process with MEA
- Proposal and simulation of flowsheet improvements
- Adaptation of the model to novel CCS solvents
- Adaptation of the model to the Hitachi pilot in order to dispose of a model available for the test campains
- Dynamic model of the capture process

3.2 Achievements



- Master thesis: Equilibrium model
- Rate-based model
- Sensitivity analysis focusing on key parameters
- Simulation of flowsheet modifications
- Writing of a article for a symposium in June 2011
- Model available for accompagnying the Hitachi test campaigns

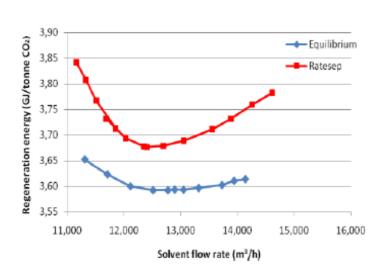
3.3 Results Summary

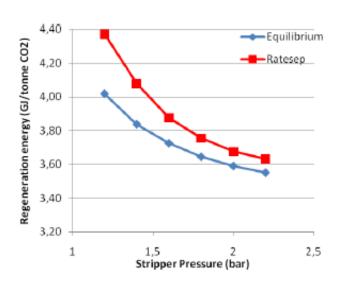
Simulation tool: Aspen Plus V7.2

3.3 Results summary

Process optimization:

	Stripper pressure	Solvent concentration	Solvent flow rate
Equilibrium model		•	
Basecase value	1.2 bar	30 wt-%	$15 \text{ m}^3/\text{h}$
Optimum value	2.2 bar	37 wt-%	13.9 m³/h
Regeneration energy	-11.6%	-8.2%	-1.6%
Rate-based model			
Basecase value	1.2 bar	30 wt-%	$15 \text{ m}^3/\text{h}$
Optimum value	2.2 bar	37 wt-%	$12.4 \text{ m}^3/\text{h}$
Regeneration energy	-16.9%	-5.4%	-2.8%

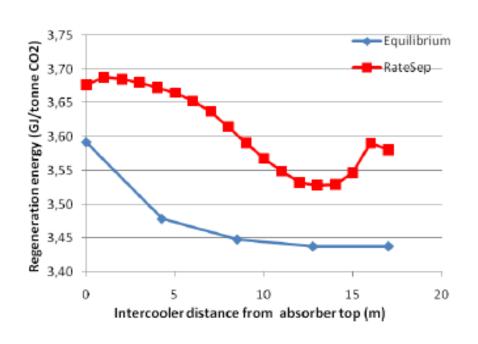


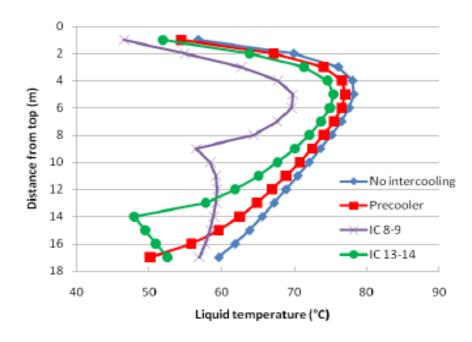


3.3 Results summary

Process optimization:

Solvent flow rate and stripper pressure





3.3 Results summary

Flowsheet improvements: effect of absorber intercooling

LABORELEC Université de Liège Université de Liège

3.4 Met problems

- Not possible to establish a direct link between Matlab and Aspen Plus
 - => Sensitivity study made using Excel

- Thermodynamical data not accurate, varying from one model to the other
 - => The chosen parameter set seems to give good results, but the model still has to be validated based on pilot data

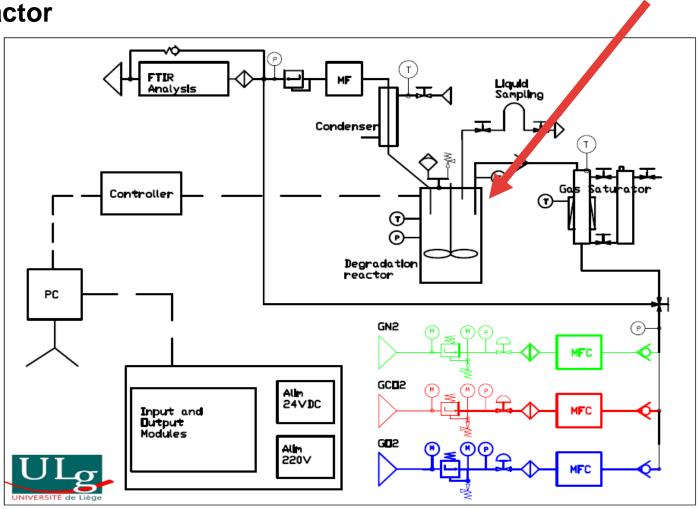
4. Assessment of solvent degradation

4.1 Objectives

- Design and construction of a test bench for experimental study of CCS solvent degradation
- Comparison of the degradation rate of classical and newly developed solvent systems
- Impact of operative conditions and degradation inhibitors on solvent degradation
- Experimental study of the reclaiming process

4.2 Achievements

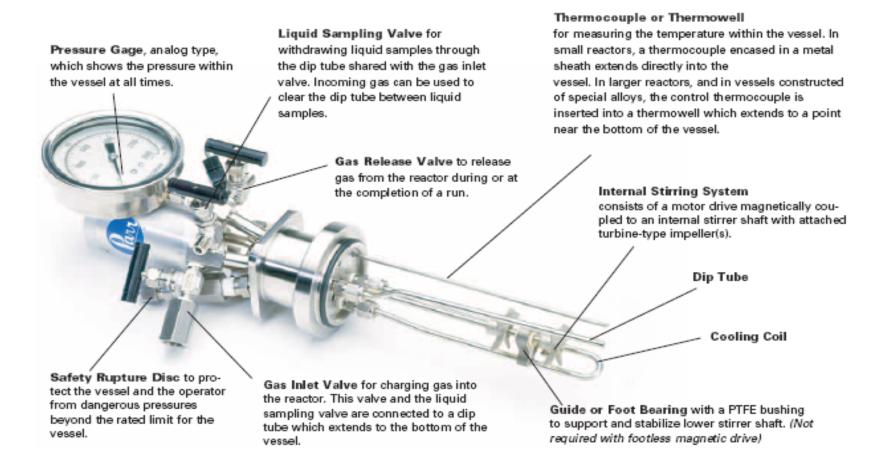
- Degradation Test Rig (DTR) has been designed and built
- 2. Detailed risk analysis available
- 3. Analytical methods development in progress
- 4. Test of classical solvents started


Elements:

- 1. Reactor
- 2. Gas supply
- 3. Water balance
- 4. Gas flow
- 5. DTR control panel
- 6. Analytics

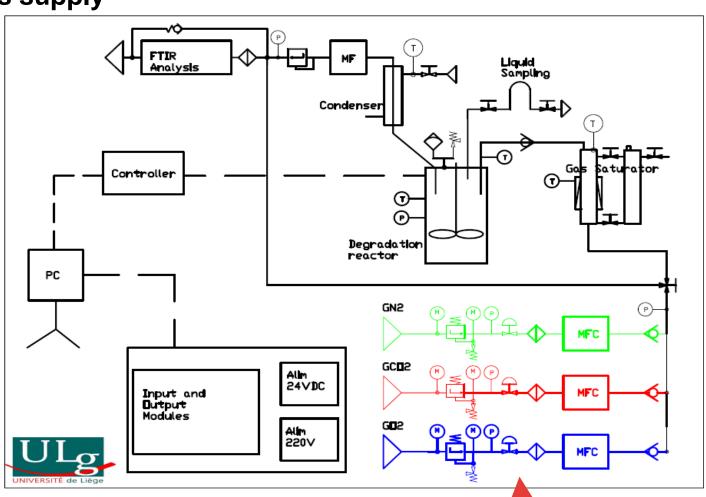
1. Reactor

1. Reactor


- Parr reactor
- 600ml
- Max Temperature : 500°C
- Max pressure: 200 bar
- T316 Stainless Steel
- Heating mantle controls the temperature
- Agitation rate is set by the operator

Model 4544 High Pressure Reactor, 600 mL, Moveable Style Vessel, with heater lowered, and a 4848 Controller shown with optional Expansion Modules.

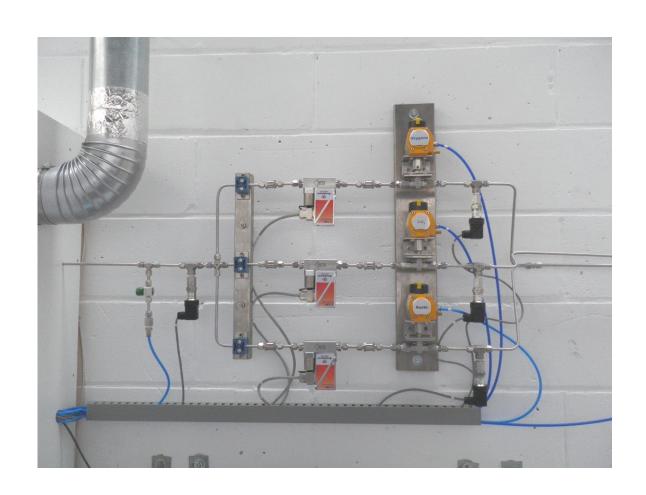
Hollow shaft for a better gas-liquid contact



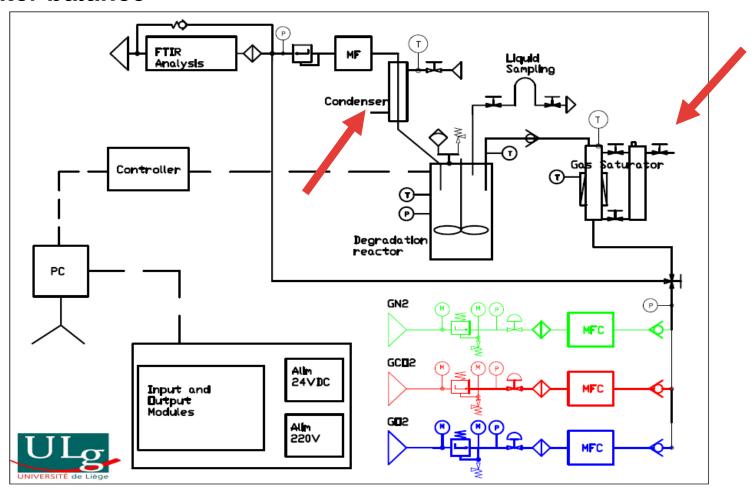
2. Gas supply

2. Gas supply

- N₂ CO₂ O₂
- Compressed Air
- Bottle Rack
- Pressure regulator
- Risk Indications



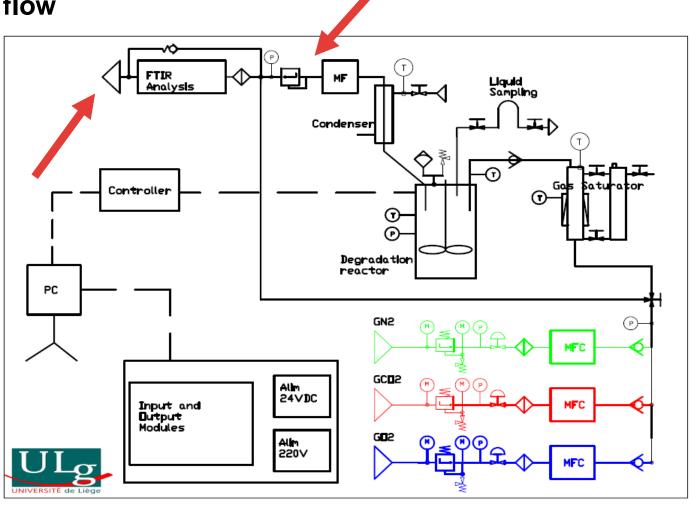
2. Gas supply


- Pressure transducers
- Security valves
- Filters
- Mass flow controllers
- Check valves
- Valve for air pruge

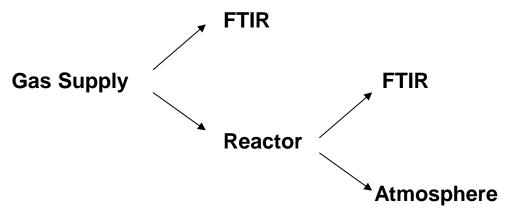
3. Water balance

3. Water Balance: Saturator

- Saturation of the inlet gaz with water
- Re-filling under pressure possible
- Relief valve set at 40bar
- Temperature controled thanks to a solid state relay
- Outlet connected to the reactor

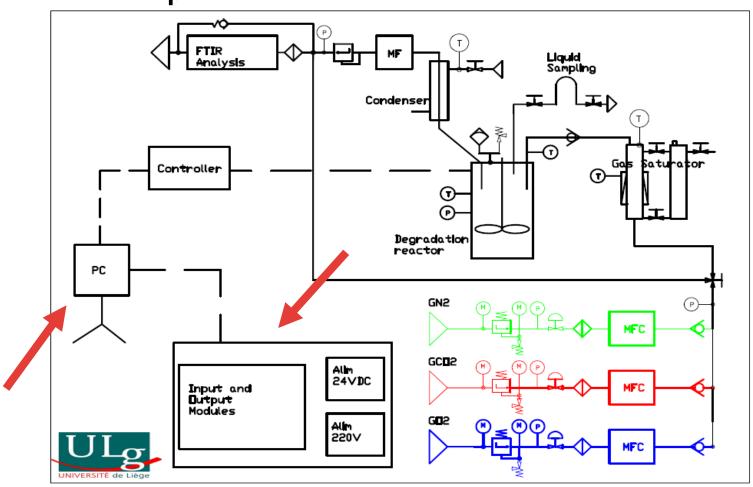

3. Water balance: Condenser

- Reactor exit gas flows into the intern tube
- Waters flows into the mantle (extern tube)
- Temperature control thanks to the heating bath
- Range: 15°C 70°C
- Condensat sampling possible

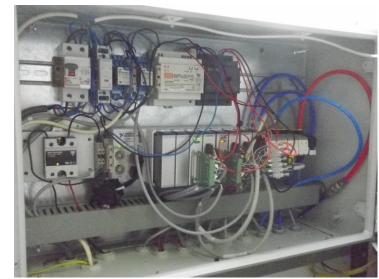


- To the reactor via the saturator
- Then to the FTIR analyser or to the atmosphere
- Or directly to the FTIR analyser for calibration

- Biphasic Coriolis flow meter
- Back pressure regulation
- Heating rope to prevent the gas flow from condensing in the tubing


- Gas release to the atmosphere
- Ventilated local to prevent any incident
- Relief valves and FTIR exhaust are redirected to the atmosphere as well

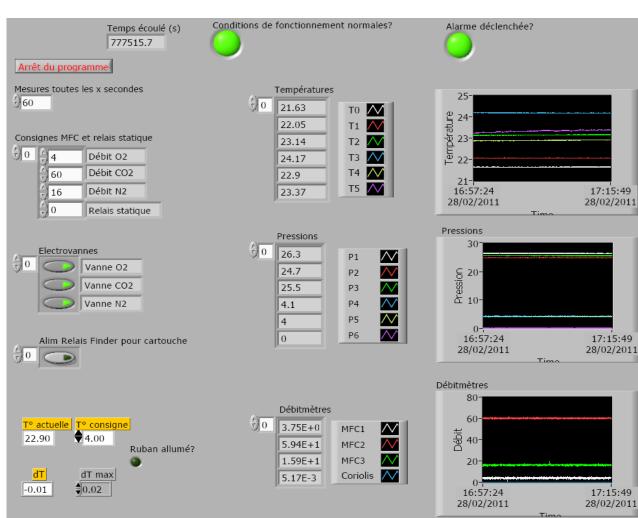
5. DTR control panel



5. DTR Control Panel

Labview

- Data acquisition
 (Pressures, Temperatures, Mass flows)
- Control of the installation (Mass flow, heating elements, compressed air for security valves)



5. DTR Control Panel

Labview control panel

- Data acquisition
- Regulation

5. DTR Control Panel

Reactor controller

- Temperature control
- Agitation rate manual control
- Pressure display
- High temperature security

5. DTR Control Panel

- Computer is only used for data acquisition
- Regulation is performed via the Controller

6. Analytics

- Liquid phase: HPLC, GC-MS

- Gas phase: FTIR

- Risk analysis has been performed according to the Deparis method: « Dépistage Participatif des Risques »
- Electrical risks, explosions, gas and liquid leakages, chemicals contamination, fire, earthquake have all been envisaged.
- Risk analysis has been reviewed by the prevention expert at Laborelec as well as at the University of Liège.

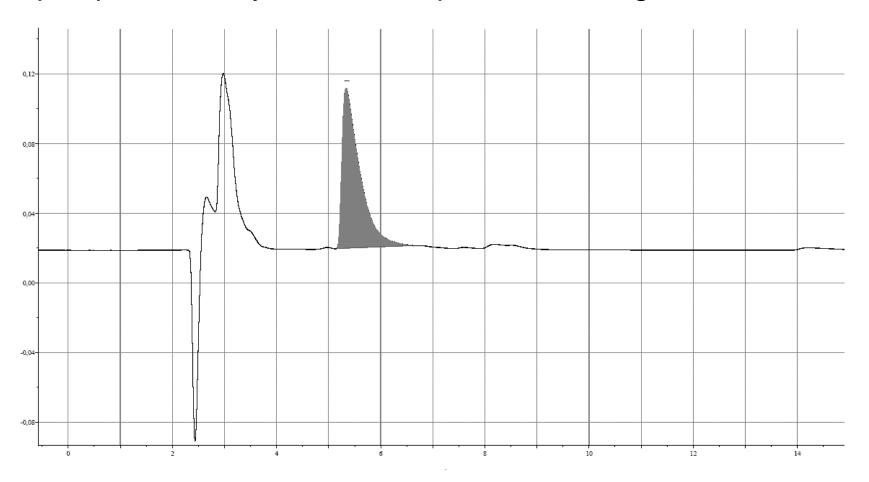
4.2.2 Risk analysis

Some performed improvements

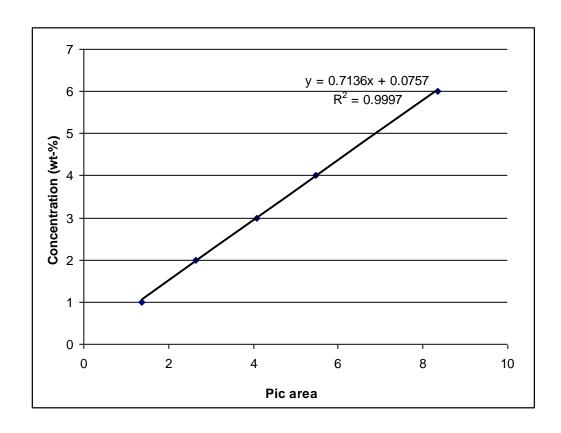
8th April 2011

- Emergency procedure has been detailed
- Software alarms have been implemented

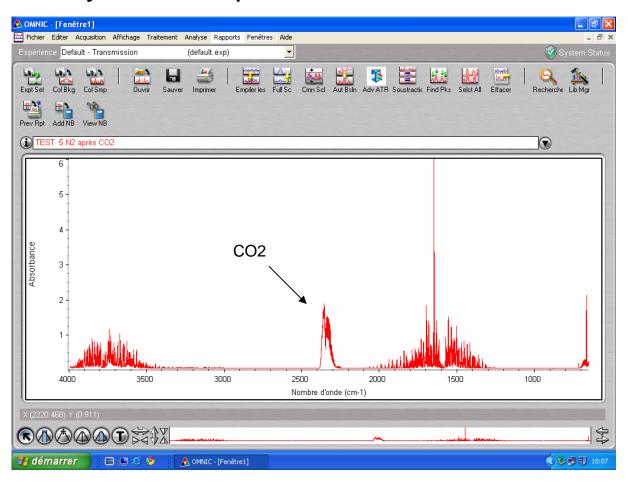
Example: In case of electrical power outage or if the maximal admitted values are overcome, the software shuts the DTR safely down: gas arrival is stopped by the safety valves, heating system is shut down.


- Liquid sample: degraded solution or condensat
 - => High Pressure Liquid Chromatography
 - => Gas Chromatography-Mass Spectroscopy
- Gas Sample: gas exhaust from reactor
 - => Fourier Transform Infra Red

4.2.3 Analytical methods


Liquid phase analysis: HPLC-spectrum of degraded solution

Liquid phase analysis: HPLC calibration curve



Gas phase analysis: first spectra

LABORELEC Universit de Lièg

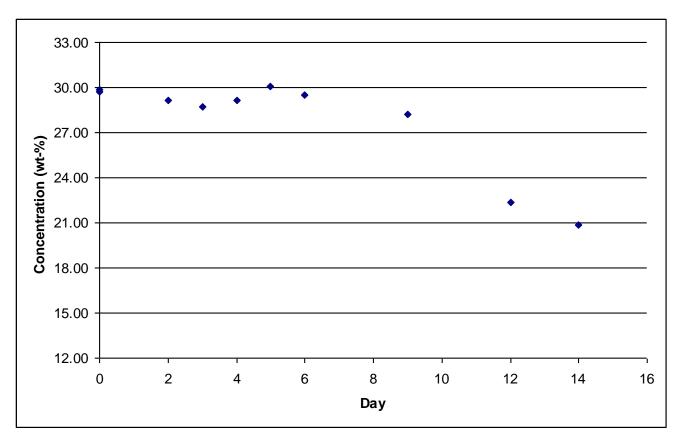
4.3 Results Summary

DTR operationnal:

- Operating temperature: Ambient up to 140°C
- Operating pressure: Ambient up to 25 barg
- Enhanced gas-liquid contact
- Water balance regulation at temperature varying between 15 and 70°C
- Batch and semi-batch experiments both possible
- Liquid (degraded solution and condensat) and gas analysis
- Study of all kinds of degradation possible
- Possibility of studying the reclaiming process

4.3 Results Summary

Limitations:


- Only one vessel => not possible to study different solvent systems or conditions in the same time
- Comparative study between different solvents, identification of influence factors, but no absolute results!
- Is it relevant to increase the pressure and temperature conditions that much? Perhaps could it lead to completely different degradation mechanisms.

4.3 Results Summary

First test of classical solvents: MEA 30 wt-% Analytical method has still to be refined

- Water balance difficult to regulate
 - => Finally, gas saturator and condensator maintain the mass balance according to

$$T_{sat} = T_{cond} \neq T_{reactor}$$

- Delay during the construction, mainly due to suppliers delays (up to 2 months for some pieces of equipment!)
- Extra safety procedure due to the presence of pure oxygen
 - => Cleaning of all pieces with Tri-Chloroethylen in the beginning, but replaced with Aceton

LABORELEC

4.4 Met problems

- Université de Liège
- Corrosion problems in the vessel due to destillated water
 - => Passivation of the vessel with nitric acid
- HPLC spectra not clean
 - => Method does not take the begining of the spectrum into account
- FTIR spectra polluted with CO₂, gas from the air compressor not clean
 - => drying of the compressed air, so that CO₂ condenses

5. Planning and perspectives

Long-term planning

- => December 2011: Screening of MEA degradation
- January July 2012: Degradation screening of some alternative solvent systems
- July December 2012: Integration of degradation results into the simulation model
- January June 2013: Thesis submission and public defense

- 1. Influence of the experiment length
- 2. Study of the washing process
- 3. Influence of the pressure
- 4. Influence of the temperature
- 5. Influence of the gas composition (O₂, CO₂)

R un	Parameter tested	Temp [°C]	P(O2) [bar]	P(CO2) [bar]	P(N2) [bar]	SOx, NOx	Metal ions	Inhibitor	Length [week]	Exp. Start
1	Base case	120	0.2	3	0.8	-	-	-	2	12/03/201 1
2	Exp. Length	140	1	15	4	-	-	-	2	24/03/201 1
3	Repetability	140	1	15	4	-	-	-	1	26/04/201 1
4	Condensate recycling	140	1	15	4	-	-	-	1	5/05/2011
5	Temperature	120	1	15	4	-	-	-	1	14/05/201 1
6	Pressure (N2)	140	0.2	3	16.8	-	-	-	1	23/05/201 1
7	P(CO2)	140	1	3	16	-	-	-	1	1/06/2011
8	P(O2)	140	0.2	15	4.8	-	-	-	1	9/06/2011
9	Additives	140	1	15	4	x	-	-	1	
10	Additives	140	1	15	4	-	х	-	1	
11	Inhibitors	140	1	15	4	-	-	х	1	
12	Additives + Inhibitors	140	1	15	4	х	-	х	1	
13	Additives + Inhibitors	140	1	15	4	-	х	x	1	

- Influence of the experiment length
- => Objective: time savings if it is possible to reduce the experiment length down to 1 week
- Reference conditions :

MEA 30 wt-%, 2 weeks, 120°C, 4 barg

80mln/min gas supply: 75% CO_2 - 5% O_2 - 20% N_2

- Strong conditions:

MEA 30 wt-%, 2 weeks, 140°C, 20 barg

200mln/min gas supply: 75% CO₂ - 5% O₂ - 20% N₂

- Influence of the washing process
- => Objective: study the composition of condensate and its influence on the degradation and the properties of the solvent
- => Based on the advice of Pr Hallvard Svendsen
- No condensate recycling conditions:
 Same conditions as before but with condensate not recycled
- Influence of the condensation temperature on the gas exhaust composition:

Same conditions as before but with condensation performed at 70°C

- Influence of the temperature
- => Objective: compare the results with data from the litterature to see if same trends can be found on the DTR than in other labs

- Low temperature conditions:

MEA 30 wt-%, 1 or 2 weeks, 120°C, 20 barg

150mln/min gas supply: 75% CO_2 - 5% O_2 - 20% N_2

- Influence of the pressure
- => Objective: be sure that high pressure doesn't lead to completely different degradation mechanisms, so that strong degradation conditions remain relevant for assessment of solvent degradation
- High pressure conditions:

MEA 30 wt-%, 1 or 2 weeks, 140°C, 20 barg 150mln/min gas supply: 15% CO₂ - 1% O₂ - 84% N₂

- Influence of gas composition
- => Objective: study the influence of the oxygen content on the degradation to evaluate the part due to oxydative degradation

High oxygen conditions:

MEA 30 wt-%, 1 or 2 weeks, 140°C, 20 barg 80mln/min gas supply: 75% CO₂ - 25% O₂

- Low CO₂ conditions:

MEA 30 wt-%, 1 or 2 weeks, 140°C, 20 barg 80mln/min gas supply: 95% N_2 - 5% O_2

- Influence of additives on the degradation process
- => Objective: study the benefit gained with degradation inhibitors, the influence due to corrosion inhibitors, ...
- Standard conditions (see previous test, strong conditions)
- + addition of knowm amounts of chemicals (Metallic ions, degradation inhibitors, additives, SO₂...)
- Possibility of ions quantification at the University of Liège (Laboratory of Geochemistry)
- Operating conditions will have to be determined!

- 12 experiments to perform (shall be discussed!)
- 1 or 2 weeks per experiment? The decision will have a large influence on the planning

5.2 Screening of other solvent degradation

- Comparison of different solvents for CO₂ capture
- => Objective: degradation comparative study of different solvents
- Standard conditions (see previous test, strong conditions)
- We work with 30 wt-% solutions of amines
- Proposal for new solvents from Laborelec
- Depending on the most influent parameters identified for MEA, a standard campaign of experiments will be applied to those solvents
- Operating conditions will have to be determined! Hazardous to do it now!

5.3 Reclaiming

- Process used to regenerate the amine
- => Objective: study the temperature reclaiming process which is actually not well-described in the litterature
- Experimental conditions and DTR configuration radically change
- Temperature much higher
- Condensate corresponds to condensated MEA
- Analysis of the remaining sludge which is potentially toxic and ecologically harmful, ...
- Operating conditions will have to be determined!

5.4 Degradation & Simulation

Making the link between simulation and degradation

=> Objective:

- having a reliable simulation model
- taking the degradation phenomenon into account
- that can be used for predicting the most appropriated operating conditions for post-combustion capture
- depending on the solvent choice.

- Multi-objectives process optimization:
 - Energy savings (costs)
 - Solvent savings (lower solvent make-up)
 - Lower environmental impact due to solvent degradation

LABORELEC

6. Conclusion

- Degradation test rig has been constructed
- Experiments are running
- Analytical means available but still to be improved
- Still a long way to do

Thank you for your attention!

Questions are welcome!