
Memory Efficient Algorithms for the Verification

of Temporal Properties∗

C. Courcoubetis†

Inst. of Comp. Sci.
of Crete‡

M. Vardi
IBM Almaden§

P. Wolper¶

Un. de Liège‖

M. Yannakakis
AT&T Bell Labs∗∗

Abstract

This paper addresses the problem of designing memory efficient algo-
rithms for the verification of temporal properties of finite-state programs.
Both the programs and their desired temporal properties are modeled as
automata on infinite words (Büchi automata). Verification is then reduced
to checking the emptiness of the automaton resulting from the product of
the program and the property. This problem is usually solved by com-
puting the strongly connected components of the graph representing the
product automaton. Here, we present algorithms which solve the empti-
ness problem without explicitly constructing the strongly connected com-
ponents of the product graph. By allowing the algorithms to err with a
small probability, we can implement them with a randomly accessed mem-
ory of size O(n) bits, where n is the number of states of the graph, instead
of O(n log n) bits which the presently known algorithms require.

1 Introduction

Reachability analysis is one of the most successful strategies for analyzing and
validating computer protocols. It was first proposed by West [Wes78], and
further studied by many researchers (cf. [Liu89, Rud87]. Reachability analysis
is applied to a protocol by systematically exercising all the protocol transitions.
Such analysis can detect syntactical errors such as static deadlock, unspecified

∗To appear in: Proceedings Workshop on Computer-Aided Verification, Rutgers, June 90,
Lecture Notes in Computer Science, Springer-Verlag.
†The work of this author is partially supported by ESPRIT-BRA project SPEC (3096)
‡Address: 36 Dedalou Street, P.O. Box 1385, 71110 Iraklio, Crete, Greece. Email:

courcou@ariadne.uucp
§Address: Department K55/802, 650 Harry Road San Jose, California 95120-6099, U.S.A.

Email: vardi@ibm.com
¶The work of this author is partially supported by ESPRIT-BRA project SPEC (3096)
‖Address: Institut Montefiore, B28, B-4000 Liège Sart-Tilman, Belgium. Email:

pw@montefiore.ulg.ac.be
∗∗Address: 600 Mountain Avenue, Murray Hill, New Jersey 07974, U.S.A. Email:

mihalis@research.att.com

1

reception, or unexercised code. The simplicity of the strategy lends itself to
easy implementation. Indeed, automated reachability analyses detected errors
in published standards such as the X.21 (cf. [WZ78]). The approach is less
successful when it comes to protocol verification, i.e., verifying that the given
protocol achieves its functional specification. This limitation is due to the
fact that a functional specification cannot be directly checked by reachability
analysis. To apply reachability analysis to such a task, one first has to manually
translate the functional specification to a property of the protocol state graph.
While this can be done for some specific specifications (cf. [RW82]), it is not a
general approach.

A general approach to protocol verification is to use a theorem-prover for
an appropriate logic. Early systems used to focus on input/output behavior
of protocols rather than on ongoing behavior (cf. [Sun83]), but systems that
are based on temporal logic overcame this shortcoming (cf. [Hai85]). Unfortu-
nately, theorem-proving systems are semi-automated at best, and their success
at dealing with real-life protocols is not as impressive as that of reachability
analysis (cf. [GJL84]).

A new approach that emerged in the 1980’s is the so-called model-checking
approach [CES86, CG87, LP85, QS81]. Model checking is based on the idea
that verifying a propositional temporal logic property of a finite-state program
amounts to evaluating that formula on the program viewed as a temporal in-
terpretation. The algorithms for doing this are quite efficient, since their time
complexity is a linear function of the size of the program. As was shown later in
the automata-theoretic approach of [Var89, VW86, Wol89], model checking can
be viewed as an augmented reachability analysis; the model-checking algorithm
uses the temporal logic specification to guide the search of the protocol state
space in order to verify that the protocol satisfies its functional specification.
Model checking thus seems to solve one of the limits of reachability analysis:
the inability to automatically verify functional specifications.

Model checking suffers, however, from the same fundamental problem plagu-
ing the reachability-analysis approach: the ability to explore only limited-size
state spaces. This problem, called the state-explosion problem, is the most basic
limitation of both approaches. It has been the subject of extensive research both
in the context of reachability analysis (cf. [Liu89, Rud87]) and in the context
of model checking (cf. [CG87]). A recent development [Hol88] has substantially
pushed back the state-explosion limit for reachability analysis. The main idea
behind this development is that, at the price of possibly missing part of the
state space, the amount of randomly accessed memory necessary for exploring
a state space of a given size could be substantially reduced (essentially from
O(n log(n)) to O(n) for a graph with n states). The essence of the method is
the use of hashing without collision detection.

In this paper, we show that model checking can also benefit from a similar
reduction in the required random memory. This result is obtained by a combi-
nation of techniques. We approach model checking from the automata-theoretic
perspective of [Var89, VW86, Wol89]. This has the advantage of essentially re-
ducing model checking to reachability analysis, though on a state space that
is the cross product of the original state space with the state space of an au-

2

tomaton describing the functional specification. It is then possible to adapt
techniques inspired by those of [Hol88] to solve this problem. However, while
Holtzmann’s technique is suitable for searching for “bad” states in the state
space, model checking involves searching for “bad” cycles. We thus had to
develop some special purpose algorithms that are presented here.

This paper is organized as follows. We first review some background on
model checking using the automata-theoretic approach and define the corre-
sponding graph-theoretic problem. Then, we discuss the requirements that al-
gorithms for solving this problem have to satisfy. Next we present our solutions.
Finally, we present some extensions and some final remarks.

2 Temporal Logic Verification using Büchi Automata

The model-checking problem we consider is the following. Given a program P
described as a product of finite-state transition systems Pi and a temporal logic
formula f , check that all infinite computations of P satisfy f . To solve this
problem, we use the following steps:

1. Build the finite-automaton on infinite words for the negation of the for-
mula f (one uses the negation of the formula as this yields a more efficient
algorithm). The resulting automaton is A¬f .

2. Take the product of the program P =
∏
Pi and the automaton A¬f .

3. Check if the product automaton is non-empty.

The approach we have just outlined has one major advantage over other
model-checking approaches: it does not build the entire state graph for the
program (the product of the Pi) before checking that it satisfies the temporal
property f . Indeed, the product

∏
Pi×A¬f can be computed in one pass. This

can lead to more efficiency for various reasons. In the first place, the product
of P and A¬f only accepts sequences that do not satisfy the requirement. One
expects few of these (none if the program is correct). It is thus possible that the
product of P and A¬f will have fewer reachable states than P . Furthermore,
when building P ×A¬f , it is not necessary to store the whole state-graph. It is
sufficient to keep just enough information for checking that condition 3 above
is satisfied. This is exactly what the algorithms we present in Section 3 will
do. The advantages of reducing model checking to a reachability problem are
also investigated in [JJ89], but only for pure safety properties. In that case, it
is sufficient to check that some states are simply reachable and the algorithms
we develop in this paper are not needed.

To be able to describe our algorithms, we need more details about Büchi
automata and how to check their emptiness. A Büchi automaton is a tuple
A = (Σ, S, ρ, S0, F), where

• Σ is an alphabet,

• S is a set of states,

3

• ρ : S × Σ→ 2S is a nondeterministic transition function,

• S0 ⊆ S is a set of starting states, and

• F ⊆ S is a set of designated states.

A run of A over an infinite word w = a1a2 . . . , is an infinite sequence
s0, s1, . . . , where s0 ∈ S0 and si ∈ ρ(si−1, ai), for all i ≥ 1. A run s0, s1, . . . is
accepting if there is some designated state that repeats infinitely often, i.e., for
some s ∈ F there are infinitely many i’s such that si = s. The infinite word w is
accepted by A if there is an accepting run of A over w. The set of denumerable
words accepted by A is denoted L(A).

From the definition of Büchi automata, it is relatively easy to see that a
Büchi automaton is nonempty iff it has some state f ∈ F that is reachable
from the initial state and reachable from itself (in one or more steps) [VW88].
In graph theoretic terms, this means that the graph representing the automaton
has a reachable cycle that contains at least one state in F . In what follows, we
will give a memory-efficient algorithm to solve this problem.

To formalize our verification approach, we define a program P as being a
finite-state transition system consisting of

• a state space V ,

• a nondeterministic transition function σ : V ×Σ→ 2V (Σ is the alphabet
common to the program and the automaton for the property A¬f) and

• a set of starting states V0 ⊆ V .

The accepting runs of P are defined by viewing P as a restricted type of Büchi
automaton in which the set of designated states is the whole set of states V .

According to the definitions above, if A¬f = (Σ, S, ρ, S0, F), the product
P ×A¬f is a Büchi automaton with

• state set V × S,

• transition function τ : V × S → 2V×S defined by (v2, s2) ∈ τ((v1, s1), a)
iff v2 ∈ σ(v1, a) and s2 ∈ ρ(s1, a),

• and set of designated states V × F .

This product automaton accepts all runs which are possible behaviors of P
(accepted by the automaton P) and violate the formula f (are accepted by
the automaton A¬f). Hence we have reduced the problem of proving that the
program P satisfies the formula f to the problem of checking the emptiness of
the Büchi automaton P ×A¬f .

It is interesting to note that the product automaton P ×A¬f has the Büchi
type of acceptance condition because the acceptance condition for P is the
trivial one. In the case in which the program P is modeled as an arbitrary
Büchi automaton, the problem of checking the emptiness of P ×A¬f is different
and will be examined in Section 4.

4

3 Verification Algorithms

3.1 Requirements on the Algorithms

We characterize the memory requirements of any verification algorithm as fol-
lows. We consider the data structures used by the algorithm. The total amount
of space used by these data structures corresponds to the total space require-
ments of the algorithm. The above space can be divided into memory that is
randomly accessed and into memory that is sequentially accessed. For exam-
ple, for implementing a hash table we need randomly accessed memory, while
a stack can be implemented with sequentially accessed memory.

As correctly pointed out in [Hol88], the bottleneck in the performance of
most verification algorithms is directly related to the amount of the randomly
accessed memory these algorithms require, and is due to the significant amount
of paging involved during the execution of the algorithm. Holzmann observed
that there is a tremendous speed-up for an algorithm implemented so that
its randomly accessed memory requirements do not exceed the main memory
available in the system (since sequentially accessed memory can be implemented
in secondary storage).

The basic problem that Holzmann considered is how to perform reachability
analysis by using the least amount of randomly accessed memory. For a graph
with n states, his scheme involves a depth-first search in the graph, where the
information about the states visited is stored in a bit-array of size m as follows.
When a new state is generated, its name is hashed into an address in the array;
if the bit of the corresponding location is on, then the algorithm considers that
the above state has already been visited; if the bit is off then it sets the bit and
adds the state on the stack used by the depth-first search. Since there is no
collision detection it follows that the above search is partial; there is always a
possibility that a state will be missed.

The key assumption behind this method, see [Hol88], is that in general
one can choose the value of m large enough and construct a hash function so
that the number of collisions becomes arbitrarily small. Furthermore, since
the limiting factor in reachability analysis is usually the space required by the
computation rather than the time required to do the computation, one could
significantly reduce the probability of error by running the algorithm a few
times with different hash functions. Indeed, Holzmann claims that, for most
practical applications, choosing a hash table of size m = O(n) together with
appropriate hash functions is sufficient for the effect of collisions to become
insignificant. Is this really so?

To answer this question, let us consider the memory requirements of the
general reachability problem defined as follows. We assume that the states
of the graph G have names from a name space U . In many applications (for
example protocols), |U | is many orders of magnitude larger than the number
n of reachable states of G. In this case, complete reachability analysis (no
missed states whatever the input graph) appears to require O(n log |U |) bits of
randomly accessed memory, and probably can not be done with less memory
(unless the names of the reachable states of G are not randomly selected from

5

U). Indeed, representing each state with less than log |U | bits amounts to
mapping the state space U to a smaller state space. Now, for any such mapping
there will always be subsets of U on which it is not one-to-one and hence on
which complete reachability will not be guaranteed.

The situation is different is one analyses the problem from a probabilistic
point of view. Consider all possible mappings from the set S = {1, . . . , n} into
the set {1, . . . ,m}. There are mn such mappings of which m!/(m − n)! are
one-to-one. Thus, if one assumes that the mapping implemented by a hash
function is randomly selected, the probability that it is one-to-one (no colli-
sions) is m!/((m − n)!mn which for n << m can be approximated by e−n

2/m.
This implies that in the case of a name space U and a graph with n reach-
able states, we can do partial reachability (with arbitrarily small probability of
missing reachable states) by using O(n log n) bits of randomly accessed memory
(instead of O(n log |U |) bits for complete reachability) as follows. First hash the
n reachable states into a set 1, . . . ,m with an arbitrarily small probability of
collision. As we have just seen, this is possible if we take m = O(n2). Then, do
complete reachability using the set 1, . . . ,m as the name space for the states.

Holtzmann’s technique goes one step further and only uses one bit of ran-
domly accessed memory per reachable state. This is equivalent to assuming
that there exists a hash function mapping U into 1, . . . ,m, m = O(n), with a
small probability of collisions. As the analysis above shows, this is not possible
if we just assume that the hash function is random. It can however be possible
if the state space U is only of size O(n) or if the set of reachable states has
a particular structure that can be used by the hash function. In these cases,
the gain in randomly accessed memory, size O(n) instead of size O(n log |U |) is
quite significant for large state spaces.

However, this gain in memory use is only obtained for straightforward
reachability analysis. To verify general temporal properties we have to check
nonemptiness of the product automaton. One way to accomplish this is to con-
struct the strongly connected component of the product automaton state graph
and then to check whether one of the strongly connected component contains
an accepting state. Unfortunately, we cannot apply Holtzmann’s method to
the standard algorithm for constructing the strongly connected components of
the graph [AHU74]. Indeed, although in that algorithm the states of the com-
ponents are stored in a stack, it requires access to information (depth-first and
low-link number) about states randomly placed in the stack, which implies the
need of at least O(n log n) bits of randomly accessed memory. Hence, given a
fixed amount of memory, the size of the problems we could efficiently analyze
with the above algorithm is substantially smaller than the size of the problem
that can be analyzed with the technique of [Hol88].

From the previous discussion the following problem emerges. Assuming that
reachability analysis in graphs of size n can be efficiently done with randomly
accessed memory of size O(n), can we solve the emptiness problem for Büchi
automata using only randomly accessed memory of size O(n)? The answer to
this problem is positive and the corresponding algorithms are described in the
following section.

6

3.2 The Algorithms

In this section we provide algorithms for the following problem.

Problem 1 (nonemptiness of Büchi automata) Given directed graph G,
start node s0, distinguished set of accepting nodes F , determine whether there is
a member of F which is reachable from s0 and belongs to a cycle, or equivalently,
to a nontrivial strong component.

We make the following representation assumptions. The graph G is given by
a successor function: a function that takes a node as argument and returns an
ordered list of its successors. The set F is specified by a membership routine.
We assume that we have a one-to-one function h mapping every node to an
integer in the range 1, . . . ,m.

Algorithm A:
The algorithm consists of two depth-first-searches (DFS’s). The two searches
can be performed one after the other, or can be done together in an interleaved
fashion. It is simpler to describe first the noninterleaved execution. The purpose
of the first DFS is to (1) determine the members of F that are reachable from
s0, and (2) order them according to last visit (i.e., in postorder) as f1, . . . , fk.1

The second DFS explores the graph using this ordering; it does not perform k
searches but only one. In more detail, the main data structures are as follows:
a stack S (to hold the path of DFS from root to current node), a (FIFO) queue
Q to hold the reachable members of F in postorder and a bit-array M indexed
by the hash values 1, . . . ,m for the “marked” bit (whether the node has been
visited). The two passes share the same structures S and M .

The first DFS is as follows:

1. Initialize: S := [s0], M := 0, Q := ∅.
2. Loop: while S 6= ∅ do

begin
v := top(S);
if M [h(w)] = 1 for all w ∈ succ(v)

then begin
pop v from S;
if v ∈ F insert v into Q
end

else begin
let w be the first member of succ(v) with M [h(w)] = 0;
M [h(w)] := 1;
push w into S

end
end

The second DFS is as follows:

1f1 is the first postorder reachable accepting state and fk is the last

7

1. Initialize: S := ∅, M := 0.
2. Loop: while Q 6= ∅ do

begin
f := head(Q);
remove f from Q;
push f into S;
while S 6= ∅ do

begin
v := top(S);
if f ∈ succ(v) then halt and return “YES”;
if M [h(w)] = 1 for all w ∈ succ(v)

then pop v from S
else begin

let w be the first member of succ(v) with M [h(w)] = 0;
M [h(w)] := 1;
push w into S

end
end

end

The correctness of the algorithm is based on the following claims.

Lemma 1 Let f1, . . . , fk be the members of Q after the first DFS, i.e., the
members of F that are reachable from s0 in postorder (f1 is the first member of
F to be reached in postorder, fk the last). If for some pair fi, fj with i < j there
is a path from fi to fj, then node fi belongs to a nontrivial strong component.

Proof: Suppose that there is a path from fi to fj . If no node on this path
was marked before fi, then the DFS would have reached fj from fi, so fj would
have come before fi in the postorder. Thus, some node p on the path was
marked before fi. If p comes before fi in the postorder, then fj also should
come before fi in the postorder. Since p was marked before fi, but comes after
fi in the postorder, it must be an ancestor of fi. Thus, fi can reach an ancestor
and therefore belongs to a nontrivial strong component. 2

Theorem 1 If the second DFS halts and returns “YES”, then some reachable
node of F belongs to a nontrivial strongly connected component. Conversely,
suppose that some reachable node of F belongs to a nontrivial strongly connected
component. Then the second DFS will return “YES”.

Proof: The first part is clear: suppose the second DFS returns “YES” while
processing node fj of Q. Then, it is building a tree with root fj and discovers
a back edge to the root fj , and therefore fj is obviously in a cycle. For the
converse, let fj be a reachable member of F that belongs to a nontrivial strongly
connected component and has the smallest index j among all such members.
Consider a path p from fj to itself. We claim that no node of p is reachable
from a fi with a smaller i. For, if some node was reachable, then fi would also

8

reach fj , which by Lemma 1 contradicts the choice of fj . Therefore, no node
of the path p is marked when we push fj into S in the second DFS, and thus
we will find a back edge to the root fj . 2

Note that the creation of both S and Q and access to them in both searches
are sequential. Hence, both can be stored in secondary memory as needed.

So far we analyzed the algorithm under the assumption that the hash func-
tion f is perfect. One of the main features of our algorithm is its behavior
in the presence of hash collisions. In that case, although the algorithm might
erroneously conclude (due to collisions) that the Büchi automaton does not ac-
cept any word, it will never mistakenly conclude that the automaton accepts
some word. In terms of the underlying verification problem, this means that
our algorithm might miss some errors, but will never falsely claim that the pro-
tocol is incorrect. Thus, the algorithm should be viewed more as a systematic
debugging tool rather than as a verification tool.

The following alternative does away with the queue Q by using instead a
second stack S2 and bit array M2. We do the second DFS on top of the first in
an interleaved way. The details are as follows.

Algorithm B:

1. Initialize: S1 := [s0], S2 := ∅, M1 := M2 := 0.
2. while S1 6= ∅ do

begin
x := top(S1);
if there is a y in succ(x) with M1[h(y)] = 0
then begin

let y be the first such member of succ(x);
M1[h(y)] := 1;
push y into S1
end

else begin
pop x from S1;
if x ∈ F then begin

push x into S2;
while S2 6= ∅ do begin

v := top(S2);
if x ∈ succ(v) then halt and return “YES”;
if M2[h(w)] = 1 for all w ∈ succ(v)

then pop v from S2
else begin

let w be the first member of succ(v) with M2[h(w)] = 0;
M2[h(w)] := 1;
push w into S2

end
end

end
end

9

end

The above algorithm requires twice as much space as that required by the
first algorithm. Its advantage is that if the automaton is found to be nonempty,
an accepted word can be extracted from the stacks S1 and S2. In verification
terms, this means that, if the protocol is found to be incorrect by the algorithm,
a sample incorrect path can be produced. This is essential for debugging to be
possible.

4 Extensions and Concluding Remarks

An extension of the verification problem described in Section 2 is the verification
of programs with liveness conditions, see [ACW90]. In this case the program
is given in terms of components, each having it own liveness conditions. Each
such component is modeled as a Büchi automaton. Hence, the product P ×A¬f
corresponds to an automaton whose transition table G is the product of the
corresponding transition tables and its acceptance condition is given in terms
of a set of sets of designated states {F1, . . . , Fk}. A run is accepting if it
repeats some state from each of these sets infinitely often. Clearly, checking
the emptiness of P × A¬f is equivalent with checking for the existence of a
strongly connected component in the product transition table which is reachable
from the initial state and intersects all these sets. Let S be the state space of
the product transition table. We can construct a Büchi automaton B with k|S|
states, such that the emptiness of B is equivalent with the emptiness of P×A¬f
(see for instance [VW86]).

• The graph of B consists of k copies of G with the transitions modified as
follows. Consider the k copies G1, . . . , Gk of G. For i = 1, . . . , k, replace
the transitions from every state f ∈ Fi of Gi by similar transitions to the
states in G(i mod k)+1.

• The initial states of B are those of one copy of G, say G1.

• The accepting states of B are the states Fi of the copy Gi of G, for some
arbitrary i. For instance we can take F1 ⊂ G1.

Hence, if we apply the algorithms of the previous section to B, we can do
verification with O(k|S|) bits of randomly accessed memory.

Another remark is the following. In many applications it is reasonable to
assume that the predecessor function of the graph is given as well. In this
case one can use the algorithm in Section 6.7 in [AHU82] for constructing the
strongly connected components of the graph G by using randomly accessed
memory of size O(n). Let Gr be the directed graph corresponding to G by
reversing its edges. This algorithm performs first a DFS on G and numbers
the states in order of completion of the recursive calls (in postorder). This can
be implemented by pushing the states in a stack according to their postorder
visit by the DFS; this stack can use sequentially accessed memory. Then the

10

algorithm performs a DFS on Gr (by using the predecessor function of G)
starting with the state with the highest postorder sequence number (top of
stack). This DFS on Gr must be restricted to the states reached during the
first DFS, and uses a hashing mechanism for marking the states already visited.
If the search does not reach all states, the algorithm starts the next DFS on
Gr from the highest-numbered state which has not been already visited by the
previous DFS. This can be easily done by poping the postorder stack until a
state which has not been visited (the corresponding bit in the hash table is zero)
is found. Since each tree in the resulting spanning forest is a strongly connected
component, one can easily check for the properties of each such component while
it is being generated.

References

[ACW90] S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding liveness prop-
erties to coupled finite-state machines. ACM Transactions on Pro-
gramming Languages and Systems, 12(2):303–339, 1990.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison Wesley, Reading,
1974.

[AHU82] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Struc-
tures and Algorithms. Addison Wesley, Reading, 1982.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifica-
tions. ACM Transactions on Programming Languages and Systems,
8(2):244–263, January 1986.

[CG87] E. M. Clarke and O. Grümberg. Avoiding the state explosion prob-
lem in temporal logic model-checking algorithms. In Proc. 6th ACM
Symposium on Principles of Distributed Computing, pages 294–303,
Vancouver, British Columbia, August 1987.

[GJL84] R. Grotz, C. Jard, and C. Lassudrie. Attacking a complex distributed
systems from different sides: an experience with complementary val-
idation tools. In Proc. 4th Work. Protocol Specification, Testing, and
Verification, pages 3–17. North-Holland, 1984.

[Hai85] B.T. Hailpern. Tools for verifying network protocols. In K. Apt,
editor, Logic and Models of Concurrent Systems, NATO ISI Series,
pages 57–76. Springer-Verlag, 1985.

[Hol88] G. Holzmann. An improved protocol reachability analysis technique.
Software Practice and Experience, pages 137–161, February 1988.

[JJ89] C. Jard and T. Jeron. On-line model-checking for finite linear tempo-
ral logic specifications. In Automatic Verification Methods for Finite

11

State Systems, Proc. Int. Workshop, Grenoble, volume 407, pages
189–196, Grenoble, June 1989. Lecture Notes in Computer Science,
Springer-Verlag.

[Liu89] M.T. Liu. Protocol engineering. Advances in Computing, 29:79–195,
1989.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concur-
rent programs satisfy their linear specification. In Proceedings of the
Twelfth ACM Symposium on Principles of Programming Languages,
pages 97–107, New Orleans, January 1985.

[QS81] J.P. Quielle and J. Sifakis. Specification and verification of concur-
rent systems in cesar. In Proc. 5th Int’l Symp. on Programming,
volume 137, pages 337–351. Springer-Verlag, Lecture Notes in Com-
puter Science, 1981.

[Rud87] H. Rudin. Network protocols and tools to help produce them. Annual
Review of Computer Science, 2:291–316, 1987.

[RW82] H. Rudin and C.H. West. A validation technique for tightly-coupled
protocols. IEEE Transactions on Computers, C-312:630–636, 1982.

[Sun83] C.A. Sunshine. Experience with automated protocol verification.
In Proceedings of the International Conference on Communication,
pages 1306–1310, 1983.

[Var89] M. Vardi. Unified verification theory. In B. Banieqbal, H. Barringer,
and A. Pnueli, editors, Proc. Temporal Logic in Specification, volume
398, pages 202–212. Lecture Notes in Computer Science, Springer-
Verlag, 1989.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to au-
tomatic program verification. In Proc. Symp. on Logic in Computer
Science, pages 322–331, Cambridge, june 1986.

[VW88] M.Y. Vardi and P. Wolper. Reasoning about infinite computation
paths. IBM Research Report RJ6209, 1988.

[Wes78] C.H. West. Generalized technique for communication protocol vali-
dation. IBM J. of Res. and Devel., 22:393–404, 1978.

[Wol89] P. Wolper. On the relation of programs and computations to models
of temporal logic. In B. Banieqbal, H. Barringer, and A. Pnueli,
editors, Proc. Temporal Logic in Specification, volume 398, pages 75–
123. Lecture Notes in Computer Science, Springer-Verlag, 1989.

[WZ78] C.H. West and P. Zafiropulo. Automated validation of a commu-
nication protocol: the ccitt x.21 recommendation. IBM Journal of
Research and Development, 22:60–71, 1978.

12

