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Summary. Near the opposition of a minor planet the geometrical
approximation essentially constitutes a good representation of the
Hapke-Irvine relation for describing the scattering properties of a
surface layer, and we show that the normalized light curve —i.e. I?
versus cos® (), where I, is the relative intensity of a measurement
observed at phase w — of a three-axes ellipsoid model reduces to a
straight line whose slope depends only on the aspect angle A and on
the semi-axes ratios a/b, b/c of the ellipsoid. A set of non-linear
equations — including at least one equation per opposition —is then
solved by a least squares method in order to derive the four
unknown parameters 4,, f, (ecliptic coordinates of the pole) and
a/b, b/c. The use of realistic standard deviations as well as of a
covariance matrix allows one to fully estimate the degree of
accuracy, correlation, etc. affecting the derivation of these
parameters. Among several other advantages offered by the
present technique, let us mention that: (i) it allows one to test
meaningfully the applicability of the amplitude-aspect relation for
a given asteroid; (i) it does not make use of additional and
uncertain magnitude-aspect relations; (iii) every single photometric
measurement within a light curve is taken into account, rather than
just the amplitude. Furthermore, it is found that the occultation
effect can always be neglected aslong as the phase anglea < 15°. As
a practical example, we have applied this technique to published
observations of two asteroids. For 624 Hektor, two possible
solutions are found:

Ao = 31426+ 220, B, =15°9+4°1, a/b=2.27+0.03 and
b/c=1.41+0.16 for the first pole (P,), and

Ao = 15125+ 2°1, B, =27°0+ 4°2, a/b=2.26+ 0.03 and
b/c=1.29+0.12 for the second one (P,).

For the case of 44 Nysa, we show that additional observations are
needed in order to derive a self-consistent pole orientation.

Key words: asteroids: pole orientation — asteroids: model —
photometry: light curve — solar system: minor planets

1. Introduction

Our understanding of the collisional evolution of asteroids in the
main belt is intimately connected with our knowledge of the
distribution of their rotation axes in space. Whereas there are
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actually more than 3000 minor planets which are catalogued, only
about 15 of them do have a reliable pole orientation. This justifies
the vast campaigns of photometric observations of asteroids that
are organized at various observatories.

Among the numerous techniques used when deriving the pole
orientation of a minor planet, two major approaches can be
distinguished. One of these, called ““‘photometric astrometry”,
enables one to find the pole orientation, sidereal period and sense
of rotation of an asteroid by dividing the number of rotational
cycles, corrected to a sidereal frame of reference, into the observed
synodic intervals between light curve maxima (Gehrels, 1967,
Taylor, 1979). This technique is not explicitly model dependent but
requires an appreciable amount of good photometric observations.
Indeed, in order to derive a reliable pole orientation, it is necessary
to obtain six to ten high quality light curves from one opposition
that span as wide a longitude range as possible, plus at least one
high quality light curve from each of four additional and different
oppositions (Taylor, 1984).

In the second of these approaches, one assumes that the
observed light curve amplitude and/or maximum and/or minimum
brightness of an asteroid are a function of the pole position. This
class of techniques has either led to empirical or analytic relations
between quantities, such as the amplitude of a light curve and the
aspect — angle between the line-of-sight and the rotation axis — (see
Vesely, 1971 and references therein; Gehrels and Owings, 1962;
Zappala, 1981; Zappala et al., 1983), the magnitude at maximum
brightness and the aspect (Sather, 1976; Zappala, 1981), etc. All
these techniques are model dependent and very often the implicit or
explicit assumption of a three-axes ellipsoid model is made.

Although the amplitude-aspect relationship has been cast in
doubt by several workers (Dunlap, 1971; Vesely, 1971 ; Surdej and
Surdej, 1978), we show in the present work that, whenever applied
carefully to selected cases, this technique provides one with an easy
and good means of deriving the pole orientation (4,, ,) as well as
the semi-axes ratios a/b and b/c of the ellipsoid.

2. The three-axes ellipsoid model

In order to simulate the light curve of a spinning asteroid, we adopt
a three-axes (a > b = c¢) ellipsoid model whose rotation around the
shortest axis is fully described by the angle y (cf. Fig. 1 in Surdej
and Surdej, 1978, referred to hereafter as Paper I).

Veverka (1971) has shown that the generalized Lommel-
Seliger law

cos (i) cos(e)
cos(i) +cos(e)

™
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also known as the Hapke-Irvine relation, is very appropriate in
order to calculate the amount of sunlight dE reflected by an
asteroid surface element ds, which normally makes an angle i (resp.
¢) with the direction of incidence (resp. scattering) of a solar ray.
Comparison between laboratory and theoretical light curves has
confirmed the good approximation provided by this relation for
describing the scattering properties of a dark asteroid surface,
intricate in texture (cf. PaperI).

Surdej and Louis (1982) have pointed out that at opposition
(o =0°) the angles i and ¢ are equal and that consequently Eq. (1)
reduces to

dE oc coseds, @)

justifying, a posteriori, the use of the geometrical approximation —
also known as the cross section approximation — for calculating
asteroid light curves. In the remainder of this paper, we assume
that the observed brightness of an asteroid (ellipsoid) is pro-
portional to the instantaneous cross section seen by a distant
observer.

Following Barsuhn (1983), Barucci and Fulchignoni (1982) or
Ostro and Connelly (1984), we easily find that the orthogonal
projection of the ellipsoid onto a plane perpendicular to the line-of-
sight is an ellipse, the area of which is (see the Appendix)

S = n(abe) [sinZA <Sm;("’) + COS;("’)> + COS;(A)T/Z, 3)

where A4 denotes the aspect angle.
Intensities at maximum (S,,) and minimum (S,,) brightness
occur at y =0 and y =7/2, and are given by

BN LT »

and

S, = n(abo) [sin2 2(A) + cosZZ(A)]l/2 . )
a c

Defining the relative intensity of a point in the light curve as

IL=r-S, 6)

where r is an arbitrary constant, and using the variables

y=I} and x=cos’(y), 7

we easily obtain from Eq. (3) the relation

y=Bx+C, ®

such that the quantity D = B/C, i.e.

D= (1 —cos?(4)) (a?/b*—1)
"1+ cos?(A) (@®/2—1)

®)

only depends on three unknown parameters: the module of the
cosine of the aspect angle and the semi-axes ratios a/b and a/c. Let
us note that if I, is defined with respect to the minimum brightness
(S,,), we should have C=1and D = B, i.e., D would represent the
slope of the linear x-y relation.

We have illustrated in Fig. 1 the x-y relation (see the dots)
calculated from the photoelectric photometric observations of 624
Hektor observed on 7 March, 1967 at Catalina observatory
(Dunlap and Gehrels, 1969). Adopting z,, = 8385 for the epoch of
the light maximum, P = 629225 for the sidereal period, a simple
linear regression between the y and x variables gives D =0.814

25
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Fig. 1. This x—y relation (dots) was constructed from the photoelectric
measurements of 624 Hektor observed on 7 March, 1967 (Dunlap and Gehrels,
1969). The straight line represents the best least squares linear fit of the form y
= Bx + C, for which D = B/C is found to be 0.814 + 0.037 (see text)

PR T T PR
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+ 0.037 (the straight line in Fig. 1 represents the corresponding
least squares linear fit) with a Pearson product-moment cor-
relation R = 0.972. Similar calculations have been performed from
nine additional photoelectric light curves of 624 Hektor obtained
during five different oppositions. The results are summarized in
Table 1 which also contains aspect data, references, etc., pertaining
to these observations.

Whereas the shape of 624 Hektor is not perfectly ellipsoidal (see
R < 1in Table 1), the rather good x-y linear fits derived from the
light curves of this minor planet indicate that the three-axes
ellipsoid model essentially constitutes a first good approximation
for modelling its light curves. Conversely, the absence of a linear
relationship between the x and y quantities calculated from the
light curves of an asteroid would denote the non-applicability of
the ellipsoid model for that particular object.

Noticing that the full amplitude 4m of an ellipsoidal light curve
is related to the quantity D via the relation

Am=1.251og,, (1 + D), (10)

two obvious conclusions can be drawn:

(i) All amplitude-aspect type relations should only be applied to
asteroid light curves that are observed near opposition.

(if) These light curves should be nearly ellipsoidal, i.e. there
should be an approximate linear relationship between the x and y
quantities.

Compared to the classical amplitude-aspect relations (cf.
Gehrels and Owings, 1962; Zappala, 1981; Zappala and KneZevic,
1984), the present method enables one to take into account every
single measurement — rather than just the two most extreme points
(dm) — of an observed light curve when deriving the parameter D,
as well as to judge the applicability of such relations.

3. Determination of the pole orientation(s)
Defining the parameters

a\? a\?
y=<3) and 5=<E> s

an
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Table 1. Date, reference, ecliptic coordinates, phase angle and characteristics of the x — y relation for different light curves of the minor
planet 624 Hektor (see text)

Date of Observations Reference A B a tM . D R
(1950.0)
28 April 1957 Fig. 1 (DG) 249291 -21:82 7:0 221591 2.855+0.565 0.968
4 May Fig. 2 (DG) 249.28 -22.08 6.2 23%.829 2.490 0.367 0.953
30 May Fig. 3 (DG) 245.85 -22.59 4.4 22.769 2.238 0.176 0.982
31 May Fig. 4 (DG) 245.71 -22.59 4.5 23.068 3.009 0.498 0.939
4 February 1965 Fig. 5 (DG) 119.38 +14.64 4.1 4.382 0.189 0.009 0.958
7 March 1967 Fig. 6 (DG) 192.90 -9.90 5.5 8.385 0.814 0.037 0.972
29 April 1968 Fig. 7 (DG) 226.02 -20.24 4.2 7.487 4.026 0.122 0.994
1 May Fig. 8 (DG) 225.74 -20.29 4.1 4.487 3.676 0.102 0.994
13 February 1977 Fig. 2 (HC) 132.9% +10.51 3.0 9.103 0.084 0.011 0.789
14 February Fig. 2 (HC) 132.80 +10.47 3.2 12.660 0.088 0.015 0.696

DG : Dunlap and Gehrels, 1969
HC : Hartmann and Cruikshank, 1978

and with the help of Eq. (9), the well-known relation between the
aspect angle A;, the ecliptic coordinates 4;, §; of an asteroid
observed at a time ¢;, and the ecliptic coordinates 4, f, of its
rotation axis (cf. Taylor, 1979) may be written in the form

sin(B;) sin(B,) + cos(;) cos(Bo) cos(4; — 4o)

. G-D-D; |”?

+ sign(cos(4;)) I:Di(5—1)+(y—1)] 0,
where D, represents the parameter D derived for light curve n° i
and sign(cos(4,)) is the undetermined + or — sign.

In principle, a minimum number of four (i=1, ..., 4) such
non-linear equations is needed in order to determine the four
unknown parameters 4,4, f,, 7, and 6. We have adopted a least-
squares adjustment technique for solving such a system of
transcendental equations.

(12)

3.1. 624 Hektor

For the case of 624 Hektor, we have considered a system of ten
(i=1,...,10) non-linear equations for which the 1, §;, and D; are
listed in Table 1. This system has been solved by means of the FIT
numerical program (see MIDAS, 1984), designed and kindly put at
our disposal by Otto-Georg Richter at the European Southern
Observatory. Considering first the 16 possible combinations of
sign (cos(4;)) for a system of 4 equations — corresponding to four
different oppositions — and adding successively each of the six
remaining equations, we find that there are only two sets of
sign (cos(4;)) (=1, ..., 10) for each of which two solutions exist.
Adopting the order of the observations in Table 1, the first set of

sign(cos(4;)) appears to be —,—,—, —,+,+,+,+,+,+. Be-
cause the poles (44, Bo) and (4, + 7, —p) define an identical
orientation of the rotation axis, the second set of sign(cos(4;))
naturally corresponds to +, +, +,+, —,—, —, —, —, —. For a
low inclination orbit (; ~ 0°), the two pole solutions (4,, f,) and
(Ao + 7, By) equally satisfy equation (12). This ambiguity in the
determination of a pole has been fully discussed by Taylor (1979)
and Zappala et al. (1983). The two resulting solutions found for the
pole of 624 Hektor are listed in Table 2. Unfortunately, the reduced
Chi-squares (y/(n — p) where n= 10 and p = 4) characterizing the
two solutions are found to be very similar, and there remains a real
ambiguity. A look at the covariance matrix in Table 3 also clearly
indicates that there is no correlation between the parameters A,
Bo, v, and 6.

Assigning an equal weight (1/5) to each of the five oppositions
and an additional weight to each equation that is proportional to
the number of extrema seen in the relevant light curve, we have
computed the two new relevant pole positions of 624 Hektor (see
Table2). Within the mean standard deviations, no significant
differences are noticed between these and the previous solutions.

The fact of deleting one or more (up to 6) equations in the
system usually results in

(i) altering somewhat the values of the four parameters;

(ii) increasing their mean standard deviations;

(i) creating possible correlations between some of the
parameters.

However, let us remark that the new calculated pole solutions
always lie, within the larger uncertainties, near the previous ones.
Since most asteroids are orbiting in low inclination orbits (8; ~ 0°),
two light curves observed at longitudes 4; and A;+ 180° will
essentially provide a same value for D; (see Eq. (12)). Therefore, it
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Table 2. The different pole solutions for 624 Hektor

1) Unweighted calculations

2
xo Bo a/b b/e X red
P, 315534205 16:245°9 2.3040.07 1.430.28 1.84 1073
P2 152.5+3%.0 27.015.3 2.28*0.05 1.32+0.20 1.91 103
2) Weighted calculations (see Text)
2
}‘o Bo a/b b/c X red
P, 31426+220 15294421 2.27+0.03 1.41+0.16 1.06 10—
P2 151.5+2.1 27.0%4.2 2.26+0.03 1.29+0.12 1.28 1074

Table 3. Correlation factors between the parameters 4,4, f,, y, and &

1) Unweighted calculations

a) Covariance matrix for P b)

Covariance matrix for P2

A B Y B Y
Bo 0.876 ﬁo -0.885
Y -0.227 -0.418 Y 0.381 -0.223
8 -0.617 -0.820 0.732 8 0.779 -0.670 0.672
2) Weighted calculations (see Text)
a) Covariance matrix for P1 b) Covariance matrix for P2
A B Y Bo Y
Bo 0.870 ﬁo -0.825
Y 0.030 -0.198 Y 0.250 -0.001
o) -0.714 -0.854 0.453 8 0.727 -0.746 0.362

would be ideal to observe an asteroid at four distinct oppositions
such that the corresponding ecliptic longitudes (4; or 4; + 180°) are
equally distributed in the range 4, ¢[0°, 180°]. Additional light
curves from more oppositions will in general be required in order to
improve the solution(s), to minimize the mean standard deviations
as well as to destroy any possible correlation existing between some
of the parameters.

3.2. 44 Nysa

In order to derive the pole orientation (4,, o) and the semi-
axes ratios a/b and b/c of 44 Nysa, we have analyzed nine light
curves of this asteroid, pertaining to six different oppositions (see

Table4). However, we can immediately note that during the 1949,
1964, and 1979 oppositions, the ecliptic longitude of 44 Nysa has
remained in the very narrow range A¢[3°, 19°]. Consequently, it is
as if 44 Nysa had been observed at only four distinct oppositions.
Assigning an equal weight of 1/12 to each of the 1949, 1964 and
1979 oppositions and an equal weight of 1/4 to the three remaining
ones, we have solved a system of nine (i=1, ..., 9) non-linear
equations [cf. Eq. (12)] for which the A;, f;, and D, are listed
in Table4. Our main result is the following: for the only two
possible sets of sign(cos(4;)) being +,+,—,—,+,+,+,+,+
and —,—,+,+,—,—,—, —, —, we find that the parameter 6 gets
to unrealistic high values and that it is strongly correlated with 4,
and f,, which are also significantly correlated between each other.
Such a non-convergence of the solution(s) can be due either to the
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Table 4. Date, reference, ecliptic coordinates, phase angle and characteristics of the x — y relation for different light curves of the minor

planet 44 Nysa (see text)

Date of Observations Reference A B a ty D R
(1950.0)

6 November 1949 Fig. 1 (8) 18754 -6:03 10%5 48474 1.083+0.041 0.984
7 November Fig. 2 (8) 18.33 -6.01 11.0 6.148 1.090 0.041 0.982
13 January 1958 Fig. 17 (GO) 98.82 -3.09 6.6 5.099 0.327 0.012 0.956
2 March 1962 Fig. 7 (cC) 143.75 2.41 8.3 16.496 0.63%2 0.024 0.976
8 October 1964 Fig. 6 (Y) 12.18 -5.56 2.6 15.117 0.921 0.040 0.988
29 October Fig. 6 (Y) 741 -5.56 11.6 15.100 0.922 0.054 0.957
16 May 1974 Fig. 4 (2V) 247.04 5.59 5.0 22.989 0.596 0.02% 0.960
25 September 1979 Fig. 2B (B) 3.63 -4.85 2.2 5.970 0.781 0.023 0.975
26 September Fig. 2C (B) 3.28 -4.88 2.0 17.207 0.821 0.021 0.974

Shatzel, 1954

GO : Gehrels and Owings, 1962

CC : Chang and Chang, 1962

: Yang et al., 1965

7ZV : Zappald and Van Houten - Groeneveld, 1979
B : Birch et al., 1983
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Fig. 2. This x—y relation (dots) was constructed from the photoelectric
measurements of 44 Nysa observed on 26 September, 1979 (Birch et al., 1983).
The straight line represents the best least squares linear fit of the form y = Bx
+ C, for which D = B/Cis found to be 0.821 + 0.021. Let us note at the lower left
side of the figure a small group of dots presenting a systematic departure from
the linear fit (see text)

non-applicability of the ellipsoid model, or to a lack of additional
equation(s).

We have illustrated in Fig.2 the x-y relation (see Sect. 2)
calculated from the photoelectric photometric observations of 44
Nysa obtained on 26 September, 1979 (Birch et al., 1983). We

clearly see that a small group of dots, located at the lower left side
of the figure, presents a systematic departure from the linear
relation. These dots correspond in fact to the photoelectric
measurements of the deepest of the two recorded minima in the
light curve of 44 Nysa (Fig. 2¢ in Birch et al., 1983). Similar, but
less pronounced, features are also seen in some of the other x—y
relations. It thus seems possible that the non-convergence of the
pole solutions of 44 Nysa is partly due to its shape being somewhat
non-ellipsoidal.

Since a lack of observations (D;) suitably spaced along the
ecliptic could also account for the non-convergence of the pole
solution(s) of 44 Nysa, we have tried to better condition our system
of equations in another way. Constraining the parameter b/c to a
fixed value, we find that there is always a good convergence of the
solutions for b/c = 1. Considering plausible values for the ratio b/c
¢[1, 3], we have illustrated in Fig. 3 the resulting values of 1, and §,,
for the two possible pole solutions P; and P,. For both these
solutions, the ratio a/b=1.446 &+ 0.006 is found to be irrespective
of the value of b/c.

We naturally conclude that additional observations (D;) of 44
Nysa at other ecliptic longitudes are needed in order to derive a
more self-consistent pole orientation.

4. The pole(s) of Hektor

By means of photometric astrometry, Dunlap and Gehrels (1969)
have first derived the pole orientation of 624 Hektor. Using the
light curves from the first four oppositions (see Table1), they
found the most likely solution to be

P: A,=324°+3°, B,=10°+2°,
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Fig. 3. aResulting values of the coordinates A, and f3, for the pole solution P, of 44 Nysa as a function of the semi-axes ratio b/c. The crosses and error bars correspond
to the pole solution P; determined by Tedesco and Taylor (1983) on the basis of photometric astrometry. b Similar relations for the second pole solution P, . The mean
standard deviations affecting the determination of 4, and f, are indicated. The reduced Chi-square characterizing each pair of solutions (P, , P,) are found to be very
similar. Furthermore, the covariance matrix derived for each solution indicates that there is no correlation between the parameters 1,, f, and a/b = 1.446 + 0.006

rejecting the spurious pole at

Py Ag~165°, Bo~15°.
Furthermore, Dunlap and Gehrels report a direct sense of rotation
and a sidereal period P = 6255™215115 + 0:004. Within about 15°,
there is a very good agreement between their results and those
determined by the revisited amplitude-aspect relation in Table 2.
Combining an amplitude-aspect type description and an
approach similar to the photometric astrometry, Magnusson
(1983) has derived the pole solutions of 624 Hektor to be

P 2,=322°+10°, B,=—4°%10°
and

P, Ao=144°+ 10°, 0=10°+10°.
However, his adopted linear amplitude-aspect-phase relationship
(cf. Eq. (1) in Magnusson, 1983) is not found to be appropriate for
accounting for changes of amplitude with aspect [see our Egs. (9)
and (10)]. This inadequate treatment partly explains the larger
deviations found between his solutions and those listed in Table 2.
Finally, Zappala and KneZevic (1984) have recently determined
the pole solutions of Hektor on the basis of amplitude-magnitude-
aspect relations. They report the values

Pi: Ag=314°%+7°, B,=15°%5°
and
P, Aog=152°+4°, B,=29°+7°,

in very good agreement with our results in Table 2. Their semi-axes
ratios a/b = 2.66 and b/c = 1.13 are based on a more uncertain
magnitude-aspect relation.

5. The pole(s) of Nysa

On the basis of amplitude-magnitude-aspect relations, Gehrels
and Owings (1962) have reported the first pole determination of 44
Nysa:

do=105° and B,=30°.

They also predicted the maximum amplitude of the light curve to
be 0.48 mag. Four additional and independent calculations of the
pole(s) of 44 Nysa have been reported meanwhile. These are
summarized in Table5. Applying the photometric astrometry
technique, Taylor and Tedesco (1983) have firmly established
that the rotation of 44 Nysa is prograde — with a sidereal period
P=0926755902 — and that consequently the pole solution P, at
Ao ~290° can be definitely rejected. For a ratio value b/c ~ 1.75,
the results of our calculations in Fig. 3a are found to be in good
agreement with the pole solution P, of Taylor and Tedesco (1983).

6. The occultation effects

For phase angles o= 0, Eq. (3) should contain a correction term for
occultation effects (cf. Barucci and Fulchignoni, 1982; Ostro and
Connelly, 1984). As seen by an observer located on the earth, the
orthogonal projection of the ellipsoid onto a plane perpendicular
to the sun-asteroid direction — defining the terminator — is also an
ellipse whose area S, (see the Appendix) is a complicated function
depending on the aspect (4), the obliquity (0), the phase angle (),
the rotation angle (y) and the semi-axes a, b, and ¢ (see Fig.1 in
Paper I for a visualization of these angles). A development of S, in
a Taylor series around « =0 gives (see the Appendix)

2
$,=8-2 f(4.0,y,0,b,0), a3
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Table 5. Previous pole determinations of 44 Nysa

Whereas it is attractive to use additional magnitude-aspect

Ay Bo a/b b/c Technique(s) Reference
105°+ 2 30°+ ? A-M-A Gehrels and Owings (1962)
100 + 10 50 = 10 1.58 1.30 A-M-A Zappald and Van Houten -
Groeneveld (1979)
94 t 3 59 + 3 A-M-A Magnusson (1983)
288 + 3 63 3 + PA
100 £ 10 60 £ 10 PA Taylor and Tedesco (1983)
99 + 7 49 t 6 1.51 1.18 A-M-A Zappald and Knezevié (1984)
295 = 8 54 * 6
Note: A-M-A stands for Amplitude-Magnitude-Aspect relations,
PA for Photometric Astrometry
with 7. Discussion
in2 2
f(4,0,w,a,b,c)=mn(abc) {w_)zifs_@ The main conclusions of the present work are concisely sum-
a*b marized in the abstract. We shall here briefly point out some
(sin(y) sin(0) + cos () cos(0) cos(4))? pitfalls that should be avoided when deriving the pole orientation
+ 2 of an asteroid by means of amplitude-aspect type relations.
+ (cos(y) sin(0) — sin(y) cos(0) cos(A))* relations [cf. Egs. (4) and (5)] in order to derive parameters such as
b*c? the b/c ratio (Zappala, 1981; Zappala et al., 1983; Zappala and
_ sin2 cos? cos?(4)\3/2 KneZevic, 1984), the a/c ratio, etc., it is absolutely necessary to
<51n2(A)< aZ(W) + bz(W)>+ cz( )> , (14)  correct the observed magnitudes at maximum, minimum, etc.

and where S| is the area given by Eq. (3). Under the assumption
that the geometrical approximation still holds, the unocculted area
of the asteroid seen by a terrestrial observer is then given by (cf.
Barucci and Fulchignoni, 1982; Ostro and Connelly, 1984)

S
S= S1+5; , (15)
2
which, in our case, reduces to
(12
S=S1_T'f(A,0,W,a,b,C). (16)

This result clearly demonstrates that for sufficiently small
phase angles (« $15°) the occultation effects can be neglected to
the second order in a — the first order term being identically equal to
zero — when calculating the light curve reflected by an ellipsoidal
asteroid. This resultis also in good agreement with the small scatter
experimentally observed between different amplitude-aspect plots
as a function of the obliquity for phase angles a < 20° (see Barucci
et al., 1982).

Our main conclusion is that for ¢ % 0, Eqs. (3)}~(12) remain a
very good approximation for deriving the pole orientation of an
asteroid as long as the relevant photoelectric light curves were
obtained at phase angles ¢ < 15°.

brightness to a common phase angle. Unfortunately, the phase
coefficient B of an elongated asteroid cannot be interpreted
unambiguously due to a dependence of f upon the geometric
configuration of the observations (Surdej and Surdej, 1978).
Making use of Egs. (4) and (5), it is straightforward to show that
the magnitude difference 4m between the maxima (resp. minima)
of two different light curves observed at the same phase angle but
for extreme values of the aspect 4, =0° and 4, = 90° amounts to

(dm),, = 2.51logy4(b/c), an
and
(dm),, = 2.51og,,(a/c), (18)

respectively. As an example, we obtain (4m), ~ 0.5mag and
(dm),, ~ 1.6 mag for the particular case of 624 Hektor (see
Table 2). Unless the phase coefficient has been properly corrected
for the aspect changes (cf. Sather, 1976) — and obliquity changes if
a 2 15° - no attempt should be made to derive semi-axes ratios by
means of magnitude-aspect relations. Furthermore, due to many
unknown factors, such as possibly poor weather conditions,
variability of the comparison star, slight differences between
photometric systems, etc., it is really dangerous to base a physical
model on absolute photometric measurements that were collected
by different observers at various observatories. The technique
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described in Sects. 2 and 3 is entirely based on relative intensities
which are not only more reliable but also easier to use.
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Appendix

Considering the aspect (4), obliquity (0) and phase («) angles as
defined in PaperI (see Fig. 1), we easily find that the coordinates
transformation

X' =TX, (A1)

where X' (resp. X) is a vector defined in the reference system of the
ellipsoid (resp. terrestrial observer), is given by

—cos(y) sin(4) —sin(y) cos(0) +cos(y) cos(4) sin(0)

(— sin () sin(4)
T =
cos(A) sin(A) sin(0)

One can then show that the intersection between the ellipsoid
surface

ORORCE

and the tangent cylinder having a generatrix parallel to the line-of-
sight is an ellipse (cf. Barucci and Fulchignoni, 1982) having an
area

(A3)

S, = n(abod) V'V, , (A%
where
V =RR, (A5)
R, =§ (A6)
R;=R;, (A7)
and
a=ab,c (A8)
for i = 1,2, 3, respectively.

Elementary algebra leads to the result
V,, = sin?(A4) (Sin;(w + COS;(W)> + COS;(A) . (A9)

Combining (A4) and (A9) gives Eq. (3).

For a given phase angle o # 0, the intersection between the
ellipsoid surface and the tangent cylinder having a generatrix
parallel to the sun-asteroid direction, is an ellipse in both the sun
and observer rest frames (cf. Barucci and Fulchignoni, 1982). In
the frame of the observer, the area of this ellipse is given by

S, = n(abc) Wy, cos(a)) — Wy, sin(a))/ VW, » (A10)
where
W =SS, (Al11)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System

U,
Sy= (A12)
and
U=TA, (A13)
with
cos(x) —sin(a) 0
A=\ sin(x) cos(a) 0 ], (A14)
0 0 1

being the transformation matrix between coordinates defined in
the frame of the observer and that of the sun. In terms of the matrix

cos(y) cos(0) +sin(y) cos(A4) sin(0) — cos(y)sin(0) + sin(y) cos(A4) cos(0)

elements V};, Eq. (A10) may be rewritten in the convenient form

S, =mn(abc) (V,,cos(a) + ¥V, sin(a))/
(V11 cos? () + V,, sin?(a) + 2V, , sin (o) cos () /2. (A15)
sin(y) sin(0) + cos(y) cos(4) cos (0)> . (A2)

sin(4) cos(0)

Developing this last expression of S, in a Taylor series around
o =0, we obtain

2
—
S, =m(abc) {I/Vu _E‘((Rn Ry, — R, R,,)?
+ (R R3;— Ry, R31)* + (Ry; Ry, — Ry, R31)2)/V131/2}~ (A16)

Combining the different results (A2), (A4)-(AS8), and (A 16), we
finally obtain Eq. (13).
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