Special Article - Tools for Experiment and Theory

A flavor kit for BSM models

Werner Porod¹, Florian Staub^{2,a}, Avelino Vicente³

¹ Institut für Theoretische Physik und Astronomie, Universität Würzburg, 97074 Würzburg, Germany

² BCTP and Physikalisches Institut der Universität Bonn, Nußallee 12, 53115 Bonn, Germany

³ IFPA, Dep. AGO, Université de Liège, Bat B5, Sart-Tilman, 4000 Liège 1, Belgium

Received: 12 May 2014 / Accepted: 19 July 2014 / Published online: 28 August 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We present a new kit for the study of flavor observables in models beyond the standard model. The setup is based on the public codes SARAH and SPheno and allows for an easy implementation of new observables. The Wilson coefficients of the corresponding operators in the effective lagrangian are computed by SPheno modules written by SARAH. New operators can also be added by the user in a modular way. For this purpose a handy Mathematica package called the PreSARAH has been developed. This uses FeynArts and FormCalc to derive generic form factors at tree- and 1-loop levels and to generate the necessary input files for SARAH. This framework has been used to implement $BR(\ell_{\alpha} \rightarrow \ell_{\beta}\gamma), BR(\ell_{\alpha} \rightarrow 3\ell_{\beta}), CR(\mu - e, A), BR(\tau \rightarrow 2\ell_{\beta}\gamma), CR(\mu - e, A), CR(\mu - e, A),$ $P \ell$), BR $(h \to \ell_{\alpha} \ell_{\beta})$, BR $(Z \to \ell_{\alpha} \ell_{\beta})$, BR $(B^0_{s,d} \to \ell \bar{\ell})$, $BR(\bar{B} \rightarrow X_s \gamma), BR(\bar{B} \rightarrow X_s \ell \bar{\ell}), BR(\bar{B} \rightarrow X_{d,s} \nu \bar{\nu}),$ $BR(K^+ \to \pi^+ \nu \bar{\nu}), BR(K_L \to \pi^0 \nu \bar{\nu}), \Delta M_{B_s, B_d}, \Delta M_K,$ ε_K , BR($B \to K \mu \bar{\mu}$), BR($B \to \ell \nu$), BR($D_s \to \ell \nu$) and BR($K \rightarrow \ell \nu$) in SARAH. Predictions for these observables can now be obtained in a wide range of SUSY and non-SUSY models. Finally, the user can use the same approach to easily compute additional observables.

Contents

1	Introduction	2		
2	General strategy: calculation of flavor observables			
	in a nutshell	2		
3	Setup	4		
	3.1 FlavorKit: usage and goals	4		
	3.2 Download and installation	5		
	3.3 Basic usage	5		
	3.4 Limitations	6		
4	Advanced usage I: implementation of new observ-			
	ables using existing operators	6		

5 Advanced usage II: implementation of new operators	9
5.1 Introduction	9
5.2 Input for PreSARAH	9
5.3 Operators with massless gauge bosons	12
5.4 Combination and normalization of operators .	13
6 Validation	13
7 Conclusion	16
Appendix A: Lagrangian	17
Appendix B: Operators available by default in the	
SPheno output of SARAH	18
B.1 2-Fermion-1-Boson operators	18
B.2 4-Fermion operators	21
Appendix C: Application: flavor observables implemen-	
ted in SARAH	24
C.1 Lepton flavor observables	24
C.1.1 $\ell_{\alpha} \rightarrow \ell_{\beta} \gamma$	24
$C.1.2 \ell_{\alpha} \rightarrow 3\ell_{\beta} \ldots \ldots \ldots \ldots \ldots$	24
C.1.3 Coherent $\mu - e$ conversion in nuclei .	26
$C.1.4 \tau \rightarrow P\ell \dots $	27
C.1.5 $h \rightarrow \ell_{\alpha} \ell_{\beta}$	30
C.1.6 $Z \rightarrow \ell_{\alpha} \ell_{\beta}$	30
C.2 Quark flavor observables	31
$C.3 B^0_{s,d} \to \ell^+ \ell^- \dots \dots \dots \dots \dots \dots \dots$	31
C.4 $\bar{B} \rightarrow X_s \gamma$	33
C.5 $\bar{B} \to X_s \ell^+ \ell^-$	34
C.6 $B^+ \rightarrow K^+ \ell^+ \ell^- \dots \dots \dots \dots \dots$	36
C.7 $\bar{B} \to X_{d,s} \nu \bar{\nu}$	37
$C.8 K \to \pi \nu \bar{\nu} \qquad \dots \qquad $	38
C.9 $\Delta M_{B_{s,d}}$	39

C.9 $\Delta M_{B_{s,d}}$	•	•	•	•	39
C.10 ΔM_K and ε_K					40
C.11 $P \rightarrow \ell \nu \ldots \ldots \ldots$					42
Appendix D: Models					43
D.1 Supersymmetric models					43
D.2 Non-supersymmetric models .					44
References					44

^ae-mail: fnstaub@th.physik.uni-bonn.de

1 Introduction

With the exploration of the terascale, particle physics has entered a new era. On the one hand, the discovery of a Higgs boson at the LHC [1,2] seemingly completed the Standard Model (SM) of particle physics, even though there is still quite some room for deviations from the SM predictions. The observed mass of about 125 GeV in combination with a top quark mass of 173.34 GeV [3] implies within the SM that we potentially live in a meta-stable vacuum [4]. This, together with other observations, like the dark matter relic density or the unification of gauge forces, indicates that there is physics beyond the SM (BSM). Although no sign of new physics has been found so far at the LHC, colliders are not the only places where one can search for new physics. Low energy experiments focused on flavor observables can also play a major role in this regard, since new particles leave their traces via quantum effects in flavor violating processes such as $b \to s\gamma$, $B_s \to \mu^+\mu^-$ or $\mu \to e\gamma$. In the last few years there has been a tremendous progress in this field, both on the experimental as well as on the theoretical side. In particular, observables from the Kaon- and B-meson sectors, rare lepton decays and electric dipole moments have put stringent bounds on new flavor mixing parameters and/or additional phases in models beyond the SM.

There are several public tools on the market which predict the rates of several flavor observables: superiso [5–7], SUSY Flavor [8,9], NMSSM-Tools [10], MicrOmegas [11–15], SuperBSG [16], SupeLFV [17], SuseFlav [18], IsaJet with IsaTools [19-24] or SPheno [25,26]. However, all of these codes have in common that they are only valid in the Two-Higgs-doublet model or in the MSSM or simple extensions of it (NMSSM, bilinear R-parity violation). In addition, none of these tools can be easily extended by the user to calculate additional observables. This has made flavor studies beyond the SM a cumbersome task. The situation has changed with the development of SARAH [27-31]. This Mathematica package can be used to generate modules for SPheno, which then can calculate flavor observables at the 1-loop level in a wide range of supersymmetric and non-supersymmetric models [32-34]. However, so far all the information about the underlying Wilson coefficients¹ for the operators triggering the flavor violation as well as the calculation of the flavor observables had been hardcoded in SARAH. Therefore, it was also very difficult for the user to extend the list of calculated observables. The implementation of new operators was even more difficult.

We present a new kit for the study of flavor observables beyond the standard model. In contrast to previous flavor codes, FlavorKit is not restricted to a single model, but can be used to obtain predictions for flavor observables in a wide range of models (SUSY and non-SUSY). FlavorKit can be used in two different ways. The basic usage of FlavorKit allows for the computation of a large number of lepton and quark flavor observables, using generic analytical expressions for the Wilson coefficients of the relevant operators. The setup is based on the public codes SARAH and SPheno, and thus allows for the analytical and numerical computation of the observables in the model defined by the user. If necessary, the user can also go beyond the basic usage and define his own operators and/or observables. For this purpose, a Mathematica package called PreSARAH has been developed. This tool uses FeynArts/FormCalc [35-40] to compute generic expressions for the required Wilson coefficients at the tree- and 1-loop levels. Similarly, the user can easily implement new observables. With all these tools properly combined, the user can obtain analytical and numerical results for the observables of his interest in the model of his choice. To calculate new flavor observables with SPheno for a given model the user only needs the definition of the operators and the corresponding expressions for the observables as well as the model file for SARAH. All necessary calculations are done automatically. We have used this setup to implement $BR(\ell_{\alpha} \rightarrow \ell_{\beta}\gamma), BR(\ell_{\alpha} \rightarrow 3\ell_{\beta}), CR(\mu - e, A), BR(\tau \rightarrow \delta)$ $P \ell$), BR($h \rightarrow \ell_{\alpha} \ell_{\beta}$), BR($Z \rightarrow \ell_{\alpha} \ell_{\beta}$), BR($B_{s,d}^0 \rightarrow \ell \ell$), $BR(\bar{B} \rightarrow X_s \gamma), BR(\bar{B} \rightarrow X_s \ell \bar{\ell}), BR(\bar{B} \rightarrow X_{d,s} \nu \bar{\nu}),$ $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}), BR(K_L \rightarrow \pi^0 \nu \bar{\nu}), \Delta M_{B_s, B_d}, \Delta M_K,$ ε_K , BR($B \rightarrow K \mu \bar{\mu}$), BR($B \rightarrow \ell \nu$), BR($D_s \rightarrow \ell \nu$) and BR($K \rightarrow \ell \nu$) in SARAH.

This manual is structured as follows: in the next section we give a brief introduction into the calculation of flavor observables focusing on the main steps that one has to follow. Then we present FlavorKit, our setup to combine FeynArts/FormCalc, SPheno and SARAH in Sect. 3. In Sect. 4 we explain how new observables can be added and in Sect. 5 how the list of operators can be extended by the user. A comparison between FlavorKit and the other public codes is presented in Sect. 6 taking the MSSM as an example before we conclude in Sect. 7. The appendix contains information about the existing operators and how they have been combined to compute the different flavor observables.

2 General strategy: calculation of flavor observables in a nutshell

Once we have chosen a BSM model,² our general strategy for the computation of a flavor observable follows these steps:

¹ Sometimes the *Wilson coefficients* are also referred to as *form factors*. We will nevertheless stick to the name *Wilson coefficients* in the following, also for lepton flavor violating processes.

 $^{^2}$ The current version of FlavorKit can only handle renormalizable operators at this stage of the computation.

 Step 1: We first consider an effective Lagrangian that includes the operators relevant for the flavor observable of our interest,

$$\mathcal{L}_{eff} = \sum_{i} C_i \mathcal{O}_i. \tag{1}$$

This Lagrangian consists of a list of (usually) higherdimensional operators O_i . The Wilson coefficients C_i can be induced either at tree or at higher loop levels and include both the SM and the BSM contributions ($C_i = C_i^{\text{SM}} + C_i^{\text{BSM}}$). They encode the physics of our model.

- **Step 2:** The Wilson coefficients are computed diagrammatically, taking into account all possible tree-level and 1-loop topologies leading to the O_i operators.³
- Step 3: The results for the Wilson coefficients are plugged in a general expression for the observable and a final result is obtained.

The user has to make a choice in step 1. The list of operators in the effective Lagrangian can be restricted to the most relevant ones or include additional operators beyond the leading contribution, depending on the required level of precision. Usually, the complete set of renormalizable operators contributing to the observable of interest is considered, although in some well motivated cases one may decide to concentrate on a smaller subset of operators. This freedom is not present in step 2. Once the list of operators has been arranged, the computation of the corresponding C_i coefficients follows from the consideration of all topologies (penguin diagrams, box diagrams, ...) leading to the \mathcal{O}_i operators. This is the most complicated and model dependent step, since it demands a full knowledge of all masses and vertices in the model under study. Furthermore, it may be necessary to compute the coefficients at an energy scale and then obtain, by means of their renormalization group running, their values at a different scale. Finally, step 3 is usually quite straightforward since, like step 1, is model independent. In fact, the literature contains general expressions for most flavor observables, thus facilitating the final step. However, one should be aware that the formulas given in the literature assume that certain operators contribute only sub-dominantly and, thus, omit the corresponding contributions. This is in general justified for the SM but not in a general BSM model. In particular, this is the case for processes involving external neutrinos, which are often assumed to be purely left-handed, making the operators associated to their right-handed components to be neglected.

We will exemplify our strategy using a simple example: BR($\mu \rightarrow e\gamma$) in the Standard Model extended by righthanded neutrinos and Dirac neutrino masses. The starting point is, as explained above, to choose the relevant operators. In this case, it is well known that only dipole interactions can contribute to to the radiative decay $\ell_{\alpha} \rightarrow \ell_{\beta\gamma}$ at leading order.⁴ Therefore, the relevant operators are contained in the $\ell - \ell - \gamma$ dipole interaction Lagrangian. This is in general given by

$$\mathcal{L}_{\ell\ell\gamma}^{\text{dipole}} = ie \, m_{\ell_{\alpha}} \, \bar{\ell}_{\beta} \sigma^{\mu\nu} q_{\nu} \left(K_2^L P_L + K_2^R P_R \right) \ell_{\alpha} A_{\mu} + \text{h.c.}$$
⁽²⁾

Here *e* is the electric charge, *q* the photon momentum, $P_{L,R} = \frac{1}{2}(1 \mp \gamma_5)$ are the usual chirality projectors and $\ell_{\alpha,\beta}$ denote the lepton flavors. This concludes step 1.

The information about the underlying model is encoded in the coefficients $K_2^{L,R}$. In the next step, these coefficients have to be calculated by summing up all Feynman diagrams contributing at a given loop level. Expressions for these coefficients for many different models are available in the literature. In the SM only neutrino loops contribute and one finds [41]

$$K_{2}^{L} = \frac{G_{F}}{2\sqrt{2}\pi^{2}}m_{\mu}\sum_{i}\lambda_{i\mu}\lambda_{ie}^{*}(F_{1}+F_{2})$$
(3)

$$K_{2}^{R} = \frac{G_{F}}{2\sqrt{2}\pi^{2}}m_{e}\sum_{i}\lambda_{i\mu}\lambda_{ie}^{*}(F_{1} - F_{2})$$
(4)

Here, λ_{ij} denote the entries of the Pontecorvo–Maki– Nakagawa–Sakata matrix and F_1 and F_2 are loop functions. One finds approximately $F_1 \simeq -\frac{1}{4} \left(\frac{m_v}{m_W}\right)^2$ and $F_2 \simeq 0$. Finally, we just need to proceed to the last step, the computation of the observable. After computing the Wilson coefficients $K_2^{L,R}$ it is easy to relate them to BR($\mu \rightarrow e\gamma$) by using [42]

$$\Gamma\left(\ell_{\alpha} \to \ell_{\beta}\gamma\right) = \frac{\alpha m_{\ell_{\alpha}}^{5}}{4} \left(|K_{2}^{L}|^{2} + |K_{2}^{R}|^{2}\right),\tag{5}$$

This expression holds for all models. With this final step, the computation concludes.

As we have seen, the main task to get a prediction for $BR(\mu \rightarrow e\gamma)$ in a new model is to calculate $K_2^{L,R}$. However, this demands the knowledge of all masses and vertices involved. Moreover, in most cases a numerical evaluation of the resulting loop integrals is also welcome. Therefore, even for a *simple* process like $\mu \rightarrow e\gamma$, a computation from scratch in a new model can be a hard work. In order to solve this practical problem, we are going to present here a fully automatized way to calculate a wide range of flavor observables for several classes of models.

³ In principle, one can go beyond the 1-loop level, although in our case we will restrict our computation to the addition of a few NLO corrections.

⁴ At next to leading order, one would also have to consider operators like $\bar{\mu}\gamma_{\nu}e\,\bar{q}\gamma^{\nu}q$, to be combined with a $q - q - \gamma$ dipole interaction.

3 Setup

3.1 FlavorKit: usage and goals

As we have seen, the calculation of flavor observables in a specific model is a very demanding task. A detailed knowledge about the model is required, including

- 1. expressions for all involved masses and vertices
- 2. optionally, renormalization group equations to get the running parameters at the considered scale
- 3. expressions to calculate the operators
- 4. formulae to obtain the observables from the operators.

Nearly all codes devoted to flavor physics have those pieces hardcoded, and they are only valid for a few specific models.⁵ The only exception is SPheno, thanks to its extendability with new modules for additional models. These modules are generated by the Mathematica package SARAH and provide all necessary information about the calculation of the (loop corrected) mass spectrum, the vertices and the 2-loop RGEs. These expressions, derived from fundamental principles for any (renormalizable) model, contain all the information required for the computation of flavor observables. In fact, SARAH also provides Fortran code for a set of flavor observables. For this output, generic expressions of the necessary Wilson coefficients have been included. These are matched to the model chosen by the user and related to the observables by the standard formulae available in the literature. However, it was hardly possible for the user to extend the list of observables or operators included in SARAH without a profound knowledge of either the corresponding Mathematica or Fortran code.

We present a new setup to fill this gap in SARAH: FlavorKit. As discussed in Sect. 2, the critical step in the computation of a flavor observable is the derivation of analytical expressions for the Wilson coefficients of the relevant operators. This step, being model dependent, requires information about the model spectrum and interactions. However, generic expressions can be derived, later to be matched to the specific spectrum and interaction Lagrangian of a given model. For this purpose, we have created a new Mathematica package called PreSARAH. This package uses the power of FeynArts and FormCalc to calculate generic 1-loop amplitudes, to extract the coefficients of the demanded operators, to translate them into the syntax needed for SARAH and to write the necessary wrapper code. PreSARAH works for any 4-fermion or 2fermion-1-boson operators and will be extended in the future **Table 1** List of flavor violating processes and observables which have been already implemented in FlavorKit. To the left, observables related to lepton flavor, whereas to the right observables associated to quark flavor. See Appendices C.1 and C.2 for the definition of the observables and the relevant references for their calculation

Lepton flavor	Quark flavor
$\ell_{lpha} o \ell_{eta} \gamma$	$B^0_{s,d} \to \ell^+ \ell^-$
$\ell_{lpha} o 3 \ell_{eta}$	$\bar{B} \to X_s \gamma$
$\mu - e$ conversion in nuclei	$\bar{B} \to X_s \ell^+ \ell^-$
$ au o P \ell$	$\bar{B} \to X_{d,s} \nu \bar{\nu}$
$h ightarrow \ell_{lpha} \ell_{eta}$	$B \to K \ell^+ \ell^-$
$Z \to \ell_{\alpha} \ell_{\beta}$	$K\to\pi\nu\bar\nu$
	$\Delta M_{B_{s,d}}$
	ΔM_K and ε_K
	$P \to \ell \nu$

to include other kinds of operators. The current version already contains a long list of fully implemented operators (see Appendix B). The results for the Wilson coefficients obtained with PreSARAH are then interpreted by SARAH, which adapts the generic expressions to the specific details of the model chosen by the user and uses snippets of Fortran code to calculate flavor observables from the resulting Wilson coefficients. As for the operators, there is a long list of observables already implemented (see Appendices C.1 and C.2). Finally, SARAH can be used to obtain analytical output in LATEX format or to create Fortran modules for SPheno, thus making possible numerical studies.

FlavorKit can be used in two ways:

- **Basic usage:** This is the approach to be followed by the user who does not need any operator nor observable beyond what is already implemented in FlavorKit. In this case, FlavorKit reduces to the standard SARAH package. The user can use SARAH to obtain analytical results for the flavor observables and, if he wants to make numerical studies, to produce Fortran modules for SPheno. For the list of implemented operators we refer to Appendix B, whereas the list of implemented observables is given in Table 1.
- Advanced usage: This is the approach to be followed by the user who needs an operator or an observable not included in FlavorKit. In case the user is interested in an operator that is not implemented in FlavorKit, he can define his own operators and get analytical results for their coefficients using PreSARAH. Then the output can be passed to SARAH in order to continue with the basic usage. In case the user is interested in an observable that is not implemented in FlavorKit, this can be easily implemented by the addition of a Fortran file, with a few lines of code relating the observable to the operators in FlavorKit (implemented by default or added by the

⁵ Recently, Peng4BSM@LO [43] was made public. This code derives analytical expressions for vector penguins for a model defined in the corresponding FeynArts model file.

Fig. 1 Schematic way to use FlavorKit: the user can define new operators in PreSARAH, which then calculates the coefficients in a generic form using FeynArts and FormCalc and creates the necessary input files for SARAH. In addition, Fortran code can be provided to relate the Wilson coefficients to specific flavor observables. This information is used by SARAH to generate SPheno code for the numerical calculation of the observables

user). The Fortran files just have to be put together with a short steering file into a specific directory located in the main SARAH directory. Then one can continue with the basic usage.

The combination of PreSARAH together with SARAH and SPheno allows for a modular and precise calculation of flavor observables in a wide range of particles physics models. We have summarized the setup in Fig. 1: the user provides as input SARAH model files for his favorite models or takes one of the models which are already implemented in SARAH (see Appendix D for a list of models available in SARAH). New observables are implemented by providing the necessary Fortran code to SARAH while new operators can be either implemented by hand or by using PreSARAH which then calls FeynArts and FormCalc for the calculation of the necessary diagrams. However, most users will not require to implement new operators or observables. In this case, the user can simply use SARAH in the standard way and (1) derive analytical results for the Wilson coefficients and observables, and (2) generate Fortran modules for SPheno in order to run numerical analysis.

3.2 Download and installation

FlavorKit involves several public codes. We proceed to describe how to download and install them.

```
    FeynArts/FormCalc
    FeynArts and FormCalc can be downloaded from
```

```
www.feynarts.de/
```

It is also possible to use the script FeynInstall, to be found on the same site, for an automatic installation.

2. SARAH and PreSARAH SARAH can be downloaded from

sarah.hepforge.org/

No installation or compilation is necessary. Both packages just need to be extracted by using tar.

>tar -xf SARAH-4.2.0

> tar -xf PreSARAH-1.0.0

PreSARAH needs the paths to load FeynArts and FormCalc. These have to be provided by the user in the file PreSARAH.ini

```
1 FeynArtsPackage = "FeynArts/FeynArts.m";
```

2 FormCalcPackage = "FormCalc/FormCalc.m";

This would work if FeynArts and FormCalc have been installed in the Application directory of the local Mathematica installation. Otherwise, absolute paths should be used, e.g.

```
    FeynArtsPackage =
        "/home/$user/$path/FeynArts -3.7/FeynArts.m";
    FormCalcPackage =
        "/home/$user/$path/FormCalc -8.1/FormCalc.m";
```

3. SPheno

SPheno can be downloaded from

```
spheno.hepforge.org/
```

After extracting the package, make is used for the compilation.

```
> tar -xf SPheno-3.3.0.tar.gz
> cd SPheno-3.3.0
> make
```

3.3 Basic usage

As explained above, FlavorKit can be used in several ways, depending on the user's needs and interests. The advanced usage, which involves the introduction of new observables and/or the computation of new operators, is explained in detail in Sects. 4 and 5. Here we focus on the basic usage, which just requires the codes SARAH and SPheno.

SARAH can handle the analytical derivation of all the relevant Wilson coefficients in the model defined by the user. The resulting expressions can be then extracted in IAT_EX form or used to generate a SPheno module for numerical evaluation. These are the steps to follow in order to use SARAH:

 Loading SARAH: after starting Mathematica, SARAH is loaded via «SARAH-4.2.0/SARAH.m

or via

«[\$path]/SARAH-4.2.0/SARAH.m

The first choice works if SARAH has been installed in the Application directory of Mathematica. Otherwise, the absolute path([\$path]) to the local SARAH installation must been used.

- Initialize a model: as example for the initialization of a model in SARAH we consider the NMSSM: Start["NMSSM"];
- 3. Obtaining the IATEX output: the user can get IATEX output with all the information about the model (including the coefficients for the flavor operators) via ModelOutput[EWSB]; MakeTeX[];
- Obtaining the SPheno code: to create the SPheno output the user should run MakeSPheno[];

Thanks to FlavorKit, SARAH can also write LATEX files with the analytical expressions for the Wilson coefficients. These are given individually for each Feynman diagram contributing to the coefficients, and saved in the folder

[\$SARAH]/Output/[\$MODEL]/EWSB/TeX/FlavorKit/

For the 4-fermion operators the results are divided into separated files for tree-level contributions, penguins contributions and box contributions. The corresponding Feynman diagrams are drawn by using FeynMF [44]. To compile all Feynman diagrams at once and to generate the pdf file, a shell script called MakePDF_[\$OPERATOR].sh is written as well by SARAH.

In case the user is interested in the numerical evaluation of the flavor observables, a SPheno module must be created as explained above. Once this is done, the resulting Fortran code can be used for the numerical analysis of the model. This can be achieved in the following way:

1. **building** SPheno: as soon as the SPheno output is finished, open a terminal and enter the root directory of the SPheno installation, and create a new subdirectory, copy the SARAH output to that directory and compile it

```
> cd [$SPheno]
```

```
> mkdir NMSSM
```

```
> cp [$SARAH]/Output/NMSSM/EWSB/
SPheno/* NMSSM/
```

- > make Model=NMSSM
- 2. **Running** SPheno: After the compilation, a new binary SPhenoNMSSM is created. This file can be executed providing a standard Les Houches input file (SARAH provides an example file, see the SARAH output folder). Finally, SPheno is executed via

> ./bin/SPhenoNMSSM NMSSM/LesHouches. in.NMSSM

This generates the output file SPheno.spc.NMSSM, which contains the blocks QFVobservables and LFVobservables. In those two blocks, the results for quark and lepton flavor violating observables are given.

Finally, an even easier way to implement new models in SARAH is the butler script provided with the SUSY Toolbox [45]

sarah.hepforge.org/Toolbox/

3.4 Limitations

FlavorKit is a tool intended to be as general as possible. For this reason, there are some limitations compared to codes which perform specific calculations in a specific model. Here we list the main limitations of FlavorKit:

- Chiral resummation is not included because of its large model dependence, see e.g. [46] and references therein.
- Even though we have included some of the higher order corrections for the SM part of some observables in a parametric way, 2- or higher loop corrections, calculated in the context of the SM or the MSSM for specific observables, are not considered, see for instance [47–54].

4 Advanced usage I: implementation of new observables using existing operators

In order to introduce new observables to the SPheno output of SARAH, the user can add new definitions to the directories

[\$SARAH]/FlavorKit/[\$Type]/Processes/

[\$Type] is either LFV for lepton flavor violating or QFV for quark flavor violating observables. The definition of the new observables consists of two files

- 1. A steering file with the extension .m
- 2. A Fortran body with the extension .f90

The steering file contains the following information:

- NameProcess: a string as name for the set of observables.
- NameObservables: names for the individual observables and numbers which are used to identify them later in the SPheno output. The value is a three dimensional list. The first part of each entry has to be a symbol, the second one an integer and the third one a comment to be printed in the SPheno output file ({{name1,number1,comment1},...}).

- NeededOperators: The operators which are needed to calculate the observables. A list with all operators already implemented in FlavorKit is given in Appendix B. In case the user needs additional operators, this is explained in Sect. 5.
- Body: The name (as string) of the file which contains the Fortran code to calculate the observables from the operators.

For instance, the corresponding file to calculate $\ell_{\alpha} \rightarrow \ell_{\beta} \gamma$ reads

1	NameProcess = "LLpGamma";		
2	NameObservables = {{muEgamma, 701, "BR(mu->e gamma)"},		
3	{tauEgamma, 702, "BR(tau->e		
	gamma)"},		
4	{tauMuGamma, 703, "BR(tau→mu		
	gamma) " } };		
5	NeededOperators = {K2L, K2R};		
6	Body = "LLpGamma. f90";		

The observables will be saved in the variables muEgamma, tauEgamma, tauMuGamma and will show up in the spectrum file written by SPheno in the block FlavorKitLFV as numbers 701 to 703.

The file which contains the body to calculate the observables should be standard Fortran90 code. For our example it reads

```
1
     Real(dp) :: width
2
    Integer :: i1, gt1, gt2
3
4
    Do i1=1.3
5
    If (i1.eq.1) Then
6
                                 ! mu -> e gamma
7
     gt1 = 2
8
     gt2 = 1
0
     Elseif (i1.eq.2) Then
                                 !tau -> e gamma
     gt1 = 3
10
11
     gt2 = 1
12
    Else
                                 ! tau -> mu gamma
13
     gt1 = 3
14
     gt2 = 2
15
    End if
16
```

```
17
    width=0.25 dp*mf 1(gt1)**5*(Abs(K2L(gt1,gt2))**2 &
18
                & +Abs(K2R(gt1,gt2))**2)*Alpha
19
20
    If (i1.eq.1) Then
21
     muEgamma = width/(width+GammaMu)
22
    Elseif (i1.eq.2) Then
23
     tauEgamma = width/(width+GammaTau)
24
    E1se
25
     tauMuGamma = width/(width+GammaTau)
26
    End if
27
    End do
28
```

Real(dp) is the SPheno internal definition of double precision variables. Similarly one would have to use Complex(dp) for complex double precision variables when necessary.

Besides the operators, the SM parameters given in Table 2 and the hadronic parameters given in Tables 3 and 4 can be used in the calculations. For instance, we used Alpha for $\alpha(0)$ and mf_l which contains the poles masses of the leptons as well as GammaMu and GammaTau for the total widths of μ and τ leptons.

By extending or changing the file hadronic_ parameters.m in the FlavorKit directory, it is possible to add new variables for the mass or life time of mesons. These variables are available globally in the resulting SPheno code. The numerical values for the hadronic parameters can be changed in the Les Houches input file by using the blocks FCONST and FMASS defined in the Flavor Les Houches Accord (FLHA) [55].

It may happen that the calculation of a specific observable has to be adjusted for each model. This is for instance the case when (1) the calculation requires the knowledge of the number of generations of fields, (2) the mass or decay width of a particle, calculated by SPheno, is needed as input, or (3) a rotation matrix of a specific field enters the analytical expressions for the observable. For these situations, a special syntax has been created. It is possible to start a line with @ in the Fortran file. This line will then be parsed by SARAH, and Mathematica commands, as well as SARAH specific

Table 2 List of SM parameters available in FlavorKit. All hadronic observables are calculated at Q = 160 GeV

Real variables					
AlphaS_MZ	$\alpha_S(M_Z)$	AlphaS_160	$\alpha_S(Q)$		
sinW2_MZ	$\sin(\Theta_W)^2$ at M_Z	sinW2_160	$\sin(\Theta_W)^2$ at Q	sinW2	$\sin(\Theta_W)^2$
Alpha_MZ	$\alpha(M_Z)$	Alpha_160	$\alpha(Q)$	Alpha	$\alpha(0)$
MW_MZ	$M_W(M_Z)$	MW_160	$M_W(Q)$	MW	M_W
GammaMu	Width Γ_{μ} of μ	GammaTau	Width Γ_{τ} of τ		
Real vectors of lengt	h 3				
mf_d_160	$m_d(Q)$	mf_d_MZ	$m_d(M_Z)$	mf_d	m_d
mf_u_160	$m_u(Q)$	mf_u_MZ	$m_u(M_Z)$	mf_u	m_u
mf_1_160	$m_l(Q)$	mf_l_MZ	$m_l(M_Z)$	mf_l	m_l
Complex arrays of di	imension 3×3				
CKM_MZ	CKM at (M_Z)	CKM_160	CKM at Q	CKM	input

Table 3 Hadronic parameters used in FlavorKit. These can be changed via FMASS and and FLIFE in the Les Houches input file

Particle	Life time	Default [s]	Mass	Default [GeV]	PDG number
π^0	tau_pi0	$8.52 \cdot 10^{-17}$	mass_pi0	0.13498	111
π^+	tau_pip	$2.60\cdot 10^{-8}$	mass_pip	0.13957	211
$\rho(770)^{0}$	tau_rho0	$4.41\cdot 10^{-24}$	mass_rho0	0.77549	113
D^0	tau_D0	$4.10\cdot 10^{-13}$	mass_D0	1.86486	421
D^+	tau_Dp	$1.04\cdot 10^{-12}$	mass_Dp	1.86926	411
D_s^+	tau_DSp	$5.00\cdot10^{-13}$	mass_DSp	1.96849	431
D_{s}^{*+}	tau_DSsp	_	mass_DSsp	2.1123	433
η	tau_eta	$5.06\cdot10^{-19}$	mass_eta	0.54785	221
$\eta'(958)$	tau_etap	$3.31\cdot 10^{-21}$	mass_etap	0.95778	331
$\omega(782)$	tau_omega	$7.75\cdot 10^{-23}$	mass_omega	0.78265	223
$\phi(1020)$	tau_phi	$1.54\cdot 10^{-22}$	mass_phi	1.01946	333
K_L^0	tau_KL0	$5.12\cdot 10^{-8}$	mass_KLO	-	130
K_S^0	tau_KS0	$0.90\cdot 10^{-10}$	mass_KS0	-	310
K^0	tau_K0	_	mass_KO	0.49761	311
K^+	tau_Kp	$1.24\cdot 10^{-8}$	mass_Kp	0.49368	321
B_d^0	tau_B0d	$1.52\cdot 10^{-12}$	mass_B0d	5.27958	511
B_s^0	tau_B0s	$1.50\cdot 10^{-12}$	mass_B0s	5.36677	531
B^+	tau_Bp	$1.64 \cdot 10^{-12}$	mass_Bp	5.27925	521
B^{*0}	tau_B0c	$1.43\cdot 10^{-23}$	mass_B0c	5.3252	513
B^{*+}	tau_Bpc	$1.43\cdot 10^{-23}$	mass_Bpc	5.3252	523
B_c^+	tau_Bcp	$4.54\cdot 10^{-13}$	mass_Bcp	6.277	541
$K^{*0}(892)$	tau_K0c	$1.42\cdot 10^{-23}$	mass_K0c	0.8959	313
$K^{*+}(892)$	tau_Kpc	$1.30\cdot 10^{-23}$	mass_Kpc	0.8917	323
$\eta_c(1S)$	tau_etac	$2.22\cdot 10^{-23}$	mass_etac	2.9810	441
$J/\Psi(1S)$	tau_JPsi	$7.08\cdot10^{-24}$	mass_JPSi	3096.92	443
$\Upsilon(1S)$	tau_Ups	$1.21\cdot 10^{-23}$	mass_Ups	9.4603	553

 Table 4
 Decay constants available in the SPheno output of SARAH.

 The values can be changed according to the FLHA conventions using the block FCONST in the Les Houches input file

Decay constant	Variable	Default [MeV]	FLHA
f_K	f_k_CONST	176	FCONST[321,1]
f_{K^+}	f_Kp_CONST	156	FCONST[323,1]
f_{π}	f_pi_CONST	118	FCONST[111,1]
$f_{B^0_d}$	f_B0d_CONST	194	FCONST[511,1]
$f_{B^0_s}$	f_B0s_CONST	234	FCONST[531,1]
f_{B^+}	f_Bp_CONST	234	FCONST[521,1]
$f_{\eta'}$	f_etap_CONST	172	FCONST[231,1]
$f_{ ho}$	f_rho_CONST	220	FCONST[213,1]
f_{D^+}	f_Dp_CONST	256	FCONST[411,1]
f_{D_s}	f_Ds_CONST	248	FCONST[431,1]

commands, can be used. We made use of this functionality in the implementation of $h \rightarrow \ell_{\alpha} \ell_{\beta}$. The lines in hLLp.f90 read

1	! Check for SM like Higgs	
2	@ If [getGen[HiggsBoson]>1, hLoc = MaxLoc(Abs(<>	
	$1 \circ String[HiggsMixingMatrix] <> (2,:)), 1)$, "hLoc =	
	1"]	
3		
4	! Get Higgs mass	
5	@ "mh ="<>ToString[SPhenoMass[HiggsBoson]] <>	
	If [getGen[HiggsBoson]>1,"(hLoc)", ""]	
6		
7	! Get Higgs width	
8	@ "gamh ="<>ToString[SPhenoWidth[HiggsBoson]] <>	
	If [getGen [HiggsBoson] > 1,"(hLoc)", ""]	

In this implementation we define an integer hLoc that gives the generation index of the SM-like Higgs, to be found among all CP even scalars. In the first line it is checked if more than one scalar Higgs is present. If this is the case, the hLoc is set to the component which has the largest amount of the up-type Higgs, if not, it is just put to 1. Of course, this assumes that the electroweak basis in the Higgs sector is always defined as $(\phi_d, \phi_u, ...)$ as is the case for all models delivered with SARAH. In the second and third lines, the variables mh and gamh are set to the mass and total width of the SM-like Higgs, respectively. For this purpose, the SARAH commands

xgetGen[x]	Returns the number of generations of a particle x
getDim[x]	Returns the dimension of a variable x
SPhenoMass[x]	Returns the name used for the mass of a particle x in the SPheno output
SPhenoMassSq[x]	Returns the name used for the mass squared of a particle x in the SPheno output
SPhenoWidth[x]	Returns the name used for the width of a particle x in the SPheno output
HiggsMixingMatrix	Name of the mixing matrix for the CP even Higgs states in a given model
PseudoScalarMixingMatrix	Name of the mixing matrix for the CP odd Higgs states in a given model

 Table 5
 SARAH commands which can be used in the input file for the calculation of an observable

SPhenoMass [x] and SPhenoWidth [x] are used. They return the name of the variable for the mass and width in SPheno and it is checked if these variables are arrays or not.⁶ For the MSSM, the above lines lead to the following code in the SPheno output:

```
1 ! Check for SM like Higgs
2 hLoc = MaxLoc(Abs(ZH(2,:)),1)
3
4 ! Get Higgs mass
5 mh = Mhh(hLoc)
6
7 ! Get Higgs width
8 gamh = gThh(hLoc)
```

We give in Table 5 the most important SARAH commands which might be useful in this context.

Many more examples are given in Appendix C.1, where we have added all input files for the calculations of flavor observables delivered with SARAH.

5 Advanced usage II: implementation of new operators

The user can also implement new operators and obtain analytical expressions for their Wilson coefficients. In this case, he will need to use PreSARAH which, with the help of FeynArts and FormCalc, provides generic expressions for the coefficients, later to be adapted to specific models with SARAH.

5.1 Introduction

New operators can be implemented by extending the content of the folder

[\$SARAH]/FlavorKit/[\$Type]/Operators/

In the current version of FlavorKit, 3- and 4-point operators are supported. Each operator is defined by a .m-file. These files contain information about the external particles, the kind of considered diagrams (tree-level, self-energies, penguins, boxes) as well as generic expressions for the coefficients. These expressions, derived from the generic Feynman diagrams contributing to the coefficients, are written in the form of a Mathematica code, which can be used to generate Fortran code.

For the automatization of the underlying calculations we have created an additional Mathematica package called PreSARAH, which can be used to create the files for all 4fermion as well as 2-fermion-1-boson operators. This package creates not only the infrastructure to include the operators in the SPheno output of SARAH but makes also use of FeynArts and FormCalc to calculate the amplitudes and to extract the coefficient of the demanded operators. It takes into account all topologies depicted in Figs. 2, 3, 4, 5 and 6.

5.2 Input for PreSARAH

In order to derive the results for the Wilson coefficients, PreSARAH needs an input file with the following information:

- ConsideredProcess: A string which defines the generic type for the process
 - "4Fermion"
 - "2Fermion1Scalar"
 - "2Fermion1Vector"
- NameProcess: A string to uniquely define the process
- ExternalFields: The external fields. Possible names are ChargedLepton, Neutrino, DownQuark, UpQuark, ScalarHiggs, PseudoScalar, Zboson, Wboson⁷

⁶ The user can define in the parameters.m and particles.m file for a given model in SARAH the particles which should be taken to be the CP-even or CP-odd Higgs and the parameter that corresponds to their rotation matrices. This is done by using the Description statements Higgs or Pseudo-Scalar Higgs as well as Scalar-Mixing-Matrix or Pseudo-Scalar-Mixing-Matrix. If the particle or parameter needed to calculate an observable is not present or has not been defined, the observable is skipped in the SPheno output.

⁷ The particles.m file for each model is used to define which particle corresponds to SM states using the Description statement together with Leptons, Neutrinos, Down-Quarks, Up-Quarks, Higgs, Pseudo-Scalar Higgs, Z-Boson, W-Boson. If there is a mixture between the SM particles and other states (like in *R*-parity violating SUSY or in models with additional

Fig. 3 All tree topologies considered by PreSARAH to calculate the Wilson coefficients of 4-fermion operators. All possible generic combinations of the internal fields are taken into account

Fig. 4 All self-energy topologies considered by PreSARAH to calculate the Wilson coefficients of 4-fermion operators. All possible generic combinations of the internal fields are taken into account

Fig. 5 All penguin topologies considered by PreSARAH to calculate the Wilson coefficients of 4-fermion operators. All possible generic combinations of the internal fields are taken into account

Fig. 6 All box topologies considered by PreSARAH to calculate the Wilson coefficients of 4-fermion operators. All possible generic combinations of the internal fields are taken into account

- FermionOrderExternal: the fermion order to apply the Fierz transformation (see the FormCalc manual for more details)
- NeglectMasses: which external masses can be neglected (a list of integers counting the external fields)
- ColorFlow: defines the color flow in the case of four quark operators. To contract the colors of external fields, ColorDelta is used, i.e ColorFlow = ColorDelta[1,2]*ColorDelta[3,4] assigns $(\bar{q}^{\alpha}\Gamma q_{\alpha})(\bar{q}^{\beta}\Gamma' q_{\beta})$.
- AllOperators: a list with the definition of the operators. This is a two dimensional list, where the first entry defines the name of the operator and the second one the Lorentz structure. The operators are expressed in the chiral basis and the syntax for Dirac chains in FormCalc is used:
 - 6 for $P_L = \frac{1}{2}(1 \gamma_5)$, 7 for $P_R = \frac{1}{2}(1 \gamma_5)$
 - Lor [1], Lor [2] for $\gamma_{\mu}, \gamma_{\nu}$
 - ec[3] for the helicity of an external gauge boson
 - k [N] for the momentum of the external particle N (N is an integer)
 - Pair [A, B] is used to contract Lorentz indices. For instance, Pair [k[1], ec[3]] stands for k¹_με^{μ,*}
 - A Dirac chain starting with a negative first entry is taken to be anti-symmetrized.

See the FormCalc manual for more details.

To make the definitions more readable, not the full DiracChain object of FeynArts/FormCalc has to be defined: PreSARAH puts everything with the head Op into a Dirac chain using the defined fermion order. For 4-fermion operators the combination of both operators is written as dot product. For instance Op[6].Op[6] is internally translated into

```
DiracChain[Spinor[k[1],MassEx1,-1],6,
Spinor[k[2],MassEx2,1]]*
DiracChain[Spinor[k[3], MassEx3,-1],
6,Spinor[k[4],MassEx4,1]]
```

while Op[6] Pair[ec[3], k[1] becomes

- DiracChain[Spinor[k[1],MassEx1,-1], 6,Spinor[k[2],MassEx2,1]] Pair[ec[3],k[1]]
- CombinationGenerations: the combination of external generations for which the operators are calculated by SPheno
- Filters: a list of filters to drop specific diagrams. Possible entries are NoBoxes, NoPenguins, NoTree, NoCrossedDiagrams.
 - Filters = {NoBoxes, NoPenguins} can be used for processes which are already triggered at tree-level
 - Filters = {NoPenguins} might be useful for processes which at the 1-loop level are only induced by box diagrams

Footnote 7 continued

vector quarks/leptons) the combined state has to be labeled with those description. Pseudo-Scalar Higgs is in the SM just the neutral Goldstone boson. If an external state is not present in a given model or hasn't been defined as such in the particles.m file the corresponding Wilson coefficients are not calculated by SPheno.

- Filters = {NoCrossedDiagrams} is used to drop diagrams which only differ by a permutation of the external fields.

For instance, the PreSARAH input to calculate the coefficient of the $(\bar{\ell}\Gamma\ell)(\bar{d}\Gamma'd)$ operator reads

```
NameProcess="2L2d";
    ConsideredProcess = "4Fermion";
2
3
    ExternalFields = { { ChargedLepton , bar [ ChargedLepton ] ,
4
                          DownOuark, bar [DownOuark]}}:
5
6
     FermionOrderExternal = \{2, 1, 4, 3\};
7
    NeglectMasses = \{1, 2, 3, 4\};
8
9
10
     AllOperators={
11
        (* scalar operators*)
12
        \{OllddSLL, Op[7], Op[7]\},\
        {OllddSRR,Op[6].Op[6]},
13
        {OllddSRL,Op[6].Op[7]},
14
15
        {OllddSLR,Op[7].Op[6]},
16
17
        (* vector operators*)
        {OllddVRR, Op[7, Lor[1]]. Op[7, Lor[1]]},
18
19
        {OllddVLL, Op[6, Lor[1]]. Op[6, Lor[1]]},
20
        {OllddVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
21
        {OllddVLR, Op[6, Lor[1]]. Op[7, Lor[1]]},
22
23
        (* tensor operators*)
24
        {OllddTLL,Op[-7,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]}
25
        {OllddTLR, Op[-7, Lor[1], Lor[2]]. Op[-6, Lor[1], Lor[2]]}
26
        {OllddTRL,Op[-6,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]}
27
        {OllddTRR, Op[-6, Lor[1], Lor[2]]. Op[-6, Lor[1], Lor[2]]}
     };
28
29
30
    CombinationGenerations = \{\{2,1,1,1\}, \{3,1,1,1\}, 
           \{3, 2, 1, 1\},\
                                  \{2,1,2,2\}, \{3,1,2,2\},\
31
                                        \{3, 2, 2, 2\}\};
32
33
    Filters = \{\};
```

Here, we neglect all external masses in the operators (NeglectMasses={1,2,3,4}), and the different coefficients of the scalar operators $(\ell P_X \ell)(d P_Y d)$ are called OllddSXY, the ones for the vector operators $(\bar{\ell} P_X \gamma_{\mu} \ell)$ $(\bar{d}P_Y\gamma^{\mu}d)$ are called OllddVYX and the ones for the tensor operators $(\bar{\ell} P_X \sigma_{\mu\nu} \ell) (\bar{d} \sigma^{\mu\nu} P_Y d)$ OllddTYX, with X,Y=L,R. Notice that FormCalc returns the results in form of $P_X \gamma_\mu$ while in the literature the order $\gamma_\mu P_X$ is often used. Finally, SPheno will not calculate all possible combinations of external states, but only some specific cases: μedd , τedd , $\tau \mu dd$, μess , τess , $\tau \mu ss$.⁸

The input file to calculate the coefficients of the $\ell - \ell - Z$ operators $(\bar{\ell}\gamma_{\mu}P_{L,R}\ell)Z^{\mu}$ and $(\bar{\ell}p_{\mu}P_{L,R}\gamma_{\mu}\ell)Z^{\mu}$ is

```
1
     NameProcess="Z21";
 2
 3
     ConsideredProcess = "2Fermion1Vector":
 4
     FermionOrderExternal = {1,2};
 5
     NeglectMasses = \{1, 2\}:
 6
 7
 8
     ExternalFields=
           {ChargedLepton, bar[ChargedLepton], Zboson};
 9
     CombinationGenerations = \{\{1,2\},\{1,3\},\{2,3\}\};
10
11
     AllOperators={
12
13
        \{OZ2ISL, Op[7]\}, \{OZ2ISR, Op[6]\}, 
14
        {OZ2lVL,Op[7,ec[3]]}, {OZ2lVR,Op[6,ec[3]]}
15
     }:
16
17
     OutputFile = "Z21.m";
18
     Filters = \{\};
19
```

Note that ExternalFields must contain first the involved fermions and the boson at the end. Furthermore, in the case of processes involving scalars one can define

```
1
    ExternalFields=
          {ChargedLepton, bar[ChargedLepton], ScalarHiggs};
    CombinationGenerations = \{\{1, 2, ALL\}, \{1, 3, ALL\}, \}
2
          {2,3,ALL}};
```

In this case the operators for all Higgs states present in the considered model will be computed.

5.3 Operators with massless gauge bosons

We have to add a few more remarks concerning 2-fermion-1-boson operators with massless gauge bosons since those are treated in a special way. It is common for these operators to include terms in the amplitude which are proportional to the external masses. Therefore, if one proceeds in the usual way and neglects the external momenta, some inconsistencies would be obtained. For this reason, a special treatment is in order. In PreSARAH, when one uses

```
1
    ConsideredProcess = "2Fermion1Vector";
```

```
2
   FermionOrderExternal={1,2};
3
```

```
NeglectMasses = \{3\}:
```

1 2

the dependence on the two fermion masses is neglected in the resulting Passarino-Veltman integrals but terms proportional to m_{f_1} and m_{f_2} are kept. This solves the aforementioned potential inconsistencies.

Furthermore, for the dipole operators, defined by

{DipoleL,Op[6]	Pair [ec [3], k[1]] },
{DipoleR,Op[7]	Pair[ec[3],k[1]]},

we are using the results obtained by FeynArts and FormCalc and have implemented all special cases for the involved loop integrals $(C_0, C_{00}, C_1, C_2, C_{11}, C_{12}, C_{22})$

⁸ Here we used d for the first generation of down-type quarks while in the rest of this manual it is used to summarize all three families.

with identical or vanishing internal masses in SPheno. This guarantees the numerical stability of the results.⁹

The monopole operators of the form $q^2(\bar{f}\gamma_{\mu}f)V^{\mu}$ are only non-zero for off-shell external gauge bosons, while PreSARAH always treats all fields as on-shell. Because of this, and to stabilize the numerical evaluation later on, these operators are treated differently to all other operators: the coefficients are not calculated by FeynArts and FormCalc but instead we have included the generic expressions in PreSARAH using a special set of loop functions in SPheno. In these loop functions the resulting Passarino– Veltman integrals are already combined, leading to wellknown expressions in the literature, see [42,56]. They have been cross-checked with the package Peng4BSM@LO [43]. To get the coefficients for the monopole operators, these have to be given always in the form

1	{MonopoleL, Op[6, ec[3]]	Pair[k[3],k[3]]},	
2	{MonopoleR,Op[7,ec[3]]	Pair[k[3],k[3]]}	

in the input of PreSARAH.

5.4 Combination and normalization of operators

The user can define new operators as combination of existing operators. For this purpose wrapper files containing the definition of the operators can be included in the FlavorKit directories. These files have to begin with ProcessWrapper = True; . This function is also used by PreSARAH in the case of 4-fermion operators: for these operators the contributions stemming from tree-level, box- and penguin- diagrams are saved separately and summed up at the end. Thus, the wrapper code for the 4-lepton operators written by PreSARAH reads

```
ProcessWrapper = True;
1
   NameProcess = "4L"
2
3
    ExternalFields = {ChargedLepton, bar[ChargedLepton],
         ChargedLepton, bar[ChargedLepton]};
4
    SumContributionsOperators["4L"] = {
    {O4ISLL, BO4ISLL + PSO4ISLL + PVO4ISLL + TSO4ISLL +
5
         TVO4ISLL },
    {O4ISRR, BO4ISRR + PSO4ISRR + PVO4ISRR + TSO4ISRR +
6
         TVO4ISRR },
7
8
    };
```

It is also possible to use these wrapper files to change the normalization of the operators. We have made use of this functionality for the operators with external photons and gluons to match the standard definition used in literature: it is common to write these operators as $em_f(\bar{f}\sigma_{\mu\nu}f)F^{\mu\nu}$, i.e. with the electric coupling (or strong coupling for gluon

operators) and fermion mass factored out. This is done with the files Photon_wrapper.m and Gluon_wrapper.m, included in the FlavorKit directory of SARAH:

```
ProcessWrapper = True;
1
2
     NameProcess = "Gamma2Q'
3
     ExternalFields = {bar[BottomQuark], BottomQuark, Photon};
4
5
     SumContributionsOperators ["Gamma2Q"] = {
     \{CC7, OA2qSL\},\
6
7
     {CC7p, OA2qSR}
8
     }:
9
10
     NormalizationOperators["Gamma2Q"] ={
11
     "CC7(3.:) =
          0.25_dp*CC7(3,:)/sqrt(Alpha_160*4*Pi)/mf_d_160(3)",
12
     "CC7p(3.:) =
          0.25_dp*CC7p(3,:)/sqrt(Alpha_160*4*Pi)/mf_d_160(3)",
13
     "CC7SM(3,:) =
14
          0.25_dp*CC7SM(3,:)/sqrt(Alpha_160*4*Pi)/mf_d_160(3)",
15
     "CC7pSM(3,:)
          0.25_dp*CC7pSM(3,:)/sqrt(Alpha_160*4*Pi)/mf_d_160(3)"
16
     };
```

First, the coefficients OA2qSL and OA2qSR derived with PreSARAH are matched to the new coefficients CC7 and CC7p. The same matching is automatically applied also to the SM coefficients OA2qSLSM and OA2qSRSM. In a second step, these operators are re-normalized to the standard definition of the Wilson coefficients C_7 and C'_7 . The initial coefficients OA2qSR, OA2qSL are not discarded, but coexist besides CC7, CC7p. Thus, the user can choose in the implementation of the observables which operators are more suitable for his purposes.

6 Validation

The validation of the FlavorKit results happened in three steps:

- 1. Agreement with SM results: we checked that the SM prediction for the observables agree with the results given in literature
- Independence of scale in loop function: the loop integrals for two and three point functions (B_i, C_i) depend on the renormalization scale Q. However, this dependence has to drop out for a given process at leading order. We checked numerically that the sum of all diagrams is indeed independent of the choice of Q.
- 3. Comparison with other tools: as we have pointed out in the introduction, there are several public tools which calculate flavor observables mostly in the context of the MSSM. We did a detailed comparison with these tools using the SPheno code produced by SARAH for the MSSM. Some results are presented in the following.

We have compared the FlavorKit results using SARAH 4.2.0 and SPheno3.3.0 with

⁹ We note that the coefficients for the operators defined above $(\bar{f}\gamma_{\mu}f V^{\mu})$ are by a factor of 2 (4) larger than the coefficients of the standard definition for the dipole operators $\bar{f}\sigma_{\mu\nu}P_L f q^{\nu}V^{\mu}$ $(\bar{f}\sigma_{\mu\nu}P_L f F^{\mu\nu})$.

Fig. 7 Comparison of the results for $BR(B^0_{s,d} \rightarrow \mu\mu)$, $BR(\bar{B} \rightarrow X_s\gamma)$, $BR(B \rightarrow \tau\nu)$, ΔM_{B_s} , ε_K , $BR(K_L \rightarrow \pi^0 \nu \bar{\nu})$, $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ as a function of m_0 using the FlavorKit (*red*), superiso (*purple*), SUSY_Flavor 1 (*brown*), SUSY_Flavor 2 (*green*),

SPheno (*blue*), MicrOmegas (*orange*) and the old implementation in SARAH (*red dashed*). The three lines for SUSY_Flavor 2 correspond to different options of the chiral resummation. We used $M_{1/2} = 200$ GeV, $A_0 = 0$, tan $\beta = 10$, $\mu > 0$

Fig. 8 Comparison of the results for different flavor observables as function of $M_{1/2}$. The color code is the same as in Fig. 7. We used $m_0 = 500$ GeV, $A_0 = -1000$ GeV, $\tan \beta = 10, \mu > 0$

Fig. 9 Comparison of BR($B_{s,d}^0 \rightarrow \mu\mu$) (first row) and BR($B_{s,d}^0 \rightarrow ee$) (second row) as function of tan β . The color code is the same as in Fig. 7. We used $m_0 = M_{1/2} = 500$ GeV, $A_0 = 0, \mu > 0$

- superiso 3.3
- SUSY_Flavor 1 and 2.1
- MicrOmegas 3.6.7
- SPheno 3.3.0
- a SPheno version produced by SARAH 4.1.0 without the FlavorKit functionality

Since these codes often use different values for the hadronic parameters and calculate the flavor observables at different loop levels, we are not going to compare the absolute numbers obtained by these tools. Instead, we compare the results normalized to the SM prediction of each code and thus define, for an observable *X*, the ratio

$$R(X) = \frac{X^{MSSM}}{X^{SM}}.$$
(6)

 X^{SM} is obtained by taking the value of X calculated by each code in the limit of a very heavy SUSY spectrum. As test case we have used the CMSSM. The dependence of a set of flavor observables as function of m_0 is shown in Fig. 7 and as function of $M_{1/2}$ in Fig. 8.

We see that all codes show in general the same dependence. However, it is also obvious that the lines are not on top of each other but differences are present. These differences are based on the treatment of the resummation of the bottom Yukawa couplings, the different order at which SM and SUSY contributions are implemented, the different handling of the Weinberg angle, and the different level at which the RGE running is taken into account by the tools. Even if a detailed discussion of the differences of all codes might be very interesting it is, of course, far beyond the scope of this paper and would require a combined effort. The important point is that the results of FlavorKit agree with the codes specialized for the MSSM to the same level as those codes agree among each other. Since the FlavorKit results for all observables are based on the same generic routines it might be even more trustworthy than human implementations of the lengthy expressions needed to calculate these observables because it is less error prone. Of course, known 2-loop corrections for the MSSM which are implemented in other tools are missing.

Finally, it is well known that the process $B_{s,d}^0 \rightarrow \ell \bar{\ell}$ has a strong dependence on the value of tan β . We show in Fig. 9 that this is reproduced by all codes.

7 Conclusion

We have presented FlavorKit, a new setup for the calculation of flavor observables for a wide range of BSM models. Generic expressions for the Wilson coefficients are derived with PreSARAH, a Mathematica package that makes use of FeynArts and FormCalc. The output of PreSARAH is then passed to SARAH, which generates the Fortran code that allows to calculate numerically the values of these Wilson coefficients with SPheno. The observables are derived by providing the corresponding pieces of Fortran code to SARAH, which incorporates them into the SPheno output. We made use of this code chain to fully implement a large set of important flavor observables in SARAH and SPheno. In fact, due the simplicity of this kit, the user can easily extend the list with his own observables and operators. In conclusion, FlavorKit allows the user to easily obtain analytical and numerical results for flavor observables in the BSM model of his choice.

Acknowledgments We thank Asmaa Abada, Martin Hirsch, Farvah Mahmoudi, Manuel E. Krauss, Kilian Nickel, Ben O'Leary and Cédric Weiland for helpful discussions. FS is supported by the BMBF PT DESY Verbundprojekt 05H2013-THEORIE 'Vergleich von LHC-Daten mit supersymmetrischen Modellen'. WP is supported by the DFG, Project No. PO-1337/3-1. AV is partially supported by the EXPL/FIS-NUC/0460/2013 project financed by the Portuguese FCT.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP3 / License Version CC BY 4.0.

Appendix A: Lagrangian

In this section we present our notation and conventions for the operators (and their corresponding Wilson coefficients) implemented in PreSARAH. Although a more complete list of flavor violating operators can be built, we will concentrate on those implemented in PreSARAH. If necessary, the user can extend it by adding his/her own operators.

The interaction Lagrangian relevant for flavor violating processes can be written as

$$\mathcal{L}_{\rm FV} = \mathcal{L}_{\rm LFV} + \mathcal{L}_{\rm OFV}.\tag{A.1}$$

The first piece contains the operators that can trigger lepton flavor violation whereas the second piece contains the operators responsible for quark flavor violation.

The general Lagrangian relevant for lepton flavor violation can be written as

$$\mathcal{L}_{\text{LFV}} = \mathcal{L}_{\ell\ell\gamma} + \mathcal{L}_{\ell\ell Z} + \mathcal{L}_{\ell\ell h} + \mathcal{L}_{4\ell} + \mathcal{L}_{2\ell 2q}.$$
(A.2)

The first term contains the $\ell - \ell - \gamma$ interaction, given by

$$\mathcal{L}_{\ell\ell\gamma} = e \,\bar{\ell}_{\beta} \left[\gamma^{\mu} \left(K_1^L P_L + K_1^R P_R \right) + i m_{\ell_{\alpha}} \sigma^{\mu\nu} q_{\nu} \left(K_2^L P_L + K_2^R P_R \right) \right] \ell_{\alpha} A_{\mu} + \text{h.c.}$$
(A.3)

Here *e* is the electric charge, *q* the photon momentum, $P_{L,R} = \frac{1}{2}(1 \mp \gamma_5)$ are the usual chirality projectors and $\ell_{\alpha,\beta}$ denote the lepton flavors. For practical reasons, we will always consider the photonic contributions independently, and we will not include them in other vector operators. On the contrary, the *Z*- and Higgs boson contributions will be included whenever possible. Therefore, the $\ell - \ell - Z$ and $\ell - \ell - h$ interaction Lagrangians will only be used for observables involving real *Z*- and Higgs bosons. These two Lagrangians can be written as

$$\mathcal{L}_{\ell\ell Z} = \bar{\ell}_{\beta} \left[\gamma^{\mu} \left(R_1^L P_L + R_1^R P_R \right) + p^{\mu} \left(R_2^L P_L + R_2^R P_R \right) \right] \ell_{\alpha} Z_{\mu},$$
(A.4)

where p is the ℓ_{β} 4-momentum, and

$$\mathcal{L}_{\ell\ell h} = \bar{\ell}_{\beta} \left(S_L P_L + S_R P_R \right) \ell_{\alpha} h. \tag{A.5}$$

The general 4ℓ 4-fermion interaction Lagrangian can be written as

$$\mathcal{L}_{4\ell} = \sum_{\substack{I=S,V,T\\X,Y=L,R}} A_{XY}^{I} \bar{\ell}_{\beta} \Gamma_{I} P_{X} \ell_{\alpha} \bar{\ell}_{\delta} \Gamma_{I} P_{Y} \ell_{\gamma} + \text{h.c.}, \qquad (A.6)$$

where $\ell_{\alpha,\beta,\gamma,\delta}$ denote the lepton flavors and $\Gamma_S = 1$, $\Gamma_V = \gamma_{\mu}$ and $\Gamma_T = \sigma_{\mu\nu}$. We omit flavor indices in the Wilson coefficients for the sake of clarity. This Lagrangian contains the most general form compatible with Lorentz invariance. The Wilson coefficients A_{LR}^S and A_{RL}^S were included in [57], but absent in [42,58]. As previously stated, the coefficients in Eq. (A.6) do not include photonic contributions, but they include Z-boson and scalar ones. Finally, the general $2\ell 2q$ four fermion interaction Lagrangian at the quark level is given by

$$\mathcal{L}_{2\ell 2q} = \mathcal{L}_{2\ell 2d} + \mathcal{L}_{2\ell 2u} \tag{A.7}$$

where

$$\mathcal{L}_{2\ell 2d} = \sum_{\substack{I=S,V,T\\X,Y=L,R}} B_{XY}^{I} \bar{\ell}_{\beta} \Gamma_{I} P_{X} \ell_{\alpha} \bar{d}_{\gamma} \Gamma_{I} P_{Y} d_{\gamma} + \text{h.c.} \quad (A.8)$$

$$\mathcal{L}_{2\ell 2u} = \mathcal{L}_{2\ell 2d}|_{d \to u, B \to C}.$$
(A.9)

Here d_{γ} denotes the d-quark flavor.

Let us now consider the Lagrangian relevant for quark flavor violation. This can be written as

$$\mathcal{L}_{QFV} = \mathcal{L}_{qq\gamma} + \mathcal{L}_{qqg} + \mathcal{L}_{4d} + \mathcal{L}_{2d2l} + \mathcal{L}_{2d2\nu} + \mathcal{L}_{du\ell\nu} + \mathcal{L}_{ddH}.$$
(A.10)

The first two terms correspond to operators that couple quark bilinears to massless gauge bosons. These are

$$\mathcal{L}_{qq\gamma} = e \left[\bar{d}_{\beta} \sigma_{\mu\nu} \left(m_{d_{\beta}} Q_{1}^{L} P_{L} + m_{d_{\alpha}} Q_{1}^{R} P_{R} \right) d_{\alpha} \right] F^{\mu\nu}$$
(A.11)

$$\mathcal{L}_{qqg} = g_s \left[\bar{d}_\beta \sigma_{\mu\nu} \left(m_{d_\beta} Q_2^L P_L + m_{d_\alpha} Q_2^R P_R \right) T^a d_\alpha \right] G_a^{\mu\nu}.$$
(A.12)

Here T^a are SU(3) matrices. The Wilson coefficients $Q_{1,2}^{L,R}$ can be easily related to the usual $C_{7,8}^{(\prime)}$ coefficients, sometimes normalized with an additional $\frac{1}{16\pi^2}$ factor. The 4*d* four fermion interaction Lagrangian can be written as

$$\mathcal{L}_{4d} = \sum_{\substack{I=S,V,T\\X,Y=L,R}} D_{XY}^{I} \bar{d}_{\beta} \Gamma_{I} P_{X} d_{\alpha} \bar{d}_{\delta} \Gamma_{I} P_{Y} d_{\gamma} + \text{h.c.}, \quad (A.13)$$

where $d_{\alpha,\beta,\gamma,\delta}$ denote the lepton flavors. Again, we omit flavor indices in the Wilson coefficients for the sake of clarity. The $2d2\ell$ four fermion interaction Lagrangian is given by

$$\mathcal{L}_{2d2\ell} = \sum_{\substack{I=S,V,T\\X,Y=L,R}} E_{XY}^{I} \bar{d}_{\beta} \Gamma_{I} P_{X} d_{\alpha} \bar{\ell}_{\gamma} \Gamma_{I} P_{Y} \ell_{\gamma} + \text{h.c.} \quad (A.14)$$

Here ℓ_{γ} denotes the lepton flavor. $\mathcal{L}_{2d2\ell}$ should not be confused with $\mathcal{L}_{2\ell 2d}$. In the former case one has QFV operators, whereas in the latter one has LFV operators. This distinction has been made for practical reasons. The $2d2\nu$ and $du\ell\nu$ terms of the QFV Lagrangian are

$$\mathcal{L}_{2d2\nu} = \sum_{X,Y=L,R} F_{XY}^V \bar{d}_\beta \gamma_\mu P_X d_\alpha \bar{\nu}_\gamma \gamma^\mu P_Y \nu_\gamma + \text{h.c.} \quad (A.15)$$

$$\mathcal{L}_{du\ell\nu} = \sum_{\substack{I=S,V\\X,Y=L,R}} G^{I}_{XY} \bar{d}_{\beta} \Gamma_{I} P_{X} u_{\alpha} \bar{\ell}_{\gamma} \Gamma_{I} P_{Y} \nu_{\gamma} + \text{h.c.} \quad (A.16)$$

Note that we have not introduced scalar or tensor $2d2\nu$ operators, nor tensor $du\ell\nu$ ones, and that lepton flavor (denoted by the index γ) is conserved in these operators. Finally, we have also included a term in the Lagrangian accounting for operators of the type $(\bar{d}\Gamma d)S$ and $(\bar{d}\Gamma d)P$, where S(P)is a virtual¹⁰ scalar (pseudoscalar) state. This piece can be written as

$$\mathcal{L}_{ddH} = \bar{d}_{\beta} \left(H_L^S P_L + H_R^S P_R \right) d_{\alpha} S + \bar{d}_{\beta} \left(H_L^P P_L + H_R^P P_R \right) d_{\alpha} P.$$
(A.17)

Appendix B: Operators available by default in the SPheno output of SARAH

The operators presented in Appendix A have been implemented by using the results of PreSARAH in SARAH. Those are exported to SPheno. We give in the following the list of all internal names for these operators, which can be used in the calculation of new flavor observables.

B.1 2-Fermion-1-Boson operators

These operators are arrays with either two or three elements. While operators involving vector bosons have always dimension 3×3 , those with scalars have dimension $3 \times 3 \times n_g$. n_g is the number of generations of the considered scalar and for $n_g = 1$ the last index is dropped.

$(\bar{d}_{\beta}\sigma_{\mu\nu}\Gamma d_{\alpha})F^{\mu\nu}$ and $(\bar{d}_{\beta}\sigma_{\mu\nu}\Gamma d_{\alpha})G^{\mu\nu}$			
Variable	Operator	Name	
CC7	$em_{d_{\beta}}(\bar{d}_{\beta}\sigma_{\mu\nu}P_{L}d_{\alpha})F^{\mu\nu}$	Q_1^L	
CC7p	$em_{d_{lpha}}(\bar{d}_{eta}\sigma_{\mu u}P_Rd_{lpha})F^{\mu u}$	Q_1^R	
CC8	$g_s m_{d_\beta} (\bar{d}_\beta \sigma_{\mu\nu} P_L d_\alpha) G^{\mu\nu}$	Q_2^L	
CC8p	$g_s m_{d_{lpha}} (ar{d}_eta \sigma_{\mu u} P_R d_{lpha}) G^{\mu u}$	Q_2^R	

These operators are derived by PreSARAH with the following input files

```
Listing 1 PhotonQQp.m
```

```
NameProcess="Gamma2Q";
 1
 2
 3
     ConsideredProcess = "2Fermion1Vector";
 4
     FermionOrderExternal={1,2};
 5
     NeglectMasses={3};
 6
 7
 8
     ExternalFields = {bar[BottomQuark], BottomQuark, Photon};
 9
     CombinationGenerations = \{\{3,2\}\}:
10
11
12
     AllOperators={
        {OA2qSL,Op[7] Pair[ec[3],k[1]]},
13
14
        {OA2qSR,Op[6] Pair[ec[3],k[1]]},
15
        \{OA2qVL, Op[7, ec[3]]\},\
16
        OA2qVR, Op[6, ec[3]]
17
     };
18
19
     OutputFile = "Gamma2Q.m";
20
21
     Filters = \{\};
```

Listing 2 GluonQQp.m

```
1 NameProcess="Gluon2Q";
2
```

```
3 ConsideredProcess = "2Fermion1Vector";
```

```
4 FermionOrderExternal={1,2};
```

```
5 NeglectMasses={3};
```

¹⁰ We would like to emphasize that our implementation of these operators is only valid for virtual scalars and pseudoscalars. They have been introduced in order to provide the 1-loop vertices necessary for the computation of the double penguin contributions to ΔM_{B_q} . Therefore, they are not valid for observables in which the scalar or pseudoscalar states are real particles.

```
6
7
8
    ExternalFields = {bar[BottomQuark], BottomQuark,Gluon};
9
    CombinationGenerations = \{\{3,2\}\};
10
11
    AllOperators={
12
13
        \{OG2qSL, Op[7] Pair[ec[3], k[1]]\},\
        {OG2qSR,Op[6] Pair[ec[3],k[1]]}
14
15
    };
16
    OutputFile = "Gluon2Q.m";
17
18
    Filters = \{\};
19
```

The normalization is changed to match the standard definitions by

Listing 3 Photon_wrapper_QFV.m

```
ProcessWrapper = True;
1
    NameProcess = "Gamma2Q'
2
3
    ExternalFields = {bar[BottomQuark], BottomQuark,
         Photon }:
4
5
    SumContributionsOperators["Gamma2Q"] = {
    \{CC7, OA2qSL\},\
6
7
    {CC7p, OA2qSR}
8
    };
0
10
    NormalizationOperators["Gamma2Q"] ={
11
    "CC7(2,:) =
          0.25_dp*CC7(2,:)/sqrt(Alpha_160*4*Pi)/MFd(2)",
    "CC7(3,:)
12
         0.25_dp*CC7(3,:)/sqrt(Alpha_160*4*Pi)/MFd(3)",
13
    "CC7p(2,:) =
         0.25_dp*CC7p(2,:)/sqrt(Alpha_160*4*Pi)/MFd(2)",
    "CC7p(3,:) =
14
         0.25_dp*CC7p(3,:)/sqrt(Alpha_160*4*Pi)/MFd(3)",
15
16
    "CC7SM(2,:) =
         0.25_dp*CC7SM(2,:)/sqrt(Alpha_160*4*Pi)/MFd(2)",
17
    "CC7SM(3,:) =
         0.25_dp*CC7SM(3,:)/sqrt(Alpha_160*4*Pi)/MFd(3)",
    "CC7pSM(2,:) =
18
         0.25_dp*CC7pSM(2,:)/sqrt(Alpha_160*4*Pi)/MFd(2)",
19
    "CC7pSM(3,:) =
         0.25_dp*CC7pSM(3,:)/sqrt(Alpha_160*4*Pi)/MFd(3)"
20
    };
```

Listing 4 Gluon_wrapper.m

1	ProcessWrapper = True;
2	NameProcess = "Gluon2Q"
3	ExternalFields = {bar[BottomQuark], BottomQuark,
	Gluon };
4	
5	SumContributionsOperators["Gluon2Q"] = {
6	$\{CC8, OG2qSL\},\$
7	$\{CC8p, OG2qSR\};$
8	
9	NormalizationOperators["Gluon2Q"] ={
10	"CC8(2,:) =
	0.25_dp*CC8(2,:)/sqrt(AlphaS_160*4*Pi)/MFd(2)",
11	"CC8(3,:) =
	0.25_dp*CC8(3,:)/sqrt(AlphaS_160*4*Pi)/MFd(3)",
12	"CC8p(2,:) =
	0.25_dp*CC8p(2,:)/sqrt(AlphaS_160*4*Pi)/MFd(2)",
13	"CC8p(3,:) =
	0.25_dp*CC8p(3,:)/sqrt(AlphaS_160*4*Pi)/MFd(3)",
14	

15	"CC8SM(2,:) =	
	0.25_dp*CC8SM(2,:)/sqrt(AlphaS_160*4*Pi)/MFd(2)",	
16	"CC8SM(3,:) =	
	0.25_dp*CC8SM(3,:)/sqrt(AlphaS_160*4*Pi)/MFd(3)",	
17	"CC8pSM(2,:) =	
	0.25_dp*CC8pSM(2,:)/sqrt(AlphaS_160*4*Pi)/MFd(2)",	
18	"CC8pSM(3,:) =	
	0.25_dp*CC8pSM(3,:)/sqrt(AlphaS_160*4*Pi)/MFd(3)"	
10		.

```
20
```

};

$\bar{\ell}_{\beta}\left(q^{2}\gamma^{\mu}+im_{\ell_{\alpha}}\sigma^{\mu\nu}q_{\nu}\right)\ell_{\alpha}A_{\mu}$

Variable	Operator	Name
K2L	$em_{\ell_{lpha}}(ar{\ell}_{eta}\sigma_{\mu u}P_L\ell_{lpha})q^{ u}A^{\mu}$	K_2^L
K2R	$em_{\ell_{lpha}}(ar{\ell}_{eta}\sigma_{\mu u}P_R\ell_{lpha})q^{ u}A^{\mu}$	K_2^L
K1L	$q^2(\bar{\ell}_{\beta}\gamma_{\mu}P_L\ell_{lpha})A^{\mu}$	K_1^L
K1R	$q^2(\bar\ell_\beta\gamma_\nu P_R\ell_\alpha)A^\mu$	K_1^R

These operators are derived by PreSARAH with the following input files

Listing 5 PhotonLLp.m

1	NameProcess="Gamma21";
2	
3	ConsideredProcess = "2Fermion1Vector";
4	FermionOrderExternal={1,2};
5	NeglectMasses={3};
6	
7	
8	ExternalFields= {bar[ChargedLepton],
	ChargedLepton, Photon };
9	CombinationGenerations = $\{\{2,1\},\{3,1\},\{3,2\}\};$
10	
11	
12	AllOperators={
13	$\{OA2ISL, Op[6] Pair[ec[3], k[1]]\},\$
14	$\{OA2ISR, Op[7] Pair[ec[3], k[1]]\},\$
15	$\{OA1L, Op[6, ec[3]] Pair[k[3], k[3]]\},\$
16	OAIR, Op[7, ec[3]] Pair[k[3], k[3]]
17	};
18	
19	OutputFile = "Gamma21.m";
20	
21	Filters = {};

The normalization is changed to match the standard definitions by

Listing 6 Photon_wrapper_LFV.m

```
1
     ProcessWrapper = True;
     NameProcess = "Gamma21"
 2
 3
     ExternalFields = {bar[ChargedLepton], ChargedLepton,
          Photon }:
 4
 5
     SumContributionsOperators["Gamma21"] = {
 6
     \{K1L, OA1L\},\
     \{K1R, OA1R\},\
 7
 8
     \{K2L, OA2ISL\},\
 9
     \{K2R, OA2ISR\}\};
10
     NormalizationOperators["Gamma21"] ={
11
     "K1L = K1L/sqrt(Alpha_MZ*4*Pi)",
12
```

13	$"K1R = K1R/sqrt(Alpha_MZ*4*Pi)",$
14	"K2L(2,:) =
	-0.5_dp*K2L(2,:)/sqrt(Alpha_MZ*4*Pi)/MFe(2)",
15	"K2L(3,:) =
	-0.5_dp*K2L(3,:)/sqrt(Alpha_MZ*4*Pi)/MFe(3)",
16	"K2R(2,:) =
	-0.5_dp*K2R(2,:)/sqrt(Alpha_MZ*4*Pi)/MFe(2)",
17	"K2R(3,:) =
	-0.5_dp*K2R(3,:)/sqrt(Alpha_MZ*4*Pi)/MFe(3)"
18	};

 $(\bar{\ell}\Gamma\ell)Z$

Variable	Operator	Name
OZ2IVL	$(\bar{\ell} \gamma^{\mu} P_L \ell) Z_{\mu}$	R_1^L
OZ2IVR	$(\bar{\ell} \gamma^{\mu} P_R \ell) Z_{\mu}$	R_1^R
OZ2ISL	$(\bar{\ell} p^{\mu} P_L \ell) Z_{\mu}$	R_2^L
OZ21SR	$(\bar{\ell} p^{\mu} P_R \ell) Z_{\mu}$	R_2^R

In the following we omit flavor indices for the sake of simplicity. These operators are derived by PreSARAH with the following input files

Listing 7 Z2l.m

1	NameProcess="Z21";
2	
3	ConsideredProcess = "2Fermion1Vector";
4	FermionOrderExternal={1,2};
5	NeglectMasses={1,2};
6	
7	
8	ExternalFields=
	{ChargedLepton, bar[ChargedLepton], Zboson};
9	CombinationGenerations = $\{\{1,2\},\{1,3\},\{2,3\}\};$
10	
11	
12	AllOperators={
13	$\{OZ2ISL, Op[7] Pair[ec[3], k[1]]\}, \{OZ2ISR, Op[6]\}$
	$Pair[ec[3], k[1]]\},$
14	$\{OZ2IVL, Op[7, ec[3]]\}, \{OZ2IVR, Op[6, ec[3]]\}$
15	};
16	
17	OutputFile = "Z21.m";
18	-
19	Filters = {};

$(\bar{\ell}\Gamma\ell)h$		
Variable	Operator	Name
OH2ISL OH2ISR	$ \begin{array}{c} \bar{\ell} P_L \ell \ h \\ \bar{\ell} P_R \ell \ h \end{array} $	$S_L \\ S_R$

These operators are derived by PreSARAH with the following input files

Listing 8 H21.m

```
1 NameProcess="H21";
```

```
2
3 ConsideredProcess = "2Fermion1Scalar";
```

4	FermionOrderExternal={1,2};
5	NeglectMasses={1,2};
6	
7	
8	ExternalFields=
	{ChargedLepton, bar[ChargedLepton], HiggsBoson};
9	CombinationGenerations =
	{ { 1,2,ALL } , { 1,3,ALL } , { 2,3,ALL } };
10	
11	
12	AllOperators = { $\{OH2ISL, Op[7]\},$
13	{OH2ISR,Op[6]}
14	};
15	
16	OutputFile = "H21.m";
17	
18	Filters = { };

$(\bar{d}\Gamma d)S$ and $(\bar{d}\Gamma d)P$		
Variable	Operator	Name
OH2qSL	$\bar{d}P_L dS$	H_L^S
OAh2qSL	$\bar{d}P_L dP$	H_L^P
OH2qSR	$\bar{d}P_R dS$	H_R^S
OAh2qSR	$\bar{d}P_R dP$	H_R^P

These auxiliary¹¹ operators are derived by PreSARAH with the following input files

Listing 9 H2q.m

1	NameProcess="H2q";	
3	(* operators needed for double penguins with internal scalars *)	
4	(* we neglect therefore the mass of the scalar in the loop functions *)	
5	(* and treat it as massless *)	
6		
7	ConsideredProcess = "2Fermion1Scalar";	
8	FermionOrderExternal={2,1};	
9	NeglectMasses={3};	
10		
11		
12	ExternalFields = {DownQuark, bar[DownQuark], HiggsBoson};	
13	CombinationGenerations =	
	{{2,1,ALL},{3,1,ALL},{3,2,ALL}};	
14		
15		
16	AllOperators = { $\{OH2qSL, Op[7]\},$	
17	$\{OH2qSR, Op[6]\}$	
18	};	
19		
20	OutputFile = "H2q.m";	
21	• • •	
22	Filters = {};	

¹¹ The $(\bar{d}\Gamma d)S$ and $(\bar{d}\Gamma d)P$ operators have been introduced to compute double penguin corrections to ΔM_{B_q} , where *S* and *P* appear as intermediate (virtual) particles. They should not be used in processes where the scalar or pseudoscalar states are real particles because the loop functions are calculated with vanishing external momenta.

Listing 10 A2q.m

```
NameProcess="A2q";
 1
2
3
    (* operators needed for double penguins with internal
          scalars *)
 4
       we neglect therefore the mass of the scalar in the
    (*
          loop functions *)
 5
    (* and treat it as massless *)
6
 7
    ConsideredProcess = "2Fermion1Scalar";
 8
     FermionOrderExternal={2,1};
9
    NeglectMasses = \{3\};
10
11
    ExternalFields=
12
          {DownQuark, bar [DownQuark], PseudoScalar};
13
    CombinationGenerations =
          {{2,1,ALL},{3,1,ALL},{3,2,ALL}};
14
15
16
     AllOperators = { {OAh2qSL, Op[7] },
17
                    \{OAh2qSR, Op[6]\}
18
     };
19
20
    OutputFile = "A2q.m";
21
22
    Filters = \{\};
```

$(\bar{d}\Gamma d)(\bar{\ell}\Gamma'\ell)$ and $(\bar{d}\Gamma d)(\bar{\nu}\Gamma'\nu)$

Variable	Operator	Name
OddllSLL	$(\bar{d}P_L d)(\bar{\ell}P_L \ell)$	E_{LL}^S
OddllSRR	$(\bar{d}P_Rd)(\bar{\ell}P_R\ell)$	E_{RR}^{S}
OddllSLR	$(\bar{d}P_Ld)(\bar{\ell}P_R\ell)$	E_{LR}^S
OddllSRL	$(\bar{d}P_R d)(\bar{\ell}P_L \ell)$	E_{RL}^{S}
OddllVLL	$(\bar{d}\gamma_{\mu}P_{L}d)(\bar{\ell}\gamma^{\mu}P_{L}\ell)$	E_{LL}^V
OddllVRR	$(\bar{d}\gamma_{\mu}P_{R}d)(\bar{\ell}\gamma^{\mu}P_{R}\ell)$	E_{RR}^{V}
OddllVLR	$(\bar{d}\gamma_{\mu}P_{L}d)(\bar{\ell}\gamma^{\mu}P_{R}\ell)$	E_{LR}^V
OddllVRL	$(\bar{d}\gamma_{\mu}P_{R}d)(\bar{\ell}\gamma^{\mu}P_{L}\ell)$	E_{RL}^{V}
OddllTLL	$(\bar{d}\sigma_{\mu\nu}P_Ld)(\bar{\ell}\sigma^{\mu\nu}P_L\ell)$	E_{LL}^T
OddllTRR	$(\bar{d}\sigma_{\mu\nu}P_Rd)(\bar{\ell}\sigma^{\mu\nu}P_R\ell)$	E_{RR}^{T}
OddllTLR	$(\bar{d}\sigma_{\mu\nu}P_Ld)(\bar{\ell}\sigma^{\mu\nu}P_R\ell)$	E_{LR}^T
OddllTRL	$(\bar{d}\sigma_{\mu\nu}P_Rd)(\bar{\ell}\sigma^{\mu\nu}P_L\ell)$	E_{RL}^T
OddvvVLL	$(\bar{d}\gamma_{\mu}P_{L}d)(\bar{\nu}\gamma^{\mu}P_{R}\nu)$	F_{LL}^V
OddvvVRR	$(\bar{d}\gamma_{\mu}P_{R}d)(\bar{\nu}\gamma^{\mu}P_{R}\nu)$	F_{RR}^V
OddvvVLR	$(\bar{d}\gamma_{\mu}P_{L}d)(\bar{\nu}\gamma^{\mu}P_{R}\nu)$	F_{LR}^V
OddvvVRL	$(\bar{d}\gamma_{\mu}P_{R}d)(\bar{\nu}\gamma^{\mu}P_{L}\nu)$	F_{RL}^V

B.2 4-Fermion operators

All operators listed below carry four indices and have dimension $3 \times 3 \times 3 \times 3$. In addition, the user can access the different contributions of all operators from tree-level diagrams, as well as penguin and box diagrams. The name conventions are as follows: for each operator op the additional parameter exist

- TSop: tree-level contributions with scalar propagator
- TVop: tree-level contributions with scalar propagator
- PSop: sum of penguin and self-energy contributions with scalar propagator
- PVop: sum of penguin and self-energy contributions with scalar propagator
- Bop: box contributions.

We will denote the 4-fermion operators involving two leptons and two down-type quarks depending on whether they lead to LFV or to QFV processes: $\ell\ell dd$ for LFV and $dd\ell\ell$ for QFM hese operators are derived by PreSARAH with the following input files

Listing 11 2d2L.m

```
1
    NameProcess="2d2L";
2
3
    ConsideredProcess = "4Fermion";
4
    FermionOrderExternal = {2,1,4,3};
5
    NeglectMasses = \{1, 2, 3, 4\};
6
7
8
    ExternalFields=
          {DownQuark, bar [DownQuark], ChargedLepton,
9
                       bar[ChargedLepton]};
```

10	
11	CombinationGenerations = $\{\{3, 1, 1, 1\}, \{3, 1, 2, 2\},\$
	{3,1,3,3},
12	$\{3,2,1,1\}, \{3,2,2,2\},\$
	$\{3, 2, 3, 3\}\};$
13	
14	
15	AllOperators={{OddllSLL,Op[7].Op[7]},
16	$\{ OddllSRR, Op[6], Op[6] \},$
17	$\{ Oddl1SRL, Op[6], Op[7] \},\$
18	$\{OddllSLR, Op[7], Op[6]\},\$
19	
20	{OddllVRR, Op[7, Lor[1]]. Op[7, Lor[1]]},
21	{OddllVLL,Op[6,Lor[1]].Op[6,Lor[1]]},
22	{OddllVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
23	{OddllVLR, Op[6, Lor[1]]. Op[7, Lor[1]]},
24	
25	$\{ OddllTLL, Op[-7, Lor[1], Lor[2] \}.$
26	$Op[-7, Lor[1], Lor[2]]\}$,
27	$\{ OddllTLR, Op[-7, Lor[1], Lor[2] \}.$
28	$Op[-6, Lor[1], Lor[2]]\}$,
29	$\{ OddllTRL, Op[-6, Lor[1], Lor[2] \}.$
30	Op[-7,Lor[1],Lor[2]]},
31	$\{ OddllTRR, Op[-6, Lor[1], Lor[2] \}.$
32	Op[-6, Lor[1], Lor[2]]
33	};

Listing 12 2d2nu.m

```
NameProcess="2d2nu";
2
3
    ConsideredProcess = "4Fermion";
4
    FermionOrderExternal = {2,1,4,3};
5
    NeglectMasses = \{1, 2, 3, 4\};
6
7
    ExternalFields=
         {DownQuark, bar [DownQuark], Neutrino, bar [Neutrino]};
8
    CombinationGenerations = Flatten[Table[{{2,1,
9
         neutrino1, neutrino2},
```

10	$\{3,1, neutrino1, neutrino2\}, \{3,2, neutrino1\}$
	neutrino2 } } ,
11	{neutrino1,1,3}, {neutrino2,1,3}],2];
12	
13	
14	AllOperators={{OddvvVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
15	$\{OddvvVLL, Op[6, Lor[1]], Op[6, Lor[1]]\},\$
16	$\{OddvvVRL, Op[7, Lor[1]], Op[6, Lor[1]]\},\$
17	{OddvvVLR,Op[6,Lor[1]].Op[7,Lor[1]]}
18	};

$(\bar{\ell}\Gamma\ell)(\bar{d}\Gamma'd)$ and $(\bar{\ell}\Gamma\ell)(\bar{u}\Gamma'u)$			
Variable	Operator	Name	
OllddSLL	$(\bar{\ell}P_L\ell)(\bar{d}P_Ld)$	B_{LL}^S	
OllddSRR	$(\bar{\ell}P_R\ell)(\bar{d}P_Rd)$	B_{RR}^S	
OllddSRL	$(\bar{\ell}P_R\ell)(\bar{d}P_Ld)$	B_{RL}^S	
OllddSLR	$(\bar{\ell}P_L\ell)(\bar{d}P_Rd)$	B_{LR}^S	
OllddVLL	$(\bar{\ell}\gamma_{\mu}P_{L}\ell)(\bar{d}\gamma^{\mu}P_{L}d)$	B_{LL}^V	
OlluuVLL	$(\bar{\ell}\gamma_{\mu}P_{L}\ell)(\bar{u}\gamma^{\mu}P_{L}u)$	C_{LL}^V	
OllddVRR	$(\bar{\ell}\gamma_{\mu}P_{R}\ell)(\bar{d}\gamma^{\mu}P_{R}d)$	B_{RR}^V	
OllddVLR	$(\bar{\ell}\gamma_{\mu}P_{L}\ell)(\bar{d}\gamma^{\mu}P_{R}d)$	B_{LR}^V	
OlluuVLR	$(\bar{\ell}\gamma_{\mu}P_{L}\ell)(\bar{u}\gamma^{\mu}P_{R}u)$	C_{LR}^V	
OllddVRL	$(\bar{\ell}\gamma_{\mu}P_{R}\ell)(\bar{d}\gamma^{\mu}P_{L}d)$	B_{RL}^V	
OllddTLL	$(\bar{\ell}\sigma_{\mu\nu}P_L\ell)(\bar{d}\sigma^{\mu\nu}P_Ld)$	B_{LL}^T	
OllddTRR	$(\bar{\ell}\sigma_{\mu\nu}P_R\ell)(\bar{d}\sigma^{\mu\nu}P_Rd)$	B_{RR}^T	
OllddTLR	$(\bar{\ell}\sigma_{\mu\nu}P_L\ell)(\bar{d}\sigma^{\mu\nu}P_Rd)$	B_{LR}^T	
OllddTRL	$(\bar{\ell}\sigma_{\mu\nu}P_R\ell)(\bar{d}\sigma^{\mu\nu}P_Ld)$	B_{RL}^T	
OlluuSLL	$(\bar{\ell}P_L\ell)(\bar{u}P_Lu)$	C_{LL}^S	
OlluuSRR	$(\bar{\ell}P_R\ell)(\bar{u}P_Ru)$	C_{RR}^{S}	
OlluuSRL	$(\bar{\ell}P_R\ell)(\bar{u}P_Lu)$	C_{RL}^S	
OlluuSLR	$(\bar{\ell}P_L\ell)(\bar{u}P_Ru)$	C_{LR}^S	
OlluuVLL	$(\bar{\ell}\gamma_{\mu}P_{L}\ell)(\bar{u}\gamma^{\mu}P_{L}u)$	C_{LL}^V	
OlluuVRR	$(\bar{\ell}\gamma_{\mu}P_{R}\ell)(\bar{u}\gamma^{\mu}P_{R}u)$	C_{RR}^V	
OlluuVLR	$(\bar{\ell}\gamma_{\mu}P_{L}\ell)(\bar{u}\gamma^{\mu}P_{R}u)$	C_{LR}^V	
OlluuVRL	$(\bar{\ell}\gamma_{\mu}P_{R}\ell)(\bar{u}\gamma^{\mu}P_{L}u)$	C_{RL}^V	
OlluuTLL	$(\bar{\ell}\sigma_{\mu\nu}P_L\ell)(\bar{u}\sigma^{\mu\nu}P_Lu)$	C_{LL}^T	
OlluuTRR	$(\bar{\ell}\sigma_{\mu\nu}P_R\ell)(\bar{u}\sigma^{\mu\nu}P_Ru)$	C_{RR}^T	
OlluuTLR	$(\bar{\ell}\sigma_{\mu\nu}P_L\ell)(\bar{u}\sigma^{\mu\nu}P_Ru)$	C_{LR}^T	
OlluuTRL	$(\bar\ell\sigma_{\mu\nu}P_R\ell)(\bar u\sigma^{\mu\nu}P_Lu)$	C_{RL}^T	

Listing 13 2L2d.m

1	NameProcess="2L2d";
2	
3	ConsideredProcess = "4Fermion";
4	$FermionOrderExternal = \{2, 1, 4, 3\};$
5	$NeglectMasses = \{1, 2, 3, 4\};$
6	
7	
8	ExternalFields=
	{ChargedLepton, bar [ChargedLepton], DownQuark,
9	<pre>bar [DownQuark] };</pre>
10	CombinationGenerations = $\{\{2, 1, 1, 1\}, \{3, 1, 1, 1\},\$
	{3,2,1,1},

11	$\{2,1,2,2\}, \{3,1,2,2\},\$
	{3,2,2,2}};
12	
13	
14	AllOperators={{OllddSLL,Op[7].Op[7]},
15	$\{OllddSRR, Op[6], Op[6]\},$
16	$\{OllddSRL, Op[6], Op[7]\},\$
17	$\{OllddSLR, Op[7], Op[6]\},\$
18	
19	{OllddVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
20	{OllddVLL,Op[6,Lor[1]].Op[6,Lor[1]]},
21	{OllddVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
22	{OllddVLR,Op[6,Lor[1]].Op[7,Lor[1]]},
23	
24	{OllddTLL,Op[-7,Lor[1],Lor[2]].
25	$Op[-7, Lor[1], Lor[2]]\}$,
26	{OllddTLR, Op[-7, Lor[1], Lor[2]].
27	$Op[-6, Lor[1], Lor[2]]\}$,
28	{OllddTRL,Op[-6,Lor[1],Lor[2]].
29	$Op[-7, Lor[1], Lor[2]]\}$,
30	{OllddTRR, Op[-6, Lor[1], Lor[2]].
31	Op[-6, Lor[1], Lor[2]]
32	};

Listing 14 2L2u.m

1	NameProcess="2L2u";		
2			
3	ConsideredProcess = "4Fermion";		
4	FermionOrderExternal = { 2, 1, 4, 3 };		
5	NeglectMasses = $\{1, 2, 3, 4\};$		
6			
7			
8	ExternalFields=		
	{ ChargedLepton , bar [ChargedLepton] , UpQuark ,		
9	bar [UpQuark]};		
10	CombinationGenerations =		
	$\{\{2,1,1,1\},\{3,1,1,1\},\{3,2,1,1\}\};$		
11			
12			
13			
14	AllOperators = { $Op[7].Op[7]$,		
15	$\{OlluuSRR, Op[6], Op[6]\},$		
16	$\{OlluuSRL, Op[6]. Op[7]\},\$		
17	$\{OlluuSLR, Op[7], Op[6]\},\$		
18			
19	{OlluuVRR, Op[7, Lor[1]]. Op[7, Lor[1]]},		
20	$\{OlluuVLL, Op[6, Lor[1]], Op[6, Lor[1]]\},\$		
21	$\{OlluuVRL, Op[7, Lor[1]], Op[6, Lor[1]]\},\$		
22	$\{OlluuVLR, Op[6, Lor[1]], Op[7, Lor[1]]\},\$		
23			
24	$\{OlluuTLL, Op[-7, Lor[1], Lor[2]].$		
25	$Op[-7, Lor[1], Lor[2]]\}$,		
26	$\{OlluuTLR, Op[-7, Lor[1], Lor[2]\}.$		
27	$Op[-6, Lor[1], Lor[2]]\}$,		
28	$\{OlluuTRL, Op[-6, Lor[1], Lor[2]].$		
29	$Op[-7, Lor[1], Lor[2]]\}$,		
30	$\{OlluuTRR, Op[-6, Lor[1], Lor[2]].$		
31	Op[-6, Lor[1], Lor[2]]		
32	};		

$\overline{(\bar{d}\Gamma d)(\bar{d}\Gamma' d)}$ and $(\bar{\ell}\Gamma\ell)(\bar{\ell}\Gamma'\ell)$

Variable	Operator	Name
O4dSLL	$(\bar{d}P_L d)(\bar{d}P_L d)$	D_{LL}^S
O4dSRR	$(\bar{d}P_Rd)(\bar{d}P_Rd)$	D_{RR}^S

O4dSLR	$(\bar{d}P_Ld)(\bar{d}P_Rd)$	D_{LR}^S
O4dSRL	$(\bar{d}P_R d)(\bar{d}P_L d)$	D_{RL}^S
O4dVLL	$(\bar{d}\gamma_{\mu}P_{L}d)(\bar{d}\gamma^{\mu}P_{L}d)$	D_{LL}^V
O4dVRR	$(\bar{d}\gamma_{\mu}P_{R}d)(\bar{d}\gamma^{\mu}P_{R}d)$	D_{RR}^V
O4dVLR	$(\bar{d}\gamma_{\mu}P_{L}d)(\bar{d}\gamma^{\mu}P_{R}d)$	D_{LR}^V
O4dVRL	$(\bar{d}\gamma_{\mu}P_{R}d)(\bar{d}\gamma^{\mu}P_{L}d)$	D_{RL}^V
O4dTLL	$(\bar{d}\sigma_{\mu\nu}P_Ld)(\bar{d}\sigma^{\mu\nu}P_Ld)$	D_{LL}^T
O4dTRR	$(\bar{d}\sigma_{\mu\nu}P_Rd)(\bar{d}\sigma^{\mu\nu}P_Rd)$	D_{RR}^T
O4dTLR	$(\bar{d}\sigma_{\mu\nu}P_Ld)(\bar{d}\sigma^{\mu\nu}P_Rd)$	D_{LR}^T
O4dTRL	$(\bar{d}\sigma_{\mu\nu}P_Rd)(\bar{d}\sigma^{\mu\nu}P_Ld)$	D_{RL}^T
O41SLL	$(\bar{\ell}P_L\ell)(\bar{\ell}P_L\ell)$	A_{LL}^S
O41SRR	$(\bar{\ell}P_R\ell)(\bar{\ell}P_R\ell)$	A_{RR}^S
O41SLR	$(\bar{\ell}P_L\ell)(\bar{\ell}P_R\ell)$	A_{LR}^S
O41SRL	$(\bar{\ell}P_R\ell)(\bar{\ell}P_L\ell)$	A_{RL}^S
O4IVLL	$(\bar{\ell}\gamma_{\mu}P_{L}\ell)(\bar{\ell}\gamma^{\mu}P_{L}\ell)$	A_{LL}^V
O4lVRR	$(\bar{\ell}\gamma_{\mu}P_{R}\ell)(\bar{\ell}\gamma^{\mu}P_{R}\ell)$	A_{RR}^V
O4lVLR	$(\bar{\ell}\gamma_{\mu}P_{L}\ell)(\bar{\ell}\gamma^{\mu}P_{R}\ell)$	A_{LR}^V
O4lVRL	$(\bar{\ell}\gamma_{\mu}P_{R}\ell)(\bar{\ell}\gamma^{\mu}P_{L}\ell)$	A_{RL}^V
O4ITLL	$(\bar{\ell}\sigma_{\mu\nu}P_L\ell)(\bar{\ell}\sigma^{\mu\nu}P_L\ell)$	A_{LL}^T
O4lTRR	$(\bar{\ell}\sigma_{\mu\nu}P_R\ell)(\bar{\ell}\sigma^{\mu\nu}P_R\ell)$	A_{RR}^T
O4ITLR	$(\bar{\ell}\sigma_{\mu\nu}P_L\ell)(\bar{\ell}\sigma^{\mu\nu}P_R\ell)$	A_{LR}^T
O4lTRL	$(\bar{\ell}\sigma_{\mu\nu}P_R\ell)(\bar{\ell}\sigma^{\mu\nu}P_L\ell)$	A_{RL}^T

Listing 15 4d.m

1	NameProcess="4d";		
2			
3	ConsideredProcess = "4Fermion";		
4	FermionOrderExternal = $\{2, 1, 4, 3\};$		
5	$NeglectMasses = \{1, 2, 3, 4\};$		
6			
7	ExternalFields = {DownQuark, bar[DownQuark],		
8	DownQuark, bar [DownQuark]};		
9			
10	ColorFlow = ColorDelta[1,2] ColorDelta[3,4];		
11			
12	CombinationGenerations =		
	$\{\{3,1,3,1\},\{3,2,3,2\},\{2,1,2,1\}\};$		
13			
14			
15	AllOperators = { $\{O4dSLL, Op[7], Op[7] \}$,		
16	$\{O4dSRR, Op[6], Op[6]\},\$		
17	$\{O4dSRL, Op[6], Op[7]\},\$		
18	$\{O4dSLR, Op[7], Op[6]\},\$		
19			
20	$\{O4dVRR, Op[7, Lor[1]], Op[7, Lor[1]]\},\$		
21	$\{O4dVLL, Op[6, Lor[1]], Op[6, Lor[1]]\},\$		
22	$\{O4dVRL, Op[7, Lor[1]], Op[6, Lor[1]]\},\$		
23	$\{O4dVLR, Op[6, Lor[1]], Op[7, Lor[1]]\},\$		
24			
25	$\{O4dTLL, Op[-7, Lor[1], Lor[2]].$		
26	$Op[-7, Lor[1], Lor[2]]\},$		
27	$\{O4dTLR, Op[-7, Lor[1], Lor[2]].$		
28	Op[-6,Lor[1],Lor[2]]},		
29	$\{O4dTRL, Op[-6, Lor[1], Lor[2]].$		
30	Op[-7,Lor[1],Lor[2]]},		
31	$\{O4dTRR, Op[-6, Lor[1], Lor[2]].$		
32	Op[-6,Lor[1],Lor[2]]		
33	};		
34			
35	Filters = {NoPenguins};		

Listing 16 4L.m

1	NameProcess="4L";		
2			
3	ConsideredProcess = "4Fermion";		
4	$FermionOrderExternal = \{2, 1, 4, 3\};$		
5	$NeglectMasses = \{1, 2, 3, 4\};$		
6			
7	ExternalFields=		
	{ ChargedLepton , bar [ChargedLepton] , ChargedLepton ,		
8	<pre>bar[ChargedLepton]};</pre>		
9	CombinationGenerations =		
	$\{\{2,1,1,1\},\{3,1,1,1\},\{3,2,2,2\}\};$		
10			
11			
12	AllOperators = { $\{O4ISLL, Op[7], Op[7] \}$,		
13	$\{O4ISRR, Op[6], Op[6]\},\$		
14	$\{O4ISRL, Op[6], Op[7]\},\$		
15	$\{O4ISLR, Op[7], Op[6]\},\$		
16			
17	$\{O4IVRR, Op[7, Lor[1]], Op[7, Lor[1]]\},\$		
18	$\{O4IVLL, Op[6, Lor[1]], Op[6, Lor[1]]\},\$		
19	{O4IVRL,Op[7,Lor[1]].Op[6,Lor[1]]},		
20	{O4IVLR,Op[6,Lor[1]].Op[7,Lor[1]]},		
21			
22	$\{O4 TLL, Op[-7, Lor[1], Lor[2]\}.$		
23	$Op[-7, Lor[1], Lor[2]]\}$,		
24	$\{O4ITLR, Op[-7, Lor[1], Lor[2]].$		
25	$Op[-6, Lor[1], Lor[2]]\}$,		
26	$\{O4 TRL, Op[-6, Lor[1], Lor[2]].$		
27	Op[-7,Lor[1],Lor[2]]},		
28	$\{O4 TRR, Op[-6, Lor[1], Lor[2]\}.$		
29	Op[-6, Lor[1], Lor[2]]		
30	};		
31			
32	Filters = {NoCrossedDiagrams};		

$(a I u)(\ell I v)$	$(\bar{d}$	$\Gamma u)(\bar{\ell}I)$	¬'ν)
---------------------	------------	--------------------------	------

Variable	Operator	Name
OdulvVLL	$(\bar{d}\gamma_{\mu}P_{L}u)(\bar{\ell}\gamma^{\mu}P_{L}v)$	G_{LL}^V
OdulvVRR	$(\bar{d}\gamma_{\mu}P_{R}u)(\bar{\ell}\gamma^{\mu}P_{R}v)$	G_{RR}^{V}
OdulvVLR	$(\bar{d}\gamma_{\mu}P_{L}u)(\bar{\ell}\gamma^{\mu}P_{R}v)$	G_{LR}^V
OdulvVRL	$(\bar{d}\gamma_{\mu}P_{R}u)(\bar{\ell}\gamma^{\mu}P_{L}v)$	G_{RL}^{V}
OdulvSLL	$(\bar{d}P_L u)(\bar{\ell}P_L v)$	G_{LL}^S
OdulvSRR	$(\bar{d}P_R u)(\bar{\ell}P_R v)$	G_{RR}^S
OdulvSLR	$(\bar{d}P_L u)(\bar{\ell}P_R v)$	G_{LR}^S
OdulvSRL	$(\bar{d}P_R u)(\bar{\ell}P_L v)$	G_{RL}^S

Listing 17 du_lv.m

1	NameProcess="dulv";
2	
3	ConsideredProcess = "4Fermion";
4	FermionOrderExternal = {2,1,3,4};
5	NeglectMasses = $\{1, 2, 3, 4\};$
6	
7	
8	ExternalFields= {DownQuark, bar[UpQuark],
9	Neutrino, bar[ChargedLepton]};
10	
11	CombinationGenerations =
12	Flatten [Table [{ { 3,1,i,j } , { 3,2,i,j } , { 2,2,i,j } , { 2,1,i,j } },

```
13
        {i,1,3},{j,1,3}],2];
14
15
     Clear[i,j];
16
17
     AllOperators = { {OdulvSLL, Op[7]. Op[7] },
18
19
                     {OdulvSRR,Op[6].Op[6]},
20
                     {OdulvSRL,Op[6].Op[7]},
21
                     \{OdulvSLR, Op[7], Op[6]\},\
22
23
                     {OdulvVRR, Op[7, Lor[1]]. Op[7, Lor[1]]},
24
                     {OdulvVLL, Op[6, Lor[1]]. Op[6, Lor[1]]},
25
                     {OdulvVRL, Op[7, Lor[1]]. Op[6, Lor[1]]},
26
                     {OdulvVLR, Op[6, Lor[1]]. Op[7, Lor[1]]}
27
     }:
28
29
     Filters = {NoBoxes, NoPenguins};
```

Appendix C: Application: flavor observables implemented in SARAH

C.1 Lepton flavor observables

Lepton flavor violation in the SM or MSSM without neutrino masses vanishes exactly. Even adding Dirac neutrino masses to the SM predicts LFV rates which are far beyond the experimental reach. However, many extensions of the SM can introduce new sources for LFV of a size which is testable nowadays. The best-known examples are SUSY and non-SUSY models with high- or low-scale seesaw mechanism, models with vector-like leptons and SUSY models with *R*parity violation, see for instance Refs. [32, 42, 58–89].

We discuss in the following the implementation of the most important LFV observables in SARAH and SPheno using the previously defined operators which are calculated by SPheno.

C.1.1 $\ell_{\alpha} \rightarrow \ell_{\beta} \gamma$

The decay width is given by [42]

$$\Gamma\left(\ell_{\alpha} \to \ell_{\beta}\gamma\right) = \frac{\alpha m_{\ell_{\alpha}}^{5}}{4} \left(|K_{2}^{L}|^{2} + |K_{2}^{R}|^{2}\right), \qquad (C.18)$$

where α is the fine structure constant and the dipole Wilson coefficients $K_2^{L,R}$ are defined in Eq. (A.3).

Listing 18 LLgGamma.m

1	NameProcess = "LLpGamma";
2	NameObservables = {muEgamma, 701, "BR(mu->e gamma)"},
3	{tauEgamma, 702, "BR(tau->e
	gamma)"},
4	{tauMuGamma, 703, "BR(tau->mu
	gamma)"};
5	
6	NeededOperators = {K2L, K2R};
7	
8	Body = "LLpGamma.f90";

Listing 19 LLgGamma.f90

```
Real(dp) :: width
 1
 2
    Integer :: i1, gt1, gt2
 3
 4
    1
    ! 1 -> 1' gamma
 5
 6
    ! Observable implemented by W. Porod, F. Staub and A.
          Vicente
 7
    ! Based on J. Hisano et al, PRD 53 (1996) 2442
          [hep-ph/9510309]
 8
 9
10
    Do i1=1,3
11
12
    If (i1.eq.1) Then
                                ! mu -> e gamma
     gt1 = 2
13
     gt2 = 1
14
15
    Elseif (i1.eq.2) Then
                                !tau -> e gamma
     gt1 = 3
16
17
     gt2 = 1
18
    Else
                                ! tau -> mu gamma
     gt1 = 3
19
20
     gt2 = 2
21
    End if
22
23
    width=0.25_dp*mf_1(gt1)**5*(Abs(K2L(gt1,gt2))**2 &
24
                & +Abs(K2R(gt1,gt2))**2)*Alpha
25
    If (i1.eq.1) Then
26
    muEgamma = width/(width+GammaMu)
27
28
    Elseif (i1.eq.2) Then
29
    tauEgamma = width/(width+GammaTau)
30
    E1se
31
    tauMuGamma = width/(width+GammaTau)
32
    End if
33
34
    End do
```

$C.1.2 \ell_{\alpha} \rightarrow 3\ell_{\beta}$

The decay width is given by

$$\begin{split} \Gamma\left(\ell_{\alpha} \to 3\ell_{\beta}\right) &= \frac{m_{\ell_{\alpha}}^{5}}{512\pi^{3}} \left[e^{4} \left(\left|K_{2}^{L}\right|^{2} + \left|K_{2}^{R}\right|^{2}\right)\right) \\ &\times \left(\frac{16}{3}\log\frac{m_{\ell_{\alpha}}}{m_{\ell_{\beta}}} - \frac{22}{3}\right) \\ &+ \frac{1}{24} \left(\left|A_{LL}^{S}\right|^{2} + \left|A_{RR}^{S}\right|^{2}\right) + \frac{1}{12} \left(\left|A_{LR}^{S}\right|^{2} + \left|A_{RL}^{S}\right|^{2}\right) \\ &+ \frac{2}{3} \left(\left|\hat{A}_{LL}^{V}\right|^{2} + \left|\hat{A}_{RR}^{V}\right|^{2}\right) + \frac{1}{3} \left(\left|\hat{A}_{LR}^{V}\right|^{2} + \left|\hat{A}_{RL}^{V}\right|^{2}\right) \\ &+ 6 \left(\left|A_{LL}^{T}\right|^{2} + \left|A_{RT}^{T}\right|^{2}\right) \\ &+ \frac{e^{2}}{3} \left(K_{2}^{L}A_{RL}^{S*} + K_{2}^{R}A_{LR}^{S*} + c.c.\right) \\ &- \frac{2e^{2}}{3} \left(K_{2}^{L}\hat{A}_{RL}^{V*} + K_{2}^{R}\hat{A}_{LL}^{V*} + c.c.\right) \end{split}$$

$$-\frac{1}{2}\left(A_{LL}^{S}A_{LL}^{T*} + A_{RR}^{S}A_{RR}^{T*} + c.c.\right) -\frac{1}{6}\left(A_{LR}^{S}\hat{A}_{LR}^{V*} + A_{RL}^{S}\hat{A}_{RL}^{V*} + c.c.\right)\right].$$
 (C.19)

Here we have defined

$$\hat{A}_{XY}^V = A_{XY}^V + e^2 K_1^X$$
 (X, Y = L, R). (C.20)

The mass of the leptons in the final state has been neglected in this formula, with the exception of the dipole terms $K_2^{L,R}$, where an infrared divergence would otherwise occur due to the massless photon propagator. Equation (C.19) is in agreement with [58], but also includes the coefficients A_{LR}^S and A_{RL}^S .

Listing 20 Lto3Lp.m

1	NameProcess = "Lto3Lp";
2	NameObservables = {{BRmuTo3e, 901 , "BR(mu->3e)"},
3	$\{BRtauTo3e, 902, "BR(tau \rightarrow 3e)"\},\$
4	{BRtauTo3mu, 903, "BR(tau -> 3mu)"}
5	};
6	
7	ExternalStates = {Electron};
8	NeededOperators = {K1L, K1R, K2L, K2R,
9	O4ISLL, O4ISRR, O4ISRL, O4ISLR ,
10	O4IVRR, O4IVLL, O4IVRL, O4IVLR ,
11	O4ITLL, O4ITRR };
12	
13	Body = "Lto3Lp.f90";

Listing 21 Lto3Lp.f90

```
Complex(dp) :: cK1L, cK1R, cK2L, cK2R
 1
    Complex(dp) :: CSLL, CSRR, CSLR, CSRL, CVLL, &
 2
                        & CVRR, CVLR, CVRL, CTLL, CTRR
 3
    Real(dp) :: BRdipole, BRscalar, BRvector, BRtensor
 4
 5
    Real(dp) :: BRmix1, BRmix2, BRmix3, BRmix4, GammaLFV
 6
    Real(dp) \ :: \ e2 \,, \ e4
    Integer :: i1, gt1, gt2, gt3, gt4
 7
 8
9
10
    ! 1 -> 3 1'
    ! Observable implemented by W. Porod, F. Staub and A.
11
          Vicente
12
13
14
    e2 = (4._dp*Pi*Alpha_MZ)
15
    e4 = e2 * * 2
16
    Do i1=1.3
17
18
19
    If (i1.eq.1) Then
20
     gt1 = 2
21
     gt2 = 1
    Elseif (i1.eq.2) Then
22
23
     gt1 = 3
24
     gt2 = 1
    Else
25
     gt1 = 3
26
27
     gt2 = 2
28
    End if
    gt3 = gt2
29
30
    gt4 = gt2
31
```

```
32
    cK1L = K1L(gt1, gt2)
33
    cK1R = K1R(gt1, gt2)
34
35
    cK2L = K2L(gt1, gt2)
36
    cK2R = K2R(gt1, gt2)
37
38
    CSLL = O4ISLL(gt1, gt2, gt3, gt4)
39
    CSRR = O4ISRR(gt1, gt2, gt3, gt4)
40
    CSLR = O4lSLR(gt1, gt2, gt3, gt4)
41
    CSRL = O4ISRL(gt1, gt2, gt3, gt4)
42
    CVLL = O4IVLL(gt1, gt2, gt3, gt4)
43
44
    CVRR = O4IVRR(gt1, gt2, gt3, gt4)
45
    CVLR = O4IVLR(gt1, gt2, gt3, gt4)
46
    CVRL = O4IVRL(gt1, gt2, gt3, gt4)
47
48
    CVLL = CVLL + e2*cK1L
49
    CVRR = CVRR + e2*cK1R
50
    CVLR = CVLR + e2*cK1L
51
    CVRL = CVRL + e2*cK1R
52
    CTLL = O4ITLL(gt1, gt2, gt3, gt4)
53
    CTRR = O4ITRR(gt1, gt2, gt3, gt4)
54
55
56
    ! Photonic dipole contributions
57
    BRdipole = (Abs(cK2L)**2+Abs(cK2R)**2)\&
58
    &*(16._dp*Log(mf_1(gt1)/mf_1(gt2))-22._dp)/3._dp
59
    ! Scalar contributions
60
    BRscalar = (Abs(CSLL)**2+Abs(CSRR)**2)/24._dp\&
61
62
    &+(Abs(CSLR)**2+Abs(CSRL)**2)/12._dp
63
64
     ! Vector contributions
    BRvector = 2._dp*(Abs(CVLL)**2+Abs(CVRR)**2)/3._dp\&
65
66
    &+(Abs(CVLR)**2+Abs(CVRL)**2)/3._dp
67
68
    ! Tensor contributions
    BRtensor = 6._dp*(Abs(CTLL)**2+Abs(CTRR)**2)
69
70
71
     ! Mix: dipole x scalar
    BRmix1 = 2._dp/3._dp*Real(cK2L*Conjg(CSRL) +
72
          cK2R*Conjg(CSLR),dp)
73
    ! Mix: dipole x vector
74
75
    BRmix2 = -4.\_dp/3.\_dp*Real(cK2L*Conjg(CVRL) +
          cK2R*Conjg(CVLR),dp) &
76
         & -8._dp/3._dp*Real(cK2L*Conjg(CVRR) +
               cK2R*Conjg(CVLL),dp)
77
78
    ! Mix: scalar x vector
    BRmix3 = -1._dp/3._dp * Real(CSLR * Conjg(CVLR) +
79
          CSRL*Conjg(CVRL),dp)
80
    ! Mix: scalar x tensor
81
82
    BRmix4 = -1._dp*Real(CSLL*Conjg(CTLL) +
         CSRR*Conjg(CTRR),dp)
83
84
    GammaLFV = oo512pi3*mf_1(gt1)**5* \&
         & (e4*BRdipole + BRscalar + BRvector + BRtensor &
85
         \& + e2*BRmix1 + e2*BRmix2 + BRmix3 + BRmix4)
86
87
88
89
    !taking alpha(Q=0) instead of alpha(m_Z) as this
          contains most of the
     !running of the Wilson coefficients
90
91
92
93
    If (i1.Eq.1) Then
94
     BRmuTo3e=GammaLFV/GammaMu
95
     Else If (i1.Eq.2) Then
96
     BRtauTo3e=GammaLFV/GammaTau
97
    Else
98
     BRtauTo3mu=GammaLFV/GammaTau
```

99 End If 100 End do

C.1.3 Coherent $\mu - e$ conversion in nuclei

The conversion rate, relative to the the muon capture rate, can be expressed as [90,91]

$$CR(\mu - e, Nucleus) = \frac{p_e E_e m_{\mu}^3 G_F^2 \alpha^3 Z_{eff}^4 F_p^2}{8\pi^2 Z} \times \left\{ \left| (Z + N) \left(g_{LV}^{(0)} + g_{LS}^{(0)} \right) + (Z - N) \left(g_{LV}^{(1)} + g_{LS}^{(1)} \right) \right|^2 + \left| (Z + N) \left(g_{RV}^{(0)} + g_{RS}^{(0)} \right) + (Z - N) \left(g_{RV}^{(1)} + g_{RS}^{(1)} \right) \right|^2 \right\} \frac{1}{\Gamma_{capt}}.$$
(C.21)

Z and N are the number of protons and neutrons in the nucleus and Z_{eff} is the effective atomic charge [92]. Similarly, G_F is the Fermi constant, F_p is the nuclear matrix element and Γ_{capt} represents the total muon capture rate. α is the fine structure constant, p_e and $E_e (\simeq m_{\mu})$ in the numerical evaluation) are the momentum and energy of the electron and m_{μ} is the muon mass. In the above, $g_{XK}^{(0)}$ and $g_{XK}^{(1)}$ (with X = L, R and K = S, V) can be written in terms of effective couplings at the quark level as

$$g_{XK}^{(0)} = \frac{1}{2} \sum_{q=u,d,s} \left(g_{XK(q)} G_K^{(q,p)} + g_{XK(q)} G_K^{(q,n)} \right),$$

$$g_{XK}^{(1)} = \frac{1}{2} \sum_{q=u,d,s} \left(g_{XK(q)} G_K^{(q,p)} - g_{XK(q)} G_K^{(q,n)} \right). \quad (C.22)$$

For coherent $\mu - e$ conversion in nuclei, only scalar (*S*) and vector (*V*) couplings contribute. Furthermore, sizable contributions are expected only from the *u*, *d*, *s* quark flavors. The numerical values of the relevant G_K factors are [90,93]

$$G_V^{(u,p)} = G_V^{(d,n)} = 2; \quad G_V^{(d,p)} = G_V^{(u,n)} = 1;$$

$$G_S^{(u,p)} = G_S^{(d,n)} = 5.1; \quad G_S^{(d,p)} = G_S^{(u,n)} = 4.3;$$

$$G_S^{(s,p)} = G_S^{(s,n)} = 2.5.$$
 (C.23)

Finally, the $g_{XK(q)}$ coefficients can be written in terms of the Wilson coefficients in Eqs. (A.3), (A.8) and (A.9) as

$$g_{LV(q)} = \frac{\sqrt{2}}{G_F} \left[e^2 \mathcal{Q}_q \left(K_1^L - K_2^R \right) - \frac{1}{2} \left(C_{\ell \ell q q}^{VLL} + C_{\ell \ell q q}^{VLR} \right) \right]$$
(C.24)

$$g_{RV(q)} = g_{LV(q)} \Big|_{L \to R} \tag{C.25}$$

$$g_{LS(q)} = -\frac{\sqrt{2}}{G_F} \frac{1}{2} \left(C_{\ell\ell qq}^{SLL} + C_{\ell\ell qq}^{SLR} \right)$$
(C.26)

$$g_{RS(q)} = g_{LS(q)} \Big|_{L \to R} \,. \tag{C.27}$$

Here Q_q is the quark electric charge ($Q_d = -1/3$, $Q_u = 2/3$) and $C_{\ell\ell qq}^{IXK} = B_{XY}^K (C_{XY}^K)$ for d-quarks (u-quarks), with X = L, R and K = S, V.

Listing 22 MuEconversion.m

1	NameProcess = "MuEconversion";
2	NameObservables = {{ $CRmuEAl, 800, "CR(mu - e, Al)"$ },
3	$\{CRmuETi, 801, "CR(mu-e, Ti)"\},\$
4	{CRmuESr, 802 , "CR(mu-e, Sr)"},
5	$\{CRmuESb, 803, "CR(mu-e, Sb)"\},\$
6	$\{CRmuEAu, 804, "CR(mu-e, Au)"\},\$
7	{CRmuEPb, 805 , "CR(mu-e, Pb)"}
8	};
9	
10	NeededOperators = {K1L, K1R, K2L, K2R,
11	OllddSLL, OllddSRR, OllddSRL, OllddSLR, OllddVRR,
	OllddVLL,
12	OllddVRL, OllddVLR, OllddTLL, OllddTLR, OllddTRL,
	OllddTRR,
13	OlluuSLL, OlluuSRR, OlluuSRL, OlluuSLR, OlluuVRR,
	OlluuVLL,
14	OlluuVRL, OlluuVLR, OlluuTLL, OlluuTLR, OlluuTRL,
	OlluuTRR
15	};
16	
17	Body = "MuEconversion f90"

Listing 23 MuEconversion.f90

```
Complex(dp) :: gPLV(3), gPRV(3)
    Complex(dp), Parameter :: matO(3,3)=0._dp
2
3
    Real(dp) :: Znuc, Nnuc, Zeff, Fp, GammaCapt, GSp(3),
          GSn(3), &
 4
         & GVp(3), GVn(3), e2
 5
    Complex(dp) ::
          Lcont, Rcont, gLS(3), gRS(3), gLV(3), gRV(3),
 6
     gOLS, gORS, &
         & g0LV,g0RV,g1LS,g1RS,g1LV,g1RV
7
8
    Integer :: i1, i2
9
10
11
    ! Coherent mu-e conversion in nuclei
12
    ! Observable implemented by W. Porod, F. Staub and A.
          Vicente
13
    ! Based on Y. Kuno, Y. Okada, Rev. Mod. Phys. 73
          (2001) 151 [hep-ph/9909265]
14
    ! and E. Arganda et al, JHEP 0710 (2007) 104
          [arXiv:0707.2955]
15
16
17
    e2 = 4._dp*Pi*Alpha_MZ
18
19
     ! 1: uu
20
    ! 2: dd
    ! 3: ss
21
22
23
    ! vector couplings
24
    gLV(1) = 0.5 dp * (OlluuVLL(2,1,1,1) +
25
          OlluuVLR(2,1,1,1))
```

```
gRV(1) = 0.5 dp * (OlluuVRL(2,1,1,1) +
26
          OlluuVRR(2,1,1,1))
27
    gLV(2) = 0.5_dp * (OllddVLL(2,1,1,1) +
          OllddVLR(2.1.1.1))
28
    gRV(2) = 0.5 dp * (OllddVRL(2,1,1,1)) +
          OllddVRR(2,1,1,1))
29
    gLV(3) = 0.5_dp*(OllddVLL(2,1,2,2) +
          OllddVLR(2,1,2,2))
    gRV(3) = 0.5_dp*(OllddVRL(2,1,2,2) +
30
          OllddVRR(2, 1, 2, 2))
31
32
    gLV = -gLV * Sqrt(2.dp)/G_F
33
    gRV = -gRV * Sqrt(2.dp)/G_F
34
35
    gPLV(1) = (K1L(2,1)-K2R(2,1))*(2._dp/3._dp)
    gPRV(1) = (K1R(2,1)-K2L(2,1))*(2._dp/3._dp)
36
37
    gPLV(2) = (K1L(2,1)-K2R(2,1))*(-1._dp/3._dp)
38
    gPRV(2) = (K1R(2,1)-K2L(2,1))*(-1._dp/3._dp)
    gPLV(3) = (K1L(2,1)-K2R(2,1))*(-1._dp/3._dp)
39
    gPRV(3) = (K1R(2,1)-K2L(2,1))*(-1._dp/3._dp)
40
41
    gPLV = gPLV * Sqrt(2._dp)/G_F * e2
42
    gPRV = gPRV * Sqrt(2._dp)/G_F * e2
43
    gLV=gPLV+gLV
44
45
    gRV=gPRV+gRV
46
47
48
    ! scalar couplings
49
    gLS(1) = 0.5_dp * (OlluuSLL(2,1,1,1)+OlluuSLR(2,1,1,1))
50
51
    gRS(1) = 0.5_dp*(OlluuSRL(2,1,1,1)+OlluuSRR(2,1,1,1))
52
    gLS(2) = 0.5_dp*(OllddSLL(2,1,1,1)+OllddSLR(2,1,1,1))
53
    gRS(2) = 0.5 dp * (OllddSRL(2,1,1,1)+OllddSRR(2,1,1,1))
54
    gLS(3) = 0.5_dp*(OllddSLL(2,1,2,2)+OllddSLR(2,1,2,2))
55
    gRS(3) = 0.5_dp*(OllddSRL(2,1,2,2)+OllddSRR(2,1,2,2))
56
57
    gLS = -gLS * Sqrt(2.dp)/G_F
58
    gRS = -gRS * Sqrt(2.dp)/G_F
59
60
    Do i1=1.6
61
62
     If (i1.eq.1) Then
63
    Znuc=13._dp
    Nnuc=14._dp
64
    Zeff=11.5_dp
65
66
    Fp=0.64 dp
67
    GammaCapt=4.64079e-19_dp
68
    Else If(i1.eq.2) Then
69
    Znuc=22. dp
70
    Nnuc=26._dp
71
    Zeff=17.6_dp
72
    Fp=0.54_dp
73
    GammaCapt=1.70422e-18_dp
74
    Else If(i1.eq.3) Then
75
    Znuc=38. dp
76
    Nnuc=42. dp
77
    Zeff=25.0_dp
78
    Fp=0.39_dp
    GammaCapt=4.61842e-18_dp
79
    Else If(i1.eq.4) Then
80
81
    Znuc=51._dp
82
    Nnuc=70._dp
83
    Zeff=29.0_dp
84
    Fp=0.32_dp
    GammaCapt=6.71711e-18_dp
85
86
    Else If(i1.eq.5) Then
87
    Znuc=79._dp
88
    Nnuc=118._dp
89
    Zeff=33.5 dp
90
    Fp=0.16 dp
```

91

92

93

GammaCapt=8.59868e-18 dp

Else If(i1.eq.6) Then

Znuc=82._dp

94 Nnuc=125. dp Zeff=34.0_dp 95 96 Fp=0.15_dp 97 GammaCapt=8.84868e-18 dp 98 End If 99 100 ! numerical values 101 ! based on Y. Kuno, Y. Okada, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] 102 ! and T. S. Kosmas et al, PLB 511 (2001) 203 [hep-ph/0102101] GSp=(/5.1,4.3,2.5/) 103 104 GSn = (/4.3, 5.1, 2.5/)105 GVp = (/2.0.1.0.0.0/)GVn = (/1.0, 2.0, 0.0/)106 107 108 g0LS=0._dp 109 g0RS=0._dp g0LV=0._dp 110 111 g0RV=0._dp 112 g1LS=0, dp 113 g1RS=0._dp 114 g1LV=0._dp g1RV=0._dp 115 116 Do i2=1,3 117 $g0LS=g0LS+0.5_dp*gLS(i2)*(GSp(i2)+GSn(i2))$ 118 $gORS=gORS+0.5_dp*gRS(i2)*(GSp(i2)+GSn(i2))$ 119 $g0LV=g0LV+0.5_dp*gLV(i2)*(GVp(i2)+GVn(i2))$ g0RV=g0RV+0.5_dp*gRV(i2)*(GVp(i2)+GVn(i2)) 120 $g1LS=g1LS+0.5_dp*gLS(i2)*(GSp(i2)-GSn(i2))$ 121 122 $g1RS=g1RS+0.5_dp*gRS(i2)*(GSp(i2)-GSn(i2))$ 123 g1LV=g1LV+0.5_dp*gLV(i2)*(GVp(i2)-GVn(i2)) $g1RV=g1RV+0.5_dp*gRV(i2)*(GVp(i2)-GVn(i2))$ 124 125 End Do 126 Lcont=(Znuc+Nnuc)*(g0LV+g0LS)+(Znuc-Nnuc)*(g1LV-g1LS) 127 Rcont=(Znuc+Nnuc)*(g0RV+g0RS)+(Znuc-Nnuc)*(g1RV-g1RS) 128 129 ! Conversion rate 130 If (i1.eq.1) Then CRMuEAl =008pi2*mf_1(2)**5*G_F**2*Alpha**3*Zeff** 131 132 4*Fp**2/Znuc*& 133 & (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt 134 Else if (i1.eq.2) Then 135 CRMuETi =008pi2*mf_1(2)**5*G_F**2*Alpha**3*Zeff** 136 4*Fp**2/Znuc*& 137 & (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt 138 Else if (i1.eq.3) Then 139 CRMuESr =008pi2*mf_1(2)**5*G_F**2*Alpha**3*Zeff** 140 4*Fp**2/Znuc*& & (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt 141 Else if (i1.eq.4) Then 142 143 CRMuESb =008pi2*mf_1(2)**5*G_F**2*Alpha**3*Zeff** 144 4*Fp**2/Znuc*& 145 & (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt 146 Else if (i1.eq.5) Then 147 CRMuEAu =008pi2*mf_1(2)**5*G_F**2*Alpha**3*Zeff** 148 4*Fp**2/Znuc*& 149 & (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt 150 Else if (i1.eq.6) Then CRMuEPb =008pi2*mf_1(2)**5*G_F**2*Alpha**3*Zeff** 151 152 4*Fp**2/Znuc*& 153 & (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt 154 End if 155 End do

$C.1.4 \ \tau \ \rightarrow \ P\ell$

Our analytical expressions for $\tau \to P\ell$, where $\ell = e, \mu$ and *P* is a pseudoscalar meson, generalize the results in [94]. The decay width is given by

$$\Gamma (\tau \to \ell P) = \frac{1}{4\pi} \frac{\lambda^{1/2} (m_{\tau}^2, m_{\ell}^2, m_P^2)}{m_{\tau}^2} \frac{1}{2} \sum_{i,f} |\mathcal{M}_{\tau\ell P}|^2,$$
(C.28)

where the averaged squared amplitude can be written as

$$\frac{1}{2} \sum_{i,f} |\mathcal{M}_{\tau\ell P}|^2 = \frac{1}{4m_{\tau}} \sum_{I,J=S,V} \left[2m_{\tau}m_{\ell} \left(a_P^I a_P^{J*} - b_P^I b_P^{J*} \right) + (m_{\tau}^2 + m_{\ell}^2 - m_P^2) \left(a_P^I a_P^{J*} + b_P^I b_P^{J*} \right) \right].$$
(C.29)

The coefficients $a_P^{S,V}$ and $b_P^{S,V}$ can be expressed in terms of the Wilson coefficients in Eqs. (A.8) and (A.9) as

$$a_{P}^{S} = \frac{1}{2} f_{\pi} \sum_{X=L,R} \left[\frac{D_{X}^{d}(P)}{m_{d}} \left(B_{LX}^{S} + B_{RX}^{S} \right) + \frac{D_{X}^{u}(P)}{m_{u}} \left(C_{LX}^{S} + C_{RX}^{S} \right) \right]$$
(C.30)

$$b_{P}^{S} = \frac{1}{2} f_{\pi} \sum_{X=L,R} \left[\frac{D_{X}^{d}(P)}{m_{d}} \left(B_{RX}^{S} - B_{LX}^{S} \right) + \frac{D_{X}^{u}(P)}{m_{u}} \left(C_{RX}^{S} - C_{LX}^{S} \right) \right]$$
(C.31)

$$a_{P}^{V} = \frac{1}{4} f_{\pi} C(P)(m_{\tau} - m_{\ell}) \left[-B_{LL}^{V} + B_{LR}^{V} - B_{RL}^{V} + B_{RR}^{V} + C_{LL}^{V} - C_{LR}^{V} + C_{RL}^{V} - C_{RR}^{V} \right]$$
(C.32)

$$b_P^V = \frac{1}{4} f_\pi C(P)(m_\tau + m_\ell) \left[-B_{LL}^V + B_{LR}^V + B_{RL}^V - B_{RR}^V + C_{LL}^V - C_{LR}^V - C_{RL}^V + C_{RR}^V \right].$$
(C.33)

In these expressions m_d and m_u are the down- and up-quark masses, respectively, f_{π} is the pion decay constant and the coefficients C(P), $D_{L,R}^{d,u}(P)$ take different forms for each pseudoscalar meson P [94]. For $P = \pi$ one has

$$C(\pi) = 1 \tag{C.34}$$

$$D_L^d(\pi) = -\frac{m_\pi^2}{4}$$
(C.35)

$$D_L^u(\pi) = \frac{m_\pi^2}{4},$$
 (C.36)

for $P = \eta$

$$C(\eta) = \frac{1}{\sqrt{6}} \left(\sin \theta_{\eta} + \sqrt{2} \cos \theta_{\eta} \right)$$
(C.37)

$$D_L^d(\eta) = \frac{1}{4\sqrt{3}} \left[(3m_\pi^2 - 4m_K^2) \cos \theta_\eta - 2\sqrt{2}m_K^2 \sin \theta_\eta \right]$$
(C.38)

$$D_L^u(\eta) = \frac{1}{4\sqrt{3}} m_\pi^2 \left(\cos\theta_\eta - \sqrt{2}\sin\theta_\eta\right), \qquad (C.39)$$

and for $P = \eta'$

$$C(\eta') = \frac{1}{\sqrt{6}} \left(\sqrt{2} \sin \theta_{\eta} - \cos \theta_{\eta} \right)$$
(C.40)

$$D_L^d(\eta') = \frac{1}{4\sqrt{3}} \left[(3m_\pi^2 - 4m_K^2) \sin \theta_\eta + 2\sqrt{2}m_K^2 \cos \theta_\eta \right]$$
(C.41)

$$D_L^u(\eta') = \frac{1}{4\sqrt{3}}m_\pi^2 \left(\sin\theta_\eta + \sqrt{2}\cos\theta_\eta\right).$$
(C.42)

Here m_{π} and m_K are the masses of the neutral pion and Kaon, respectively, and θ_{η} is the $\eta - \eta'$ mixing angle. In addition, $D_R^{d,u}(P) = -\left(D_L^{d,u}(P)\right)^*$. Notice that the Wilson coefficients in Eq. (C.33) include

Notice that the Wilson coefficients in Eq. (C.33) include all pseudoscalar and axial contributions to $\tau \rightarrow \ell P$. Therefore, this goes beyond some well-known results in the literature, see for example [94,95], where box contributions were neglected.

Listing 24 TauLMeson.m

1	NameProcess = "TauLMeson";
2	NameObservables = {{BrTautoEPi, 2001, "BR(tau->e pi)"},
3	{BrTautoEEta, 2002, "BR(tau->e
	eta)"},
4	{BrTautoEEtap, 2003, "BR(tau->e
	eta ') "},
5	{BrTautoMuPi, 2004, "BR(tau->mu
	pi)"},
6	{BrTautoMuEta, 2005, "BR(tau->mu
	eta)"},
7	{BrTautoMuEtap, 2006, "BR(tau->mu
	eta ') "}};
8	
9	NeededOperators = {OllddSLL, OllddSRR, OllddSRL,
	OllddSLR,
10	OllddVRR, OllddVLL, OllddVRL, OllddVLR,
11	OlluuSLL, OlluuSRR, OlluuSRL, OlluuSLR,
12	OlluuVRR, OlluuVLL, OlluuVRL, OlluuVLR
13	};
14	
15	Body = "TauLMeson . f90";

Listing 25 TauLMeson.f90

1	Real(dp) :: Fpi, thetaEta, mPi, mK, mEta, mEtap,
	meson_abs_T2, cont, &
2	& mP, CP, factor, BR
3	Complex(dp) :: BSLL, BSLR, BSRL, BSRR, BVLL, BVLR,
	BVRL, BVRR, &
4	& CSLL, CSLR, CSRL, CSRR, CVLL, CVLR, CVRL, CVRR,
	aP(2), $bP(2)$, &
5	& DLdP, DRdP, DLuP, DRuP
6	Integer :: i1, i2, out, k1, k2

<pre>1 tau → 1 meson 2 tobservable implemented by W. Porod, F. Staub and A. Vicente 1 Generalizes the analytical expressions in 1 E. Argand et al, JHEP 0806 (2008) 079 [arXiv:0803.2039] 2 5 Fpi=0.0924_dp! Pion decay constant in GeV hetaEta=-Pi/10dp! eta-eta' mixing angle mpi=0.13497_dp! Pion mass in GeV mEta=0.548_dp! Eta mass in GeV mEta=0.548_dp! Eta mass in GeV mEta=0.548_dp! Eta mass in GeV mEta=0.548_dp! Eta mass in GeV 11: PiO 12: Eta 13: Eta' 30: il=1.3 If(i1.eq.1) Then !1: PiO mP = mPi CP = 1dp DLdP = mPi**2/4dp DRdP = - Conjg(DLdP) DLdP = mPi**2/4dp DRdP = - Conjg(DLdP) Else If(i1.eq.2) Then !2: Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & & *Cos(thetaEta) -2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mK**2* (Cos(thetaEta)) & MBdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mK**2* (Cos(thetaEta)) & MBdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*m((3dp*mPi** 2-4dp*mK**2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta) & & & Sgrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sgrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & & & & Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta) + & & & & Sqrt(2dp)*Cos(thetaEta)) DRdP = - Conjg(DLdP) DLdP = 1dp/(4dp*Sqrt(3dp))*mFi**2* (Sin(thetaEta)+ & & & Sqrt(2dp)*Cos(thetaEta)) DRdP = - Conjg(DLdP) DLdP = 1dp/(4dp*Sqrt(3dp))*mFi**2* (Sin(thetaEta)+ & & & Sqrt(2dp)*Cos(thetaEta)) DRdP = - Conjg(DLdP) End If Leptons: 1:e 2:mu boi 2=1.2 If (i2.eq.1) Then ! tau -> e P out = 2 and if 2:d-quark coefficients 2:EL = OllddSLL(3,out,1,1)</pre>
! tau $> 1 meson$! Observable implemented by W. Porod, F. Staub and A. Vicente ! Generalizes the analytical expressions in ! E. Arganda et al, JHEP 0806 (2008) 079 [arXiv:0803.2039] Fpi=0.0924_dp! Pion decay constant in GeV thetaEta==Pi/10dp! eta=ta' mixing angle nPi=0.13497_dp! Pion mass in GeV mEta=0.548_dp! Eta mass in GeV mEta=0.548_dp! Eta mass in GeV mEta=0.548_dp! Eta mass in GeV Mesons: 11: PiO 12: Eta 13: Eta' Do il=1,3 If (i1.eq.1) Then !!: PiO mP = mPi CP = 1dp DLdP = - Conjg(DLdP) DLuP = mPi*2/4dp DRdP = - Conjg(DLdP) DLuP = mPi*2/4dp DRdP = - Conjg(DLdP) DLuP = mPi*2/4dp DRdP = - Conjg(DLdP) DLdP = 1dp/(4dp*Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK*2) & & &*Cos(thetaEta) - 2_dp*Sqrt(2dp)*mK**2* Sin(thetaEta) DRdP = - Conjg(DLdP) DLdP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & &=Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK*2) & & &*Sin(thetaEta) + 2_dp*Sqrt(2dp)*mK*2* Cos(thetaEta) + 2_dp*Sqrt(2dp)*mK*2* Cos(thetaEta) + 2_dp*Sqrt(2dp)*mK*2* Cos(thetaEta) + 2_dp*Sqrt(2dp)*mK*2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi** 2-4dp*mK*2) & & & *Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi** 2-4dp*mK*2) & & & √(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(thetaEta)+2_dp*Sqrt(2dp)*mFi**2* (Sin(
<pre>! Observable implemented by W. Porod, F. Staub and A. Vicente ! Generalizes the analytical expressions in ! E. Arganda et al, JHEP 0806 (2008) 079 [arXiv:0803.2039] ! mPi=0.13497_dp1 Pion decay constant in GeV thetaEta==Pi/10dp! eta=ta' mixing angle mPi=0.13497_dp1 Pion mass in GeV mEta=0.548_dp1 Eta mass in GeV mEta=0.548_dp1 Eta mass in GeV mEta=0.548_dp1 Eta mass in GeV ! Mesons: !1: Pi0 !2: Eta !3: Eta' Do if=1,3 If (i1.eq.1) Then !1: Pi0 mP = mPi CP = 1dp DLdP = - Conjg(DLdP) DLdP = mPi**2/4dp DRdP = - Conjg(DLdP) Else If (i1.eq.2) Then !2: Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp+Sqrt(3dp))*((3dp+mPi** 2=4dpamK**2) & & & *Cos(thetaEta)=2dp+Sqrt(2dp)*mK**2* Sin(thetaEta)) DRdP = - Conjg(DLdP) DLdP = 1dp/(4dp+Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & & -Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp+Sqrt(3dp))*((3dp+mPi** 2=4dpamK*2) & & & *Sin(thetaEta) DLdP = 1dp/(4dp+Sqrt(3dp))*((3dp+mPi** 2=4dpamK*2) & & & *Sin(thetaEta)) DRdP = - Conjg(DLdP) DLdP = 1dp/(4dp+Sqrt(3dp))*((3dp+mPi** 2=4dpamK*2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) Else If(i1.eq.3) Then !3:Eta' mP = mEtag CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp+Sqrt(3dp))*((3dp+mPi** 2=4dpamK*2) & & & & Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) Else If(12.eq.2) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> e P out = 2 and if !! equark coefficients SBLL = OlldSLL(3,out,1,1)</pre>
vicence i Generalizes the analytical expressions in i E. Arganda et al. JHEP 0806 (2008) 079 [arXiv:0803.2039] Fpi=0.03497_dp! Pion decay constant in GeV thetaEta=-Pi/10dp! eta-eta' mixing angle mPi=0.13497_dp! Pion mass in GeV mEta=0.548_dp! Eta mass in GeV mEta=0.548_dp! Eta mass in GeV mEta=0.548_dp! Eta' mass in GeV iMesons: 11: Pio 12: Eta 13: Eta' 14: (i1.eq.1) Then !1: Pio mP = mPi CP = 1dp DLdP = mPi**2/4dp DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*MK**2) & & & *Cos(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*mNi**2* (Cos(thetaEta)) DEaP = -Conjg(DLAP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DEaP = -Conjg(DLAP) DLuP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*MK**2) & & & & Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*MK**2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DEaP = -Conjg(DLAP) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*MK**2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DEAP = -Conjg(DLAP) DLAP = -Conjg(DLAP) End If !Leptons: 11: c 12: mu 20: i2=1.2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 end if ! d-quark coefficients SBLL = OllddSLL(3,out,1,1)
Scheralizes the analytical expressions in E. Arganda et al., HEP 0806 (2008) 079 [arXiv:0803.2039] Fpi=0.0924_dp! Pion decay constant in GeV thetaEta=-Pi/10dp! eta-eta' mixing angle mPi=0.13497_dp! Pion mass in GeV mEta=0.548_dp! Eta mass in GeV Mesons: 11: Pi0 22: Eta 13: Eta' 20 il = 1, 3 If (il.eq.1) Then !1: Pi0 mP = mPi CP = 1dp DLdP = - mPi**2/4dp DRuP = - Conjg(DLdP) DLuP = mPi**2/4dp DRuP = - Conjg(DLaP) Else If (il.eq.2) Then !2: Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp'(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & & *Cos(thetaEta) & & & *Cos(thetaEta) = 2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRuP = - Conjg(DLdP) DLuP = 1dp'(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRuP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRuP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRuP = - Conjg(DLdP) DLaP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*K**2) & & & *Sin(thetaEta)+Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*M***2) & & & *Sin(thetaEta)+ & & & Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ DRuP = - Conjg(DLdP) DLdP = 1dp/(4dp*Sqrt(3dp))*mFi**2* (Sin(thetaEta))+ & & & & Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ DRuP = - Conjg(DLdP) DLdP = 1dp/(4dp*Sqrt(3dp))*mFi**2* (Sin(thetaEta))+ & & & & & & & & & & & & & & & & & & &
<pre>File ing we will file to be (2000) 015 [arXiv:0803.2039]] Fpi=0.0924_dp! Pion decay constant in GeV thetaEta==Pi/10dp! eta=eta' mixing angle nPi=0.13497_dp! Pion mass in GeV uEta=0.548_dp! Eta mass in GeV uEta=0.548_dp! Eta=0.548_dp! DLuP = - Conjg(DLuP) Ets If(i1.eq.1) Then 12:Eta mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Ets If(i1.eq.3) Then 13:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6.dp) DLuP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi**</pre>
Fpi=0.0924_dp! Pion decay constant in GeV thetaEta=-Pi/10dp! eta-eta' mixing angle mPi=0.13497_dp! Pion mass in GeV mEta=0.548_dp! Eta mass in GeV mEta=0.548_dp! Eta mass in GeV Mesons: 11:Pi0 12:Eta 13:Eta' 13:Eta' 14:Pi0 12:Eta 13:Eta' 14:Pi0 12:Eta 13:Eta' 14:Pi0 12:Eta 13:Eta' 14:Pi0 12:Eta 15:Eta' 15:Eta' 16:Pi0 17:Eta 17:Eta 17:E
<pre>Fpi=0.0924_dp! Pion decay constant in GeV thetaEta==Pi/10dp! eta=eta' mixing angle mPi=0.13497_dp! Pion mass in GeV mEta=0.548_dp! Eta mass in GeV nEta=0.958_dp! Eta' mass in GeV Mesons: 11: Pi0 12: Eta 13: Eta' Do il=1,3 If (il.eq.1) Then !1: Pi0 mP = mPi CP = 1dp DLdP = - mPi**2/4dp DRuP = - Conjg(DLdP) DLuP = mPi**2/4dp DRuP = - Conjg(DLuP) Else If (il.eq.2) Then !2: Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) &</pre>
$Fpi=0.0924_dp! Pion decay constant in GeV hetaEta==Pi/10dp! eta-eta' mixing angle mPi=0.13497_dp! Pion mass in GeV mEta=0.548_dp! Eta mass in GeV mEta=0.958_dp! Eta' mass in GeV Mesons: 11: Pi0 12: Eta 13: Eta' 20 i1=1,3 1f (i1.eq.1) Then !1: Pi0 mP = mPi CP = 1dp DLAP = -mPi**2/4dp DRAP = - Conjg(DLAP) DLAP = mPi*2/4dp DRAP = - Conjg(DLAP) Else If (i1.eq.2) Then !2: Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLAP = 1dp/d4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp#mK**2) & & & *Cos(thetaEta) - 2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRAP = - Conjg(DLAP) DLAP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRAP = - Conjg(DLAP) DLAP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRAP = - Conjg(DLAP) DLAP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRAP = - Conjg(DLAP) Else If (i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLAP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*MK**2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRAP = - Conjg(DLAP) DLAP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & & Sqrt(2dp)*Cos(thetaEta)) DRAP = - Conjg(DLAP) DLAP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & & Sqrt(2dp)*Cos(thetaEta)) DRAP = - Conjg(DLAP) DLAP = - Conjg(DLAP) End If !Leptons: !1:e !2:mu So i2=1.2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients SBLL = OllddSLL(3,out,1,1)$
hetaEta=-Pi/10dp! eta-eta' mixing angle nPi=0.13497_dp! Pion mass in GeV nEta=0.548_dp! Eta mass mass in GeV neta=0.548_dp! Eta masses mass mass mass mass mass mass m
nht=0.13497_dp! Pion mass in GeV ak=0.49761_dp! Kaon mass in GeV nEtap=0.958_dp! Eta mass in GeV Nesons: 11: Pio 12: Eta 13: Eta' 13: Eta' 14: (ii.eq.1) Then !1: Pio mP = mPi CP = 1dp DLdP = - mPi**2/4dp DRdP = - Conjg(DLdP) DLuP = mPi*2/4dp DRdP = - Conjg(DLdP) Else If(i1.eq.2) Then !2: Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4_dpsmK**2) & & *Cos(thetaEta) -2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRdP = - Conjg(DLdP) DLaP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRdP = - Conjg(DLdP) DLaP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRdP = - Conjg(DLdP) DLaP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRuP = - Conjg(DLaP) Else If(i1.eq.3) Then !3:Eta' mP = mEta CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dpsmK*2) & & * sSin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dpsmK*2) & & & sSin(thetaEta)+2dp*Sqrt(2dp)*mK*2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLdP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4 & & & Sqrt(2dp)*Cos(thetaEta)) DRdP = - Conjg(DLdP) DLdP = - Conjg(DLdP) DLdP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4 & & & Sqrt(2dp)*Cos(thetaEta)) DRdP = - Conjg(DLdP) End If 12: e 12: mu Do i2 = 1.2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients 4: d-quark coefficients
$ix=0.9701_{1}(a) = ixaon mass in GeV$ $inEta=0.548_dp! Eta mass in GeV$ $itea=0.958_dp! Eta' mass in GeV$ $ite=0.958_dp! Eta = 0.058_dp! Eta$
$DEtap=0.958_dp! Eta' mass in GeV$ $Perform the equation of t$
<pre>Provide T Provide T</pre>
<pre>Provide the set of the set</pre>
11: Pio 12: Eta 13: Eta 13: Eta 13: Eta 14: (1) Then !1: Pio mP = mPi CP = 1dp DLAP = - mPi**2/4dp DRAP = - Conjg(DLAP) Else If (i1.eq.2) Then !2: Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLAP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & *Cos(thetaEta) -2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRAP = - Conjg(DLAP) DLAP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & &-Sqrt(2dp)*Sin(thetaEta)) DRAP = - Conjg(DLAP) Else If (i1.eq.3) Then !3: Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLAP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & &*Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRAP = - Conjg(DLAP) DLAP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRAP = - Conjg(DLAP) DLAP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & & Sqrt(2dp)*Cos(thetaEta)) DRAP = - Conjg(DLAP) End If 11: 12: mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if 2: d-quark coefficients 3SLL = OllddSLL(3,out,1,1)
12: Eta 13: Eta 13: Eta 13: Eta 14: (11. eq. 1) Then !1: Pi0 mP = mPi CP = 1dp DLdP = - mPi**2/4dp DRuP = - Conjg(DLdP) DLuP = mPi**2/4dp DRuP = - Conjg(DLuP) Else If(i1.eq.2) Then !2: Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK*2) & & *Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) DRuP = - Conjg(DLdP) Else If(i1.eq.3) Then !3: Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & & stin(thetaEta)+2dp*Sqrt(2dp)*mN**2* (Sin(thetaEta)+4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+4dp*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If PLeptons: PL
J: Eta' $Jo i 11=1,3$ $If (i1. eq.1) Then !1: Pi0$ $mP = mPi$ $CP = 1dp$ $DLdP = - mPi**2/4dp$ $DRdP = - Conjg(DLdP)$ $DLuP = mPi**2/4dp$ $DRuP = - Conjg(DLuP)$ Else If (i1. eq. 2) Then !2: Eta mP = mEta $CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/$ $Sqrt(6dp)$ $DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & & & & & & & & & & & & & & & & & &$
If (i1.eq.1) Then !1: Pi0 mP = mPi CP = 1dp DLdP = - Conjg(DLdP) DLuP = mPi**2/4dp DRuP = - Conjg(DLP) Else If (i1.eq.2) Then !2: Eta mP = mEta CP = (Sin (thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** $2-4dp*mK**2)$ & & &*Cos(thetaEta)-2dp*Sqrt(2dp)*mK**2* Sin (thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & & &-Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Else If (i1.eq.3) Then !3: Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** $2-4dp*mK**2)$ & & &*Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** $2-4dp*mK**2)$ & & & Sqrt(2dp)*Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & & & & & & & & & & & & & & & & & &
mP = mPi $CP = 1dp$ $DLdP = - mPi**2/4dp$ $DRdP = - Conjg(DLdP)$ $DLuP = mPi**2/4dp$ $DRuP = - Conjg(DLuP)$ Else If(i1.eq.2) Then !2:Eta $mP = mEta$ $CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/$ $Sqrt(6dp)$ $DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & (Cos(thetaEta)))$ $DRdP = - Conjg(DLdP)$ $DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2*$ $(Cos(thetaEta))$ $DRuP = - Conjg(DLuP)$ Else If(i1.eq.3) Then !3:Eta' $mP = mEta$ $CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/$ $Sqrt(6dp)$ $DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & (Sin(thetaEta)-Cos(thetaEta)))/$ $Sqrt(6dp)$ $DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & (Sin(thetaEta)+Cos(thetaEta)))/$ $DRuP = - Conjg(DLdP)$ $DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & (Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)))$ $DRdP = - Conjg(DLdP)$ $DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2*$ $(Sin(thetaEta)+2dp*Sqrt(3dp))*mPi**2*$ $(Sin(thetaEta)+2dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+2dp*Sqrt(3dp))*mPi**2* (Sin(thetaEt$
CP = 1dp $DLdP = -mPi**2/4dp$ $DRdP = -Conjg(DLdP)$ $DLuP = mPi**2/4dp$ $DRuP = -Conjg(DLuP)$ Else If(i1.eq.2) Then !2:Eta $mP = mEta$ $CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/$ $Sqrt(6dp)$ $DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & (3dp))*mK**2*$ $Sin(thetaEta) - 2dp*Sqrt(2dp)*mK**2*$ $Sin(thetaEta) - 2dp*Sqrt(3dp))*mPi**2*$ $(Cos(thetaEta) = (3dp)(4dp*Sqrt(3dp))*mPi**2*$ $(Cos(thetaEta) = (3dp)(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2)))$ $DRuP = -Conjg(DLuP)$ Else If(i1.eq.3) Then !3:Eta' $mP = mEtap$ $CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/$ $Sqrt(6dp)$ $DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2)))$ $K * Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2*$ $Cos(thetaEta))$ $DRdP = -Conjg(DLdP)$ $DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2*$ $(Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2*$ $Cos(thetaEta))$ $DRdP = -Conjg(DLdP)$ $DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2*$ $(Sin(thetaEta)+2dp*Sqrt(2dp)*mPi**2*$ $(Sin(thetaEta)+2dp*Sqrt(2dp))*mPi**2*$ $(Sin(thetaEta)+2dp*Sqrt(2dp))*mPi**2*$ $(Sin(thetaEta)+2dp*Sqrt(2dp))*mPi**2*$ $(Sin(thetaEta)+2dp*Sqrt(3dp))*mPi**2*$ $(Sin(thetaEta)+2dp*Sqrt(3dp))*m$
DLdP = - mPi**2/4dp DRdP = - Conjg(DLdP) DLuP = mPi**2/4dp DRuP = - Conjg(DLuP) Else If(i1.eq.2) Then !2:Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & *Cos(thetaEta) -2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & & -Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Else If(i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+2dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !1:e 12:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients SSLL = OllddSLL(3,out,1,1)
DRdP = - Conjg(DLdP) DLuP = mPi**2/4dp DRuP = - Conjg(DLuP) Else If(i1.eq.2) Then !2:Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4_dp*mK**2) & & *Cos(thetaEta) -2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & &-Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Else If(i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4_dp*mK**2) & & &*Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !1:e 12:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
DLuP = mPi**2/4dp DRuP = - Conjg(DLuP) Else If(i1.eq.2) Then !2:Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & *Cos(thetaEta) -2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & &-Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Else If(i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+2. & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !1:e !2:mu Do i2=1,2 If(i2.eq.1) Then ! tau -> e P out = 1 Elseif(i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
DKWP = - Cong(DLWP) Else If (i1.eq.2) Then !2:Eta mP = mEta CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & *Cos(thetaEta) -2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta)) & & & -Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Else If (i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+2dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !1:e !2:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
mP = mEta mP = mEta CP = $(Sin(thetaEta)+Sqrt(2,_dp)*Cos(thetaEta))/$ Sqrt(6,_dp) DLdP = 1dp/(4dp*Sqrt(3,_dp))*((3dp*mPi** 2-4dp*mK**2) & & *Cos(thetaEta) -2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3,_dp))*mPi**2* (Cos(thetaEta)) & & & -Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Else If(i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3,_dp))*((3dp*mPi** 2-4dp*mK**2) & & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If Elseif (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if !! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
CP = (Sin(thetaEta)+Sqrt(2dp)*Cos(thetaEta))/Sqrt(6dp)DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi**2-4dp*mK**2) & & & & & & & & & & & & & & & & & & &
Sqrt(6dp) $DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi**2-4dp*mK**2) & & & & & & & & & & & & & & & & & & &$
DLdP = $1._dp/(4._dp*Sqrt(3._dp))*((3._dp*mPi**2-4._dp*mK**2) & & & & & & & & & & & & & & & & & & &$
2-4dp *mK**2) & $& *Cos(thetaEta) - 2dp * Sqrt(2dp) *mK**2*$ $Sin(thetaEta))$ $DRdP = - Conjg(DLdP)$ $DLuP = 1dp/(4dp * Sqrt(3dp)) *mPi**2*$ $(Cos(thetaEta)) &$ $& -Sqrt(2dp) *Sin(thetaEta))$ $DRuP = - Conjg(DLuP)$ Else If(i1.eq.3) Then !3:Eta' $mP = mEtap$ $CP = (Sqrt(2dp) *Sin(thetaEta) - Cos(thetaEta))/$ $Sqrt(6dp)$ $DLdP = 1dp/(4dp * Sqrt(3dp)) *((3dp *mPi** 2-4dp *mK**2)) &$ $& *Sin(thetaEta) + 2dp * Sqrt(2dp) *mK**2*$ $Cos(thetaEta))$ $DRdP = - Conjg(DLdP)$ $DLuP = 1dp/(4dp * Sqrt(3dp)) *mPi**2*$ $(Sin(thetaEta) + 2dp *Sqrt(3dp)) *mPi**2*$ $(Sin(thetaEta) + 4) &$ $& Sqrt(2dp) *Cos(thetaEta))$ $DRuP = - Conjg(DLuP)$ End If $P = Conjg(DLuP)$ End If $P = P = P = P = P = P = P = P = P = P =$
<pre>& *Lost (netaEta) - 2dp*Sqrt(2dp)*mK**2* Sin(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & &-Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Else If(i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & &*Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !1:e !2:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if !! d-quark coefficients BSLL = OllddSLL(3,out,1,1)</pre>
DRdP = - Conjg(DLdP) DRdP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & &-Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Else If(i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & &*Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & √(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !l:e !2:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Cos(thetaEta) & & &-Sqrt(2dp)*Sin(thetaEta)) DRuP = - Conjg(DLuP) Else If(i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & &*Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & √(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !1:e !2:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if !! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
$(Cos(thetaEta) & \& \\ \& -Sqrt(2dp)*Sin(thetaEta)) \\ DRuP = - Conjg(DLuP) \\ Else If(i1.eq.3) Then !3:Eta' \\ mP = mEtap \\ CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ \\ Sqrt(6dp) \\ DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK*2) & \& *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* \\ Cos(thetaEta)) \\ DRdP = - Conjg(DLdP) \\ DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* \\ (Sin(thetaEta)+ & \& Sqrt(2dp)*Cos(thetaEta)) \\ DRuP = - Conjg(DLuP) \\ DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* \\ (Sin(thetaEta)+ & \& Sqrt(2dp)*Cos(thetaEta)) \\ DRuP = - Conjg(DLuP) \\ End If \\ !Leptons: \\ !l:e \\ !2:mu \\ Do i2=1,2 \\ If (i2.eq.1) Then ! tau -> e P \\ out = 1 \\ Elseif (i2.eq.2) Then ! tau -> mu P \\ out = 2 \\ End if \\ ! d-quark coefficients \\ SSLL = OllddSLL(3,out,1,1) \\ \end{cases}$
DRuP = -Conjg(DLuP) Else If (i1.eq.3) Then !3:Eta' mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons:!1:e !2:mu Do i2=1,2If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
Else If (11.eq.3) Then $!3:Eta'$ mP = mEtap CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !1:e !2:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
Int = Interp $CP = (Sqrt(2dp)*Sin(thetaEta)-Cos(thetaEta))/ Sqrt(6dp)$ $DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons:!1:e!2:mu Do i2=1,2If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)$
<pre>Sqrt(6dp) Sqrt(6dp) DLdP = 1dp/(4dp*Sqrt(3dp))*((3dp*mPi** 2-4dp*mK**2) & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If PLeptons: Pl:e Pl:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if Pl-quark coefficients BSLL = OllddSLL(3,out,1,1)</pre>
DLdP = $1 \cdot dp/(4 \cdot dp*Sqrt(3 \cdot dp))*((3 \cdot dp*mPi**$ $2-4 \cdot dp*mK**2)$ & & *Sin(thetaEta)+2 \cdot dp*Sqrt(2 \cdot dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = $1 \cdot dp/(4 \cdot dp*Sqrt(3 \cdot dp))*mPi**2*$ (Sin(thetaEta)+ & & Sqrt(2 \cdot dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !1:e !2:mu Do i2=1,2 If (i2 \cdot eq.1) Then ! tau -> e P out = 1 Elseif (i2 \cdot eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3, out, 1, 1)
2-4dp*mK**2) & & *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If !Leptons: !1:e !2:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
<pre>& *Sin(thetaEta)+2dp*Sqrt(2dp)*mK**2* Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If ?Leptons: ?l:e ?2:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ?! d-quark coefficients BSLL = OllddSLL(3,out,1,1)</pre>
Cos(thetaEta)) DRdP = - Conjg(DLdP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & & & & & & & & & & & & & & & & & &
DKGP = - Conjg(DLGP) DLuP = 1dp/(4dp*Sqrt(3dp))*mPi**2* (Sin(thetaEta)+ & & Sqrt(2dp)*Cos(thetaEta)) DRuP = - Conjg(DLuP) End If PLeptons:
(Sin (1, -up) (+, -up) (+, -up)) + HP(1) + 2 + (Sin (1, -up)) + Cos(1, -up)) + Cos(1, -up)) + HP(1) + 2 + (2, -up) + Cos(1, -up)) + LP(1) +
DRuP = -Conjg(DLuP) End If PLeptons: Pl:e Pl:mu Do i2=1,2 If (i2.eq.1) Then ! tau \rightarrow e P out = 1 Elseif (i2.eq.2) Then ! tau \rightarrow mu P out = 2 End if Pl-quark coefficients BSLL = OllddSLL(3,out,1,1)
End If PLeptons: Pl:e Pl:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if Pl: d-quark coefficients BSLL = OllddSLL(3,out,1,1)
<pre>!Leptons: !1:e !2:mu Do i2=1,2 If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)</pre>
Leptons: 11:e 12:mu Do i2=1,2 if (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if 1: d-quark coefficients BSLL = OllddSLL(3,out,1,1)
<pre>1c 12:mu 12:mu 12:mu 14:f (i2.eq.1) Then ! tau -> e P 15:f (i2.eq.2) Then ! tau -> mu P 15:f (i2.eq.2</pre>
Do i2=1,2 f(i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
If (i2.eq.1) Then ! tau -> e P out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
<pre>out = 1 Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)</pre>
Elseif (i2.eq.2) Then ! tau -> mu P out = 2 End if ! d-quark coefficients SSLL = OllddSLL(3,out,1,1)
out = 2 End if ! d-quark coefficients BSLL = OllddSLL(3,out,1,1)
nu 11 ! d-quark coefficients 3SLL = OllddSLL(3, out, 1, 1)
d-quark coefficients SSLL = OllddSLL(3,out,1,1)
3SLL = OllddSLL(3, out, 1, 1)
SLL = OlldSLL(3, out, 1, 1)
3SLR = OllddSLR(3, out, 1, 1)
3SRL = OllddSRL(3, out, 1, 1)
3SKR = OllddSRR(3, out, 1, 1)

```
78
     BVLL = OllddVLL(3, out, 1, 1)
     BVLR = OllddVLR(3,out,1,1)
 79
 80
     BVRL = OllddVRL(3, out, 1, 1)
     BVRR = OllddVRR(3, out, 1, 1)
 81
 82
     ! u-quark coefficients
 83
 84
 85
     CSLL = OlluuSLL(3, out, 1, 1)
     CSLR = OlluuSLR(3, out, 1, 1)
 86
 87
     CSRL = OlluuSRL(3, out, 1, 1)
 88
     CSRR = OlluuSRR(3, out, 1, 1)
     CVLL = OlluuVLL(3,out,1,1)
 89
 90
     CVLR = OlluuVLR(3, out, 1, 1)
     CVRL = OlluuVRL(3,out,1,1)
 91
 92
     CVRR = OlluuVRR(3, out, 1, 1)
 93
 94
     ! aP, bP scalar
 95
     aP(1) = Fpi/2._dp*(DLdP/mf_d(1)*(BSLL+BSRL) +
           DRdP/mf_d(1)*(BSLR+BSRR) &
 96
               & + DLuP/mf_u(1)*(CSLL+CSRL) +
                    DRuP/mf u(1) * (CSLR+CSRR))
 97
     bP(1) = Fpi/2._dp*(DLdP/mf_d(1)*(BSRL-BSLL) +
           DRdP/mf_d(1)*(BSRR-BSLR) &
 98
               & + DLuP/mf u(1) * (CSRL-CSLL) +
                    DRuP/mf_u(1)*(CSRR-CSLR))
 99
100
      ! aP, bP vector
     aP(2) = Fpi/4._dp*CP*(mf_l(3)-mf_l(out))*
101
              (-BVLL+BVLR-BVRL+BVRR+
102
                                             &
103
               & CVLL-CVLR+CVRL-CVRR)
104
     bP(2) = Fpi/4._dp*CP*(mf_l(3)+mf_l(out))*
105
              (-BVLL+BVLR+BVRL-BVRR+
                                             &
              & CVLL-CVLR-CVRL+CVRR)
106
107
108
      ! averaged squared amplitude
109
     meson_abs_T2=0._dp
110
     Do k1=1,2
111
        Do k2=1,2
            cont=2._dp*mf_l(out)*mf_l(3)*(aP(k1)*conjg(aP(k2)))
112
                              &
113
                 & -bP(k1)*conjg(bP(k2)))+
                                                          &
114
                 & (mf_l(3)**2+mf_l(out)**2-mP**2)*(aP(k1)*
                    conjg(aP(k2))+
115
                                      &
116
                 & bP(k1)*conjg(bP(k2)))
117
            meson_abs_T2=meson_abs_T2+cont
118
        End Do
119
     End Do
     meson\_abs\_T2=meson\_abs\_T2/(2.\_dp*mf\_l(3))
120
121
122
      ! branching ratio
123
     factor=0.04 pi * Sqrt(lamb(mf_1(3) * *2, mf_1(out) * *2, mP * *2))
                           &
124
                 & /(mf_1(3)**2*GammaTau)*0.5_dp
125
     BR=factor*meson_abs_T2
126
     If (i1.eq.1) Then !pi
127
         If (i2.eq.1) Then
128
            BrTautoEPi = BR
129
         Else
130
            BrTautoMuPi = BR
131
        End If
132
      Elseif (i1.eq.2) Then !eta
         If (i2.eq.1) Then
133
            BrTautoEEta = BR
134
135
         Else
            BrTautoMuEta = BR
136
137
        End If
138
     Else !eta '
         If (i2.eq.1) Then
139
140
            BrTautoEEtap = BR
141
         Else
142
            BrTautoMuEtap = BR
143
         End If
```

144 End if 145 146 End Do 147 End Do 148 149 Contains 150 151 Real(dp) Function lamb(x,y,z) 152 Real(dp), Intent(in): :x,y,z 153 lamb=(x+y-z)**2-4.dp*x*y154 End Function lamb

$C.1.5 h \to \ell_{\alpha} \ell_{\beta}$

The decay width is given by [96]

$$\begin{split} \Gamma\left(h \to \ell_{\alpha}\ell_{\beta}\right) &\equiv \Gamma\left(h \to \ell_{\alpha}\bar{\ell}_{\beta}\right) + \Gamma\left(h \to \bar{\ell}_{\alpha}\ell_{\beta}\right) \\ &= \frac{1}{16\pi m_{h}} \left[\left(1 - \left(\frac{m_{\ell_{\alpha}} + m_{\ell_{\beta}}}{m_{h}}\right)^{2}\right) \right] \\ &\times \left(1 - \left(\frac{m_{\ell_{\alpha}} - m_{\ell_{\beta}}}{m_{h}}\right)^{2}\right) \right]^{1/2} \\ &\times \left[\left(m_{h}^{2} - m_{\ell_{\alpha}}^{2} - m_{\ell_{\beta}}^{2}\right) \left(|S_{L}|^{2} + |S_{R}|^{2}\right)_{\alpha\beta} \\ &- 4m_{\ell_{\alpha}}m_{\ell_{\beta}}\operatorname{Re}(S_{L}S_{R}^{*})_{\alpha\beta} \right] + (\alpha \leftrightarrow \beta) \end{split}$$

$$(C.43)$$

Listing 26 hLLp.m

1 NameProcess = "hLLp"; 2 NameObservables = {{BrhtoMuE, 1101, "BR(h->e mu)"}, 3 {BrhtoTauE, 1102, "BR(h->e tau)"}, 4 {BrhtoTauMu, 1103, "BR(h->mu tau)"}; 5 6 NeededOperators = {OH2ISL, OH2ISR}; 7 8 Body = "hLLp.f90";

Listing 27 hLLp.f90

1	Real(dp) :: width1, width2, width, mh, gamh, kinfactor
2	Complex(dp) :: SL1, SR1, SL2, SR2
3	Integer :: i1, gt1, gt2, hLoc
4	
5	!
6	! h → l l'
7	! Observable implemented by W. Porod, F. Staub and A. Vicente
8	! Based on E. Arganda et al, PRD 71 (2005) 035011 [hep-ph/0407302]
9	!
10	
11	!! NEXT LINE HAVE TO BE PARSED BY SARAH
12	! Checking if there are several generations of Scalars
	and what is the SM-like doublet
13	@ If [getGen[HiggsBoson]>1, "hLoc =
	MaxLoc(Abs("<>ToString[HiggsMixingMatrix]
14	<>"(2,:)),1)", "hLoc = 1"]
15	
16	@ "mh = "<>ToString[SPhenoMass[HiggsBoson]]<>If[getGen

17 [HiggsBoson]>1, "(hLoc)", ""] 18 19 @ "gamh ="<>ToString[SPhenoWidth[HiggsBoson]]<>If 20 [getGen[HiggsBoson]>1, "(hLoc)", ""] 21 22 If (.not.L_BR) gamh = 4.5E-3_dp ! Decays not calculated; using SM value 23 24 Do i1 = 1.325 26 If (i1.eq.1) Then ! h -> e mu 27 gt1 = 128 gt2 = 229 Elseif (i1.eq.2) Then ! h -> e tau 30 gt1 = 1 31 gt2 = 332 Else ! h -> mu tau 33 gt1 = 234 gt2 = 335 End if 36 ! width = Gamma(h \rightarrow \bar{11} 12) + Gamma(h \rightarrow 11 37 \bar{12}) 38 39 SL1 = OH2lSL(gt1, gt2, hLoc)SR1 = OH2lSR(gt1, gt2, hLoc)40 41 SL2 = OH2lSL(gt2, gt1, hLoc)42 SR2 = OH2lSR(gt2, gt1, hLoc)43 44 kinfactor = $(1 - (mf_1(gt1) + mf_1(gt2)/mh) * *2) * \&$ 45 & $(1-(mf_l(gt1)-mf_l(gt2)/mh)**2)$ 46 47 width1 = $(mh*2-mf_l(gt1)*2-mf_l(gt2)*2)*(Abs(SL1)*2)$ 48 +Abs(SR1)**2) & 49 & - 4._dp*mf_l(gt1)*mf_l(gt2)*Real(SL1*Conjg(SR1),dp) 50 width2 = $(mh**2-mf_1(gt1)**2-mf_1(gt2)**2)*(Abs(SL2)**2)$ 51 +Abs(SR2)**2) & 52 & - 4._dp*mf_l(gt1)*mf_l(gt2)*Real(SL2*Conjg(SR2),dp) 53 54 ! decay width 55 width = oo16pi/mh * sqrt(kinfactor) * (width1+width2) 56 57 If (i1.eq.1) Then 58 BrhtoMuE = width/(width+gamh)59 Elseif (i1.eq.2) Then 60 BrhtoTauE = width/(width+gamh) 61 Else 62 BrhtoTauMu = width/(width+gamh) 63 End if 64 End do

$C.1.6 \ Z \to \ell_{\alpha} \ell_{\beta}$

The decay width is given by [97]

$$\Gamma \left(Z \to \ell_{\alpha} \ell_{\beta} \right) \equiv \Gamma \left(Z \to \ell_{\alpha} \bar{\ell}_{\beta} \right)
+ \Gamma \left(Z \to \bar{\ell}_{\alpha} \ell_{\beta} \right)
= \frac{m_Z}{48\pi} \left[2 \left(|R_1^L|^2 + |R_1^R|^2 \right)
+ \frac{m_Z^2}{4} \left(|R_2^L|^2 + |R_2^R|^2 \right) \right], \quad (C.44)$$

where the charged lepton masses have been neglected.

Listing 28 ZLLp.m

```
1 NameProcess = "ZLLp";
2 NameObservables = {{BrZtoMuE, 1001, "BR(Z->e mu)"},
3 {BrZtoTauE, 1002, "BR(Z->e tau)"},
4 {BrZtoTauMu, 1003, "BR(Z->mu
tau)"}};
5
6 NeededOperators = {OZ2ISL, OZ2ISR,OZ2IVL,OZ2IVR};
7
8 Body = "ZLLp.f90";
```

Listing 29 ZLLp.f90

Real(dp) :: width
Integer :: i1, gt1, gt2
!
! Z -> 1 1'
! Observable implemented by W. Porod, F. Staub and A.
Vicente
! Based on XJ. Bi et al, PRD 63 (2001) 096008
[hep-ph/0010270]
!
Do i1=1,3
If $(i1.eq.1)$ Then $! Z \rightarrow e mu$
gt1 = 1
gt2 = 2
Elseif (i1.eq.2) Then $!Z \rightarrow e$ tau
gt1 = 1
gt2 = 3
Else ! Z -> mu tau
gt1 = 2
gt2 = 3
End if
! decay width
width = $0048p1*(2*(Abs(OZ2IVL(gt1,gt2)))**2 + 0.0000000000000000000000000000000000$
$\begin{array}{c} & \text{Abs}(\text{OZ2IVR}(\text{gt1},\text{gt2})) **2) *\text{mZ} \\ & \text{Abs}(\text{OZ2IVR}(\text{gt1},\text{gt2})) **2) *\text{mZ} \end{array}$
& + (Abs(OZ2ISL(gt1,gt2))**2+Abs(OZ2ISR(gt1,gt2))**2)
$\alpha * mz * mz 2 * 0.25_ap)$
If $(i1 \text{ ag } 1)$ Then
$Rr7toMuE = width/(width \pm gam7)$
Flseif (i1 eq 2) Then
BrZtoTauE = width/(width+gamZ)
Else
BrZtoTauMu = width/(width+gamZ)
End if
-
End do

C.2 Quark flavor observables

QFV has been observed and its description in the SM due to the CKM matrix is well established. However, the large majority of BSM models causes additional contributions which have to be studied carefully, see for instance Refs. [98–122].

We give also here a description of the implementation of the different observables using the operators present in the SPheno output of SARAH.

C.3 $B^0_{s,d} \rightarrow \ell^+ \ell^-$

Our analytical results for $B_{s,d}^0 \to \ell^+ \ell^-$ follow [103]. The $B^0 \equiv B_{s,d}^0$ decay width to a pair of charged leptons can be written as

$$\Gamma\left(B^{0} \to \ell_{\alpha}^{+} \ell_{\beta}^{-}\right) = \frac{|\mathcal{M}_{\mathcal{B}\ell\ell}|^{2}}{16\pi M_{B}} \left[\left(1 - \left(\frac{m_{\ell_{\alpha}} + m_{\ell_{\beta}}}{m_{B}}\right)^{2}\right) \times \left(1 - \left(\frac{m_{\ell_{\alpha}} - m_{\ell_{\beta}}}{m_{B}}\right)^{2}\right) \right]^{1/2}.$$
(C.45)

Here

$$\begin{split} |\mathcal{M}_{\mathcal{B}\ell\ell}|^{2} &= 2|F_{S}|^{2} \left[m_{B}^{2} - \left(m_{\ell_{\alpha}} + m_{\ell_{\beta}} \right)^{2} \right] \\ &+ 2|F_{P}|^{2} \left[m_{B}^{2} - \left(m_{\ell_{\alpha}} - m_{\ell_{\beta}} \right)^{2} \right] \\ &+ 2|F_{V}|^{2} \left[m_{B}^{2} \left(m_{\ell_{\alpha}} - m_{\ell_{\beta}} \right)^{2} - \left(m_{\ell_{\alpha}}^{2} - m_{\ell_{\beta}}^{2} \right)^{2} \right] \\ &+ 2|F_{A}|^{2} \left[m_{B}^{2} \left(m_{\ell_{\alpha}} + m_{\ell_{\beta}} \right)^{2} - \left(m_{\ell_{\alpha}}^{2} - m_{\ell_{\beta}}^{2} \right)^{2} \right] \\ &+ 4 \operatorname{Re}(F_{S}F_{V}^{*}) \left(m_{\ell_{\alpha}} - m_{\ell_{\beta}} \right) \left[m_{B}^{2} + \left(m_{\ell_{\alpha}} + m_{\ell_{\beta}} \right)^{2} \right] \\ &+ 4 \operatorname{Re}(F_{P}F_{A}^{*}) \left(m_{\ell_{\alpha}} + m_{\ell_{\beta}} \right) \left[m_{B}^{2} - \left(m_{\ell_{\alpha}}^{2} - m_{\ell_{\beta}}^{2} \right)^{2} \right] \\ &+ (C.46) \end{split}$$

and the F_X coefficients are defined in terms of our Wilson coefficients as¹²

$$F_{S} = \frac{i}{4} \frac{m_{B}^{2} f_{B}}{m_{d} + m_{d'}} \left(E_{LL}^{S} + E_{LR}^{S} - E_{RR}^{S} - E_{RL}^{S} \right)$$
(C.47)

$$F_P = \frac{i}{4} \frac{m_B^2 f_B}{m_d + m_{d'}} \left(-E_{LL}^S + E_{LR}^S - E_{RR}^S + E_{RL}^S \right)$$
(C.48)

$$F_V = -\frac{i}{4} f_B \left(E_{LL}^V + E_{LR}^V - E_{RR}^V - E_{RL}^V \right)$$
(C.49)

$$F_A = -\frac{i}{4} f_B \left(-E_{LL}^V + E_{LR}^V - E_{RR}^V + E_{RL}^V \right), \qquad (C.50)$$

where $f_B \equiv f_{B_{d,s}^0}$ is the $B_{d,s}^0$ decay constant and $m_{d,d'}$ are the masses of the quarks contained in the *B* meson, $B_d^0 \equiv \bar{b}d$ and $B_s^0 \equiv \bar{b}s$. In the lepton flavor conserving case, $\alpha = \beta$,

¹² Notice that our effective Lagrangian differs from the one in [103] by a $1/(4\pi)^2$ factor. This relative factor has been absorbed in the expression for $\mathcal{M}_{B\ell\ell}$, see Eq. (C.46).

the F_V contribution vanishes. In this case, the results in [103] are in agreement with previous computations [123, 124].

Listing 30 B0ll.m

NameProcess = "B0toLL";
NameObservables = {{BrB0dEE, 4000, "BR(B^0 d $\rightarrow e e$)"},
{ratioB0dEE, 4001, "BR(B^0_d->e
$e)/BR(B^0_d \to e e)_SM''\},$
$\{BrB0sEE, 4002, "BR(B^0 s \rightarrow e e)"\},\$
{ratioB0sEE, 4003, "BR(B^0 s->e
$(1) BR(B^0 s \rightarrow e e) SM''$
$BrB0dMuMu$, 4004, "BR(B^0 d->mu
mu)"},
{ratioB0dMuMu, 4005, "BR(B^0_d->mu
mu /BR(B^0_d $\rightarrow mu$ mu)_SM" },
{BrB0sMuMu, 4006, "BR(B^0_s->mu
mu) " } ,
{ratioB0sMuMu, 4007, "BR(B^0_s->mu
mu)/BR(B^0_s \rightarrow mu mu)_SM"},
{BrB0dTauTau, 4008, "BR(B^0 d->tau
tau)"},
{ratioB0dTauTau, 4009,
$"BR(B^0_d \rightarrow tau$
tau)/BR(B^0_d->tau tau)_SM"},
{BrB0sTauTau, 4010, "BR(B^0 s->tau
tau)"},
{ratioB0sTauTau, 4011,
"BR(B^0 s->tau
tau /BR(B^0 s->tau tau) SM" } };
NeededOperators = {OddllSLL, OddllSRR, OddllSRL,
OddllSLR,
OddllVRR, OddllVLL, OddllVRL,
OddllVLR,
OddllSLLSM, OddllSRRSM, OddllSRLSM,
OddllSLRSM.
OddllVRRSM, OddllVLLSM, OddllVRLSM,
OddllVLRSM }:
······································
Body = "B011.f90";

Listing 31 Boll.f90

1	Real(dp) :: AmpSquared, AmpSquared2, AmpSquared_SM,	
	AmpSquared2_SM, &	
2	& width_SM, width	
3	Real(dp) :: MassB0s, MassB0d, fBs, fBd, TauB0s, TauB0d	
4	Real(dp) :: hbar=6.58211899E-25_dp	
5	Real(dp) :: MassB0, MassB02, fB0, GammaB0	
6	Complex(dp) :: CS(4), CV(4), CT(4)	
7	Complex(dp) :: FS=0dp, FP=0dp, FV=0dp, FA=0dp	
8	Integer :: i1, gt1, gt2, gt3, gt4	
9		
10	!	
11	! B0 -> 1 1	
12	! Observable implemented by W. Porod, F. Staub and A.	
	Vicente	
13	! Based on A. Dedes et al, PRD 79 (2009) 055006	
	[arXiv:0812.4320]	
14	!	
15		
16	! Using global hadronic data	
17	$fBd = f_B0d_CONST$	
18	$fBs = f_B0s_CONST$	
19	$TauB0d = tau_B0d$	
20	$TauBOs = tau_BOs$	
21	$MassB0d = mass_B0d$	
22	$MassB0s = mass_B0s$	
23		
24	Do i1=1,6	

25	gt1 = 3
26	If (i1.eq.1) Then ! B0d \rightarrow e+ e-
27	MassB0 = MassB0d
28	MassB02 = MassB0d * 2
29	fB0 = fBd
30	GammaB0 = (hbar)/(TauB0d)
31	gt2 = 1
32	gt2 = 1 gt3 = 1
33	gt0 = 1 gt4 = 1
34	Else if (il eq 2) Then $ B0s \rightarrow e + e -$
35	MassB0 = MassB0s
36	MassB02 = MassB03 $MassB02 = MassB0s**2$
37	fB0 - fBc
38	GammaB0 = (hhar)/(TauB0c)
30	$at_2 = 2$
40	gtz = z gtz = 1
41	g(J = 1)
42	$g_{14} = 1$ Else if (il eq. 3) Then 1 B0d > mut mu
43	MassB0 = MassB0d
43	MassB02 = MassB0d MassB02 = MassB0d + +2
45	fB0 = fBd
45	GammaB0 = (hhar)/(TauB0d)
40	$a^{+}2 = 1$
47	$g_{12} = 1$
40	gt = 2
49 50	$g_{14} = 2$
50	Else II (II.eq.4) Inen ! $BUS \rightarrow mu + mu - M$
51	MassB0 = MassB0s
52	MassB02 = MassB0s**2
53	IBU = IBS
54	GammaBO = (hbar)/(lauBOs)
55	$gt_2 = 2$
50	gts = 2
50	$g_{14} = 2$
50	Ease if $(11.eq.5)$ frien : $B0d \rightarrow tau + tau - Mass P0 - Mass P0d$
59	MassB0 = MassB0d $MassB02 = MassB0d + 2$
60	MassB02 = MassB00**2
62	IBU = IBU CommePO = (hher)/(TeuPOd)
62	GammaBO = (nDar)/(TauBOd)
03	$gt_2 = 1$
04 (5	gts = s
05	$g_{14} = 5$
67	$ \text{Ense II} (\text{II.eq.0}) \text{Inen } : \text{Bos} \rightarrow \text{tau} + \text{tau} - $ $ \text{MassP0} = \text{MassP0s} $
69	MassB0 = MassB0s MassB02 = MassB0s + 2
60	Massb02 = Massb0s**2 fP0 = fP0
70	1B0 = 1BS CommeR0 = (hher)/(TexR0a)
70	$\operatorname{Gammabo} = (\operatorname{IIGar})/(\operatorname{IauBos})$
71	$g_{12} = 2$
72	$g_{13} = 5$
75	$g_{14} = 5$
74	End II
15	L DOM as a tribution of
70	BSW CONTRIbutions
70	O(1) = O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)
78	CS(1) = OddISRR(gt1,gt2,gt3,gt4)
/9	CS(2) = OddISRL(gt1, gt2, gt3, gt4)
80	CS(3) = OddISLL(gt1, gt2, gt3, gt4)
81	CS(4) = OddIISLR(gt1, gt2, gt3, gt4)
82	
83	CV(1) = OddIVLL(gt1, gt2, gt3, gt4)
84	CV(2) = UddIIVLK(gt1,gt2,gt3,gt4)
85	CV(3) = UddllVKK(gt1,gt2,gt3,gt4)
86	Cv(4) = OddIIVKL(gt1, gt2, gt3, gt4)
8/	E9 0.25 da Mara D02 (D0 / () (1) () ((1) () (1) ()
88	$F5= 0.25_ap*MassB02*tB0/(MFd(gt1)+MFd(gt2))*($
00	$ = \frac{1}{10000000000000000000000000000000000$
89	rr = 0.25 ap * Massbu2 * IBU/(MFd(gt1) + MFd(gt2)) * (-CS(1))
90	+US(2)-US(3)+US(4))
91	Fv = -0.25 dp * IBU * (CV(1) + CV(2) - CV(3) - CV(4))
92	$FA= -0.25_ap*IB0*(-CV(1)+CV(2)-CV(3)+CV(4))$
93 04	AmpSquared - 2 + abs (ES) ++2 + (MassB02
74	$\operatorname{Ampsquarcu} = 2 * \operatorname{aus}(FS) * 2 * (MassBU2 - (mf 1(at3) + mf 1(at4)) + 2) $
	$(m1_1(g(J)+m1_1(g(H))**2) \alpha$

```
95
          \& + 2 * abs(FP) * 2 * (MassB02 -
                (mf_1(gt3)-mf_1(gt4))**2) &
 96
          \& + 2 * abs(FV) * 2 *
                (MassB02*(mf_1(gt4)-mf_1(gt3))**2
                                                       x
97
                  & - (mf_12(gt4)-mf_12(gt3))**2) &
          \& + 2 * abs(FA) * 2 *
98
                (MassB02*(mf_1(gt4)+mf_1(gt3))**2 - &
99
                  & (mf_12(gt4)-mf_12(gt3))**2) &
          & + 4 *REAL(FS*conjg(FV)) *(mf_l(gt3)-mf_l(gt4))
100
                *(MassB02 &
                  \& + (mf_1(gt3)+mf_1(gt4))**2) \&
101
102
          & + 4 *REAL(FP*conjg(FA)) *(mf_l(gt3)+mf_l(gt4))
                *(MassB02 &
103
                  & - (mf_1(gt3)-mf_1(gt4))**2)
104
     width = oo16pi * AmpSquared / MassB0 * &
105
106
         & sqrt(1-((mf_1(gt4)+mf_1(gt3))/MassB0)**2) &
107
         & * sqrt(1-((mf_1(gt4)-mf_1(gt3))/MassB0)**2)*
108
         (Alpha/Alpha_160)**4
109
110
111
     ! SM contributions
112
113
     CS(1) = OddllSRRSM(gt1, gt2, gt3, gt4)
     CS(2) = OddllSRLSM(gt1, gt2, gt3, gt4)
114
     CS(3) = OddllSLLSM(gt1, gt2, gt3, gt4)
115
116
     CS(4) = OddllSLRSM(gt1, gt2, gt3, gt4)
117
     CV(1) = OddllVLLSM(gt1, gt2, gt3, gt4)
118
     CV(2) = OddllVLRSM(gt1, gt2, gt3, gt4)
119
     CV(3) = OddllVRRSM(gt1, gt2, gt3, gt4)
120
121
     CV(4) = OddllVRLSM(gt1, gt2, gt3, gt4)
122
     FS= 0.25_dp*MassB02*fB0/(MFd(gt1)+MFd(gt2))*(
123
          CS(1)+CS(2)-CS(3)-CS(4))
     FP= 0.25_dp*MassB02*fB0/(MFd(gt1)+MFd(gt2))*(-CS(1)
124
125
         +CS(2)-CS(3)+CS(4))
126
     FV = -0.25 dp * fB0 * (CV(1) + CV(2) - CV(3) - CV(4))
127
     FA= -0.25_dp*fB0*(-CV(1)+CV(2)-CV(3)+CV(4))
128
     AmpSquared = 2 * abs(FS)*2 * (MassB02 -
129
          (mf_l(gt3)+mf_l(gt4))**2) &
130
          & + 2 *abs(FP)**2 * (MassB02
                (mf_1(gt3)-mf_1(gt4))**2) &
          & + 2 *abs(FV)**2 *
131
                (MassB02*(mf_1(gt4)-mf_1(gt3))**2 - &
132
             & (mf_12(gt4)-mf_12(gt3))**2) &
133
          & + 2 *abs(FA)**2 *
                (MassB02*(mf_1(gt4)+mf_1(gt3))**2 - &
             & (mf_12(gt4)-mf_12(gt3))**2) &
134
135
          & + 4 *REAL(FS*conjg(FV)) *(mf_1(gt3)-mf_1(gt4))
                *(MassB02 &
             & + (mf_1(gt3)+mf_1(gt4))**2) &
136
          & + 4 *REAL(FP*conjg(FA)) *(mf_1(gt3)+mf_1(gt4))
137
                *(MassB02 &
138
             \& - (mf_1(gt3) - mf_1(gt4)) * 2)
139
140
     width_SM = oo16pi * AmpSquared / MassB0 *
          sqrt(1-((mf_1(gt4)+ &
          & mf_1(gt3))/MassB0)**2) &
141
142
          & * sqrt(1-((mf_1(gt4)-mf_1(gt3))/MassB0)**2)*
143
          (Alpha/Alpha_160)**4
144
145
     If (i1.Eq.1) Then
146
       BrB0dEE= width / GammaB0
147
148
       ratioB0dEE= width / width_SM
149
     Else If (i1.Eq.2) Then
150
       BrB0sEE= width / GammaB0
151
       ratioB0sEE= width / width_SM
152
     Else If (i1.Eq.3) Then
153
       BrB0dMuMu= width / GammaB0
      ratioB0dMuMu= width / width_SM
154
```

155	Else If (i1.Eq.4) Then
156	BrB0sMuMu= width / GammaB0
157	ratioB0sMuMu= width / width_SM
158	Else If (i1.Eq.5) Then
159	BrB0dTauTau= width / GammaB0
160	ratioB0dTauTau= width / width_SM
161	Else If (i1.Eq.6) Then
162	BrB0sTauTau= width / GammaB0
163	ratioB0sTauTau= width / width_SM
164	End If
165	
166	End do

C.4 $\bar{B} \rightarrow X_s \gamma$

1

1

1

The branching ratio for $\bar{B} \to X_s \gamma$, with a cut $E_{\gamma} > 1.6 \,\text{GeV}$ in the \overline{B} rest frame, can be obtained as [104, 125]

$$BR (B \to X_{s}\gamma)_{E_{\gamma} > 1.6 \text{GeV}}$$

$$= 10^{-4} \bigg[a_{SM} + a_{77} \left(|\delta C_{7}^{(0)}|^{2} + |\delta C_{7}^{\prime(0)}|^{2} \right)$$

$$+ a_{88} \left(|\delta C_{8}^{(0)}|^{2} + |\delta C_{8}^{\prime(0)}|^{2} \right)$$

$$+ Re \left(a_{7} \,\delta C_{7}^{(0)} + a_{8} \,\delta C_{8}^{(0)}$$

$$+ a_{78} \left(\delta C_{7}^{(0)} \,\delta C_{8}^{(0)*} + \delta C_{7}^{\prime(0)} \,\delta C_{8}^{\prime(0)*} \right) \bigg) \bigg], \qquad (C.51)$$

where $a_{SM} = 3.15$ is the NNLO SM prediction [51,126], the other a coefficients in Eq. (C.51) are found to be

$$a_{77} = 4.743$$

$$a_{88} = 0.789$$

$$a_7 = -7.184 + 0.612 i$$

$$a_8 = -2.225 - 0.557 i$$

$$a_{78} = 2.454 - 0.884 i$$
(C.52)

and we have defined $\delta C_i^{(0)} = C_i^{(0)} - C_i^{(0) \text{ SM}}$. Finally, the $C_i^{(0)}$ coefficients can be written in terms of $Q_{1,2}^{L,R}$ in Eqs. (A.11) and (A.12) as

$$C_7^{(0)} = n_{CQ} Q_1^R \tag{C.53}$$

$$C_7^{\prime(0)} = n_{CQ} \ Q_1^L \tag{C.54}$$

$$C_8^{(0)} = n_{CQ} Q_2^R \tag{C.55}$$

$$C_8^{\prime(0)} = n_{CQ} \ Q_2^L \tag{C.56}$$

where $n_{CQ}^{-1} = -\frac{G_F}{4\sqrt{2}\pi^2}V_{tb}V_{ts}^*$ and V is the Cabibbo–Kobayashi–Maskawa (CKM) matrix.

Listing 32 bsGamma.m

1	NameProcess = "bsGamma";
2	NameObservables = {{BrBsGamma, 200, "BR(B->X_s
	gamma)"},
3	{ratioBsGamma, 201, "BR(B->X_s
	<pre>gamma)/BR(B=>X_s gamma)_SM"};</pre>
4	
5	NeededOperators = {CC7, CC7p, CC8, CC8p,
6	CC7SM, CC7pSM, CC8sSM, CC8pSM};
7	
8	Body = "bsGamma.f90";

Listing 33 bsGamma.f90

```
Integer :: gt1, gt2
 2
     Complex(dp) :: norm, delta_C7_0, delta_C7p_0,
          delta_C8_0, delta_C8p_0
 3
     Real(dp) :: NNLO_SM
 4
 5
     1.
 6
     ! \ bar\{B\} \rightarrow X_s \text{ gamma } (Egamma > 1.6 \text{ GeV})
     ! Observable implemented by W. Porod, F. Staub and A.
 7
          Vicente
     ! Based on E. Lunghi, J. Matias, JHEP 0704 (2007) 058
 8
          [hep-ph/0612166]
 9
     !
10
11
     gt1=3 !b
     gt2=2 !s
12
13
14
     ! normalization of our Wilson coefficients
     ! relative to the ones used in hep-ph/0612166
15
     norm = -CKM_160(3,3)*Conjg(CKM_160(gt1,gt2))*Alpha_160/ &
16
17
              & (8._dp*Pi*sinW2_160*mW2)
18
19
     ! Wilson coefficients
     delta_C7_0 = (CC7(gt1, gt2) - CC7SM(gt1, gt2)) / norm
20
21
     delta_C7p_0=(CC7p(gt1,gt2)-CC7pSM(gt1,gt2))/norm
     delta_C8_0 =(CC8(gt1,gt2)-CC8SM(gt1,gt2))/norm
22
23
     delta_C8p_0 = (CC8p(gt1, gt2) - CC8pSM(gt1, gt2)) / norm
24
25
     ! NNLO SM prediction
26
     ! as obtained in M. Misiak et al, PRL 98 (2007) 022002
27
     ! and M. Misiak and M. Steinhauser, NPB 764 (2007) 62
28
    NNLO_SM=3.15_dp
29
30
    BrBsGamma=NNLO_SM+4.743_dp*(Abs(delta_C7_0)**2
31
               +Abs(delta_C7p_0)**2)&
32
     &+0.789_dp*(Abs(delta_C8_0)**2+Abs(delta_C8p_0)**2)&
33
    &+Real((-7.184_dp,0.612_dp)*delta_C7_0&
34
     &+(-2.225_dp,-0.557_dp)*delta_C8_0+(2.454_dp,-0.884_dp)*&
     &(delta_C7_0*conjg(delta_C8_0)
35
36
     +delta_C7p_0*conjg(delta_C8p_0)),dp)
37
     ! ratio BSM/SM
38
39
     ratioBsGamma = BrBsGamma/NNLO_SM
40
41
     ! branching ratio
     BrBsGamma=1E-4_dp*BrBsGamma
42
```

C.5 $\bar{B} \to X_s \ell^+ \ell^-$

Our results for $\overline{B} \to X_s \ell^+ \ell^-$ are based on [106], expanded with the addition of prime operators contributions [127]. The branching ratios for the $\ell = e$ case can be written as $10^7 \operatorname{BR} \left(\bar{B} \to X_s e^+ e^- \right) = 2.3148 - 0.001658 \operatorname{Im}(R_{10})$ $+ 0.0005 \operatorname{Im}(R_{10}R_8^* + R_{10}'R_8'^*)$ $+ 0.0523 \operatorname{Im}(R_7) + 0.02266 \operatorname{Im}(R_7 R_8^* + R_7' R_8'^*)$ $+ 0.00496 \operatorname{Im}(R_7 R_9^* + R_7' R_9'^*)$ $+ 0.00518 \operatorname{Im}(R_8) + 0.0261 \operatorname{Im}(R_8 R_9^* + R_8' R_9'^*)$ $-0.00621 \operatorname{Im}(R_9) - 0.5420 \operatorname{Re}(R_{10})$ $-0.03340 \operatorname{Re}(R_7) + 0.0153 \operatorname{Re}(R_7 R_{10}^* + R_7' R_{10}'^*)$ $+ 0.0673 \operatorname{Re}(R_7 R_8^* + R_7' R_8'^*)$ $-0.86916 \operatorname{Re}(R_7 R_9^* + R_7' R_9'^*) - 0.0135 \operatorname{Re}(R_8)$ $+ 0.00185 \operatorname{Re}(R_8 R_{10} + R'_8 R'_{10})$ $-0.09921 \operatorname{Re}(R_8 R_9^* + R_8' R_9'^*) + 2.833 \operatorname{Re}(R_9)$ $-0.10698 \operatorname{Re}(R_9 R_{10}^* + R_9' R_{10}'^*)$ $+11.0348(|R_{10}|^2+|R'_{10}|^2)$ $+0.2804(|R_7|^2+|R_7'|^2)$ $+ 0.003763 (|R_8|^2 + |R_8'|^2)$ $+ 1.527 (|R_9|^2 + |R'_9|^2),$ (C.57)

whereas for the $\ell = \mu$ case one gets

$$10^{7} \operatorname{BR} \left(\bar{B} \to X_{s} \mu^{+} \mu^{-} \right) = 2.1774 - 0.001658 \operatorname{Im}(R_{10}) + 0.0005 \operatorname{Im}(R_{10}R_{8}^{*} + R_{10}'R_{8}'^{*}) + 0.0534 \operatorname{Im}(R_{7}) + 0.02266 \operatorname{Im}(R_{7}R_{8}^{*} + R_{7}'R_{8}'^{*}) + 0.00496 \operatorname{Im}(R_{7}R_{9}^{*} + R_{7}'R_{9}'^{*}) + 0.00527 \operatorname{Im}(R_{8}) + 0.0261 \operatorname{Im}(R_{8}R_{9}^{*} + R_{8}'R_{9}'^{*}) - 0.0115 \operatorname{Im}(R_{9}) - 0.5420 \operatorname{Re}(R_{10}) + 0.0208 \operatorname{Re}(R_{7}) + 0.0153 \operatorname{Re}(R_{7}R_{10}^{*} + R_{7}'R_{10}'^{*}) + 0.0648 \operatorname{Re}(R_{7}R_{8}^{*} + R_{7}'R_{8}'^{*}) - 0.8545 \operatorname{Re}(R_{7}R_{8}^{*} + R_{7}'R_{9}'^{*}) - 0.00938 \operatorname{Re}(R_{8}) + 0.00185 \operatorname{Re}(R_{8}R_{10} + R_{8}'R_{10}'^{*}) - 0.10698 \operatorname{Re}(R_{9}R_{10}^{*} + R_{9}'R_{10}'^{*}) + 10.7652 \left(|R_{10}|^{2} + |R_{10}'|^{2} \right) + 0.2880 \left(|R_{7}|^{2} + |R_{7}'|^{2} \right) + 0.003763 \left(|R_{8}|^{2} + |R_{8}'|^{2} \right) + 1.527 \left(|R_{9}|^{2} + |R_{9}'|^{2} \right) .$$
 (C.58)

Here we have defined the ratios of Wilson coefficients

$$R_{7,8} = \frac{Q_{1,2}^R}{Q_{1,2}^{R,\text{SM}}}, \quad R'_{7,8} = \frac{Q_{1,2}^L}{Q_{1,2}^{L,\text{SM}}}$$
(C.59)

as well as

$$R_{9,10} = \frac{E_{LL}^{V} \pm E_{LR}^{V}}{E_{LL}^{V,\text{SM}} \pm E_{LR}^{V,\text{SM}}}, \quad R'_{9,10} = \frac{E_{RR}^{V} \pm E_{RL}^{V}}{E_{RR}^{V,\text{SM}} \pm E_{RL}^{V,\text{SM}}}.$$
(C.60)

Listing 34 BtoSLL.m

1	NameProcess = "BtoSLL";
2	NameObservables = {{BrBtoSEE, 5000, "BR(B \rightarrow s e e)"},
3	{ratioBtoSEE, 5001, "BR(B-> s e
	$e)/BR(B \rightarrow s e e)_SM"$
4	{BrBtoSMuMu, 5002, "BR(B-> s mu
	mu)"} ,
5	{ratioBtoSMuMu, 5003, "BR(B-> s mu
	mu /BR(B-> s mu mu)_SM" };
6	
7	NeededOperators = {OddllVRR, OddllVLL, OddllVRL,
	OddllVLR,
8	CC7, CC7p, CC8, CC8p,
9	
	OddilvRRSM, OddilvLLSM, OddilvRLSM,
	OddiiVRRSM, OddiiVLLSM, OddiiVRLSM, OddiiVRLSM,
10	Oddii VRSM, Oddii VLLSM, Oddii VRLSM, OddII VLRSM, CC7SM, CC7pSM, CC8sM, CC8pSM
10 11	Oddii VRSM, Oddii VRLSM, Oddii VRLSM, OddII VLRSM, CC75M, CC7pSM, CC8spSM };
10 11 12	OddilVRSM, OddilVRLSM, OddilVRLSM, OddilVLRSM, CC7SM, CC7pSM, CC8sSM, CC8pSM };

Listing 35 BtoSLL.f90

1	Complex(dp) :: $c7(2)$, $c7p(2)$, $c8(2)$, $c8p(2)$, $r7$, $r7p$,
	r8, r8p, norm, &
2	& r9(2), r9p(2), r10(2), r10p(2),
3	& c9ee(2), c9pee(2), c10ee(2), c10pee(2), &
4	& c9_cee(2), c9p_cee(2), c10_cee(2), c10p_cee(2), &
5	& c9mm(2), c9pmm(2), c10mm(2), c10pmm(2), c9_cmm(2), &
6 7	& c9p_cmm(2), c10_cmm(2), c10p_cmm(2)
8	
9	$ har\{B\} \rightarrow X s + -$
10	Observable implemented by W. Porod, F. Staub and A. Vicente
11	! Based on T. Huber et al, NPB 740 (2006) 105,
12	! Prime operators added after private communication
	with E. Lunghi
13	!
14	
15	! Wilson coefficients
16	
17	c7(1) = CC7(3,2)
18	c7(2) = CC7SM(3,2)
19	c7p(1) = CC7p(3,2)
20	c7p(2) = CC7pSM(3,2)
21	
22	c8(1) = CC8(3,2)
23	c8(2) = CC8SM(3,2)
24	c8p(1) = CC8p(3,2)
25	c8p(2) = CC8pSM(3,2)
26	
27	c9ee(1) = OddllVLL(3,2,1,1)+OddllVLR(3,2,1,1)
28	c9ee(2) = (OddllVLLSM(3,2,1,1)+OddllVLRSM(3,2,1,1))
29	c9mm(1) = OddllVLL(3,2,2,2)+OddllVLR(3,2,2,2)
30	c9mm(2) = (OddllVLLSM(3,2,2,2)+OddllVLRSM(3,2,2,2))
31	c9pee(1) = OddllVRR(3,2,1,1)+OddllVRL(3,2,1,1)
32	c9pee(2) = (OddllVRRSM(3,2,1,1)+OddllVRLSM(3,2,1,1))

```
33
    c9pmm(1) = OddllVRR(3,2,2,2)+OddllVRL(3,2,2,2)
    c9pmm(2) = (OddllVRRSM(3,2,2,2)+OddllVRLSM(3,2,2,2))
34
35
    c10ee(1) = OddllVLL(3,2,1,1)-OddllVLR(3,2,1,1)
36
37
    c10ee(2) = (OddllVLLSM(3,2,1,1)-OddllVLRSM(3,2,1,1))
    c10mm(1) = OddllVLL(3, 2, 2, 2) - OddllVLR(3, 2, 2, 2)
38
39
    c10mm(2) = (OddllVLLSM(3,2,2,2)-OddllVLRSM(3,2,2,2))
40
    c10pee(1) = OddllVRR(3,2,1,1)-OddllVRL(3,2,1,1)
    c10pee(2) = (OddllVRRSM(3,2,1,1)-OddllVRLSM(3,2,1,1))
41
42
    c10pmm(1) = OddllVRR(3,2,2,2) - OddllVRL(3,2,2,2)
43
    c10pmm(2) = (OddllVRRSM(3,2,2,2)-OddllVRLSM(3,2,2,2))
44
45
    ! ratios
46
47
    r7 = c7(1) / c7(2)
    r7p = c7p(1) / c7(2)
48
49
    r8 = c8(1) / c8(2)
50
    r8p = c8p(1) / c8(2)
51
52
    r9(1) = c9ee(1)/c9ee(2)
53
    r9(2) = c9mm(1)/c9mm(2)
54
    r9p(1) = c9pee(1)/c9ee(2)
55
    r9p(2) = c9pmm(1)/c9mm(2)
56
57
    r10(1) = c10ee(1)/c10ee(2)
58
    r10(2) = c10mm(1)/c10mm(2)
59
    r10p(1) = c10pee(1)/c10ee(2)
60
    r10p(2) = c10pmm(1)/c10mm(2)
61
    BrBtoSEE = (2.3148_dp - 1.658e_{-3_dp} * Aimag(R10(1)))
62
                           &
63
     & + 5.e-4_dp * Aimag(r10(1)*Conjg(r8) +
          r10p(1)*Conjg(r8p) )
                                       &
     & + 5.23e-2_dp * Aimag(r7) + 5.18e-3_dp * Aimag(r8)
64
                          &
     & + 2.266e-2_dp * Aimag(r7 * Conjg(r8) + r7p *
65
          Conjg(r8p) )
                               &
66
     & + 4.96e-3_dp * Aimag(r7 * Conjg(r9(1)) + r7p *
          Conjg(r9p(1)) ) &
67
     & + 2.61e-2_dp * Aimag(r8 * Conjg(r9(1)) + r8p *
          Conjg(r9p(1)) )
                            &
68
         6.21e-3_dp * Aimag(r9(1)) - 0.5420_dp * Real(
     & -
          r10(1), dp) &
     & - 3.340e-2_dp * Real(r7,dp) - 1.35e-2_dp *
69
           Real(r8,dp)
                                 &
     & + 1.53e-2_dp * Real(r7*Conjg(r10(1)) +
70
           r7p*Conjg(r10p(1)), dp ) &
71
     & + 6.73e-2_dp * Real(r7 * Conjg(r8) + r7p *
          Conjg(r8p), dp )
                                 &
72
     & - 0.86916_dp * Real(r7*Conjg(r9(1)) +
          r7p*Conjg(r9p(1)), dp ) &
73
     & + 1.85e-3_dp * Real(r8*Conjg(r10(1)) +
          r8p*Conjg(r10p(1)), dp) &
74
     & - 9.921e-2_dp * Real(r8*Conjg(r9(1)) +
           r8p*Conjg(r9p(1)), dp )
                                      &
75
     & + 2.833_dp* Real(r9(1),dp) + 0.2804_dp *
           (Abs(r7)**2 + Abs(r7p)**2)&
76
     & - 0.10698_dp * Real( r9(1) * Conjg(r10(1))
                                 &
77
                          + r9p(1) * Conjg(r10p(1)), dp)
     &
                           &
78
     & + 11.0348_dp * (Abs(r10(1))**2 + Abs(r10p(1))**2)
                          &
79
     & + 1.527_{dp} * (Abs(r9(1))**2 + Abs(r9p(1))**2)
                              &
80
     & + 3.763e-3_dp * (Abs(r8)**2 + Abs(r8p)**2))
81
82
      ! ratio BR(B -> Xs mu+ mu-)/BR(B -> Xs e+ e-)_SM
83
      ratioBtoSee = BrBtoSEE/16.5529_dp
84
85
      ! branching ratio B \rightarrow Xs e+ e-
86
      BrBtoSEE = BrBtoSEE + 1.e - 7_dp
87
```

88	BrBtoSMuMu = $(2.1774_dp - 1.658e - 3_dp * Aimag(R10(2))$	
89		
90	$k + 5.34e - 2_{dp} * Aimag(r7) + 5.27e - 3_{dp} * Aimag(r8)$	
91	& + 2.266e-2_dp * Aimag(r7 * Conjg(r8) + r7p * Conjg(r8p)) &	
92	$&+ 4.96e^{-3}dp + Aimag(r7 * Conjg(r9(2)) + r7p * Conjg(r9p(2))) & &$	
93	$&+ 2.61e-2_dp * Aimag(r8 * Conjg(r9(2)) + r8p * Conjg(r9p(2))) & &$	
94	$\& - 1.15e-2_dp * Aimag(r9(2)) - 0.5420_dp * Real(r10(2), dp) \&$	
95	$\& + 2.08e - 2_dp * Real(r7, dp) - 9.38e - 3_dp * Real(r8, dp) \&$	
96	$&+ 1.53e-2_dp * Real(r7*Conjg(r10(2)) + r7p*Conjg(r10p(2)), dp) & \&$	
97	& + 6.848e-2_dp * Real(r7 * Conjg(r8) + r7p * Conjg(r8p), dp) &	
98	$\& - 0.8545$ _dp * Real(r7*Conjg(r9(2)) + r7p*Conjg(r9p(2)), dp) &	
99	& + 1.85e-3_dp * Real(r8*Conjg(r10(2)) + r8p*Conjg(r10p(2)), dp) &	
100	$&-9.81e-2_dp * Real(r8*Conjg(r9(2)) + r8p*Conjg(r9p(2)), dp) & & & & & & & & & & & & & & & & & & &$	
101	$\& + 2.6917_{dp} * Real(r9(2), dp) + 0.2880 dp*(Abs(r7)**2+Abs(r7p)**2) \&$	
102	& - 0.10698_dp * Real(r9(2) * Conjg(r10(2)) &	
103	& + r9p(2) * Conjg(r10p(2)), dp) &	
104	& + 10.7652_dp * (Abs(r10(2))**2 + Abs(r10p(2))**2) &	
105	& + 1.4884_dp * $(Abs(r9(2))**2 + Abs(r9p(2))**2)$ &	
106 107	& + $3.81e-3_dp * (Abs(r8)**2 + Abs(r8p)**2)$)	
108	! ratio BR(B -> Xs mu+ mu-)/BR(B -> Xs mu+ mu-)_SM	
109	ratioBtoSMuMu = BrBtoSMuMu/16.0479_dp	
110		
111	! branching ratio B -> Xs mu+ mu-	
112	$BrBtoSMuMu = BrBtoSMuMu* 1.e-7_dp$	

C.6 $B^+ \rightarrow K^+ \ell^+ \ell^-$

Our results for $B^+ \to K^+ \ell^+ \ell^-$ are based on the expressions given in [102]. The branching ratio for $B^+ \to K^+ \mu^+ \mu^$ in the high- q^2 region, q^2 being the dilepton invariant mass squared, can be written as

BR
$$(B^+ \to K^+ \mu^+ \mu^-)_{q^2 \in [14.18, 22] \text{GeV}^2} \simeq 1.11$$

+ $0.22 \left(C_7^{\text{NP}} + C_7' \right) + 0.27 \left(C_9^{\text{NP}} + C_9' \right)$
- $0.27 \left(C_{10}^{\text{NP}} + C_{10}' \right).$ (C.61)

The coefficients in Eq. (C.61) can be related to the ones in our generic Lagrangian as

$$C_7^{\rm NP} = n_{CQ} \left(Q_1^R - Q_1^{R,\rm SM} \right) \tag{C.62}$$

 $C_7' = n_{CQ} Q_1^L$ (C.63)

$$C'_9 = n_{CQ} \left(E^V_{RR} + E^V_{RL} \right) \tag{C.65}$$

$$C_{10}^{\rm NP} = n_{CQ} \left[\left(E_{LL}^{V} - E_{LR}^{V} \right) - \left(E_{LL}^{V,\rm SM} - E_{LR}^{V,\rm SM} \right) \right]$$
(C.66)

$$C_{10}' = n_{CQ} \left(E_{RR}^V - E_{RL}^V \right)$$
(C.67)

where the normalization factor n_{CQ} was already defined after Eq. (C.56).

Listing 36 BtoKLL.m

```
1
    NameProcess = "BtoKLL";
    NameObservables = {{BrBtoKmumu, 6000, "BR(B \rightarrow K mu
2
         mu)"},
3
                        {ratioBtoKmumu, 6001, "BR(B -> K mu
                             mu)/BR(B \rightarrow K mu mu)_SM"}};
4
5
    NeededOperators = {OddllVRR, OddllVLL, OddllVRL,
         OddllVLR, CC7, CC7p,
6
                        OddllVRRSM, OddllVLLSM, OddllVRLSM,
                             OddllVLRSM, CC7SM, CC7pSM
7
    };
8
9
    Body = "BtoKLL.f90";
```

Listing 37 BtoKLL.f90

```
32 & & 0.27_dp*(c9NP+c9p)/norm - 0.27_dp*(c10NP+c10p)/norm)
33
34 ! ratio relative to SM
35 ratioBtoKmumu = BrBtoKmumu/1.11_dp
36
37 ! total BR
38 BrBtoKmumu = BrBtoKmumu*1.0E-7_dp
```

C.7
$$\bar{B} \to X_{d,s} \nu \bar{\nu}$$

The branching ratio for $\overline{B} \to X_q \nu \overline{\nu}$, with q = d, s, is given by [105]

$$BR\left(B \to X_{q} \nu \bar{\nu}\right)$$

$$= \frac{\alpha^{2}}{4\pi^{2} \sin^{4} \theta_{W}} \frac{|V_{tb} V_{tq}^{*}|^{2}}{|V_{cb}|^{2}} \frac{BR\left(\bar{B} \to X_{c} e \bar{\nu}_{e}\right) \kappa(0)}{f(\hat{m}_{c}) \kappa(\hat{m}_{c})}$$

$$\times \sum_{f} \left[\left(|c_{L}|^{2} + |c_{R}|^{2} \right) f(\hat{m}_{q}) - 4 \operatorname{Re}\left(c_{L} c_{R}^{*}\right) \hat{m}_{q} \tilde{f}(\hat{m}_{q}) \right].$$
(C.68)

The sum runs over the three neutrinos and $\hat{m}_i \equiv m_i/m_b$. The functions $f(\hat{m}_c)$ and $\kappa(\hat{m}_c)$ represent the phase-space and the 1-loop QCD corrections, respectively. In case of $\kappa(\hat{m}_c)$, one needs the numerical values $\kappa(0) = 0.83$ and $\kappa(\hat{m}_c) = 0.88$. The functions f(x) and $\tilde{f}(x)$ take the form

$$f(x) = 1 - 8x^{2} + 8x^{6} - x^{8} - 24x^{4}\log x$$
 (C.69)

$$\tilde{f}(x) = 1 + 9x^2 - 9x^4 - x^6 + 12x^2(1+x^2)\log x.$$
 (C.70)

Finally, BR $(\bar{B} \to X_c e \bar{\nu}_e)_{exp} = 0.101$ [128] and the coefficients c_L and c_R are given by

$$c_L = n_{BX\nu\nu}^q F_{LL}^V \tag{C.71}$$

$$c_R = n_{BX\nu\nu}^q F_{RL}^V, \tag{C.72}$$

where $(n_{BX\nu\nu}^q)^{-1} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} V_{tb}^* V_{tq}$ is the relative factor between our Wilson coefficients and the ones in [105].

Bioting CO Broghanann	Listing	38	BtoQnunu.m
-----------------------	---------	----	------------

1	NameProcess = "BtoQnunu";
2	NameObservables = {{BrBtoSnunu, 7000, "BR(B->s nu
	nu)"},
3	{ratioBtoSnunu, 7001, "BR(B->s nu
	$nu)/BR(B \rightarrow s nu nu)_SM"$
4	{BrBtoDnunu, 7002, "BR(B->D nu
	nu)"},
5	{ratioBtoDnunu, 7003, "BR(B->D nu
	$nu)/BR(B \rightarrow D nu nu)_SM"\};$
6	
7	NeededOperators = {OddvvVRR, OddvvVLL, OddvvVRL,
	OddvvVLR,

- OddvvVRRSM, OddvvVLLSM, OddvvVRLSM, OddvvVRLSM};
- 10 Body = "BtoQnunu.f90";

Listing 39 BtoQnunu.f90

8

0

```
Complex(dp) :: cL, cR, br, br_SM, cL_SM, cR_SM, norm
 1
 2
    Real(dp) :: f_mq, tf_mq, kappa_0, kappa_c, f_mc,
          BrBXeNu, sw2, mq
    Real(dp) :: prefactor, factor1, factor2, GF
 4
    Integer :: out, i1, i2
 5
 6
    ! \ bar\{B\} \longrightarrow X_{d,s} nu nu
 7
 8
    ! Observable implemented by W. Porod, F. Staub and A.
          Vicente
 9
    ! Based on C. Bobeth et al, NPB 630 (2002) 87
          [hep-ph/0112305]
10
11
12
    kappa_0 = 0.830_dp
13
    kappa_c = 0.88_dp
14
    f_mc = 0.53_dp
    BrBXeNu = 0.101_dp ! PDG central value
15
16
17
    sw2 = sinw2 = 160
18
    GF = (Alpha_160*4._dp*Pi/sinW2_160)/mw**2*sqrt2/8._dp
19
20
    Do out = 1,2
21
    If (out.eq.1) Then ! B -> X_d nu nu
22
     mq = mf_d(1)/mf_d(3)
     norm = Alpha_160*4._dp*GF/sqrt2/(2._dp*pi*sinw2_160)*
23
          &
                  & Conjg(CKM_160(3,3)*Conjg(CKM_160(3,1)
24
                       25
    Else ! B -> X_s nu nu
26
     mq = mf_d(2)/mf_d(3)
     norm = Alpha_160*4._dp*GF/sqrt2/(2._dp*pi*sinw2_160)*
27
          &
28
                  & Conjg(CKM_160(3,3)*Conjg( CKM_160(3,2)
                       ))
29
    End if
30
31
     ! f and tilde f functions
    f_mq = 1._dp - 8._dp*mq**2 + 8._dp*mq**6 - \&
32
33
                 & mq**8 -24._dp*mq**4*Log(mq)
34
    tf_mq = 1._dp + 9._dp*mq**2 - 9._dp*mq**4 - mq**6 + &
                 & 12._dp*mq**2*(1._dp + mq**2)*Log(mq)
35
36
37
    prefactor = Alpha_mz**2/(4._dp*pi**2*sw2**2)*Abs
38
                  (CKM 160(3.3)/ &
39
                    & CKM_160(2,3))**2*BrBXeNu/
40
                    (f mc*kappa c)*kappa 0
41
    factor1 = f_mq
42
    factor2 = - 4._dp*mq*tf_mq
43
44
    br = 0._dp
45
    br_SM = 0._dp
46
47
     Do i1= 1,3
      Do i2 = 1,3
48
49
50
       ! BSM
51
       cL = OddvvVLL(3, out, i1, i2)/norm
52
       cR = OddvvVRL(3, out, i1, i2)/norm
53
       br = br + factor1*(Abs(cL)**2 + Abs(cR)**2) +
                                                           &
54
                    & factor2*Real(cL*Conjg(cR),dp)
55
56
       1 SM
       cL = OddvvVLLSM(3, out, i1, i2)/norm
57
```

58	cR = OddvvVRLSM(3, out, i1, i2) / norm
59	$br_SM = br_SM + factor1*(Abs(cL)**2 + Abs(cR)**2) +$
	&
60	& factor2*Real(cL*Conjg(cR),dp)
61	
62	End Do
63	End do
64	If (out.eq.1) Then $! B \rightarrow X_d$ nu nu
65	BrBtoDnunu = prefactor*br*Abs(CKM_160(3,1))**2
66	ratioBtoDnunu = br/br_SM
67	Else ! B -> X_s nu nu
68	BrBtoSnunu = prefactor*br*Abs(CKM_160(3,2))**2
69	ratioBtoSnunu = br/br_SM
70	End if
71	End Do

C.8 $K \rightarrow \pi \nu \bar{\nu}$

Following [105], the branching ratios for rare Kaon decays involving neutrinos in the final state can be written as

$$BR \left(K^{+} \to \pi^{+} \nu \bar{\nu} \right) = 2r_{1} r_{2} r_{K^{+}} \sum_{f} \left[\left(Im \lambda_{t} X_{f} \right)^{2} + \left(Re \lambda_{c} X_{NL} + Re \lambda_{t} X_{f} \right)^{2} \right]$$
(C.73)

$$BR\left(K_L \to \pi^0 \nu \bar{\nu}\right) = 2r_1 r_{K_L} \sum_f \left(Im\lambda_t X_f\right)^2, \qquad (C.74)$$

where the sums are over the three neutrino species, $X_{NL} = 9.78 \cdot 10^{-4}$ is the SM NLO charm correction [48,129], $\lambda_t = V_{ts}^* V_{td}$ and $\lambda_c = V_{cs}^* V_{cd}$, the coefficients r_1, r_2, r_{K^+} and r_{K_L} take the numerical values

$$r_{1} = 1.17 \cdot 10^{-4}$$

$$r_{2} = 0.24$$

$$r_{K^{+}} = 0.901$$

$$r_{K_{L}} = 0.944$$
(C.75)

and X_f contains the Wilson coefficients contributing to the

processes,
$$F_{LL}^V$$
 and F_{RL}^V , as
 $X_f = n_{KTWV} \left(F_{LL}^V + F_{PL}^V \right).$ (C.76)

$$\Lambda_f = n_{K\pi\nu\nu} \left(\Gamma_{LL} + \Gamma_{RL} \right). \tag{C}$$

Here
$$n_{K\pi\nu\nu}^{-1} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} V_{ts}^* V_{td}.$$

Listing 40 KtoPInunu.m

1	NameProcess = "KtoPInunu";
2	NameObservables = {{BrKptoPipnunu, 8000, "BR(K^+ ->
	pi^+ nu nu)"},
3	{ratioKptoPipnunu, 8001, "BR(K^+ ->
	pi^+ nu nu)/BR(K^+ -> pi^+ nu
	nu)_SM"},
4	{BrKltoPinunu, 8002, "BR(K_L ->
	pi^0 nu nu)"},

5	{ratioKltoPinunu, 8003, "BR(K_L -> pi^0 nu nu)/BR(K_L -> pi^0 nu nu)_SM"}};
6	
7	NeededOperators = {OddvvVRR, OddvvVLL, OddvvVRL,
	OddvvVLR,
8	OddvvVRRSM, OddvvVLLSM, OddvvVRLSM,
	OddvvVLRSM };
9	
10	Body = "KtoPInunu.f90";

Listing 41 KtoPInunu.f90

```
Complex(dp) :: br, r1, r2, rKp, rKl, Xx, XNL, Lt, Lc
 1
    Complex(dp) :: Xx_SM, br_SM, norm
 2
    Real(dp) :: GF
 3
 4
    Integer :: out, i1, i2
 5
 6
    1
 7
    ! K -> pi nu nu
 8
    ! Observable implemented by W. Porod, F. Staub and A.
          Vicente
 9
    ! Based on C. Bobeth et al, NPB 630 (2002) 87
          [hep-ph/0112305]
10
11
    GF = (Alpha_160*4._dp*Pi/sinW2_160)/mw**2*sqrt2/8._dp
12
13
    norm = Alpha_160*4._dp*GF/sqrt2/(2._dp*pi*sinw2_160) &
14
               & *Conjg(CKM_160(3,2))*CKM_160(3,1)
15
    r1 = 1.17E-4_dp
16
17
    r2 = 0.24_dp
    rKp = 0.901
18
19
    rK1 = 0.944
20
21
    ! SM NLO charm correction
    ! See G. Buchalla and A. Buras, NPB 412 (1994) 106 and
22
          NPB 548 (1999) 309
23
    XNL = 9.78E-4_dp
24
25
    ! out = 1 : K^+ -> pi^+ nu nu
26
    ! out = 2 : K_L \rightarrow pi^0 nu nu
27
28
    Do out = 1,2
29
    br = 0._dp
    br_SM = 0._dp
30
     Do i1= 1,3
31
32
      Do i2 = 1,3
33
       Xx = ((OddvvVLL(2,1,i1,i2)+OddvvVRL(2,1,i1,i2))/norm)
       Xx_SM = ((OddvvVLLSM(2,1,i1,i2))
34
35
                +OddvvVRLSM(2,1,i1,i2))/norm)
36
       Lt = Conjg(CKM_{160}(3,2))*CKM_{160}(3,1)
       Lc = Conjg(CKM_160(2,2))*CKM_160(2,1)
37
38
        If (out.eq.1) Then
39
          br = br + Aimag(Xx*Lt)**2 + (Real(Lc*XNL,dp) +
               Real(Xx*Lt,dp))**2
         br_SM = br_SM + Aimag(Xx_SM*Lt)**2 + \&
40
41
                      & (Real(Lc*XNL, dp) +
                            Real(Xx_SM*Lt,dp))**2
42
        Else
43
        br = br + Abs(Aimag(Xx*Lt))**2
44
        br_SM = br_SM + Abs(Aimag(Xx_SM*Lt))**2
45
       End if
46
      End Do
47
     End do
    If (out.eq.1) Then ! K^+ \rightarrow pi^+ nu nu
48
49
     BrKptoPipnunu = 2._dp*r1*r2*rKp*br
50
     RatioKptoPipnunu = br/br_SM
51
      ! SM expectation: (7.2 +/- 2.1)*10^-11 (hep-ph/0112135)
52
    Else ! K_L -> pi^0 nu nu
53
     BrKltoPinunu = 2._dp*r1*rKl*br
54
     RatioKltoPinunu = br/br_SM
```

- 55 | ! SM expectation: (3.1 +/- 1.0)*10^-11 (hep-ph/0408142) 56 End if 57 End Do
- End Do

C.9 $\Delta M_{B_{s,d}}$

The
$$B_q^0 - \bar{B}_q^0$$
 mass difference can be written as [108, 130]

$$\Delta M_{B_q} = \frac{G_F^2 m_W^2}{6\pi^2} m_{B_q} \eta_B f_{B_q}^2 \hat{B}_{B_q} |V_{tq}^{\text{eff}}|^2 |F_{tt}^q|, \qquad (C.77)$$

where $q = s, d, m_{B_q}$ and f_{B_q} are the B_q^0 mass and decay constant, respectively, $\eta_B = 0.55$ is a QCD factor [47,131], \hat{B}_{B_q} is a non-perturbative parameter (with values $\hat{B}_{B_d} = 1.26$ and $\hat{B}_{B_s} = 1.33$, obtained from recent lattice computations [132]) and $|V_{tq}^{\text{eff}}|^2 = (V_{tb}^* V_{tq})^2$. F_{tt}^q is given by

$$F_{tt}^{q} = S_{0}(x_{t}) + \frac{1}{4r} C_{\text{new}}^{VLL} + \frac{1}{4r} C_{1}^{VRR} + \bar{P}_{1}^{LR} C_{1}^{LR} + \bar{P}_{2}^{LR} C_{2}^{LR} + \bar{P}_{1}^{SLL} \left(C_{1}^{SLL} + C_{1}^{SRR} \right) + \bar{P}_{2}^{SLL} \left(C_{2}^{SLL} + C_{2}^{SRR} \right)$$
(C.78)

where r = 0.985 [47], $x_t = \frac{m_t^2}{m_W^2}$, with m_t the top quark mass, the \bar{P} coefficients take the numerical values

$$\bar{P}_{1}^{LR} = -0.71$$

$$\bar{P}_{2}^{LR} = 0.90$$

$$\bar{P}_{1}^{SLL} = -0.37$$

$$\bar{P}_{2}^{SLL} = -0.72$$
(C.79)

and the function

$$S_0(x_t) = \frac{4x_t - 11x_t^2 + x_t^3}{4(1 - x_t)^2} - \frac{3x_t^3 \log x_t}{2(1 - x_t)^3}$$
(C.80)

was introduced by Inami and Lim in [133] and given, for example, in [134]. Finally, the coefficients in Eq. (C.78) are related to the D_{XY}^{I} coefficients in Eq. (A.13) as

$$C_{\text{new}}^{VLL} = n_{\Delta}^{q} \left(D_{LL}^{V} - D_{LL}^{V,\text{SM}} \right)$$
(C.81)

$$C_1^{VRR} = n_\Delta^q D_{RR}^V \tag{C.82}$$

$$C_1^{LR} = n_\Delta^q \left(D_{LR}^V + D_{RL}^V \right) \tag{C.83}$$

$$C_2^{LR} = n_\Delta^q \left(D_{LR}^S + D_{RL}^S + \delta_2^{LR} \right) \tag{C.84}$$

$$C_1^{SLL} = n_\Delta^q \left(D_{LL}^S + \delta_1^{SLL} \right) \tag{C.85}$$

$$C_1^{SRR} = n_\Delta^q \left(D_{RR}^S + \delta_1^{SRR} \right) \tag{C.86}$$

$$C_2^{SLL} = n_\Delta^q D_{LL}^T \tag{C.87}$$

$$C_2^{SRR} = n_\Delta^q D_{RR}^T \tag{C.88}$$

where the factor $(n_{\Delta}^q)^{-1} = \frac{G_F^2 m_W^2}{16\pi^2} |V_{tq}^{\text{eff}}|^2$ normalizes our Wilson coefficients to the ones in [108, 130]. The corrections δ_2^{LR} , δ_1^{SLL} and δ_1^{SRR} are induced by double penguin diagrams mediated by scalar and pseudoscalar states [108, 130]. These 2-loop contributions may have a sizable impact in some models, and their inclusion is necessary in order to achieve a precise result for ΔM_{B_q} . They can be written as

$$\delta_2^{LR} = -\frac{H_L^{S,P} \left(H_R^{S,P}\right)^*}{m_{S,P}^2}$$
(C.89)

$$\delta_1^{SLL} = -\frac{\left(H_L^{S,P}\right)^2}{2\,m_{S,P}^2} \tag{C.90}$$

$$\delta_1^{SRR} = -\frac{\left(H_L^{S,P}\right)^2}{2\,m_{S,P}^2} \tag{C.91}$$

where $H_L^{S,P}$ and $H_R^{S,P}$ are defined in Eq. (A.17). The double penguin corrections in Eqs. (C.89)–(C.91) are obtained by summing up over all scalar and pseudoscalar states in the model.

Listing 42 DeltaMBq.m

1	NameProcess = "DeltaMBq";
2	NameObservables = {{DeltaMBs, 1900, "Delta(M_Bs)"},
3	{ratioDeltaMBs, 1901,
	"Delta (M_Bs) / Delta (M_Bs)_SM" },
4	{DeltaMBq, 1902, "Delta (M_Bd)"},
5	{ratioDeltaMBq, 1903,
	"Delta (M_Bd) / Delta (M_Bd)_SM" } ;
6	
7	ExternalStates = {Fd};
8	NeededOperators = {O4dSLL, O4dSRR, O4dSRL, O4dSLR,
	O4dVRR, O4dVLL,
9	O4dVLLSM, O4dVRL, O4dVLR, O4dTLL,
	O4dTLR, O4dTRL, O4dTRR};
10	
11	IncludeSMprediction["DeltaMBq"] = False;
12	
13	Body = "DeltaMBq.f90";

Listing 43 DeltaMBq.f90

1Complex(dp) :: MBq, etaB, FBq2, BBq, Ftt, Veff2, r, &2& P1bLR, P2bLR, P1bSLL, P2bSLL, norm, &

```
3
         & CVLLnew, C1VRR, C1LR, C2LR, C1SLL, C1SRR,
               C2SLL, C2SRR
 4
    Real(dp) :: hbar, xt, GF
 5
    Real(dp) :: mS
 6
    Complex(dp) :: HL, HR, AL, AR
 7
    Integer :: i1, iS
 8
 9
10
    ! Delta M_{Bd,Bs}
11
    ! Observable implemented by W. Porod, F. Staub and A.
          Vicente
    ! Based on A. J. Buras et al, NPB 619 (2001) 434
12
          [hep-ph/0107048]
13
    ! and NPB 659 (2003) 3 [hep-ph/0210145]
14
15
16
    hbar = 6.58211889e - 25_dp
17
    xt = mf_u2_160(3)/mw2
    r = 0.985_dp
18
19
    P1bLR = -0.71_dp
20
    P2bLR = 0.90 dp
21
    P1bSLL = -0.37 dp
    P2bSLL = -0.72_dp
22
23
24
     ! QCD factor, see A. J. Buras et al, NPB 47 (1990) 491
25
    ! and J. Urban et al, NPB 523 (1998) 40
26
    etaB = 0.55_dp
27
    GF = (Alpha_160*4._dp*Pi/sinW2_160)/mw**2*sqrt2/8._dp
28
29
30
    Do i1 = 1,2
31
    If (i1.eq.1) Then ! Delta M_Bd
32
33
     MBq = mass_B0d
34
     FBq2 = f_B0d_CONST **2
     BBq = 1.26_dp ! see arXiv:0910.2928
35
36
     Veff2 = Conjg(CKM_160(3,3))*CKM_160(3,1))**2
37
     Else ! Delta M_Bs
     MBq = mass_B0s
38
39
     FBq2 = f_B0s_CONST**2
     BBq = 1.33_dp ! see arXiv:0910.2928
40
41
      Veff2 = Conjg(CCM_160(3,3))*CKM_160(3,2))**2
42
    End if
43
44
     ! normalization factor
    norm = GF**2*mw2/(16._dp*Pi**2)*Veff2
45
46
47
      Wilson coefficients
    CVLLnew = (O4dVLL(3, i1, 3, i1)-O4dVLLSM(3, i1, 3, i1))/norm
48
          ! we remove the SM contribution
49
    C1VRR = O4dVRR(3, i1, 3, i1)/norm
50
    C1LR = (O4dVLR(3, i1, 3, i1)+O4dVRL(3, i1, 3, i1))/norm
51
    C2LR = (O4dSLR(3, i1, 3, i1) + O4dSRL(3, i1, 3, i1)) / norm
    C1SLL = O4dSLL(3, i1, 3, i1)/norm
52
    C1SRR = O4dSRR(3, i1, 3, i1) / norm
53
    C2SLL = O4dTLL(3, i1, 3, i1) / norm
54
55
    C2SRR = O4dTRR(3, i1, 3, i1) / norm
56
57
58
    ! Double Higgs penguins
    @ If[getGen[HiggsBoson] > 1, "Do iS = 1,
59
           '<>ToString[getGen[HiggsBoson]],""]
60
    @ If [getGen [HiggsBoson] > 1, "HL = OH2qSL(3, i1, iS)",
          "HL = OH2qSL(3, i1)"]
    @ If [getGen [HiggsBoson] > 1, "HR = OH2qSR(3, i1, iS)",
61
          "HR = OH2qSR(3, i1)"]
62
    @ If[getGen[HiggsBoson] > 1, "mS =
           <>SPhenoMassSq[HiggsBoson, iS],
                                            "mS =
          "<>SPhenoMassSq[HiggsBoson]]
    C2LR = C2LR - HL*Conjg(HR)/(mS*norm)
63
    C1SLL = C1SLL - 0.5_dp*HL**2/(mS*norm)
64
65
    C1SRR = C1SRR - 0.5_dp*HR**2/(mS*norm)
66
    @ If [getGen [HiggsBoson] > 1,"End Do",""]
```

68	
69	@ If[getGen[PseudoScalar] > 1, "Do iS =
	"<>ToString[getGenSPhenoStart[PseudoScalar]]<>",
	"<>ToString[getGen[PseudoScalar]],""]
70	@ If [getGen [PseudoScalar] > 1, "AL =
	OAh2qSL(3,i1,iS)", "AL = $OAh2qSL(3,i1)$ "]
71	@ If [getGen[PseudoScalar] > 1, "AR =
	OAh2qSR(3,i1,iS)", "AR = $OAh2qSR(3,i1)$ "]
72	@ If [getGen [PseudoScalar] > 1, "mS =
	"<>SPhenoMassSq[PseudoScalar, iS], "mS =
	"<>SPhenoMassSq[PseudoScalar]]
73	C2LR = C2LR - AL*Conjg(AR)/(mS*norm)
74	C1SLL = C1SLL - 0.5 dp *AL * 2/(mS*norm)
75	C1SRR = C1SRR - 0.5 dp *AR * 2/(mS * norm)
76	@ If [getGen [PseudoScalar] > 1, "End Do", ""]
77	
78	
79	Ftt = S0xt(xt) + CVLLnew/(4. dp*r) + &
80	& $ClVRR/(4dp*r) + PlbLR*ClLR + P2bLR*C2LR + &$
81	& P1bSLL*(C1SLL + C1SRR) + P2bSLL*(C2SLL + C2SRR)
82	
83	If (i1.eq.1) Then ! Delta M_Bd
84	ratioDeltaMBq = $Abs(Ftt/S0xt(xt))$
85	$DeltaMBq = G_F **2*mw2/(6dp*Pi**2)* \&$
86	& MBq*etaB*BBq*FBq2*Veff2*Abs(Ftt)*1.e-12_dp/hbar
87	Else ! Delta M_Bs
88	ratioDeltaMBs = $Abs(Ftt/S0xt(xt))$
89	$DeltaMBs = G_F **2*mw2/(6dp*Pi**2)* \&$
90	& MBq*etaB*BBq*FBq2*Veff2*Abs(Ftt)*1.e-12_dp/hbar
91	End if
92	
93	End Do
94	
95	Contains
96	
97	Real(dp) Function S0xt(x) ! See for example
	hep-ph/9806471
98	Implicit None
99	Real(dp), Intent(in) :: x
100	$S0xt = 1dp - 2.75_dp * x + 0.25_dp * x**2 \&$
101	$\& - 1.5_dp * x ** 2 * Log(x) / (1-x)$
102	S0xt = x * S0xt / (1 - x) * * 2
103	End Function SOxt

C.10 ΔM_K and ε_K

67

 ΔM_K and ε_K , the observables associated to $K^0 - \bar{K}^0$ mixing, can be written as [9,134]

$$\Delta M_K = 2 \operatorname{Re} \langle \bar{K}^0 | H_{\text{eff}}^{\Delta S=2} | K^0 \rangle$$
(C.92)

$$\varepsilon_K = \frac{e^{i\pi/4}}{\sqrt{2}\Delta M_K} \operatorname{Im} \langle \bar{K}^0 | H_{\text{eff}}^{\Delta S=2} | K^0 \rangle.$$
(C.93)

The matrix element in Eqs. (C.92) and (C.93) is given by

$$\langle \bar{K}^{0} | H_{\text{eff}}^{\Delta S=2} | K^{0} \rangle = f_{V} \left(D_{LL}^{V} + D_{RR}^{V} \right)$$

+ $f_{S} \left(D_{LL}^{S} + D_{RR}^{S} \right) + f_{T} \left(D_{LL}^{T} + D_{RR}^{T} \right)$
+ $f_{LR}^{1} \left(D_{LR}^{S} + D_{RL}^{S} \right) + f_{LR}^{2} \left(D_{LR}^{V} + D_{RL}^{V} \right).$ (C.94)

The f coefficients are

$$f_V = \frac{1}{3} m_K f_K^2 B_1^{VLL}(\mu)$$
(C.95)

$$f_S = -\frac{5}{24} \left(\frac{m_K}{m_s(\mu) + m_d(\mu)} \right)^2 m_K f_K^2 B_1^{SLL}(\mu) \qquad (C.96)$$

$$f_T = -\frac{1}{2} \left(\frac{m_K}{m_s(\mu) + m_d(\mu)} \right)^2 m_K f_K^2 B_2^{SLL}(\mu)$$
(C.97)

$$f_{LR}^{1} = -\frac{1}{6} \left(\frac{m_K}{m_s(\mu) + m_d(\mu)} \right)^2 m_K f_K^2 B_1^{LR}(\mu) \qquad (C.98)$$

$$f_{LR}^2 = \frac{1}{4} \left(\frac{m_K}{m_s(\mu) + m_d(\mu)} \right)^2 m_K f_K^2 B_2^{LR}(\mu)$$
(C.99)

where $\mu = 2$ GeV is the energy scale at which the matrix element is computed and f_K the Kaon decay constant. The values of the quark masses at $\mu = 2$ GeV are given by $m_d(\mu) = 7$ MeV and $m_s(\mu) = 125$ MeV (see table 1 in [98]), whereas the B_i^X coefficients have the following values at $\mu = 2$ GeV [135]: $B_1^{VLL}(\mu) = 0.61$, $B_1^{SLL}(\mu) = 0.76$, $B_2^{SLL}(\mu) = 0.51$, $B_1^{LR}(\mu) = 0.96$ and $B_2^{LR}(\mu) = 1.3$.

As in [9], we treat the SM contribution separately. We define $D_{LL}^V = D_{LL}^{V,SM} + D_{LL}^{V,BSM}$. For $D_{LL}^{V,BSM}$ one just subtracts the SM contributions to D_{LL}^V , whereas for $D_{LL}^{V,SM}$ one can use the results in [136–138], where the relevant QCD corrections are included,

$$D_{LL}^{V,SM} = \frac{G_F^2 m_W^2}{4\pi^2} \left[\lambda_c^{*2} \eta_1 S_0(x_c) + \lambda_t^{*2} \eta_2 S_0(x_t) - (C.100) \right. \\ \left. + 2\lambda_c^* \lambda_t^* \eta_3 S_0(x_c, x_t) \right].$$

Here $x_i = m_i^2/m_w^2$, $\lambda_i = V_{is}^* V_{id}$ and $S_0(x)$ and $S_0(x, y)$ are the Inami–Lim functions [133]. $S_0(x)$ was already defined in Eq. (C.80), whereas $S_0(x_c, x_t)$ is given by [134]

$$S_0(x_c, x_t) = x_c \left[\log \frac{x_t}{x_c} - \frac{3x_t}{4(1 - x_t)} - \frac{3x_t^2 \log x_t}{4(1 - x_t)^2} \right].$$
(C.101)

In the last expression we have kept only terms linear in $x_c \ll 1$. Finally, the η_i coefficients comprise short distance QCD corrections. Their numerical values are $\eta_{1,2,3} = (1.44, 0.57, 0.47)$ [138].¹³

Listing 44 KKmix.m

1	NameProcess = "KKmix";
2	NameObservables = {{DeltaMK, 9100, "Delta (M_K) "},
3	{ratioDeltaMK, 9102,
	" Delta (M_K) / Delta (M_K)_SM" } ,
4	{epsK, 9103, "epsilon_K"},
5	{ratioepsK, 9104,
	"epsilon_K/epsilon_K^SM"};
6	
7	NeededOperators = {O4dSLL, O4dSRR, O4dSRL, O4dSLR,
	O4dVRR, O4dVLL, O4dVRL,
8	O4dVLR, O4dTLL, O4dTLR, O4dTRL,
	O4dTRR,
9	O4dSLLSM, O4dSRRSM, O4dSRLSM,
	O4dSLRSM, O4dVRRSM, O4dVLLSM,
	O4dVRLSM, O4dVLRSM,
10	O4dTLLSM, O4dTLRSM, O4dTRLSM,
	O4dTRRSM };
11	
12	Body = "KKmix.f90";

Listing 45 KKmix.f90

```
Real(dp) :: b_VLL, b_SLL1, b_SLL2, b_LR1, b_LR2
    Real(dp) :: ms_mu, md_mu
 3
    Complex(dp) :: CVLL, CVRR, CSLL, CSRR, CTLL, CTRR,
          CLR1, CLR2
    Complex(dp) :: fV, fS, fT, fLR1, fLR2, cVLLSM
 5
    Complex(dp) :: f_k, M_K, H2eff, DeltaMK_SM, epsK_SM
    Real(dp) :: norm, hbar, xt, xc, GF
 6
 7
    Integer :: i1
 8
    Real(dp), Parameter :: eta_tt = 0.57_dp, eta_ct =
          0.47_dp, &
 9
                              \& eta_cc = 1.44_dp
10
    ! Parameters from S. Herrlich and U. Nierste NPB 476
          (1996) 27
11
12
13
    ! Delta M_K and epsilon_K
    ! Observables implemented by W. Porod, F. Staub and A.
14
          Vicente
15
    ! Based on A. Crivellin et al, Comput. Phys. Commun.
          184 (2013) 1004 [arXiv:1203.5023]
16
17
18
    ! using globally defined hadronic parameters
19
    M_K = mass_K0
    f_K = f_k_CONST
20
21
22
    xt = mf_u(3) **2 / mW **2
23
    xc = mf u(2) **2 / mW **2
24
25
    GF = (Alpha_{160}*4._dp*Pi/sinW2_{160})/mw**2*sqrt2/8._dp
26
27
    ! Coefficients at mu = 2 GeV
    ! See A. J. Buras et al, NPB 605 (2001) 600
28
          [hep-ph/0102316]
29
    b_VLL = 0.61_dp
30
    b_{SLL1} = 0.76_{dp}
    b_SLL2 = 0.51_dp
31
    b_{LR1} = 0.96_{dp}
32
33
    b_{LR2} = 1.3_{dp}
34
    ! Quark mass values at mu = 2 GeV
35
    ! See M. Ciuchini et al, JHEP 9810 (1998) 008
36
          [hep-ph/9808328] - Table 1
37
    md_mu = 0.007_dp
    ms_mu = 0.125_dp
38
39
40
    fV = 1._dp/3._dp*M_K*f_k**2*b_VLL
```

¹³ Note that we have chosen a value for η_1 which results from our numerical values for $\alpha_s(m_Z)$ and $m_c(m_c)$, see table 5 in [138].

```
41
     fS = -5._dp/24._dp*M_K*f_K**2*(M_K/(ms_mu+md_mu))
42
             **2*b SLL1
43
     fT = -1._dp/2._dp*M_K*f_K**2*(M_K/(ms_mu+md_mu))
44
           **2*h SLL2
45
     fLR1 = -1._dp/6._dp*M_K*f_K**2*(M_K/(ms_mu+md_mu))
46
          **2*b LR1
47
     fLR2 = 1._dp/4._dp*M_K*f_K**2*(M_K/(ms_mu+md_mu))
48
         **2*b_LR2
49
50
     ! SM contribution
51
     ! Based on the results by S. Herrlich and U. Nierste
     ! NPB 419 (1994) 292, PRD 52 (1995) 6505 and NPB 476
52
           (1996) 27
     cVLLSM = eta_cc * (Conjg(CKM_160(2,2))*CKM_160(2,1))**2
53
           * S0xt(xc)
          & + eta_tt * (Conjg(CKM_160(3,2))*CKM_160(3,1))**2
54
                * S0xt(xt)
 55
          & + Conjg(CKM_160(2,2)*CKM_160(3,2))*(CKM_160(2,1))
 56
          *CKM_160(3,1)) &
 57
          & * 2._dp * eta_ct * S0_2(xc,xt)
 58
59
     cVLLSM = Conjg(cVLLSM) ! we compute
           (d bar{s})(d bar{s}) and not (bar{d}s)(bar{d}s)
     cVLLSM = oo4pi2*(GF*mW)**2*cVLLSM ! normalization
60
61
     ! BSM contributions (+SM in CVLL)
62
63
     CVLL = O4dVLL(2, 1, 2, 1) - O4dVLLSM(2, 1, 2, 1) + cVLLSM
64
     CVRR = O4dVRR(2, 1, 2, 1)
     CSLL = O4dSLL(2, 1, 2, 1)
65
     CSRR = O4dSRR(2, 1, 2, 1)
66
67
     CTLL = O4dTLL(2, 1, 2, 1)
68
     CTRR = O4dTRR(2, 1, 2, 1)
69
     CLR1 = O4dSLR(2, 1, 2, 1) + O4dSRL(2, 1, 2, 1)
70
     CLR2 = O4dVLR(2, 1, 2, 1) + O4dVRL(2, 1, 2, 1)
71
72
     1 BSM
73
     H2eff = fV *(CVLL+CVRR) + fS *(CSLL+CSRR) +fT *(CTLL+CTRR)
          &
74
                    & + fLR1*CLR1 + fLR2*CLR2
75
     DeltaMK = Abs(2, dp*Real(H2eff, dp))
76
77
     epsK = 1._dp/(sqrt2*DeltaMK)*Abs(Aimag(H2eff))
78
79
     1 SM
 80
     H2eff = fV * cVLLSM
81
82
     DeltaMK_SM = Abs(2._dp*Real(H2eff, dp))
 83
     epsK_SM = 1._dp/(sqrt2*DeltaMK_SM)*Abs(Aimag(H2eff))
84
     ratioDeltaMK = DeltaMK/DeltaMK_SM
 85
 86
     ratioepsK = epsK/epsK SM
87
88
     Contains
89
90
     ! Inami - Lim functions
91
92
      Real(dp) Function S0xt(x)
 93
        Implicit None
94
        Real(dp), Intent(in) :: x
        S0xt = 1._dp - 2.75_dp * x + 0.25_dp * x**2 - &
 95
96
                    & 1.5_dp * x * 2 * Log(x) / (1-x)
97
         S0xt = x * S0xt / (1 - x) * * 2
98
      End Function S0xt
99
100
      Real(dp) Function S0_2(xc, xt)
101
         Implicit None
102
         Real(dp), Intent(in) :: xc, xt
103
        SO_2 = Log(xt/xc) - 0.75_dp * xt /(1-xt) \&
104
             & - 0.75_dp * xt**2 * Log(xt) / (1-xt)**2
        S0_2 = xc * S0_2
105
      End Function S0 2
106
```

C.11 $P \rightarrow \ell v$

Although $P \rightarrow \ell v$, where P = qq' is a pseudoscalar meson, does not violate quark flavor, we have included it in the list of observables for practical reasons, as it can be computed with the same ingredients as the QFV observables. The decay width for the process $P \rightarrow \ell_{\alpha} v$ is given by [139]

$$\begin{split} \Gamma\left(P \to \ell_{\alpha} \nu\right) &= \frac{|G_{F} f_{P}(m_{P}^{2} - m_{\ell_{\alpha}}^{2})|^{2}}{8\pi m_{P}^{3}} \\ &\times \sum_{\nu} \left| V_{qq'} m_{\ell_{\alpha}} + \frac{m_{\ell_{\alpha}}}{2\sqrt{2}} \left(G_{LL}^{V} - G_{RL}^{V} \right) \right. \\ &\left. + \frac{m_{P}^{2}}{2\sqrt{2}(m_{q} + m_{q'})} \left(G_{RR}^{S} - G_{LR}^{S} \right) \right|^{2}. \end{split}$$
(C.102)

Here f_P is the meson decay constant, m_q and $m_{q'}$ are the masses of the quarks in the meson and the Wilson coefficients G_{XY}^I are defined in Eq. (A.16). The sum in Eq. (C.102) is over the three neutrinos (whose masses are neglected).

Each $P \rightarrow \ell_{\alpha} \nu$ decay width is plagued by hadronic uncertainties. However, by taking the ratios

$$R_P = \frac{\Gamma \left(P \to e\nu\right)}{\Gamma \left(P \to \mu\nu\right)} \tag{C.103}$$

the hadronic uncertainties cancel out to a good approximation, allowing for a precise theoretical determination. In case of R_K , the SM prediction includes small electromagnetic corrections that account for internal bremsstrahlung and structure-dependent effects [140]. This leads to an impressive theoretical uncertainty of $\delta R_K/R_K \sim 0.1$ %, making R_P the perfect observable to search for lepton flavor universality violation [141].

Listing 46 Plnu.m

NameProcess = "Plnu";
NameObservables = {{BrDmunu, 300, "BR(D \rightarrow mu nu)"},
{ratioDmunu, 301, "BR(D->mu
$nu)/BR(D \rightarrow mu nu)SM"$
$\{BrDsmunu, 400, "BR(Ds \rightarrow mu nu)"\},\$
{ratioDsmunu, 401, "BR(Ds->mu
$nu)/BR(Ds \rightarrow mu nu)SM"$
$\{BrDstaunu, 402, "BR(Ds \rightarrow tau nu)"\},\$
{ratioDstaunu, 403, "BR(Ds->tau
$nu)/BR(Ds \rightarrow tau nu)_SM"$
$\{BrBmunu, 500, "BR(B \rightarrow mu nu)"\},\$
{ratioBmunu, 501, "BR(B->mu
$nu)/BR(B \rightarrow mu nu)SM"$ },
{BrBtaunu, 502, "BR(B->tau nu)"},
{ratioBtaunu, 503, "BR(B->tau
$nu)/BR(B \rightarrow tau nu)_SM"$
$\{BrKmunu, 600, "BR(K \rightarrow mu nu)"\},\$
{ratioKmunu, 601, "BR(K->mu
$nu)/BR(K \rightarrow mu nu)SM"$
$\{RK, 602, "R_K = BR(K \rightarrow e nu)/(K \rightarrow mu)$
nu)"},

15	$\{RKSM, 603, "R_K^SM = BR(K \rightarrow e$
	nu)_SM/(K->mu nu)_SM"}};
16	
17	NeededOperators = {OdulvSLL, OdulvSRR, OdulvSRL,
	OdulvSLR,
18	OdulvVRR, OdulvVLL, OdulvVRL,
	OdulvVLR,
19	OdulvSLLSM, OdulvSRRSM, OdulvSRLSM,
	OdulvSLRSM,
20	OdulvVRRSM, OdulvVLLSM, OdulvVRLSM,
	OdulvVLRSM
21	};
22	
23	Body = "Plnu.f90";

Listing 47 Plnu.f90

```
1
    Integer :: gt1, gt2, i1, i2, iP
 2
    Complex(dp) :: br, br_SM
 3
    Real(dp) \ :: \ m\_M, \ f\_M, \ tau\_M, \ mlep, \ mq1, \ mq2, \ hbar,
          ratio. &
 4
         & BrKenuSM, BRKenu, QED
 5
 6
    1 -
 7
    ! P -> 1 nu
    ! Observable implemented by W. Porod, F. Staub and A.
 8
          Vicente
 9
    ! Based on J. Barranco et al, arXiv:1303.3896
10
11
    hbar = 6.58211889e - 25_dp
12
13
14
    ! Electromagnetic correction to R K
15
    ! See V. Cirigliano, I. Rosell, PRL 99 (2007) 231801
         [arXiv:0707.3439]
    QED = -3.6e - 2_dp
16
17
18
    ! meson parameters
19
20
    Do iP=1.4
    If (iP.eq.1) Then ! Ds-meson
21
22
     gt1 = 2
23
     gt2 = 2
24
     m_M = mass_Dsp
25
     f_M = f_DSp_CONST
26
     tau_M = tau_DSp/hbar
    Elseif (iP.eq.2) Then ! B-meson
27
28
     gt1 = 3
29
     gt2 = 1
30
     m_M = mass_Bp
31
     f_M = f_Bp_CONST
32
     tau_M = tau_Bp/hbar
    Elseif (iP.eq.3) Then ! Kaon
33
34
    gt1 = 2
35
     gt2 = 1
36
     m_M = mass_Kp
     f_M = f_{Kp}CONST
37
     tau_M = tau_Kp/hbar
38
39
    Elseif (iP.eq.4) Then ! D-meson
40
     gt1 = 1
41
     gt2 = 2
42
     m_M = mass_Dp
     f_M = f_Dp_CONST
43
44
     tau_M = tau_Dp/hbar
45
    End if
46
47
     mq1 = mf_u_{160}(gt2)
48
     mq2 = mf_d_{160}(gt1)
49
50
    Do i1=1,3
51
    br = 0._dp
52
    br_SM = 0._dp
```

53 mlep = mf 1(i1)54 55 Do i2 = 1.3br = br + ((OdulvVLL(gt1,gt2,i1,i2)-OdulvVLR 56 57 (gt1,gt2,i1,i2))*mlep/ & 58 & (2._dp*sqrt2) & 59 & + m_M**2*(OdulvSRL(gt1,gt2,i1,i2)-OdulvSLL 60 (gt1,gt2,i1,i2))/ & & $(2._dp*sqrt2*(mq1+mq2)))$ 61 62 $br_SM = br_SM+ (OdulvVLLSM(gt1, gt2, i1, i2)-OdulvVLRSM$ 63 (gt1,gt2,i1,i2)) & 64 & *mlep/(2._dp*sqrt2) 65 End Do 66 ratio = $Abs(br/br_SM) **2$ 67 68 br = oo8pi*tau_M*(f_M)**2*M_M*Abs(br)**2*(1._dp mlep**2/MM**2)**2 ! G_F already in coefficients included 69 70 If (iP.eq.1) Then !! Ds-meson 71 72 If (i1.eq.2) Then ! Ds->mu nu 73 BrDsmunu = br 74 ratioDsmunu = ratio 75 Elseif (i1.eq.3) Then ! Ds->tau nu 76 BrDstaunu = br 77 ratioDstaunu = ratio 78 End if 79 Elseif (iP.eq.2) Then !! B-meson If (i1.eq.2) Then ! B->mu nu 80 81 BrBmunu = br 82 ratioBmunu = ratio 83 Else ! B->tau nu 84 BrBtaunu = br 85 ratioBtaunu = ratio 86 End if 87 Else If (iP.eq.3) Then !! Kaon If (i1.eq.1) Then ! K->e nu 88 89 BrKenu = br 90 BrKenuSM = BrKenu*ratio 91 Elseif (i1.eq.2) Then ! K->mu nu 92 BrKmunu = br 93 ratioKmunu = ratio 94 RK = BrKenu/BrKmunu*(1+QED)95 RKSM = BrKenuSM/BrKmunu*ratio*(1+QED)96 End if 97 Else If (iP.eq.4) Then !! D-meson 98 If (i1.eq.2) Then ! D->mu nu 99 BrDmunu = br 100 ratioDmunu = ratio 101 End if 102 End if 103 End Do 104 End Do

Appendix D: Models

The following models are included in the public version of SARAH and can now be used together with the FlavorKit to get predictions for the different observables.

- D.1 Supersymmetric models
- Minimal supersymmetric standard model (see Ref. [142] and references therein)

- With general flavor and CP structure (MSSM)
- Without flavor violation (MSSM/NoFV)
- With explicit CP violation in the Higgs sector (MSSM/CPV)
- In SCKM basis (MSSM/CKM)
- Singlet extensions:
 - Next-to-minimal supersymmetric standard model (NMSSM, NMSSM/NoFV, NMSSM/CPV, NMSSM/ CKM) (see Refs. [143,144] and references therein)
 - near-to-minimal supersymmetric standard model (near-MSSM) [145]
 - General singlet extended, supersymmetric standard model (SMSSM) [145, 146]
 - DiracNMSSM (DiracNMSSM) [147,148]
- Triplet extensions
 - Triplet extended MSSM (TMSSM) [149]
 - Triplet extended NMSSM (TNMSSM) [150]
- Models with *R*-parity violation [151–158]
 - bilinear RpV (MSSM-RpV/Bi)
 - Lepton number violation (MSSM-RpV/LnV)
 - Only trilinear lepton number violation (MSSM-RpV/TriLnV)
 - Baryon number violation (MSSM-RpV/BnV)
 - $\mu v SSM$ (munuSSM) [159,160]
- Additional U(1)'s
 - U(1)-extended MSSM (UMSSM) [145]
 - secluded MSSM (secluded-MSSM) [161]
 - minimal B L model (B-L-SSM) [162–165]
 - minimal singlet-extended B L model (N-B-L-SSM)
- SUSY-scale seesaw extensions
 - inverse seesaw (inverse-Seesaw) [166,167]
 - linear seesaw (LinSeesaw) [166,168]
 - singlet extended inverse seesaw (inverse-Seesaw-NMSSM) [169]
 - inverse seesaw with B L gauge group (B-L-SSM-IS) [170]
 - minimal $U(1)_R \times U(1)_{B-L}$ model with inverse seesaw (BLRinvSeesaw) [74,171]
- Models with Dirac Gauginos
 - MSSM/NMSSM with Dirac Gauginos (DiracGauginos) [172–174]
 - minimal *R*-Symmetric SSM (MRSSM) [175]
 - Minimal Dirac Gaugino supersymmetric standard model (MDGSSM) [86]
- High-scale extensions

- Seesaw1-3(SU(5) version), (Seesaw1, Seesaw2, Seesaw3) [63,65,68,176,177]
- Left/right model (ΩLR) (Omega) [178,179]
- Quiver model (QEW12, QEWmld2L3) [180]

D.2 Non-supersymmetric models

- Standard Model (SM) (SM), Standard model in CKM basis (SM/CKM) (see for instance Ref. [181] and references therein)
- inert Higgs doublet model (Inert) [182]
- B-L extended SM (B-L-SM) [183–185]
- B-L extended SM with inverse seesaw (B-L-SM-IS) [186]
- SM extended by a scalar color octet (SM-8C) [187]
- Two Higgs doublet model (THDM) (see for instance Ref.
 [188] and references therein)
- Singlet extended SM (SSM) [189]
- Singlet Scalar DM (SSDM) [190]

References

- 1. ATLAS Collaboration, G. Aad et al., Phys. Lett. B **716** (2012), 1–29. arXiv:1207.7214
- CMS Collaboration, S. Chatrchyan et al., Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235
- ATLAS Collaboration, CDF Collaboration, CMS Collaboration, D0 Collaboration (2014). arXiv:1403.4427
- D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala et al., JHEP 1312, 089 (2013). arXiv:1307.3536
- 5. F. Mahmoudi, Comput. Phys. Commun. **178**, 745–754 (2008). arXiv:0710.2067
- F. Mahmoudi, Comput. Phys. Commun. 180, 1579–1613 (2009). arXiv:0808.3144
- 7. F. Mahmoudi, Comput. Phys. Commun. 180, 1718–1719 (2009)
- J. Rosiek, P. Chankowski, A. Dedes, S. Jager, P. Tanedo, Comput. Phys. Commun. 181, 2180–2205 (2010). arXiv:1003.4260
- A. Crivellin, J. Rosiek, P. Chankowski, A. Dedes, S. Jaeger et al., Comput. Phys. Commun. 184, 1004–1032 (2013). arXiv:1203.5023
- U. Ellwanger, C. Hugonie, Comput. Phys. Commun. 177, 399– 407 (2007). hep-ph/0612134
- G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 149, 103–120 (2002). hep-ph/0112278
- G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. **174**, 577–604 (2006). hep-ph/0405253
- G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367–382 (2007). hep-ph/0607059
- G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 180, 747–767 (2009). arXiv:0803.2360
- G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 185, 960–985 (2014). arXiv:1305.0237
- G. Degrassi, P. Gambino, P. Slavich, Comput. Phys. Commun. 179, 759–771 (2008). arXiv:0712.3265
- B. Murakami, Comput. Phys. Commun. 185, 622–637 (2014). arXiv:1302.4469
- D. Chowdhury, R. Garani, S.K. Vempati, Comput. Phys. Commun. 184, 899–918 (2013). arXiv:1109.3551

- F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata (2003) hep-ph/0312045
- H. Baer, C. Balazs, A. Belyaev, R. Dermisek, A. Mafi et al., Nucl. Instrum. Methods A A502, 560–563 (2003)
- 21. H. Baer, F.E. Paige, S.D. Protopopescu, X. Tata (1999). hep-ph/0001086
- 22. F.E. Paige, S.D. Protopescu, H. Baer, X. Tata (1998). hep-ph/9810440
- 23. F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata (1998). hep-ph/9804321
- 24. H. Baer, F.E. Paige, S.D. Protopopescu, X. Tata (1993). hep-ph/9305342
- 25. W. Porod, Comput. Phys. Commun. **153**, 275–315 (2003). hep-ph/0301101
- W. Porod, F. Staub, Comput. Phys. Commun. 183, 2458–2469 (2012). arXiv:1104.1573
- 27. F. Staub (2008). arXiv:0806.0538
- F. Staub, Comput. Phys. Commun. 181, 1077–1086 (2010). arXiv:0909.2863
- 29. F. Staub, Comput. Phys. Commun. **182**, 808–833 (2011). arXiv:1002.0840
- 30. F. Staub, Comput. Phys. Commun. 184, 1792–1809 (2013). arXiv:1207.0906
- 31. F. Staub, Comput. Phys. Commun. 185, 1773–1790 (2014). arXiv:1309.7223
- H. Dreiner, K. Nickel, F. Staub, A. Vicente, Phys. Rev. D 86, 015003 (2012). arXiv:1204.5925
- H. Dreiner, K. Nickel, W. Porod, F. Staub, Comput. Phys. Commun. 184, 2604–2617 (2013). arXiv:1212.5074
- H. Dreiner, K. Nickel, F. Staub, Phys. Rev. D 88, 115001 (2013). arXiv:1309.1735
- T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153– 165 (1999). hep-ph/9807565
- 36. T. Hahn, Comput. Phys. Commun. **140**, 418–431 (2001). hep-ph/0012260
- 37. T. Hahn, Nucl. Phys. Proc. Suppl. 89, 231–236 (2000). hep-ph/0005029
- T. Hahn, Nucl. Phys. Proc. Suppl. 135, 333–337 (2004). hep-ph/0406288
- 39. T. Hahn, eConf C 050318, 0604 (2005). hep-ph/0506201
- B.C. Nejad, T. Hahn, J.N. Lang, E. Mirabella, J. Phys. Conf. Ser. 523, 012050 (2014). doi:10.1088/1742-6596/523/1/012050. arXiv:1310.0274
- 41. E. Ma, A. Pramudita, Phys. Rev. D 24, 1410 (1981)
- J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, Phys. Rev. D 53, 2442–2459 (1996). hep-ph/9510309
- 43. A. Bednyakov, S. Tanyildizi (2013). arXiv:1311.5546
- 44. T. Ohl, Comput. Phys. Commun. **90**, 340–354 (1995). hep-ph/9505351
- F. Staub, T. Ohl, W. Porod, C. Speckner, Comput. Phys. Commun. 183, 2165–2206 (2012). arXiv:1109.5147
- A. Crivellin, L. Hofer, J. Rosiek, JHEP 1107, 017 (2011). arXiv:1103.4272
- 47. A.J. Buras, M. Jamin, P.H. Weisz, Nucl. Phys. B **347**, 491–536 (1990)
- 48. G. Buchalla, A.J. Buras, Nucl. Phys. B 412, 106–142 (1994). hep-ph/9308272
- M. Ciuchini, E. Franco, V. Gimenez, Phys. Lett. B 388, 167–172 (1996). hep-ph/9608204
- A.J. Buras, P. Gambino, U.A. Haisch, Nucl. Phys. B 570, 117–154 (2000). hep-ph/9911250
- 51. M. Misiak, M. Steinhauser, Nucl. Phys. B **764**, 62–82 (2007). hep-ph/0609241
- A.J. Buras, A. Czarnecki, M. Misiak, J. Urban, Nucl. Phys. B 631, 219–238 (2002). hep-ph/0203135

- R. Boughezal, M. Czakon, T. Schutzmeier, JHEP 0709, 072 (2007). arXiv:0707.3090
- 54. A.J. Buras, J. Girrbach, JHEP 1203, 052 (2012). arXiv:1201.1302
- F. Mahmoudi, S. Heinemeyer, A. Arbey, A. Bharucha, T. Goto et al., Comput. Phys. Commun. 183, 285–298 (2012). arXiv:1008.0762
- 56. A. Ilakovac, A. Pilaftsis, Nucl. Phys. B **437**, 491 (1995). hep-ph/9403398
- A. Ilakovac, A. Pilaftsis, L. Popov, Phys. Rev. D 87(5), 053014 (2013). arXiv:1212.5939
- E. Arganda, M.J. Herrero, Phys. Rev. D 73, 055003 (2006). hep-ph/0510405
- F. Deppisch, H. Pas, A. Redelbach, R. Ruckl, Y. Shimizu, Eur. Phys. J. C 28, 365–374 (2003). hep-ph/0206122
- S. Petcov, T. Shindou, Y. Takanishi, Nucl. Phys. B 738, 219–242 (2006). hep-ph/0508243
- S. Antusch, E. Arganda, M. Herrero, A. Teixeira, JHEP 0611, 090 (2006). hep-ph/0607263
- 62. P. Paradisi, JHEP 0608, 047 (2006). hep-ph/0601100
- M. Hirsch, J. Valle, W. Porod, J. Romao, A. Villanova del Moral, Phys. Rev. D 78, 013006 (2008). arXiv:0804.4072
- M. Hirsch, S. Kaneko, W. Porod, Phys. Rev. D 78, 093004 (2008). arXiv:0806.3361
- F. Borzumati, T. Yamashita, Prog. Theor. Phys. 124, 761–868 (2010). arXiv:0903.2793
- E. Gross, D. Grossman, Y. Nir, O. Vitells, Phys. Rev. D 81, 055013 (2010). arXiv:1001.2883
- 67. C. Biggio, L. Calibbi, JHEP 1010, 037 (2010). arXiv:1007.3750
- J. Esteves, J. Romao, M. Hirsch, F. Staub, W. Porod, Phys. Rev. D 83, 013003 (2011). arXiv:1010.6000
- A. Abada, A. Figueiredo, J. Romao, A. Teixeira, JHEP 1010, 104 (2010). arXiv:1007.4833
- A. Abada, A. Figueiredo, J. Romao, A. Teixeira, JHEP **1108**, 099 (2011). arXiv:1104.3962
- C.G. Cely, A. Ibarra, E. Molinaro, S. Petcov, Phys. Lett. B 718, 957–964 (2013). arXiv:1208.3654
- M. Hirsch, W. Porod, C. Weiss, F. Staub, Phys. Rev. D 87, 013010 (2013). arXiv:1211.0289
- S. Davidson, P. Verdier, Phys. Rev. D 86, 111701 (2012). arXiv:1211.1248
- M. Hirsch, W. Porod, L. Reichert, F. Staub, Phys. Rev. D 86, 093018 (2012). arXiv:1206.3516
- D. Dinh, A. Ibarra, E. Molinaro, S. Petcov, JHEP **1208**, 125 (2012). arXiv:1205.4671
- M. Cannoni, J. Ellis, M.E. Gomez, S. Lola, Phys. Rev. D 88, 075005 (2013). arXiv:1301.6002
- 77. M.E. Krauss, W. Porod, F. Staub, A. Abada, A. Vicente et al., Phys. Rev. D 90, 013008 (2014). doi:10.1103/PhysRevD.90.013008. arXiv:1312.5318
- M. Arana-Catania, E. Arganda, M. Herrero, JHEP 1309, 160 (2013). arXiv:1304.3371
- W. Altmannshofer, M. Bauer, M. Carena, JHEP 1401, 060 (2014). arXiv:1308.1987
- A. Crivellin, S. Najjari, J. Rosiek, JHEP 1404, 167 (2014). arXiv:1312.0634
- A. Celis, V. Cirigliano, E. Passemar, Phys. Rev. D 89, 013008 (2014). arXiv:1309.3564
- T. Moroi, M. Nagai, T.T. Yanagida, Phys. Lett. B 728, 342–346 (2014). arXiv:1305.7357
- 83. D. Dinh, S. Petcov, JHEP 1309, 086 (2013). arXiv:1308.4311
- A. Falkowski, D.M. Straub, A. Vicente, JHEP 1405, 092 (2014). doi:10.1007/JHEP05(2014)092. arXiv:1312.5329
- 85. T. Toma, A. Vicente, JHEP 1401, 160 (2014). arXiv:1312.2840
- K. Benakli, M. Goodsell, F. Staub, W. Porod (2014). arXiv:1403.5122

- A. Teixeira, A. Abada, A. Figueiredo, J. Romao (2014). arXiv:1402.1426
- A. Celis, V. Cirigliano, E. Passemar, Phys. Rev. D 89, 095014 (2014). doi:10.1103/PhysRevD.89.095014. arXiv:1403.5781
- A. Crivellin, M. Hoferichter, M. Procura, Phys. Rev. D 89, 093024 (2014). doi:10.1103/PhysRevD.89.093024. arXiv:1404. 7134
- 90. Y. Kuno, Y. Okada, Rev. Mod. Phys. **73**, 151–202 (2001). hep-ph/9909265
- E. Arganda, M. Herrero, A. Teixeira, JHEP 0710, 104 (2007). arXiv:0707.2955
- H. Chiang, E. Oset, T. Kosmas, A. Faessler, J. Vergados, Nucl. Phys. A 559, 526–542 (1993)
- 93. T. Kosmas, S. Kovalenko, I. Schmidt, Phys. Lett. B 511, 203 (2001). hep-ph/0102101
- E. Arganda, M. Herrero, J. Portoles, JHEP 0806, 079 (2008). arXiv:0803.2039
- 95. P. Paradisi, JHEP 0602, 050 (2006). hep-ph/0508054
- E. Arganda, A.M. Curiel, M.J. Herrero, D. Temes, Phys. Rev. D 71, 035011 (2005). hep-ph/0407302
- 97. X.-J. Bi, Y.-B. Dai, X.-Y. Qi, Phys. Rev. D 63, 096008 (2001). hep-ph/0010270
- M. Ciuchini, V. Lubicz, L. Conti, A. Vladikas, A. Donini et al., JHEP 9810, 008 (1998). hep-ph/9808328
- 99. G. Buchalla, A.J. Buras, Nucl. Phys. B 400, 225–239 (1993)
- 100. M. Misiak, J. Urban, Phys. Lett. B 451, 161–169 (1999). hep-ph/9901278
- A. Dedes, H.K. Dreiner, U. Nierste, Phys. Rev. Lett. 87, 251804 (2001). hep-ph/0108037
- W. Altmannshofer, D.M. Straub, Eur. Phys. J. C 73, 2646 (2013). arXiv:1308.1501
- A. Dedes, J. Rosiek, P. Tanedo, Phys. Rev. D 79, 055006 (2009). arXiv:0812.4320
- 104. E. Lunghi, J. Matias, JHEP 0704, 058 (2007). hep-ph/0612166
- C. Bobeth, A.J. Buras, F. Kruger, J. Urban, Nucl. Phys. B 630, 87–131 (2002). hep-ph/0112305
- T. Huber, E. Lunghi, M. Misiak, D. Wyler, Nucl. Phys. B 740, 105–137 (2006). hep-ph/0512066
- 107. H.E. Logan, U. Nierste, Nucl. Phys. B 586, 39–55 (2000). hep-ph/0004139
- A.J. Buras, P.H. Chankowski, J. Rosiek, L. Slawianowska, Nucl. Phys. B 659, 3 (2003). hep-ph/0210145
- 109. W.-S. Hou, Phys. Rev. D 48, 2342-2344 (1993)
- 110. T. Ibrahim, P. Nath, Phys. Rev. D **61**, 095008 (2000). hep-ph/9907555
- 111. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, A. Tesi, JHEP 1305, 069 (2013), arXiv:1211.5085
- 112. W. Altmannshofer, D.M. Straub, JHEP **1208**, 121 (2012). arXiv:1206.0273
- D. Becirevic, N. Kosnik, F. Mescia, E. Schneider, Phys. Rev. D 86, 034034 (2012). arXiv:1205.5811
- D. Becirevic, N. Kosnik, A. Tayduganov, Phys. Lett. B 716, 208– 213 (2012). arXiv:1206.4977
- 115. A.J. Buras, J. Girrbach (2013). arXiv:1306.3775
- I. Dorsner, S. Fajfer, N. Kosnik, I. Nisandzic, JHEP 1311, 084 (2013). arXiv:1306.6493
- S. Descotes-Genon, J. Matias, J. Virto, Phys. Rev. D 88, 074002 (2013). arXiv:1307.5683
- 118. A.J. Buras, F. De Fazio, J. Girrbach, JHEP **1402**, 112 (2014). arXiv:1311.6729
- R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, JHEP 1405, 105 (2014). doi:10.1007/JHEP05(2014)105. arXiv:1402.6677
- 120. A.J. Buras, F. De Fazio, J. Girrbach (2014). arXiv:1404.3824
- 121. M. König, M. Neubert, D.M. Straub (2014). arXiv:1403.2756
- 122. A. Greljo, J.F. Kamenik, J. Kopp, JHEP **1407**, 046 (2014). doi:10. 1007/JHEP07(2014)046. arxiv:1404.1278

- 123. C. Bobeth, T. Ewerth, F. Kruger, J. Urban, Phys. Rev. D 66, 074021 (2002). hep-ph/0204225
- 124. G. Isidori, A. Retico, JHEP 0209, 063 (2002). hep-ph/0208159
- 125. A.L. Kagan, M. Neubert, Eur. Phys. J. C 7, 5–27 (1999). hep-ph/9805303
- M. Misiak, H. Asatrian, K. Bieri, M. Czakon, A. Czarnecki et al., Phys. Rev. Lett. 98, 022002 (2007). hep-ph/0609232
- 127. E. Lunghi, Private communication
- 128. Particle Data Group, J. Beringer et al., Phys. Rev. D 86, 010001 (2012)
- 129. G. Buchalla, A.J. Buras, Nucl. Phys. B 548, 309–327 (1999). hep-ph/9901288
- A.J. Buras, P.H. Chankowski, J. Rosiek, L. Slawianowska, Nucl. Phys. B 619, 434–466 (2001). hep-ph/0107048
- J. Urban, F. Krauss, U. Jentschura, G. Soff, Nucl. Phys. B 523, 40–58 (1998). hep-ph/9710245
- J. Laiho, E. Lunghi, R.S. Van de Water, Phys. Rev. D 81, 034503 (2010). arxiv:0910.2928
- 133. T. Inami, C. Lim, Prog. Theor. Phys. 65, 297 (1981)
- 134. A.J. Buras, 281-539 (1998). hep-ph/9806471
- 135. A.J. Buras, S. Jager, J. Urban, Nucl. Phys. B 605, 600–624 (2001). hep-ph/0102316
- 136. S. Herrlich, U. Nierste, Nucl. Phys. B **419**, 292–322 (1994). hep-ph/9310311
- S. Herrlich, U. Nierste, Phys. Rev. D 52, 6505–6518 (1995). hep-ph/9507262
- 138. S. Herrlich, U. Nierste, Nucl. Phys. B **476**, 27–88 (1996). hep-ph/9604330
- J. Barranco, D. Delepine, V. Gonzalez Macias, L. Lopez-Lozano, Phys. Lett. B 731, 36–42 (2014). arxiv:1303.3896
- 140. V. Cirigliano, I. Rosell, Phys. Rev. Lett. **99**, 231801 (2007). arxiv:0707.3439
- 141. A. Abada, D. Das, A. Teixeira, A. Vicente, C. Weiland, JHEP 1302, 048 (2013). arxiv:1211.3052
- 142. S.P. Martin (1997). hep-ph/9709356
- 143. M. Maniatis, Int. J. Mod. Phys. A 25, 3505–3602 (2010). arxiv:0906.0777
- U. Ellwanger, C. Hugonie, A.M. Teixeira, Phys. Rep. 496, 1–77 (2010). arxiv:0910.1785
- 145. V. Barger, P. Langacker, H.-S. Lee, G. Shaughnessy, Phys. Rev. D 73, 115010 (2006). hep-ph/0603247
- 146. G.G. Ross, K. Schmidt-Hoberg, F. Staub, JHEP **1208**, 074 (2012). arxiv:1205.1509
- 147. X. Lu, H. Murayama, J.T. Ruderman, K. Tobioka, Phys. Rev. Lett. **112**, 191803 (2014). doi:10.1103/PhysRevLett.112.191803. arxiv:1308.0792
- A. Kaminska, G.G. Ross, K. Schmidt-Hoberg, F. Staub (2014). arxiv:1401.1816
- 149. S. Di Chiara, K. Hsieh, Phys. Rev. D 78, 055016 (2008). arxiv:0805.2623
- K. Agashe, A. Azatov, A. Katz, D. Kim, Phys. Rev. D 84, 115024 (2011). arxiv:1109.2842
- 151. L.J. Hall, M. Suzuki, Nucl. Phys. B 231, 419 (1984)
- 152. H.K. Dreiner (1997). hep-ph/9707435
- B. Allanach, A. Dedes, H. Dreiner, Phys. Rev. D 69, 115002 (2004). hep-ph/0309196
- 154. G. Bhattacharyya (1997). hep-ph/9709395
- 155. V.D. Barger, G. Giudice, T. Han, Phys. Rev. D 40, 2987 (1989)
- B. Allanach, A. Dedes, H.K. Dreiner, Phys. Rev. D 60, 075014 (1999). hep-ph/9906209
- 157. M. Hirsch, M. Diaz, W. Porod, J. Romao, J. Valle, Phys. Rev. D 62, 113008 (2000). hep-ph/0004115
- R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea et al., Phys. Rept. 420, 1–202 (2005). hep-ph/0406039
- D. Lopez-Fogliani, C. Munoz, Phys. Rev. Lett. 97, 041801 (2006). hep-ph/0508297

- 161. C.-W. Chiang, E. Senaha, JHEP **1006**, 030 (2010). arxiv:0912.5069
- 162. S. Khalil, A. Masiero, Phys. Lett. B 665, 374–377 (2008). arxiv:0710.3525
- 163. P. Fileviez Perez, S. Spinner, Phys. Rev. D 83, 035004 (2011). arxiv:1005.4930
- 164. B. O'Leary, W. Porod, F. Staub, JHEP **1205**, 042 (2012). arxiv:1112.4600
- L. Basso, B. O'Leary, W. Porod, F. Staub, JHEP **1209**, 054 (2012). arxiv:1207.0507
- M. Malinsky, J. Romao, J. Valle, Phys. Rev. Lett. 95, 161801 (2005). hep-ph/0506296
- 167. P. Bhupal Dev, S. Mondal, B. Mukhopadhyaya, S. Roy, JHEP 1209, 110 (2012). arxiv:1207.6542
- 168. V. De Romeri, M. Hirsch, JHEP **1212**, 106 (2012). arxiv:1209.3891
- 169. I. Gogoladze, B. He, Q. Shafi, Phys. Lett. B 718, 1008–1013 (2013). arxiv:1209.5984
- L. Basso, A. Belyaev, D. Chowdhury, M. Hirsch, S. Khalil et al., Comput. Phys. Commun. 184, 698–719 (2013). arxiv:1206.4563
- 171. M. Hirsch, M. Malinsky, W. Porod, L. Reichert, F. Staub, JHEP 1202, 084 (2012). arxiv:1110.3037
- 172. G. Belanger, K. Benakli, M. Goodsell, C. Moura, A. Pukhov, JCAP 0908, 027 (2009). arxiv:0905.1043
- 173. K. Benakli, M. Goodsell, Nucl. Phys. B 840, 1–28 (2010). arxiv:1003.4957
- 174. K. Benakli, M.D. Goodsell, F. Staub, JHEP **1306**, 073 (2013). arxiv:1211.0552

- 175. G.D. Kribs, E. Poppitz, N. Weiner, Phys. Rev. D 78, 055010
- (2008). arxiv:0712.2039
- 176. A. Rossi, Phys. Rev. D 66, 075003 (2002). hep-ph/0207006
- 177. J. Esteves, J. Romao, A. Villanova del Moral, M. Hirsch, J. Valle et al., JHEP **0905**, 003 (2009). arxiv:0903.1408
- 178. J. Esteves, J. Romao, M. Hirsch, A. Vicente, W. Porod et al., JHEP 1012, 077 (2010). arxiv:1011.0348
- 179. J. Esteves, J. Romao, M. Hirsch, W. Porod, F. Staub et al., JHEP 1201, 095 (2012). arxiv:1109.6478
- A. Bharucha, A. Goudelis, M. McGarrie, Eur. Phys. J. C 74, 2858 (2014). doi:10.1140/epjc/s10052-014-2858-7. arxiv:1310.4500
- 181. W. Hollik (2010). arxiv:1012.3883
- L. Lopez Honorez, E. Nezri, J.F. Oliver, M.H. Tytgat, JCAP 0702, 028 (2007). hep-ph/0612275
- 183. W. Emam, S. Khalil, Eur. Phys. J. C 52, 625–633 (2007). arxiv:0704.1395
- L. Basso, A. Belyaev, S. Moretti, C.H. Shepherd-Themistocleous, Phys. Rev. D 80, 055030 (2009). arxiv:0812.4313
- L. Basso, A. Belyaev, S. Moretti, G.M. Pruna, JHEP 0910, 006 (2009). arxiv:0903.4777
- 186. S. Khalil, Phys. Rev. D 82, 077702 (2010). arxiv:1004.0013
- 187. H.H. Patel, M.J. Ramsey-Musolf, M.B. Wise, Phys. Rev. D 88(1), 015003 (2013). arxiv:1303.1140
- G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher et al., Phys. Rep. 516, 1–102 (2012). arxiv:1106.0034
- D. O'Connell, M.J. Ramsey-Musolf, M.B. Wise, Phys. Rev. D 75, 037701 (2007). hep-ph/0611014
- A. Goudelis, Y. Mambrini, C. Yaguna, JCAP 0912, 008 (2009). arxiv:0909.2799