Modeling of Strain Localization

Characteristics in

Boom Clay

F. Salehnia, R. Charlier, S. Levasseur, F. Collin

« Université de Liège, Belgium »

Lagashop 2013, Liège

12/09/2013

4 Mechanical constitutive laws

Numerical modeling of strain localization

- Biaxial compression test
- Gallery excavation
- Conclusions

Mechanical constitutive laws

Numerical modeling of strain localization

- Biaxial compression test
- Gallery excavation

Strain Localization

Main objective:

Characterize the damaged zone in the underground structures scale

Development of Strain Localization bands.

Induced fracturing pattern during the excavation of Praclay gallery, Mol (EIG EURIDICE 2007)

Modeling the extension of EDZ and fracturing pattern

4 Mechanical constitutive laws

Numerical modeling of strain localization

- Biaxial compression test
- Gallery excavation

Mechanical model-1st gradient model

Using the Finite Element code, LAGAMINE:

 Non-associated frictional elasto-plastic model with the Drucker-prager yield surface

$$F = II_{\hat{\sigma}} + m \left(I_{\sigma} - \frac{3c}{\tan \phi_c} \right) = 0$$

 Mesh size dependency in modeling of strain localization with the classical FE (Collin et al. 2009)

Deviatoric strain:

Elements of 10×4

Elements of 20×8

Elements of 50×20

Mechanical model-2^d gradient model

✓ Among different regularization methods: Second gradient model (Chambon et al. 1998 & 2001)

Virtual work equation:

$$\int_{\Omega} \left(\sigma_{ij} \frac{\partial u_{i}^{*}}{\partial x_{i}} + \sum_{ijk} \frac{\partial^{2} u_{i}^{*}}{\partial x_{i} \partial x_{k}} \right) d\Omega = \int_{\Omega} G_{i} u_{i}^{*} d\Omega + \int_{\Omega} \left(\overline{t_{i}} u_{i}^{*} + \overline{t_{i}} D u_{i}^{*} \right) d\Gamma$$

✓ The shear band width is proportional to new elastic parameter D (Chambon et al. 1998 & Kotronis et al. 2007).

✓ No mesh dependency!

Deviatoric strain:

Elements of

30×15

 $\widetilde{\Sigma_{ijk}} = f\left(\mathbf{D}, \frac{\partial^2 u_i^*}{\partial x_i \partial x_k}\right)$

Elements of 40×20

Elements of

20×10

Mechanical constitutive laws

Numerical modeling of strain localization

- Biaxial compression test
- Gallery excavation

Strain localization in a biaxial compression test

- ✓ Modeling of the drained biaxial compression test
- ✓ 2D plane strain simulation
- ✓ σ₃=2.3 MPa

E' [MP]	v'	c _i ' [kPa]	c _f ' [kPa]	B _c	Φ _i ' [°]	Φ _f ' [°]	B_{Φ}	Ψ' [°]
300	0.125	300	200	0.01	8	18	0.001	3

(Bernier et al. 2007)

Université de Liège

εa[-]

Name of the test	D [N]	E [MP]	v	c _i [kPa]	c _f [kPa]	B _c	dec _c	Φ _i [°]	$\Phi_{ m f}$ [°]	B_{Φ}	Ψ [°]
Initial simulation	0.2	300	0.125	300	200	0.01	-	8	18	0.001	3
Localized simulation	0.2	300	0.125	300	<u>50</u>	0.01	<u>0.005</u>	8	18	0.001	3

Name of the test	D [N]	E [MP]	v	c _i [kPa]	c _f [kPa]	B _c	dec _c	Φ _i [°]	Φ_{f} [°]	B_{Φ}	Ψ' [°]
Initial Simulation	0.5	4000	0.3	3000	2000	0.01	0.0085	15	20	0.002	0.5
C _f = <mark>2700</mark> KPa	0.5	4000	0.3	3000	2700	0.01	0.0085	15	20	0.002	0.5
C _f = <mark>2900</mark> KPa	0.5	4000	0.3	3000	2900	0.01	0.0085	15	20	0.002	0.5

Origin properties of the host rock are responsible for its behavior in the deviatoric plane!

Mechanical constitutive laws

Numerical modeling of strain localization

- Biaxial compression test
- Gallery excavation

Strain localization in Praclay gallery

- By symmetry: quarter of the gallery
- 2D plane strain simulation
- Hydro-Mechanical modeling
- Initial anisotropic stress state:

Excavation/on gallery wall σ_{yy} =4.5 MPa; Excavat σ_{xx} = σ_{zz} =3.825 MPa 0.1 MPa

Initial water pressure: 2.25 Mpa Excavation/on gallery wall 0.1 MPa $P_{w} = 2.25 \text{ MPa}$

Excavation phase: 1 day

Waiting phase: 3.5 years

waste disposal in the underground laboratory in Mol; (Bastiaens et al., 2007)

----- Impervious boundary Constrained P

- displacement perpendicular to the boundary
- **♦**Constrained normal derivative (Zevros et al. 2001)

х

Mechanical and Hydraulic parameters

Parameter	Symbol	Value	Unit
Young modulus	Е	300	MPa
Poisson ratio	υ	0.125	_
Specific mass	ρ	2700	Kg/m ³
Initial friction angle	Φ_0	8	0
Final friction angle	$\Phi_{ m f}$	18	0
Hardening/softening coefficient	\mathbf{B}_{ϕ}	0.001	
Initial cohesion	c ₀	300	kPa
Final cohesion	c_{f}	200	kPa
Hardening/softening coefficient	B _c	0.01	_
Dilatancy angle	Ψ	0	0
Second gradient elastic modulus	D	2000	Ν

Mechanical properties

(Bernier et al. 2007)

Parameter	Symbol	Value	Unit
Water permeability	k _w	3 10 ⁻¹⁹	m^2
Specific mass of water	$ ho_{w}$	$1 \ 10^3$	Kg/m ³
Porosity	φ	0.39	_
Water compressibility	$1/\chi_{\rm w}$	5 10 ⁻¹⁰	Pa ⁻¹
Van Genuchten parameter*	m	0.47	—
Van Genuchten parameter*	n	1.887	-
Van Genuchten parameter*	Ρ(1/α)	7.0	MPa

$$* \quad \theta = \theta_r + \frac{(\theta_s - \theta_r)}{\left[1 + (\alpha h)^n\right]^m} \quad K_r(\Theta) = \Theta^{V_h} \left[1 - (1 - \Theta^{1/m})^m\right]^n$$

Mechanical and Hydraulic parameters

Parar	neter	Symbol	Value	Unit
Your	ıg modulus	Е	300	MPa
Poiss	on ratio	υ	0.125	
Speci	fic mass	ρ	2700	Kg/m ³
Initia	l friction angle	Φ_0	8	0
Final	friction angle	$\Phi_{ m f}$	18	0
Hard	ening/softening coefficient	B_{ϕ}	0.001	_
Initia	l cohesion	c_0	300	kPa 독
Final	cohesion	c_{f}	200	kPa 🥏
Hard	ening/softening coefficient	B _c	0.01	_
3 Dilat	ancy angle	Ψ	0	0
Seco	nd gradient elastic modulus	D	2000	Ν

Mechanical properties

(Bernier et al. 2007)

Unit
m^2
Kg/m ³
Pa⁻¹
MPa

Hydraulic properties

Increment of deviatoric strain

1. The effect of D

Increment of deviatoric strain

End of excavation

100 days

Mechanical and Hydraulic parameters:

(Bernier et al. 2007)

Effect of the considered host rock's parameters!

- Softening is necessary for initiating the localization
- Dilatancy postpones the appearance of localization bands

Increment of deviatoric strain

Total deviatoric strain

ONDRAF

Plasticity

Localized Zone

Evolution of pore water pressure

ONDRAF

Evolution of displacement

ONDRAF

3. Intermediate conclusion:

The need for the lining is emphasized for decreasing the extension of EDZ and also the effects of localization in terms of evolution of pore water pressure and convergence!

Mechanical constitutive laws

Numerical modeling of strain localization

- Biaxial compression test
- Gallery excavation

- Boom Clay has been selected as a potential host rock formation for the deep geological disposal of nuclear waste in Belgium.
- The stress redistribution due to excavation of gallery induces Excavation Damaged Zone.
- Extension of EDZ and fracture network in the framework of strain localization have been modeled realistically around the Praclay gallery in Boom Clay.
- The evolution of plastic zone and strain localization is timedependant because of the coupled hydro-mechanical process.
- The effect of strain localization was obvious in terms of evolution of pore water pressure and displacements which could also emphasize the role of the liner.

Thank you!

