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Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sud-
den increase of extracellular ATPoccurs, thatmight contribute to the crosstalk between inflammation and throm-
bosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet
agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies
by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis,
both in vitro and in vivo. In a laser-induced injurymousemodel of thrombosis, it appears that neutrophils are re-
quired to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In thismodel,
by using P2X1−/−mice,we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a
key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/−mice ex-
hibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation
of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neu-
trophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circu-
lating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1
receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activa-
tion of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates
thrombo-inflammation.
© 2014 Oury et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction: hemostasis and thrombosis

Hemostasis is the process thatmaintains the integrity of a closed cir-
culatory system after vascular damage. Vessel wall injury and the
extravasation of blood from the circulation rapidly initiate events in
the vessel wall and in the blood that seal the breach. Circulating plate-
lets are recruited to the site of injury, where they become a major
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component of the developing thrombus; blood coagulation is initiated
by endothelium-expressed tissue factor and leads to the generation of
thrombin and fibrin. Under normal conditions, regulatory mechanisms
restrain thrombus formation both temporally and spatially [1]. When
pathologic processes overwhelm the regulatory mechanisms of hemo-
stasis, excessive quantities of thrombin form, initiating thrombosis.
Thrombosis is a critical event in the arterial disease progression and is
associatedwithmyocardial infarction and stroke, accounting for consid-
erable morbidity and mortality [2].

2. Platelet P2 receptors

Adenosine diphosphate (ADP) plays crucial roles in the physiological
process of hemostasis and in the development and extension of arterial
thrombosis. By itself ADP is a weak agonist of platelet aggregation in-
ducing only reversible responses as compared to strong agonists such
as thrombin or collagen. However, due to its presence in large amounts
in the platelet dense granules and its release upon activation at sites of
vascular injury, ADP is an important so-called secondary agonist ampli-
fying most of the platelet responses, which contributes to the stabiliza-
tion of the thrombus [3–5]. More recent studies indicate that ATP,
co-released with ADP, should be considered alongside ADP and throm-
boxane A2 as a significant secondary platelet agonist [6,7].

The receptors for extracellular nucleotides belong to the P2 family
which consists of two classes of membrane receptors: P2X ligand-
gated cation channels (P2X1–7) and G protein-coupled P2Y receptors
(P2Y1,2,4,6,11,12,13,14) [8]. Starting from the concept of a unique P2T
receptor (T for thrombocyte) originally postulated on the basis of phar-
macological data, a model of three platelet P2 receptors progressively
emerged. These are the P2X1 cation channel activated by ATP and two
G protein-coupled receptors, P2Y1 and P2Y12, both activated by ADP
[4,9]. Each of these receptors has a specific function during platelet acti-
vation and aggregation, which logically has implications for their in-
volvement in thrombosis.

Large-scale clinical trials have demonstrated the beneficial effects of
thienopyridines, targeting P2Y12 receptors, in the prevention of major
cardiac events after coronary artery stenting and in the secondary pre-
vention of major vascular events in patients with a history of cerebro-
vascular, coronary or peripheral artery disease. More recently, new
classes of P2Y12 inhibitors have been developed in order to circumvent
clopidogrel limitations (i.e. variability of platelet inhibitory effect) for
the management of ischemic coronary syndromes [10–12].

3. Platelet P2X1 receptors

The P2X1 receptor belongs to a family of ATP-gated ion channels,
comprising seven mammalian receptor subunits (P2X1–7) that assem-
ble to form a variety of homotrimeric and heterotrimeric receptors
widely expressed in the body. Each P2X subunit contains two trans-
membrane domains, intracellular amino and carboxy termini and a
large extracellular ligand-binding loop. P2X receptors vary in their ki-
netics of desensitization and pharmacology, although all are activated
by the physiological ligand ATP [13]. The function of P2X1 receptors in
neurogenic smooth muscle contraction, and in thrombosis has been
well documented [14–17]. Mutagenesis studies identified residues im-
portant in agonist action, the inter-subunit nature of the binding site,
the location of the channel gate, and interactions between the trans-
membrane regions [18–21]. The crystallization of a zebrafish P2X4
receptor in both resting and ATP-bound open states [22,23] demon-
strated extensive conformational changes in the receptor associated
with agonist binding and channel gating. Individual P2X receptor sub-
units have been described by analogy to a dolphin,with the ATP binding
site formed predominantly from residues in the upper and lower body
regions of adjacent subunits. Agonist binding induces movement of
the dorsal fin, left flipper, and the cysteine-rich head regions closing
the ATP binding pocket. This movement is translated through the

body region to the transmembrane regions and results in opening of
the channel gate.

The P2X1 receptor plays an important role in thrombus formation
especially under high-shear conditions. P2X1-deficient mice have no
prolongation of bleeding time as compared to the wild-typemice, in-
dicating that they conserve normal hemostasis [24]. In contrast, they
display resistance to the systemic thromboembolism induced by the
injection of a mixture of collagen and adrenaline and to localized
laser-induced injury of the vessel wall of mesenteric arteries. Con-
versely, increased arterial thrombosis has been reported in the mi-
crocirculation of mice overexpressing the human P2X1 receptor
[25]. The P2X1 antagonist NF449 [4,4′,4″,4‴-(carbonylbis(imino-
5,1,3-benzenetriylbis-(carbonylimino)))tetrakis-benzene-1,3-di-
sulfonic acid octasodium salt] has an inhibitory effect on platelet ac-
tivation ex vivo and on thrombosis in vivo [26,27]. Platelet P2X1
receptor function can also be inhibited by using heat shock protein
90 inhibitors, which may be as effective as selective antagonists in
regulating thrombosis [28].

About 10% of current flow through the P2X1 receptor is mediated by
Ca2+ [29]. These ion channels can therefore provide a significant source
of direct Ca2+ influx into the cell following activation, aswell as causing
membrane depolarization. The time course of ATP-evoked P2X1
receptor-mediated currents is concentration-dependent with low con-
centrations taking several seconds to reach a peak response, which
can be sustained for N30 s. In contrast, at maximal agonist concentra-
tions, P2X1 receptor currents peak within tens of milliseconds and de-
sensitize completely within seconds [30]. In platelets, P2X1-mediated
increase in intracellular Ca2+ leads to the activation of ERK1/2 MAPK
and MLCK that phosphorylates myosin light chain (MLC), a process
accompanying platelet shape change and degranulation [31]. P2X1 re-
ceptor signaling represents a significant pathway for early Ca2+-mobili-
zation following activation of a variety of major platelet receptors
through both G-proteins and tyrosine kinases [6,32]. Furthermore,
P2X1 receptors seem to play a pivotal role in the activation of aspirin-
treated platelets by thrombin and epinephrine [33]. Since aspirin is
used extensively tomanage cardiovascular diseases and since, in clinical
research, much attention has been focused on “aspirin resistance”
(meaning treatment failure), the finding that P2X1 receptors can cir-
cumvent the action of aspirin on platelet stimulation by thrombin is of
major importance. P2X1-mediated Ca2+ mobilization has been in-
volved in platelet responses to microbial pathogen-associated molecu-
lar patterns acting through Toll-like receptor 2 [34], suggesting a role
for P2X1 in platelet-dependent sensing of bacterial components. More-
over, such P2X1 signals would be resistant to endogenous platelet
inhibiting agents, such as prostacyclin, which may be particularly im-
portant during early thrombotic or immune-dependent platelet activa-
tion [35].

These results clearly indicate that the P2X1 receptor might be con-
sidered as a potential target for antiplatelet strategies, with the interest-
ing feature that P2X1 antagonists should be effective only at sites of
severe stenosis where shear forces are very high, without having a del-
eterious effect on normal hemostasis.

4. Neutrophil P2X1 receptors

We recently showed that P2X1 receptors are also expressed on
neutrophils [36]. P2X1 activation causes ROCK-dependent MLC phos-
phorylation, promoting cytoskeletal reorganization and neutrophil
deformation during chemotaxis. Intriguingly, we found that P2X1 defi-
ciency increases neutrophil NADPH oxidase activity [37]. Indeed,
ex vivo stimulation of P2X1−/− neutrophils with various stimuli, in-
cluding bacterial formylated peptides, phorbol esters, and opsonized zy-
mosan particles resulted in increased production of reactive oxygen
species as compared to neutrophils isolated from wild-type mice.
These results indicated that P2X1would act to limit systemic neutrophil
activation through a negative feedback loop, allowing them to migrate
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to the site of inflammation. In agreement with this proposition, intra-
peritoneal injection of a sub-lethal dose of lipopolysaccharide (LPS) in
P2X1−/− mice, led to increased release of plasma myeloperoxidase
(MPO) concentration, an indicator of neutrophil systemic activation,
as compared to wild type mice. In addition, peripheral P2X1−/− neu-
trophils expressed higher levels of CD11b in response to LPS injection,
reflecting their higher activation state. Concomitantly, we observed
that the LPS-induced drop in platelet and lymphocyte counts were
bothworsened in the P2X1−/−mice as compared to theirwild type lit-
termates. Immunohistochemistry and MPO activity assay revealed ex-
aggerated neutrophil relocalization into the lungs of P2X1−/− mice,
where these cells formed large aggregates in the capillary lumen. Final-
ly, intraperitoneal injection of a lethal dose of LPS, the P2X1−/− mice
exhibited shorter survival time than wild type mice, most likely as a
consequence of enhanced neutrophil-dependent ischemic events and
subsequent multiple organ failure. Notably, this phenotype was not as-
sociated with altered plasma levels of the main LPS-induced cytokines,
TNF-α, IL-6, IL-1β, and INF-γ. Taken together, these findings support
an important role for P2X1 receptors in the homeostatic regulation of
circulatingneutrophils and in their recruitment at the sites of inflamma-
tion/infection.

5. Platelet and neutrophil P2X1 receptors in thrombosis

Several studies indicate that besides their ability to kill pathogens,
neutrophil activation promotes coagulation in themicrocirculation, trap-
ping invading pathogens in fibrin mesh, thereby restricting microbial
dissemination [38]. Furthermore, in the absence of any bacterial chal-
lenge, the neutrophil serine proteases elastase and cathepsin G, together
with externalized nucleosomes contribute to large vessel thrombosis.
Nucleosomes form a platform on which neutrophil serine proteases
coassemble with the anticoagulant tissue factor pathway inhibitor
(TFPI), supporting TFPI degradation and unleashing suppression of factor
Xa, thereby fostering fibrin generation. In line with a contribution of ac-
tivated neutrophils to coagulation,we observed increased thrombin gen-
eration and shortened coagulation time in the plasma of LPS-treated
P2X1−/− mice as compared to wild-type littermates. In a model of
laser-induced injury of cremaster muscle arterioles, Darbousset et al. re-
cently showed that neutrophils accumulate at the site of injury before
platelets, contributing to the initiation of thrombosis. Neutrophils

recruited to the injured vessel wall express tissue factor (TF), thereby
promoting coagulation and thrombus growth. In collaboration with Du-
bois' team, we recently found that P2X1 deficiency or antagonism im-
pairs neutrophil recruitment and activation on inflamed arteriolar
endothelia, platelet accumulation and fibrin generation [39]. Infusion of
wild-type neutrophils in P2X1−/−micewas sufficient to fully restorefi-
brin generation, whereas infusion of both wild-type platelets and neu-
trophils were required to allow normal thrombus growth. Thus, P2X1
expressed on neutrophils and platelets is required for thrombosis.

The data reported so far assumed that the effects of platelet and neu-
trophil P2X1 receptors are mediated by homotrimeric P2X1 receptors. It
must be known that P2X1 can also interact with other P2X subunits, e.g.
P2X5, to form heteromeric ion channels with distinct properties [40].
Though several studies indicate that only homomeric P2X1 receptors
form ATP-gated ion channels in platelets [41–43], this may not be the
case for neutrophils. Indeed, neutrophils express other P2X subtype
mRNAs: P2X4, P2X5 and P2X7 [44–47]. However, the expression of func-
tional P2X4 or P2X5 subunit containing receptors has never been con-
firmed and it appeared that human neutrophils do not express
functional P2X7 receptors. To determine whether the effects reported in
P2X1-deficient neutrophils could be due to changes in the stoichiometry
of putative heterotrimeric P2X receptors requires further investigations.

6. Summary and outlook: P2X1 receptors in
thrombo-inflammatory disorders

In summary, our latestfindings indicate that P2X1 receptors contrib-
ute to ATP-dependent thrombosis in mouse microcirculation by pro-
moting early neutrophil and platelet recruitment and subsequent
fibrin generation, locally, at sites of endothelial injury (Fig. 1). Upon sys-
temic inflammatory challenge, P2X1 receptors would act to dampen the
activation of circulating neutrophils, thereby limiting oxidative tissue
damage and disseminated intravascular coagulation.

Targeting P2X1 receptors will not only inhibit platelets but also alter
neutrophil function, and may therefore represent an innovative thera-
peutic strategy to prevent local thrombo-inflammation, only if neutro-
phil regulatory homeostasis is preserved. Future research should focus
on the role of P2X1 receptors in the pathophysiology of thrombo-
inflammatory disorders such as ischemic stroke. In stroke, thromboem-
bolic occlusion of major or multiple smaller intracerebral arteries leads

Fig. 1.A role for platelet and neutrophil P2X1 receptors in thrombosis. Experimental data inmice indicate that activation of P2X1 receptors by extracellular ATP acts tomaintain circulating
neutrophil in a quiescent state (1), recruit neutrophil at the site of endothelial injury (2), and activate adhered neutrophils (3) and platelets (4), thereby promoting thrombus growth and
fibrin generation. TF: tissue factor, ROS: reactive oxygen species.
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to focal impairment of the downstream blood flow, and to secondary
thrombus formation within the cerebral microvasculature [48]. Patho-
logic platelet activity has been linked to cerebral ischemic events [49].
Therapeutic thrombolysis (t-PA) is the only current effective treatment
of acute ischemic stroke, but it is restricted to the first few hours after
disease onset [48]. The utility of current platelet aggregation inhibitors
and anticoagulants is counterbalanced by the risk of intracerebral bleed-
ing complications, and the development of novel antiplatelet agents
with a more favorable safety profile, better efficacy and rapid action in
acute events remains a challenge. After the interruption of cerebral
blood flow, tissue injury begins with an inflammatory reaction, which
is a common response of the cerebral parenchyma to various forms of
insult. Moreover, not only ischemia, but also reperfusion in itself causes
tissue injury. Infiltrating leukocytes, especially neutrophils, play a pivot-
al role in propagating oxidative stress-triggered tissue damage after ce-
rebral ischemia and reperfusion [50].

In a mouse model of acute ischemic stroke (tMCAO), it appears that
platelets contribute to stroke progression by mechanisms that at least
partially differ from those involved in thrombus formation [51,52].
Indeed, inhibiting early steps of platelet adhesion and activation
(i.e., VWF-GPIb, collagen-GPVI), but not aggregation (αIIbβ3 inhibitors),
reduces infarct size. Platelets serve pro-inflammatory functions that are
likely involved in infarct growth.

However, themechanistic links between platelets and inflammation
remain largely unknown. Our recent experimental data indicate that
P2X1 receptors expressed on both platelets and neutrophils may repre-
sent such a link. It would therefore be interesting to determinewhether
defective thrombus formation observed in themicrocirculation of P2X1
−/− mice would protect these mice from thrombo-inflammatory is-
chemic brain infarction.
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