Assessment of a multiscale fatigue damage model associated with stress gradient effects

Laurent Duchêne, Khalifa Marmi, Anne Marie Habraken
Mechanics of Solids and Materials (MSM) research team
ARGENCO Department, University of Liège, Belgium
l.duchene@ulg.ac.be; amarmi@ulg.ac.be; anne.habraken@ulg.ac.be

Introduction

• Development and validation of a fatigue damage model implemented in the FE code Lagamine.
• Adapted to any cyclic loading:
 ➔ constant cyclic loading
 ➔ blocks loading
 ➔ cycle by cycle
• Integrated multiaxial fatigue analysis tool for research and industry

Multiscale model

- The computation of the mesoscopic accumulated plastic strain is based on Zarka method (Direct Method).
- The accumulated mesoscopic strain is based on Lemaitre-Chaboche damage increment per cycle

Mesoscopic accumulated plastic computation

![Image](image.png)

Lin-Taylor stress localization law

\[
\sigma = \frac{\Sigma}{2} - 2\mu \cdot \bar{\epsilon}^p
\]

\[
\bar{\epsilon}^p = \frac{\partial f}{\partial \bar{\epsilon}^p}
\]

\[
f(\sigma, \bar{\epsilon}^p) = \sqrt{\frac{1}{2} (s - \bar{\epsilon}^p) : (s - \bar{\epsilon}^p)} - k(p)
\]

Stress gradient effects

Finite element integration point

Volume Averaged Method (VAM)

\[
\bar{\chi}^{ip} = \frac{1}{V} \int \chi^{ip}(x_i^{ip}, y_i^{ip}, z_i^{ip}) \cdot dv
\]

Relative Stress Gradient

\[
\bar{\chi}^{ip} = \chi^{ip} - \bar{\epsilon}(\text{grad}(\chi^{ip}))
\]

Fatigue endurance criteria

• Global criteria:
 ➔ Papadopoulos
 ➔ Crossland
 ➔ Sines
 ➔ TOS (based on stresses or plastic strain)

• Critical plane criteria:
 ➔ Dang Van
 ➔ Findley,
 ➔ Modified Wöhler Curve method

Results

Prediction of SN curves of V-nothed samples (R=0.1), TOS criterion

Conclusions

• Multiscale Lemaitre-Chaboche model adapted to HCF damage modelling
• Significant influence of the stress gradient effects (VAM)

Acknowledgements

• Belgian Federal Science Policy Office (Contract P7/21)
• Belgian National Fund for Scientific Research F.R.S.-FNRS

References

http://hdl.handle.net/2268/20556

http://hdl.handle.net/2268/74326