
 

Abstract 
 

A computer program is proposed to calculate the limit states of the frameworks 

with the following problems: Elastic analysis, Limit analysis, First-order and 

second-order elastic-plastic analysis, Shakedown analysis, Optimization-Limit, 

Optimization-Shakedown have been realised by Nguyen-Dang Hung in 1980, 

namely CEPAO. All of these calculations are connected with the problem of 

automatic search of independent mechanism in the sense of limit analysis. This 

permits to solve a lot of problems in a unified computer package with 

considerable reduction of memory and time consuming. The elastic and elastic-

plastic analysis use equilibrium-stiffness method, while other above mentioned 

problems are solved by an internal linear programming algorithm. Concerning the 

stable design concept, the package finds the practical discrete profiles existing in 

the Eurocode and realises the stability checks. The present paper proposes an 

extension of this general software to the case of semi-rigid connections. New 

implementations are performed such that large dimension problems may be 

solved without difficulties. Some new numerical results for simple as well as 

large dimension frames are presented showing the performances of the program 

CEPAO compared to the recent literature. 

 

Keywords: Limit analysis, Shakedown analysis, Elastic-plastic analysis, 

Optimization, Semi-rigid connection, Linear programming. 
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1  Introduction 
 

The CEPAO computer program had been early developed in the Department of 

Structural Mechanics and Stability of Constructions of the University of Liège by 

Nguyen-Dang Hung et al. in the 1980’s [1-5]. This software is a unified package 

for solving automatically the following problems happened for frame structures: 

Elastic analysis, limit rigid-plastic analysis with proportional loadings; step by 

step elastic-plastic analysis; shakedown analysis with variable repeated loadings; 

optimal plastic design with fixed loading; optimal plastic design with choice of 

discrete profiles and stability checks; shakedown plastic design with variable 

repeated loadings; shakedown plastic design with updating of elastic response in 

terms of the plastic capacity. 

 

With the CEPAO, efficient choice between statical and kinematical formulations 

is realised leading to a minimum number of variables and a considerable 

reduction the dimension of every procedure. The basic matrix of linear 

programming algorithm is implemented under the form of a reduced sequential 

vector, which is modified during each iteration. An automatic procedure is 

proposed for the construction of the common characteristic matrices of elastic-

plastic or rigid-plastic calculation, particularly the matrix of the independent 

equilibrium equation. Application of duality aspects in the linear programming 

(LP) technique allows direct calculation of dual variables and avoids expensive 

re-analysis of every problem. 

 

However, the old version of the CEPAO envisages only rigid joint frame, while 

the semi-rigid behaviour of beam-to-column connections in steel frames is well 

recognized in the practices [6-18]. That is the fundamental reason for the present 

work. In fact, robustness of all procedures inside CEPAO needs also to be 

appraised when the introduction of the semi-rigid behaviour of the connections is 

implemented. On the other hand, real costs of the connections are newly taken 

into account in the design problems. 

 

2  General assumptions and fundamental equations 
 

The following assumptions have been made 

 - Loading is quasi-static;  

 - The behaviour of the materials more precisely the section of the frames and 

their connections subjected to bending is elastic - perfectly plastic. The semi-rigid 

behaviour of the connections is characterized by two parameters: the initial 

stiffness R and the plastic capacity Mpc; 



 

  - The axial elongations of the frames are negligible; 

 - The weight of a member is proportional to the plastic capacity. 

The equilibrium and compatibility relations 

According to the references [1-3], the equilibrium and compatibility relations for 

all two types of deflection mechanisms and joint mechanisms at the first- order 

are: 

Cme   ; wCr
T .                               (1a,b)                                                                                  

In which e is the vector of reduced forces; m, r are the vector of bending 

moments and rotations of the critical sections respectively; w is the vector of 

independent displacements; C is the matrix of independent equilibrium equations, 

CT is the matrix of independent mechanisms. 

 

The equations (1a,b) are the general equations used in all modulus of calculation 

in the CEPAO, in the analysis as well as in the optimization, in the statical 

method as well as in the kinematical method. 

 

3  Elastic-plastic analysis 
 

3.1 Elastic analysis by equilibrium-stiffness method 
 

Considerer now an element k with the length of lk and the semi-rigid joints, 

simultaneously subjected to the bending moments and normal forces at its two 

ends like shown in Fig.1. Let  jik T
r  and  jik MMT

m  be the net 

rotation and the moment at ends of this element. We have the following relation: 

  

 

 

 

Fig.1: Element subjected to moment and normal force 

kkk mFr  ,                                                          

where kF  is the flexibility matrix of the element taking into account large 

rotations: 
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where Ek is Young’s modulus and kI  is the cross-sectional inertia, and Rik, Rjk are 

the initial stiffness of the ends i, j respectively. In the case of first-order, we have 

ii(uk) = jj(uk) =2, and ij(uk) = ji(uk) =1. 

Let kL  be localization Boolean matrix of the member k. The complementary 

strain energy of the structure may write: 

T T T

k k k / 2 / 2
k

 
  

 
W m L F L m m Fm . 

Applying now the principle of minimum of the total complementary potential 

energy: rmFmm
TT 2/π  , one obtains:             

        HrrFm  1                  (3) 

Let Cr  be the rotation vector corresponding to pinned joints or pinned supports, 

and Rr  be the rest of the vector r. Equation (3) may be detailed as follows: 
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Then the equilibrium relation (1a) and the compatibility relation (1b) become: 
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From (4), one deduces RRRR rHm  ,                  (7) 

where      RC

1

CC

T

RCRRRR HHHHH
 .            (8) 

Now replacing Rm  in (5) and taking account of Equation (6), one obtains finally: 

        eKw
1 ,                     (9) 

with       T

RRRR CHCK  .              (10) 



 

Equation (9) gives directly the independent generalized displacement in terms of 

reduced applied forces e and the whole solution of the problem may be deduced 

in consequence. It appears that this equilibrium - stiffness method allows getting 

the elastic solution by appropriate use of the basic characteristic matrix C. The 

foregoing elastic calculations are necessary for an understanding of the step-by-

step elastic-plastic method described in the following. 

 

3.2 Elastic-plastic analysis by hinge-by-hinge method in the first-

order 
 

We are dealing with the problem of determination of the entire history of 

deformation of the structure when the multiplier   increases to the limit value 

corresponding to the collapse state. The method consists in the elastic solution of 

an auxiliary structure in which plastified critical sections are replaced by pinned 

joints or hinges, and the determination of the increment   of the loading 

multiplier, which provokes the plastification of the next critical section. Local 

unloading is taken into account by comparison of the signs of increments of 

moments to the corresponding former values of the moment distribution.  

Basing on the equations (7), (9), we can obtain the increment of the independent 

displacements and the increment of bending moment due to an increment of 

loading multiplier from following equations: 
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with RRH  and K are defined respectively by (8) and (10) corresponding to the 

auxiliary structure. We mean an auxiliary structure the rest of the structure where 

plastic hinges are assimilated to pinned-joints. 

 

To determine the minimum increment  , which provokes the next plastic 

hinge, one has to calculate distribution of moment and to determine the section 

where yield condition is attained. The next step consists in replacing the new 

plastic hinge by a pinned joint in a new rearrangement of the rotation vector and 

its conjugated moment vector. The limit state is reached when the matrix K of the 

considered auxiliary structure is singular. The displacements and the moments of 

the actual state are finally obtained by the sum of the above auxiliary state: 
n0 ,..., www  ; n0 ,..., mmm  . Whenever w and m are known, the 

displacements of all critical sections and the distribution of normal forces and 

shear forces are determined as described earlier [1-5]. 



 

3.3 Elastic-plastic analysis by hinge-by-hinge method with P- 

effect  
 

A step by step analysis based on an incremental variational principle of 

HEILLINGER-REISSNER type has been proposed [5]. As the elastoplastic 

analysis hinge by hinge with the first-order (paragraph 3.2), each step of this 

procedure leads to the appearance of a plastic hinge. In each step, the iterations 

are realized by taking into account P- effect. The calculations in each iteration 

are realised on the auxiliary structure in which plastified critical sections are 

replaced by pinned joints.  

 

When the P- effect is considered, the relation between reduced forces and 

independent displacements becomes [5]: 

wKKwKKwe )( *

u

*

u  . 

The term wK
*

u is a correction taking into account the deformed geometry of 

structure. The matrix *

uK depends on the values of normal forces of the members. 

The detailed procedure is presented in ref. [5]. 

 

4  Rigid-plastic analysis and design by LP 
 

The theoretical development of rigid-plastic analysis and design by linear 

programming technique has been extensively described in the literature in [19-

23]. Here we simply restrict to describe some practical aspects of the CEPAO 

package. 

 

4.1  General formulation 
 

The canonical formulation of the LP considered in the CEPAO is: 

          bWxxc  TMin             

where  is the objective function; x, c, b are respectively the vector of variables, 

of costs and of second member. W is called the matrix of constraint. For 

commodity of the calculations, the objective function is considered also as a 

variable, and the matrix formulation is arranged so that the basic matrix of the 

initial solution is appeared clearly as in the following: 
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The basic matrix of initial solution is: 
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Equation (11) can be written under a general form:   

***
bxW  .              (12) 

We will precise in the following the matrices W*, x*, b* and X0 for each problem. 

 

4.2  Rigid-plastic analysis by kinematical method 
 

This approach is based on the kinematical theorem which states that the collapse 

factor  is the smallest value among the set of multipliers + corresponding to 

licit mechanisms.  

Change of variables 

Let m is the vector of the plastic capacity of the sections. Let the vector s, such 

that their components are: pipcii MMs /  in the sections with the semi-rigid 

connections, and 1is  in the rest of sections (fully-rigid connections). The 

vector of realistic plastic capacity is: msm
Ts . 

 

In the kinematical method, the unknowns are the rotations (r) and the 

independent displacements (w). These quantities may have any sign (negative or 

positive). In linear programming procedure we need non-negative variables so 

that we adopt the change the variables as in following: 

      iii rrr  ; 0

' www kk
  ; with 0,, '  kii wrr  . 

The way to fix the value of 0w , which depends on the real structure, such that '

kw  

are always non-negative is explained with details in the reference [24]. 

 

The second member of equalities (12) is not always non-negative, so an initial 

admissible solution necessary for the simplex technique is somewhat not 

guaranteed in general situation. It appears that the following arrangement leads to 

good behaviours of the automatic calculation. Let S  be a diagonal matrix, such 

that:  0

Twofsignx1diag CS  . Let E is a unity matrix of dimension nr x nr. 

And let consider the new rotation rate and plastic capacity distribution: 



 

    rS)(ErS)(Er  0.50.5  ;   rS)(ErS)(Er  0.50.5  ; 

   sss mS)(EmS)(Em 0.50.5'  ;   sss mS)(EmS)(Em 0.50.5' . 

Then, the vector of variables, matrix of constraint, vector of second member 

corresponding to the problem (12) for limit analysis and shakedown analysis have 

the following form: 

With limit analysis problem: 
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With shakedown analysis problem: 
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; mE  is the vector of the envelope of the elastic responses with the considered 

loading domain. 

 

4.3  Rigid-plastic design by statical method 
 

For design problems, kinematical approach is not efficient for automatic 

calculation. We adopt the statical formulation for all optimal plastic design 

problems. 

Objective function 

The traditional costs function in the rigid-plastic design problem is the 

conventional weight of the all elements. With the assumption that the weight of 

each element is proportional to the member lengths and the member plastic 

capacity, with a structure having np groups of elements, the objective function 

may be put down: 

         
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When the semi-rigid behaviour of the connections is considered, it is necessary to 

take into account the costs of the connections in the total costs [8, 12, 13, 18]. 

Some researches had solved this problem [14-16]. In present work, we utilise the 

function of the total costs proposed in the reference [15]. According to this 

reference, the total costs of a member i with two ends under semi-rigid 

connections may have the following cost function: 

                  26.18.02.0 iiiiiiiiiiiiiii alalalalZ                   (14) 

where i, li, ai are respectively the material density, the member length and the 

cross section area. The coefficient  is the scale factor defined 

as: )/31/(1 iiiii lRIE . It is evident that: 0    1, in which  =0 at the pin-

jointed end-connections and  =1 at the fully rigid connections. We observe in 

(14) that the cost of a steel member is increased by 20% if it has pin-jointed end-

connections, and by 100% if its end-connections are fully rigid. 

Coming back to the rigid-plastic design problem, but with the new objective 

function (14), for the plastic design problem, it is convenient to define the 

conventional length calculating by 26.18.02.0 iiiiiii lllll    so that (13) 

has the similar form:   
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Change of variables 

Let  kjdD  be a Boolean matrix which indicates the fact that kth design variable 

governs the critical section j: *
mDm

Ts . 
 

In the statical method, the unknowns are the vector of bending moments (m) or 

the vector of residual moments (), which may have any sign (negative or 

positive). To have non-negative variables with reduced number of variables, we 

adopt the change the variables in following:  

For optimal plastic design:    smmm ' , then, pjj MM 20 '  . 

For shakedown plastic design:  0mDmρm
*  

T

E' . 

Then, the vector of variables, the matrix of constraint, the vector of second 

member corresponding to the problem (12) for optimal plastic design and 

shakedown plastic design have the forms below: 

Optimal plastic design problem 

 *TTTTT*T 1' mQRPmx  ,   TTT*T 0 e00b  , 
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Where P, R, Q are slack variables; T is a technological matrix. 

Shakedown plastic design problem 
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Where P , P , S, Q and Y are non-negative slack variables. 

 

4.4 Direct calculation of dual variables 
 

In CEPAO, dual variables are obtained without using the dual alternative 

approach. The dual variables are the moment distribution in kinematical approach 

and the independent displacements (to obtain the real mechanism) in statical 

approach. Therefore, the dual properties of LP have to be pointed out and 

physical significance of the dual variables has to be established. The details of 

these theoretical deductions are presented in the references [1, 3]. 

 

4.5 Stability checks for steel structure 
 

In the design of steel structures, the designed variables which are the bending 

plastic capacities constitute the theoretical value. For practical purposes, an 

automatic choice of manufacture shapes is performed by introduction of a list of 

variable shape of beams and columns (profiles IPE, HEA, HEB). Whenever this 

choice is made, a systematic verification of stability conditions is carried out for 

all members. We will summarize here the stability checks performed a posteriori 

in the CEPAO package. The program has to find automatically an optimum shape 

if the stability conditions are not satisfied [1-3]: Local buckling of flange; local 

buckling of the web; Influence of the normal and shear force; buckling of 



 

compressed column, taking into account the effective length of column and 

reduced coefficient of buckling. Concerning the influence of the semi-rigid 

behaviour of the connections on the effective length of the columns, we modify 

the beam stiffness of a braced frame by a factor of 1/(1+2EI/lRk) and that of an 

embraced frame by a factor of 1/(1+6EI/lRk). 

5   Numerical examples 
 

Four examples are proposed in this section to illustrate the applications of the 

CEPAO. In the three first examples the results are compared with those obtained 

by some other authors (Raffaele Casciaro et al. [25], F. Tin Loi et al. [9, 10], S. 

Baset et al. [26]). While, the fourth example considers a large dimension frame 

analysed by CEPAO for different sorts of analysis and design. 

 

For the semi-rigid frames, we apply the moment – rotation relation for 

connections is used by F. Tin Loi et al. [9]. In this reference, the semi-rigid 

elastic-plastic properties in pure bending condition, namely initial stiffness and 

plastic moment capacity, are chosen according to the simple and elegant 

classification system proposed by Bjorhovde et al. [11]. The initial stiffness of 

each bilinear moment (Mpc) - rotation () relation is defined as:  

Mpc =EI/db,                  (16) 

where  is a constant; db is the connecting beam depth. The graphical illustration 

of this behaviour is shown in Fig.2, where the ranges for rigid, semi-rigid and 

flexible behaviour are shown. Like in the reference [9], intermediate values of 

moment capacities for given stiffness were interpolated here in accordance with 

the dashed line shown Fig. 2. The example 2 and example 4 presented in this 

study are calculated in term of the values of s and of  reporting in the Table 1. 

 

Table1: Relation between s and  

s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 25.000 10.0000 6.2667 4.4000 3.2800 2.5333 2.0000 1.1667 0.5185 0.0000 

Note that the relation between  in the (16) and  in the (2) is:  = l/db. 



 

 

Fig. 2: Idealized moment – rotation relation for connections 

 

Example 1-Limit and shakedown analysis for rigid frame: A series of frames 

with different numbers of story (ns) and bay (nb) being already considered by 

Raffaele Casciaro et al. [25] are shown on the Fig. 3 (the units not mentioned). A 

constant story height hs = 300 and a constant bay length lb = 400 is assumed for 

simplicity and three loading cases are considered: two distributed vertical loads 

p1 and p2 and a seismic action defined as transversal force linearly increasing by 

P3 from the ground to the top floor (see Fig.3). Some mechanical properties are 

reported in Table 2, and the load domain is defined by: 9p110; 0p25; -

500P3500. 

 

The Table 3 presents the results of limit and shakedown analysis. According to 

the results given by CEPAO, with the case (*) (see Table 3, column 6), the 

incremental plasticity occurred, while the fatigue (the alternating plastic) is 

appeared in the case (**). The sections for which the fatigue occurs are A, B, C 

(see Fig.3) respectively for 46 frame, 59 frame and 610 frame.  

 

Discussion: The load multipliers obtained by [25] and by CEPAO are coincided 

in the case of limit analysis for all series of frames and in the case of shakedown 

analysis for 34 frame. While the differences are respectively: -10,5%, -6,4% and 

-6,5% for 46 frame, 59 frame and 610 frame in the shakedown analysis.  

 

The Table 4 presents the load multipliers in the case of shakedown analysis for 

46, 59, 610 frame, with the following assumption: The alternating plastic 

occurs in the sections A, B, C with the envelope of bending moment calculated 

by the software SAP2000. As the load multipliers in the Table 4 are the upper 

bounds, the real load multipliers cannot exceed these values. The differences 

between the results obtains by CEPAO and the above-mentioned values is about 

from 3,5% to 6,4%, and those of ref. [25] are from 9,4% to 15,3%. It is useful to 



 

denote that the differences of the value of the envelope of the bending moment 

between SAP2000 and CEPAO is due to the lumping of the uniformly distributed 

load at the central point and the two ends of each element in the CEPAO. 

 

Table 2: Example 1 – Mechanical properties for the series of frames 

 Young modulus (E) Moment of inertia (I) Plastic capacity (MP) 

Column 300000 540000 1800000 

Beam 300000 67500 450000 

 

 

Fig. 3: Example 1-geometry and loads for the series frames 

Table3: Example1 – Load multiplier for limit and shakedown analysis calculated 

by ref. [25] and CEPAO 

Type of frame 

(ns x nb) 

Limit analysis Shakedown analysis 

Ref. [25] CEPAO Difference  Ref. [25] CEPAO Difference 

34  frame 2.4612 2.4612 0.0% 2.0134 2.0102(*)   0.0%      

46  frame 1.8610 1.8610 0.0% 1.3993 1.2655 (**) -10.5%  

59 frame 1.2000 1.2000 0.0% 0.7533 0.7076(**) -6.4%     

610 frame 1.1532 1.1532 0.0% 0.7209 0.6771 (**) -6.5%    

 



 

Table 4: Example 1 –Load multipliers for the fatigues occurring in the section A, 

B, C using the envelope of bending moment calculated by SAP2000. 

Sections 
Envelope of bending moment Plastic capacity 

(Mp) 

Load Multiplier  

=2Mp/(M + + M -) 
M + M - 

Section A (46 frame) 282717 477057 450000 1.1846 

Section B (59 frame) 563240 757155 450000 0.6816 

Section C (610 frame) 591835 785758 450000 0.6533 

 

Example 2-Limit and shakedown analysis for semi-rigid frames: These examples 

are already considered by F. Tin Loi et al. [9]. The aim of this study is to find the 

difference between shakedown and collapse limits for varying connection 

strengths with two following mechanical and geometric data (in tonne and metre 

units):  

 

Fig. 4: Example 2 – Frame geometry and loading 

Data a: The frame geometry and loading are shown in the Fig.4a, the 

properties of all elements are: E = 2.1107; I = 118.510-6; MP = 20; db = 0.3;  

 

Data b: The frame geometry and loading are shown in the Fig.4b, with the 

following properties: for the column: E = 2.1107; I = 85.210-6; MP = 10; for the 

beams: E = 2.1107; I = 118.510-6; MP
 = 20; db = 0.3. 

These two examples are analysed by CEPAO. The results are compared with 

those from F. Tin Loi et al. [9] and illustrated on the Table 5 and the Fig. 5a and 

5b. With the data a, the alternating plasticity occurs in the shakedown analysis 

with s = 0.1 and 0.2. 



 

Table5: Example 2 – Load Multipliers 

Type of analyse 

Connection strengths (s) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Example 2, data a 

Collapse by ref. [9]* 3.70       4.01   4.36    4.67     5.05    5.22    5.43      5.60    5.81    6.02  

4.01 

4.36 

4.67 

5.05 

5.22 

5.43 

5.60 

5.81 

6.02 

Collapse by CEPAO 3.67       4.00   4.33    4.67     5.00    5.20    5.40      5.60    5.80    6.00 

4.00 

4.33 

4.67 

5.00 

5.20 

5.40 

5.60 

5.80 

6.00 

Shakedown by ref. [9]* 2.42       3.04   3.77    4.01     4.25    4.53    4.77      5.01    5.29    5.57 

3.04 

3.77 

4.01 

4.25 

4.53 

4.77 

5.01 

5.29 

5.57 

Shakedown by CEPAO 2.54       3.28   3.78    4.03     4.28    4.54     4.81     5.06    5.30    5.56  

3.28 

3.78 

4.03 

4.28 

4.54 

4.81 

5.06 

5.30 

5.56 

Example 2, data b 

Collapse by ref. [9]* 0.53       0.80   1.02    1.14     1.25    1.34     1.42     1.49    1.49   1.49 

0.80 

1.02 

1.14 

1.25 

1.34 

1.42 

1.49 

1.49 

1.49 

Collapse by CEPAO 0.53       0.80   1.02    1.14     1.25    1.33     1.42     1.48    1.48   1.48 

0.80 

1.02 

1.14 

1.25 

1.33 

1.42 

1.48 

1.48 

1.48 

Shakedown by ref. [9]* 0.50       0.71   0.91    1.00     1.12    1.18     1.25     1.31    1.35   1.35 

0.71 

0.91 

1.00 

1.12 

1.18 

1.25 

1.31 

1.35 

1.35 

Shakedown by CEPAO 0.50       0.71   0.91    1.01     1.12    1.19     1.26     1.32    1.35   1.35  

0.71 

0.91 

1.01 

1.12 

1.19 

1.26 

1.32 

1.35 

1.35 

 (*) We obtain these results by treating the figure in reference [9] (Fig. 6 and Fig. 8) in the case of 

pure bending hinges.   

 

Fig.5: Example 2-Variation of load multiplier with connection strength (Tab. 5) 

a- data a;  b- data b 

 

Example 3 – Elastic-plastic analysis with 2nd order for rigid frame: The purpose 

of this example is the determination the load multiplier under second order effect 

for the rigid frame shown in Fig. 6a.  

a. The data is used by F. Tin Loi et al. [10], in ton and inch units: E = 

1.3393104, H = 144; L = 90; 2P1 = P2 = 8.375; 2P3 = P4 = 0.402; members 1,2: I 

= 115.06; MP = 502.3; members 5, 6: I = 86.69; MP = 393.5; members 9, 10: I = 

43.69; MP = 259.3; members 13, 14: I = 34.71; MP = 205.3; members 15, 16: I = 

55.63; MP = 244.0; and other members: I = 122.34; MP = 428.0. 



 

We observe a very good agreement between the value given by CEPAO (2.036) 

and the one by F. Tin Loi et al. [10] (2.037) 

 

b. The data is analysed by S. Baset et al. [26], in kip and inch units: E = 3103; 

H = 144; L = 180; P1 = P2 = 30; 2P3 = P4 = 7.2; members 1,2,5,6,9,10,13,14, I = 

344; MP = 2560; members 11,12,15,16: I = 891; MP = 3822; members 3, 4,7,8: I = 

984; MP = 4204.  

CEPAO provides a value of 2.123, while S. Baset et al. [26] give 2.079. The 

difference is 2.07%. 

 

At Fig.6 b, c, d, e we compare the hinge dispositions in the frame given by 

CEPAO and other researchers [10, 26]. 

 

Fig. 6: Example 3 – Frame geometry and loading and hinge dispositions 

a- Frame geometry and loading; b, c, d, e - The hinge dispositions (b- Ref. [10], c 

– CEPAO with data a, d – Ref. [26], e - CEPAO with data b) 

 

Example 4 – Analysis and optimization for large dimension semi-rigid frame by 

CEPAO: A twenty stories three bays semi-rigid frame with geometry and loading 

shown on the Fig.7 is analysed by CEPAO with the following studies: elastic 

analysis; first order elastic-plastic step by step analysis; elastic-plastic step by 

step analysis with second order effect; rigid-plastic analysis; shakedown analysis; 

optimization-limit; optimization-shakedown.  

 

Concerning loading domain, for shakedown problems, two cases are considered: 

a) 011, 02 1 and b) -111, 021. For fixed or proportional loading 

obviously we must have: 1=2=;  

 

For the optimal problem, forty different groups of elements are chosen as 

conception variables (Fig.7) and the adopted fixed load factor is  = 0.25. Here 

only the costs of semi-rigid connections are considered. In the optimal-

shakedown problem, the results of the iterative process consisting of updating the 

inertias depending on the plastic capacity: Ik/Imax = (Mpk/Mpmax)
1.4.  



 

 

For the analysis problems, seven different groups of elements are considered 

(Table 6). The yield stress p = 23.5104 KN/m2. 

 

Tables 7, 8 and Fig.8-11 present some results, in which KN and m units are used. 

 

Table 6: Example 4 – Profile used for analysis problems 

Groups 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 

Profile IPE550 IPE500 IPE450 IPE330 HE600A HE550A HE450A HE360

A  

Table 7: Example 4 – Load Multipliers of analysis problems 

Type of analyse 
Connection strengths (c) 

0.1       0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9       1.0 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

Rigid-Plastic 0.080   0.121   0.162   0.202   0.244   0.284   0.324   0.360   0.396   0.432 

0.121 

0.162 

0.202 

0.244 

0.284 

0.324 

0.360 

0.396 

0.432 

Elastic-plastic first order 0.080   0.121   0.162   0.202   0.244   0.284   0.324   0.360   0.396   0.432 

 

0.121 

0.162 

0.202 

0.244 

0.284 

0.324 

0.360 

0.396 

0.432 

Elastic-plastic second order 0.053   0.088   0.127   0.167   0.205   0.241   0.280   0.316   0.354   0.392 

0.088 

0.113 

0.1677 

0.205 

0.241 

0.280 

0.316 

0.354 

0.392 

Shakedown, load domain (a) 0.065*  0.110   0.145   0.181   0.217   0.253   0.288   0.324   0.359  0.394 

0.113 

0.149 

0.185 

0.221 

0.256 

0.292 

0.326 

0.36 

0.394 

Shakedown, load domain (b)* 0.037   0.070   0.096   0.134   0.166   0.198   0.229   0.260   0.290   0.320    

 (*) alternating plastic occurs. 

Table 8: Example 4 – Results of optimal problems 

Type of optimization 
Connection strengths (s) 

   0.4                0.5              0.6              0.7           0.8             0.9              1.0 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

Theoretical weight (x106) 

Optimal – Limit (*)                0.280             0.242          0.215          0.196       0.180         0.168          0.158 

0.673 

0.453 

0.343 

0.280 

0.242 

0.215 

0.196 

0.180 

0.168 

0.158 

Optimal – Shakedown (*)      0.315             0.260          0.230          0.208       0.192         0.192          0.169 

0.790 

0.495 

0.368 

0.315 

0.260 

0.230 

0.208 

0.192 

0.192 

0.169 

Optimal – Limit (**)              0.408             0.385          0.378         0.378       0.383         0.393           0.405 

Real weight (tonne) – after stability checks 

Optimal-Limit (*)                   62.13            59.84          56.80         52.18        51.73        49.83           49.41 

Optimal-Limit (**)                 67.73            66.53          64.53          61.00       64.32        66.93           71.99 

 (*) member’ weight considered, (**) member + semi-rigid connections’ weight considered. 



 

 

Fig. 7: Example 4- Frame geometry, groups of element and loading 



 

 

Fig. 8: Example 4-Load-deflection result of step by step analysis 

a - First order;   b - Second order   

 

 

Fig. 9: Example 4- Variation of Load 

Multipliers with connection strength   

(Table 7) 

Fig. 10: Example 4-Load-deflection 

result of rigid frame 

 

Fig. 11: Example 4-Variation of weight with connection strength (Table 8) 

a -Theoretical weight;   b-Real weight of optimal-limit 

 

Remark: In the case of small connection strengths or symmetric loading (seismic 

action in the example 1, horizontal load with load domain b of example 4), the 

load multipliers determined by shakedown analysis are the smallest (alternating 



 

plastic occurs). In the design problems, the member plus connections costs is 

minimum at some values of connection strength (it is s=0.7 in the example 4, see 

Fig.11b), this value depends on the determination of the conventional length. On 

the other hand, the determination of the conventional length depends on a lot of 

parameters: the cost of material, the cost of fabrication (the cost of the labour), 

and these parameters may depend on country. 

 

6  Conclusions 
 

The CEPAO envisages the solutions for various loading conditions (proportional, 

repeated, alternative…), for various aspects (direct analysis and design, step-by-

step analysis…) of the behaviour of the frames. An optimal solution may be 

found according for each practical case. CEPAO may be useful for the practice in 

civil engineering. 

 

CEPAO is also an auto-controlled algorithm. Indeed, we can verify easily the 

results by using resident equivalent procedure. For example, limit analysis and 

analysis hinge-by-hinge must lead to the same limit load factor, while they are 

based on two dual methods (kinematical method and static method). After the 

optimal plastic design (or shakedown plastic design), the plastic analysis (or 

shakedown analysis) may be operated to reanalyse for checking if the limit load 

factor would be equal to 1 as theoretically expected. On the other hand, we can 

observe that the two modules of elastic analysis (by equilibrium-stiffness method) 

and limit analysis (by LP method) constitute the fundamental modules, which 

may lead to more complicated implementations, more realistic computations. The 

present extensions suggest that CEPAO constitutes a source for future 

implementations and researches in civil engineering practices.  

 

In the near future, we hope to present the new version of the CEPAO for the 

space frameworks. 
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