Endogenous and Exogenous Neuronal Rhythmicity

Guillaume Drion - ISSSMA | June the 25th, 2013

(Byrne et al., 2004)

Example 1: Thalamic and cortical neurons during awakeness and sleep.

Example 1: Thalamic and cortical neurons during awakeness and sleep.

□ Pathological burst firing during awakeness leads to epileptic seizures.

Example 2: Subthalamic nucleus (STN) neurons in control and Parkinson's disease patients

Many Parkinson's disease motor symptoms correlate to STN neuron pathological burst firing/STN beta oscillations.

 \rightarrow What are the mechanisms controlling neuronal rhythmicity?

Unicellular mechanisms? (endogenous rhythmicity) Network properties? (exogenous rhythmicity) Both?

Endogenous Rhythmicity: Tonic Firing and Bursting

- Neurons can exhibit many quantitatively different firing patterns
- □ Qualitatively, they can be grouped in two categories:
 - \Box Tonic (single-spike) firing
 - □ Bursting

Endogenous Rhythmicity: Tonic Firing and Bursting

Neurons can exhibit many quantitatively different firing patterns

□ Qualitatively, they can be grouped in two categories:

□ Tonic (single-spike) firing

□ Bursting

Endogenous Rhythmicity: Tonic Firing and Bursting

Neurons can exhibit many quantitatively different firing patterns

□ Qualitatively, they can be grouped in two categories:

□ Tonic (single-spike) firing

□ Bursting

Single Neuron Rhythmicity relies on a Richness in Ion Channel Diversity

Hodgkin and Huxley were the Firsts to record, Analyze and Mathematically Model the Behavior of an Excitable Cell

Alan L. Hodgkin

Andrew F. Huxley

$$C_m \dot{V}_m = -\sum_n I_{ion} + I_{app}$$

HH Model (Hodgkin and Huxley, 1952)

Two Dimensional Reduction of the Hodgkin-Huxley Model (FitzHugh, 1961)

Two Dimensional Reduction of the Hodgkin-Huxley Model (FitzHugh, 1961)

FitzHugh Reduction strongly succeeds in explaining the Geometry of Tonic Firing

However, Many Neuronal Behavior, including Bursting, cannot be Reproduced on the Basis of this Picture

The Classical Picture of Neuronal Excitability is only one Half of the Story

A No calcium channels (original reduced Hodgkin-Huxley model)

The Classical Picture of Neuronal Excitability is only one Half of the Story

However, Many Neuronal Behavior, including Bursting, cannot be Reproduced on the Basis of this Picture

Restorative and Regenerative Excitability in Planar Models

Restorative and Regenerative Excitability in Conductance-Based Models

Restorative and Regenerative Excitability in Conductance-Based Models

A Switch from Restorative to Regenerative Excitability provides a Physiological Route to Bursting

A Switch from Restorative to Regenerative Excitability provides a Physiological Route to Bursting

Some physiological examples (top: experimental trace, bottom: reduced model):

A Reticular cells of the thalamus 20 mV 200 ms C Relay cells of the thalamus 40 mV 80 ms 0.3nA 0.3nA

Summary

I. The switch from tonic to burst firing is a fundamental signaling mechanism in neurons

- 1. Sleep and arousal in thalamocortical neurons
- 2. Healthy vs Parkinson's disease state in STN neurons
- II. Reduced modeling and bifurcation theory provides new insights on the mechanisms underlying this switch
 - 1. The organizing center of neuronal excitability is a transcritical bifurcation
 - 2. Physiologically, the bifurcation corresponds to a balance between restorative and regenerative channels
- III. A physiological route to bursting
 - 1. The proposed reduced model is able to switch from tonic to burst firing by modulation of physiologically relevant parameters
 - 2. The same transition is observed in high-dimensional conductace-based model via modulation of the balance between restorative and regenerative channels

Impact of Neuron Endogenous Rhythmicity at the Network Level?

Back to example 2: Subthalamic nucleus (STN) neurons in control and Parkinson's disease patients

□ See Julie Dethier's poster:

"Oscillations in the basal ganglia: illustration of a cellular effect at the network level"

Acknowledgments

Rodolphe Sepulchre Vincent Seutin

Julie Dethier

BELGIAN SCIENCE POLICY

G