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Neuronal Rhythmicity is a Key Component of  Brain Information Processing

Example 1: Thalamic and cortical neurons during awakeness and sleep. 

Pathological burst firing during awakeness leads to epileptic seizures.
(McCormick and Bal, 1994)



Neuronal Rhythmicity is a Key Component of  Brain Information Processing

Example 2: Subthalamic nucleus (STN) neurons in control and Parkinson’s disease patients

Many Parkinson’s disease motor symptoms correlate to STN neuron pathological burst firing/STN 
beta oscillations.

(Levy et al., 2002) (Hammond et al., 2007)



Neuronal Rhythmicity is a Key Component of  Brain Information Processing

What are the mechanisms controlling neuronal rhythmicity? 

Unicellular mechanisms? (endogenous rhythmicity)
Network properties? (exogenous rhythmicity)
Both?

(McCormick and Bal, 1994)



Endogenous Rhythmicity: Tonic Firing and Bursting

Neurons can exhibit many quantitatively 
different firing patterns

Qualitatively, they can be grouped in two 
categories:

Tonic (single-spike) firing

Bursting

(Byrne et al., 2004)
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Single Neuron Rhythmicity relies on a Richness in Ion Channel Diversity

(Byrne et al., 2004)



Hodgkin and Huxley were the Firsts to record, Analyze and Mathematically 
Model the Behavior of  an Excitable Cell

Andrew F. Huxley

Alan L. Hodgkin
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The HH Model Remains at the Basis of  Computational Neurosciences

HH Model
(Hodgkin and Huxley, 1952)
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Two Dimensional Reduction of  the Hodgkin-Huxley Model (FitzHugh, 1961)
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The HH Model Remains at the Basis of  Computational Neurosciences

HH Model
(Hodgkin and Huxley, 1952)

High-Dimensional 
Conductance Based Models

2-D Reduction
(FitzHugh, 1961)

Hybrid Models
(Izhikevich, 2003)

Many Simple Models of Spiking Neurons
(Izhikevich, 2007)

Isolation of Different Types of Excitability
(Rinzel, Ermentrout)

...

QIF



FitzHugh Reduction strongly succeeds in explaining 
the Geometry of  Tonic Firing
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However, Many Neuronal Behavior, including Bursting,
cannot be Reproduced on the Basis of  this Picture
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The HH Model Remains at the Basis of  Computational Neurosciences

HH Model
(Hodgkin and Huxley, 1952)
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The Classical Picture of  Neuronal Excitability is only one Half  of  the Story
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However, Many Neuronal Behavior, including Bursting,
cannot be Reproduced on the Basis of  this Picture
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Restorative and Regenerative Excitability in Planar Models

Restorative Excitability (Type I,II,III)
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Restorative and Regenerative Excitability in Conductance-Based Models

Restorative Excitability (Type I,II,III)
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Ex: Many potassium channels

“Regenerative” ion channels have a 
dominant role at rest.

Ex: Calcium channels

Ca
2+

In
sid

e
O
ut
sid

e

K
+K
+

K
+

Ca
2+

In
sid

e
O
ut
sid

e

K
+

Ca
2+

Ca
2+

(Franci et al., 2013)



Restorative and Regenerative Excitability in Conductance-Based Models

Restorative Excitability (Type I,II,III)
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A Switch from Restorative to Regenerative Excitability 
provides a Physiological Route to Bursting
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A Switch from Restorative to Regenerative Excitability 
provides a Physiological Route to Bursting

Some physiological examples (top: experimental trace, bottom: reduced model):

0.3nA 0.3nA

Relay cells of the thalamus Subthalamic nucleus neurons

Reticular cells of the thalamus Midbrain dopaminergic neurons

Control SK channel blockade
(reduction of kz)

A B

C D

(Franci et al., submitted)



Summary

I. The switch from tonic to burst firing is a fundamental signaling mechanism in neurons

1. Sleep and arousal in thalamocortical neurons

2. Healthy vs Parkinson’s disease state in STN neurons

II. Reduced modeling and bifurcation theory provides new insights on the mechanisms underlying this switch

1. The organizing center of  neuronal excitability is a transcritical bifurcation

2. Physiologically, the bifurcation corresponds to a balance between restorative and regenerative channels

III. A physiological route to bursting

1. The proposed reduced model is able to switch from tonic to burst firing by modulation of  physiologically 
relevant parameters

2. The same transition is observed in high-dimensional conductace-based model via modulation of  the 
balance between restorative and regenerative channels



Impact of  Neuron Endogenous Rhythmicity at the Network Level?

See Julie Dethier’s poster: 
      “Oscillations in the basal ganglia: illustration of  a cellular effect at the network level”

Back to example 2: Subthalamic nucleus (STN) neurons in control and Parkinson’s disease patients
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