Endogenous and Exogenous Neuronal Rhythmicity

Guillaume Drion - ISSSMA | June the 25th, 2013
Neuronal Rhythmicity is a Key Component of Brain Information Processing

(Byrne et al., 2004)
Neuronal Rhythmicity is a Key Component of Brain Information Processing

- Example 1: Thalamic and cortical neurons during awakeness and sleep.

(McCormick and Bal, 1994)
Neuronal Rhythmicity is a Key Component of Brain Information Processing

- Example 1: Thalamic and cortical neurons during awakeness and sleep.

Pathological burst firing during awakeness leads to epileptic seizures.

(McCormick and Bal, 1994)
Neuronal Rhythmicity is a Key Component of Brain Information Processing

Example 2: Subthalamic nucleus (STN) neurons in control and Parkinson’s disease patients

Many Parkinson’s disease motor symptoms correlate to STN neuron pathological burst firing/STN beta oscillations.

(Levy et al., 2002) (Hammond et al., 2007)
Neuronal Rhythmicity is a Key Component of Brain Information Processing

What are the mechanisms controlling neuronal rhythmicity?

Unicellular mechanisms? (endogenous rhythmicity)
Network properties? (exogenous rhythmicity)
Both?

(McCormick and Bal, 1994)
Endogenous Rhythmicity: Tonic Firing and Bursting

Neurons can exhibit many quantitatively different firing patterns.

Qualitatively, they can be grouped in two categories:

- Tonic (single-spike) firing
- Bursting

(Byrne et al., 2004)
Endogenous Rhythmicity: Tonic Firing and Bursting

- Neurons can exhibit many quantitatively different firing patterns.
- Qualitatively, they can be grouped in two categories:
 - Tonic (single-spike) firing
 - Bursting
Endogenous Rhythmicity: Tonic Firing and Bursting

- Neurons can exhibit many quantitatively different firing patterns.
- Qualitatively, they can be grouped in two categories:
 - Tonic (single-spike) firing
 - Bursting

(Byrne et al., 2004)
Single Neuron Rhythmicity relies on a Richness in Ion Channel Diversity

(Byrne et al., 2004)
Hodgkin and Huxley were the Firsts to record, Analyze and Mathematically Model the Behavior of an Excitable Cell

\[C_m \frac{dV_m}{dt} = - \sum_n I_{ion} + I_{app} \]
The HH Model Remains at the Basis of Computational Neurosciences

HH Model
(Hodgkin and Huxley, 1952)
The HH Model Remains at the Basis of Computational Neurosciences

HH Model
(Hodgkin and Huxley, 1952) → High-Dimensional Conductance Based Models
The HH Model Remains at the Basis of Computational Neurosciences

HH Model
(Hodgkin and Huxley, 1952) → High-Dimensional Conductance Based Models

2-D Reduction
(FitzHugh, 1961)
Two Dimensional Reduction of the Hodgkin-Huxley Model (FitzHugh, 1961)
Two Dimensional Reduction of the Hodgkin-Huxley Model (FitzHugh, 1961)
The HH Model Remains at the Basis of Computational Neurosciences

HH Model
(Hodgkin and Huxley, 1952) → High-Dimensional Conductance Based Models

2-D Reduction
(FitzHugh, 1961)

Many Simple Models of Spiking Neurons
(Izhikevich, 2007)

QIF

Hybrid Models
(Izhikevich, 2003)

Isolation of Different Types of Excitability
(Rinzel, Ermentrout)
FitzHugh Reduction strongly succeeds in explaining the Geometry of Tonic Firing

(Drion et al., 2012)
However, many neuronal behavior, including bursting, cannot be reproduced on the basis of this picture.

Resting mode ($I_{app} = 0$)

- Spike latency
- Plateau oscillations

Spiking mode ($I_{app} = 12$)

- Non-Plateau Spiking
- Monotonic Behavior (no ADP)
- Undelayed Response (no spike latency)

(Drion et al., 2012)
The HH Model Remains at the Basis of Computational Neurosciences

HH Model (Hodgkin and Huxley, 1952) → High-Dimensional Conductance Based Models

2-D Reduction (FitzHugh, 1961) → 2-D Reduction (Drion et al., 2011)
The Classical Picture of Neuronal Excitability is only one Half of the Story

A No calcium channels (original reduced Hodgkin-Huxley model)

Developed view

Restricted view

Applied inhibitory current

(Drion et al., 2012)
The Classical Picture of Neuronal Excitability is only one Half of the Story

A No calcium channels (original reduced Hodgkin-Huxley model)

B High calcium channel density (+ I_{pump})

(Drion et al., 2012)
However, Many Neuronal Behavior, including Bursting, cannot be Reproduced on the Basis of this Picture

(Drion et al., 2012)
Restorative and Regenerative Excitability in Planar Models

Restorative Excitability (Type I,II,III)

Regenerative Excitability (Type IV,V)

(Franci et al., 2012)
Restorative and Regenerative Excitability in Conductance-Based Models

Restorative Excitability (Type I,II,III)

- “Restorative” ion channels have a dominant role at rest.
- Ex: Many potassium channels

Regenerative Excitability (Type IV,V)

- “Regenerative” ion channels have a dominant role at rest.
- Ex: Calcium channels

(Franci et al., 2013)
Restorative and Regenerative Excitability in Conductance-Based Models

Restorative Excitability (Type I, II, III)

\[V \]

\[I_{\text{app}} \]

(Almost) Monostable

→ Tonic firing

Regenerative Excitability (Type IV, V)

\[V \]

\[\text{Latency} \]

\[I_{\text{app}} \]

Bistability

Robustly Bistable

→ Bursting

(Franci et al., 2013)
A Switch from Restorative to Regenerative Excitability provides a Physiological Route to Bursting

Planar model

\[\bar{g}_s = 0.7 \]
\[\bar{g}_{us} = -4 \]

Conductance-based model

\[\bar{g}_{Ca} = 1.2 \text{ mS/cm}^2 \]
\[\bar{g}_{K,Ca} = 10 \text{ mS/cm}^2 \]

(Franci et al., submitted)
A Switch from Restorative to Regenerative Excitability provides a Physiological Route to Bursting

Some physiological examples (top: experimental trace, bottom: reduced model):

A Reticular cells of the thalamus

B Midbrain dopaminergic neurons

C Relay cells of the thalamus

D Subthalamic nucleus neurons

(Franci et al., submitted)
Summary

I. The switch from tonic to burst firing is a fundamental signaling mechanism in neurons
 1. Sleep and arousal in thalamocortical neurons
 2. Healthy vs Parkinson’s disease state in STN neurons

II. Reduced modeling and bifurcation theory provides new insights on the mechanisms underlying this switch
 1. The organizing center of neuronal excitability is a transcritical bifurcation
 2. Physiologically, the bifurcation corresponds to a balance between restorative and regenerative channels

III. A physiological route to bursting
 1. The proposed reduced model is able to switch from tonic to burst firing by modulation of physiologically relevant parameters
 2. The same transition is observed in high-dimensional conductance-based model via modulation of the balance between restorative and regenerative channels
Impact of Neuron Endogenous Rhythmicity at the Network Level?

Back to example 2: Subthalamic nucleus (STN) neurons in control and Parkinson's disease patients

See Julie Dethier's poster:
“Oscillations in the basal ganglia: illustration of a cellular effect at the network level”
Acknowledgments

Rodolphe Sepulchre Vincent Seutin Alessio Franci Julie Dethier