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Abstract This paper presents an extension of the local second gradient model 
to multiphasic materials (solid particles, air, water) and including the cavitation 
phenomenon. This new development was made in order to model the response of 
saturated dilatant materials under deviatoric stress and undrained conditions and 
possibly, in future, the behaviour of unsaturated soils.

1  Introduction

A characteristic of geomaterials is to develop inelastic volume change. Clays, 
sands, rocks and concrete are dilatant materials, i.e. the porosity increases in the 
plastic regime.

In the case of saturated state, the pores are saturated with fluid. With a material 
permeability dependence, the pore volume increases more rapidly than the fluid 
can flow inside. Then the fluid is in tension which leads to a decrease of the pore 
pressure until negative pore pressure could be achieved.

This well-known problem in numerical modelling leads to a dilatant hardening 
behaviour because the decrease of pore water pressure is coupled with an increase 
of effective stresses (compression). This is particularly problematic with constitutive 
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equations modelling the degradation of the strength of materials as pressure of pore 
water may have an influence on shear band formation (Loret and Prevost 1991).

2  Presentation of the Model

Before starting, it is important to specify the main limitations of this work. The 
first restriction of this study is that we deal only with quasi-static problems in 
unsaturated conditions, under Richard’s assumptions (vapour water pressure is 
constant). Furthermore for the sake of simplicity, isothermal condition, incom-
pressible solid grains, incompressible vapour water, no flow for gas (no entry of 
air) are assumed. However phase changes between fluid and vapour water are con-
sidered. In all the computation large strains effects are taken into account.

As in Collin et al. (2006), the pore fluid and water vapour are assumed no influ-
ence at the microstructure level, micro kinematic gradient is not generated by pore 
pressure and vapour water variations.

The unknowns of the second gradient mechanical and the flow problems are 
respectively the (macro) displacement ui, the micro kinematic vij and the pore 
water pressure pw (possibly negative in unsaturated case).

In order to get second gradient models, we add the assumption that the micro 
kinematic gradient vij is equal to the macro displacement gradient Fij. This implies 
similar relations for virtual quantities.

In the framework of Schrefler’s stress, the effective stress is:

σ t
ij is the total stress, σ ′t

ij  is the effective stress, pw,t is the fluid pressure, pv is the 
vapour pressure, Sw,tr  is the water relative saturation and δij is Kronecker’s delta.

Sv,tr  is the vapour relative saturation.
The mass density of the mixture is:

̺S is the solid grain density (assumed to be incompressible, i.e. ̺S = cte), ̺w,t is 
the fluid density, φt is the porosity defined as φt = �p,t/�t where �t is the current 
volume of a given mass of skeleton and �p,t the corresponding porous volume.

In weak form (virtual work principle), the momentum balance for the mixture 
can thus be written as:

v∗ij =
∂u∗i
∂xj

= F∗
ij

σ t
ij = σ ′t

ij + Sw,tr pw,tδij +
(
1− Sw,tr

)
pvδij

Sw,tr + Sv,tr = 1

̺mix,t = ̺s
(
1− φt

)
+ Sw,tr ̺w,tφt +

(
1− Sw,tr

)
̺vφt
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where u∗i  is any kinematically admissible virtual displacement field, σ t
ij is the 

Cauchy stress (total stress), 
∑t

ijk is the double stress dual of the virtual second 
micro kinematic gradient, xi are the current coordinates, gi is the gravity accelera-
tion, ti is the external (classical) forces per unit area and −Ti

 an additional external 
(double) force per unit area, both applied on a part Ŵt

� of the boundary of �t · D 
denotes the normal derivative of any quantity q.

In order to use C0 functions for the displacement field (i.e. only first derivatives 
of the displacement), the following equation with �ij Lagrange multipliers is used.

In volume �t, the liquid fluid mass is equal to Mw,t
�t = Sw,tr ̺w,tφt�t and the 

vapour fluid mass is equal to Mw,t
�t = Sv,tr ̺vφt�t.

In weak form, the mass balance equation for the fluid and water vapour can 
thus be written as:

With Ṁw,t is the time derivative of the fluid phase, mw,t
i  is the mass flow of water, 

kw is the fluid bulk modulus, k is the intrinsic permeability, kw,tr  is the water 

�
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pw
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w,t
i
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∂xti
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∗
d�t −
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∗
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,

Ṁw,t = ̺w,t
(
ṗw,t

kw
Sw,tr φt + Ṡw,tr φt − Sw,tr

�̇t

�t

)
,
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(
−
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− Ṡw,tr φt
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relative permeability, µw is the fluid viscosity, Qw,t is a sink term and Ŵt
q is the part 

of the boundary where the input fluid mass per unit area qw,t is prescribed.

2.1  Mechanical Constitutive Law

In order to reproduce the progressive decrease of the material strength, the 
mechanic constitutive law used in this study is an elastoplastic strain-softening 
Druker-Prager model with yield criterion given by the follow equation (Barnichon 
1998):

where m and k is defined by: m = 2 sin φc√
3(3−sin φc)

, k = 6ccosφc√
3(3−sin φc)

. φc is the friction 

angle, c is the cohesion, Iσ = σii is the first invariant and IIσ̂ =
√

1
2
σ̂ijσ̂ij is the 

second deviatoric invariant.
A general non-associated plasticity framework is considered to define the 

rate of plastic flow as perpendicular to the plastic potential g : ε̇pij = �̇
∂g
∂σij

 and 

g = IIσ̂ − m′Iσ = C1 with m′ = 2 sinψ√
3(3−sinψ)

 with, ψ is the dilatancy angle and c1 

is a constant. The softening process during plastic flow is introduced via an hyper-

bolic variation of the cohesion between initial c0 and final cf  values as a function 

of the Von Mises equivalent plastic strain ε
p
eq : c = c0 + (cf − c0)ε

p
eq

βc+ε
p
eq

.

2.2  Model Parameters

The Drucker-Prager model presents the advantage to use simple formulation 
and does not require enough parameters. All parameter values are presented in 
Tables 1 and 2.

f = IIσ̂ − mIσ + k = 0

Table 1  Mechanic 
parameters

Geomechanical characteristics

Young’s elastic modulus (MPa) 300

Poisson’s ratio (–) 0.125

Initial cohesion (kPa) c0 300

Final cohesion (kPa) cf 100

Softening parameter (–) βc 0.01

Friction angle (°) φc 18

Dilation angle (°) ψ 10

Solid specific mass (kg/m3) ̺s 2,026

Second gradient parameter (N) D 150
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2.3  Cavitation Model

In the model, before cavitation, the stress state governs the pore pressure and the 
specimen is saturated. After cavitation, a phase change takes place and the pore 
pressure is related to the relative degree of saturation as per the cavitation equation 

below: pw,t = pc − C2 + C2 · exp
−
(

1−
(
s
w,t
r /100

)

0.02

)

for pw,t < pc with C2 = 40 kPa 

in this paper.

3  Results

Visualization of the localization shear bands is performed by observing the load-
ing index of a Gauss point for a given time step. When a Gauss point undergoes a 
plastic loading, a small square is plotted. No marker appears if the element under-
goes elastic loading or unloading (Fig. 1).

The numerical results are displayed in the form of load-displacement curve and 
pore pressure inside the shear band curve in Fig. 2. First, the biaxial test leads to 
a homogenous solution, i.e. the plasticity behavior is identical in the entire sam-
ple (Fig. 1a). As all elements of the model enter into plasticity, global dilation 
takes place and pore pressure starts dropping steadily. The reduction in pore pres-
sure turns into an increase of effective stress. The homogeneous solution is sta-
ble until the pore pressure achieves the cavitation pressure. Then, the water starts 
to change in vapour phase (Figs. 1b and 2). The effective stresses can decrease 
freely and localized bands are obtained. In accord with the experimental results 
given by Mokni and Desrues (1998), when the plasticity is first obtained with an 
homogeneous behavior, the cavitation triggers strain localization and then cavita-
tion occurs before localization.

Table 2  Hydraulic and air 
parameters

Hydraulic characteristics

Initial porosity (–) φ 0.39

Intrinsic permeability (m/s) k 10−7

Initial relative water permeability (–) 1

Water specific mass (kg/m3) ̺w 1,000

Water dynamic viscosity (Pa·s) μw 10−3

Water compressibility coefficient (MPa−1) 1/kw 5.10−4

Air characteristics

Gas pressure (kPa) pv −100
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4  Conclusion

This paper presents numerical investigations of strain localization for a dilatant 
material. To ensure objectivity of the formulation, i.e. no mesh dependency, a sec-
ond gradient hydromechanical model is used. This paper gives a numerical imple-
mentation of the cavitation phenomena to resolve the challenge of the unrealistic 
negative pore pressure obtained typically with a dilatant porous material which 
could lead at a global hardening response. Based on the numerical simulation, the 
cavitation is capable of restoring the shear bands formation.

Fig. 1  Visualization of the shear bands using the loading index at the gauss point a axial 
strain = 0.14 %, b axial strain = 1.8 %, and c axial strain = 2.5 %

Fig. 2  Global curves of the loading force and water pressure versus the specimen shortening
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