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ABSTRACT

Aim We assessed the influence of past environmental changes, notably the

importance of palaeogeographical and climatic drivers, in shaping the distribu-

tion patterns of Dipodoidea (Rodentia), the superfamily most closely related to

the large species-rich superfamily Muroidea (c. 1300–1500 species). Dipodoids

are suitable for testing several biogeographical hypotheses because of their dis-

junct distribution patterns in the Northern Hemisphere and the numerous spe-

cies distributed in Asian deserts.

Location Holarctic.

Methods We inferred molecular phylogenetic relationships for Dipodoidea

(34 out of 51 species and 15 out of 16 genera) based on five coding genes. A

time-calibrated phylogeny was estimated using a Bayesian relaxed molecular

clock with four fossil calibrations. A cross-validation procedure was adopted to

examine the impact of each fossil on our estimates. The ancestral area of origin

and biogeographical scenarios were reconstructed using time-stratified dis-

persal–extinction–cladogenesis models.

Results Phylogenetic analyses recovered a well-resolved and supported topol-

ogy. The divergence between Dipodoidea and Muroidea occurred in the late

Palaeocene (c. 57.72 Ma) and modern Dipodoidea diversified during the mid-

dle Eocene (c. 40.62 Ma). Similar results were found with each calibration

strategy used with the cross-validation procedure. The reconstruction of ances-

tral areas and biogeographical events indicated that modern Dipodoidea origi-

nated in the Himalaya-Tibetan and Central Asian region.

Main conclusions At the time when Dipodoidea diversified (middle Eocene),

the Central Asia and Himalaya-Tibetan Plateau region experienced major uplift

episodes due to the collision of India with Asia, which also induced diversifica-

tion events in many other groups. Other important diversification events (e.g.

divergence between Zapodidae and Dipodidae in Central Asia) took placed

during the Eocene–Oligocene transition when the global temperature decreased

significantly and rodent/lagomorph-dominant faunas replaced Eocene perisso-

dactyl-dominant faunas. All of these climatic and geological disruptions in the

Central Asia and Himalaya-Tibetan Plateau region modified landscapes and

offered new habitats that favoured diversification events, thus triggering the

evolutionary history of Dipodoidea.

Keywords

Asian deserts, biogeography, Bering land bridge, Dipodidae, dispersal–extinc-

tion–cladogenesis, Holarctic, Himalayan uplift, rodent phylogeny.
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INTRODUCTION

Historical biogeographical studies aim to assess the influence

of past environmental changes on the distribution and the

evolution of organisms. Generally, global environmental

changes have left their footprint on the evolutionary history

of living organisms (e.g. Fabre et al., 2012). Following the

recent development of genetic tools (e.g. DNA sequences),

the impact of such factors on species evolution can be

assessed using phylogenetic approaches. Since the collision of

the Indian plate with the Asian plate 40 million years ago

(Ma), the uplifts of the Himalayan mountains and Tibetan

plateau have thoroughly modified Asian environments and

have already been suggested as one of the main driving

forces behind long-term Asian Cenozoic climate changes

(Bouilhol et al., 2013). Both are the cause of many important

biogeographical barriers that led to diversification events in

many taxa (e.g. Zhang et al., 2006). Understanding which

past Asian environmental changes best explain diversification

events can shed light on current distribution patterns and

can help to improve our prediction of future range shifts of

living organisms.

To better understand the impact of these environmental

changes on the diversification of Asian – but also, more gen-

erally, of Holarctic – organisms, we propose to study the

evolutionary history of the superfamily Dipodoidea (Roden-

tia). Dipodoidea includes 16 genera and 51 species distrib-

uted throughout the Holarctic (Holden & Musser, 2005).

Based on morphological and molecular data, three families

are now recognized: Sminthidae (syn. Sicistinae, 13 species),

Zapodidae (five species), and Dipodidae, which includes Car-

diocraniinae (seven species), Euchoreutinae (one species), Al-

lactaginae (16 species) and Dipodinae (nine species) (see the

taxonomic revision proposed by Lebedev et al., 2012). Birch

mice (Sminthidae) – mainly found in the subalpine meadows

and the boreal and alpine forests of Europe, Russia and Cen-

tral and Eastern Asia – are essentially an arboreal-adapted

group, yet some species also occur in steppes or semi-deserts

(e.g. Sicista subtilis, S. severtzovi). Jumping mice (Zapodidae)

typically inhabit riparian or wooded areas and marshlands

within coniferous forests in North America and, more anec-

dotally, in China. Jerboas (Dipodidae) are distributed in the

deserts, semi-deserts and steppes of North Africa and Eurasia

(Holden & Musser, 2005; Shenbrot et al., 2008; IUCN,

2012). As dipodoids exhibit disjoint distribution patterns in

the Holarctic, with many species found in different remote

arid habitats, they are particularly suitable for testing biogeo-

graphical scenarios.

The first occurrences of Dipodoidea in the fossil record

are from North America with Elymys (?Zapodidae, middle

Eocene) and Simimys (Simimyidae, middle to late Eocene).

In Asia, the oldest dipodoid representatives correspond to

other genera: Heosminthus (Zapodidae or Dipodidae depend-

ing on the studies, middle Eocene to late Oligocene) and Si-

nosminthus (Zapodidae, middle Eocene to middle Miocene)

(Wang, 1985; Emry & Korth, 1989; Kelly, 1992; Tong, 1997;

Daxner-H€ock, 2001). Whether these genera belong to extant

taxa, or represent extinct sister groups of Dipodoidea has yet

to be determined. Based on a single-nuclear marker tree of

16 dipodoid species, Zhang et al. (2012) proposed that the

diversification of modern dipodoids took place during the

middle Eocene. Combining a time-calibrated phylogeny with

a compilation of the fossil record, they further suggested that

diversification events and range expansions were mostly

influenced by new ecological opportunities triggered by an

increasing aridity and the development of open habitats.

Indeed, birch mice (Sminthidae) were shown to diversify

during the warming period of the Oligocene–Miocene

(24 Ma), while jumping mice (Zapodidae) and jerboas (Di-

podidae) are assumed to have radiated during the global

cooling following the mid-Miocene climatic optimum

(15 Ma). In another study based on nine fragments of

nuclear genes, Wu et al. (2012) estimated the origin of mod-

ern Dipodoidea during the early Oligocene, which provides a

different evolutionary history. Overall, despite these sound

studies, the timeframe and biogeography of Dipodoidea are

unclear and the direct effects of the Himalayan uplift remain

untested. Further taxonomic coverage and phylogenetic data

are needed to assess the centre of origin, test the effect of

major environmental drivers (e.g. climatic oscillations, vege-

tation changes, Himalayan uplift), and unravel the putative

colonization routes that spurred the diversification of the

group through the Holarctic region. In addition, Lebedev

et al. (2012) investigated the relationships of Dipodoidea

based on 15 out of the 51 described species while comparing

the morphological- and molecular-based phylogenetic trees.

They provided the first molecular classification of Dipodoi-

dea. However, their taxonomy and systematics are not yet

fully understood, which hampers efforts to unravel the evo-

lutionary and biogeographical history of Dipodoidea.

We tackled this challenge by reconstructing the most com-

plete species-level phylogeny for Dipodoidea based on one

mitochondrial and four nuclear coding genes for 34 out of

the 51 dipodoid species belonging to 15 out of the 16 genera.

This new phylogenetic framework was then used to recon-

struct the temporal and biogeographical origins of the group

with: (1) estimates of divergence times using a Bayesian

relaxed fossil-calibrated molecular clock; and (2) inferences

of the biogeographical and evolutionary history using the

dispersal–extinction–cladogenesis model.

MATERIALS AND METHODS

Taxon sampling and DNA sequence acquisition

Fifty new dipodoid vouchers corresponding to 18 species

were sampled. Additional DNA sequences from 20 specimens

corresponding to 17 dipodoid species analysed by Lebedev

et al. (2012) were also added to our dataset. Consequently,

our sampling encompassed 34 out of the 51 species belong-

ing to 15 out of the 16 genera of Dipodoidea described in

Mammal Species of the World (Holden & Musser, 2005). The
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single missing genus in our dataset was the Pakistani Salpin-

gotulus [note that based on morphological characters, Lebe-

dev et al. (2012) demonstrated that Salpingotulus should be

included into the genus Salpingotus]. Twelve outgroup spe-

cies belonging to Muroidea subfamilies (Gerbillinae, Muri-

nae, Glirinae, Leithiinae), and to Sciuridae and

Aplodontiidae families were also included in the sampling.

Outgroups were selected to recover specific nodes in the

phylogeny so as to be able to use fossils as calibration points

to constrain nodes (see below). Twenty-four out of the 53

outgroup DNA sequences were generated in this study, while

the others were mined from GenBank. Voucher material

descriptions and GenBank accession numbers are given in

Appendix S1 in Supporting Information.

Total DNA was extracted and purified from ethanol- and

dried-preserved tissues using the Qiagen DNEasy Blood & Tis-

sue Kit (Qiagen, Hilden, Germany) according to the manufac-

turer’s instructions. Five genes were selected based on rodent

(Fan et al., 2009; Pag�es et al., 2010; Lebedev et al., 2012) or

mammal (Huchon et al., 1999; Poux & Douzery, 2004) phy-

logenies. We sequenced one mitochondrial gene, cytochrome b

(cytb, 1.14 kilo base, kb), and four nuclear fragments: exon 1

of the interstitial retinoid-binding protein (IRBP, c. 1.2 kb),

exon 10 of the growth hormone receptor (GHR, c. 0.9 kb),

exon 11 of the breast cancer type 1 susceptibility protein

(BRCA1, c. 0.7 kb), and a portion of the recombination acti-

vating gene 1 (RAG1, c. 1.0 kb). Primer sets used to amplify

these different markers are listed in Appendix S2.

Amplifications were carried out in 25 lL reactions con-

taining about 30 ng of extracted DNA, 1 unit of Taq DNA

polymerase (Qiagen), 2.5 lL of 109 buffer, 0.5 mm of extra

MgCl2, 100 lm of each dNTP, and 0.2 lm of each primer.

Cycling conditions were as follows: one activation step at

94 °C for 4 min followed by 40 denaturation cycles at 94 °C
for 30 s, annealing at 50–60 °C depending on the primers

for 30 s (see Appendix S2 for temperature), elongation at

72 °C for 1 min or 1 min 30 s depending on the length of

the target, and a final extension at 72 °C for 10 min. When

amplifications with the Qiagen Taq polymerase failed, PCR

reactions were performed in 20 lL reactions containing

about 30 ng of extracted DNA, 0.4 lm of each primer and

10 lL of Qiagen Multiplex PCR Master Mix. The cycling

conditions were similar to the previous ones except for the

activation step at 95 °C for 15 min. PCR products were

sequenced by Eurofins MWG Operons (Ebersberg, Germany)

or Macrogen (Seoul, South Korea). Sequences were corrected

using SeqScape (Applied BioSystems), aligned by eye and

translated in amino acids using SeaView (Galtier et al.,

1996) to ensure sequence orthology.

Phylogenetic analyses

Phylogenetic trees were reconstructed using maximum likeli-

hood (ML) and Bayesian inferences (BI). Two molecular

datasets were used for phylogenetic reconstructions: the den-

sely sampled matrix that contained several individuals per

species, and the species-level matrix consisting of one single

individual per species. The appropriate subset partitions and

their relative sequence evolution substitution models were

determined using the ‘greedy’ algorithm and the corrected

Akaike information criterion (AICc) implemented in Parti-

tionFinder 1.1.1 (Lanfear et al., 2012). Branch lengths were

estimated independently for each subset by setting ‘branch-

lengths = unlinked’. The list of selected evolution models for

each partition is available in Appendix S2.

Maximum likelihood analyses

We first carried out ML analyses on each gene independently

using PhyML 3.0 (Guindon et al., 2010). For each analysis,

the transition/transversion ratio, the number of substitution

rate categories, the proportion of invariable sites and the

gamma distribution parameter (if necessary; Appendix S2)

were estimated and the starting tree was determined by

BioNJ analysis of the dataset. Using optimization options,

1000 bootstrap replicates were performed. Gene tree congru-

ence was checked by visual comparisons. As gene trees were

congruent, all genes were concatenated into supermatrices to

gain insight into the dipodoid species tree (Douzery et al.,

2010). As PhyML software does not allow partitioning of

combined datasets, partitioned ML analyses of combined

datasets were performed using raxmlGUI 1.31 (Silvestro &

Michalak, 2011). We carried out raxmlGUI analyses with

the following settings: (1) a GTR+GAMMA substitution

model for each partition; and (2) robustness of the best tree

assessed using the thorough bootstrap (BP) procedure with

1000 replications.

Bayesian analyses

Bayesian inferences were performed on each gene indepen-

dently and on the partitioned supermatrices using MrBayes

3.2.2 (Ronquist et al., 2012). The settings were as follows:

(1) two independent runs with four Markov chain Monte

Carlo (MCMC) algorithms; (2) 20 million generations; (3)

trees sampled every 1000 generations; (4) appropriate inde-

pendent evolution models for each partition (Appendix S2);

and (5) reconstruction of the consensus tree using the ‘all-

compat’ option. A burn-in period of 25% of total generations

was determined graphically and the effective sample size

(ESS) of the trace of each parameter was checked using Tra-

cer 1.5 (http://tree.bio.ed.ac.uk/software/tracer/). The branch

supports were estimated using posterior probabilities (PP).

The potential scale reduction factors (PSRF) were checked

after the end of each analysis to ensure that runs converged

(i.e. PSRF reaching 1).

Assessing the confidence of the tree topology

Using MrBayes, alternative topological hypotheses were

assessed with Bayes factors (BF) (Kass & Raftery, 1995) using

Tracer. Lebedev et al. (2012) discussed the trichotomy of
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Euchoreutinae, Dipodinae and Allactaginae and the para-

phyly of Allactaga species. We thus tested these hypotheses

by grouping the single Euchoreutinae species (Euchoreutes

naso) with (1) Allactaginae and (2) Dipodinae and (3) con-

straining the monophyly of Allactaga.

Bayesian divergence time estimations

Dating analyses

Molecular divergence dates were estimated using Bayesian

relaxed clock (BRC) approaches that account for changes in

evolutionary rate over time and across clades (Drummond

et al., 2006), which are implemented in beast 1.8.0 (Drum-

mond et al., 2012). To minimize the size of the parameter

space, we enforced the topology obtained from MrBayes in

all dating analyses. Given the use of fossil calibrations, BRC

analyses were performed using the species-level topology

obtained using MrBayes as the constrained tree because

intraspecific mutation rates are characterized by higher values

than interspecific substitution rates (Ho et al., 2005). Using

BEAUti (Drummond et al., 2012), settings were applied as

follows: (1) nucleotide substitution models were specifically

applied for each partition (Appendix S2); (2) the clock model

was set to an uncorrelated lognormal relaxed clock; (3) tree

models were set to a Yule or birth–death speciation process;

and (4) the MCMC parameters were fixed to 50 million of

generations, sampling every 5000 generations. The remaining

parameters were left in their default settings. We designed 10

dating analyses that differed by the combination of settings

and priors that we used for node calibrations.

Fossil calibrations

Soft bounds were applied to take fossil date uncertainties

into account (Ho & Phillips, 2009). The parameters of the

four fossil calibration points were all set to lognormal distri-

butions with the 95% interval bounded by the minimum age

(2.5% quartile) of the geological interval where the fossil of

each calibration point was found and a maximum age

(97.5% quartile) of 54 Ma, corresponding to the geological

interval where the oldest known fossil of Myodonta was

found (i.e. Erlianomys from the Eocene Arshanto formation,

Nei Mongol region, China) (Li & Meng, 2010). The standard

error was set to 0.75. Among the Rodentia fossil records, we

selected the following four fossil calibrations (FC):

FC1: Douglassciurus jeffersoni (36 Ma) is defined as the

oldest known fossil of Sciuridae (McKenna & Bell, 1997).

The divergence between Sciuridae and its sister group, Ap-

lodontiidae, happened at least before this date. Hence, we

assigned the oldest record of Sciuridae, D. jeffersoni at 36 Ma

(McKenna & Bell, 1997) to the split between Aplodontia rufa

(Aplodontiidae) and the monophyletic group composed of

Sciurus aestuans and Marmota marmota (Sciuridae) [off-

set = 34.94; log(mean) = 1.48; 2.5% quantile = 35.95; 97.5%

quantile = 54.05].

FC2: Following Steppan et al. (2004), we considered the

fossil record from the Siwalik succession in Pakistan as an

accurate depiction of the murine history. Progonomys has

been described as either the most recent common ancestor

(MRCA) of extant murines or a predecessor (8.1–12.3 Ma)

(Jacobs & Flynn, 2005). We assigned the oldest record of

Progonomys (Jacobs & Flynn, 2005) to the split between the

basal tribe Phloemyini (Batomys granti) and the other tribes

of Murinae (Apodemini, Apodemus sylvaticus and A. mystaci-

nus; Rattini, Rattus tanezumi and Maxomys surifer) [off-

set = 7.95; log(mean) = 2.36; 2.5% quantile = 10.39; 97.5%

quantile = 54.01].

FC3: Fossils of Apodemus jeanteti (7 Ma) and Apodemus

dominans (7 Ma) are considered to be close to extant A.

mystacinus and A. sylvaticus, respectively (Michaux et al.,

1997). Consequently, we assigned a minimum age of 7 Ma

for the split between A. mystacinus and A. sylvaticus [off-

set = 4.376; log(mean) = 2.4345; 2.5% quantile = 7.0; 97.5%

quantile = 54.0].

FC4: Sicista primus is the earliest known fossil attributed to

the Sicista genus and was recovered from the 17 million-year-

old deposits in Nei Mongol, China (Kimura, 2011). Following

Zhang et al. (2012), we assumed that the radiation of modern

Sminthidae happened at least 17 Ma. Consequently, we

assigned the oldest record of Sicista at 17 Ma to the crown

group of Sminthidae [offset = 14.95; log(mean) = 2.195; 2.5%

quantile = 17.01; 97.5% quantile = 54.01].

Cross-validation analyses

The analyses were performed by omitting, one by one, each

of the fossil constraints in turn to identify putative incon-

sistencies (i.e. incongruence between the molecular credibil-

ity interval obtained for the omitted constraint and its

palaeontological estimate; Table 1). The maximum clade

credibility tree was generated using a burn-in period of

25% with TreeAnnotator 1.8.0 (included in the beast

package). Finally, the beast output files were analysed with

Tracer to check the convergence of runs and the ESS of

the trace of each parameter, and to confirm the use of a

relaxed molecular clock (using the standard deviation of

the UCLD relaxed clock, ‘ucld.stdev’ parameter) (Drum-

mond et al., 2012). The best-fit calibration strategy was

selected using Bayes factors (Kass & Raftery, 1995) imple-

mented in Tracer.

Biogeographical analyses

Ancestral area reconstructions for Dipodoidea were inferred

using Lagrange v. 20130526 and the dispersal–extinction–
cladogenesis model (DEC) (Ree & Smith, 2008). Updated

Wallace’s zoogeographical regions were used to determine

the area boundaries and were further split into smaller bio-

geographical units. These units were delineated using: (1)

palaeogeographical criteria (Scotese, 2004; Blakey, 2008); and

(2) the revised distribution of extant dipodoid species (Hol-
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den & Musser, 2005; Buerki et al., 2011; IUCN, 2012).

Finally, the dipodoid range, which extends over the entire

Holarctic, was divided into nine areas: A, Nearctic (North

America); B, West Palaearctic (from Western Europe to Ural

Mounts, without North Africa); C, Siberia (from Ural

Mounts to Bering Sea); D, Central Asia (Turkmenistan,

Uzbekistan and Kazakhstan); E, Mongolia and South-East

Russia (Altai Mountains, Mongolian steppe and Yablonoi

Mountains); F, Turkey, Iran, Georgia, Azerbaijan and Arme-

nia (Persian plateau, Anatolian region and Caucasus, Iranian

plateau); G, Himalaya and Tibetan Plateau; H, Gobi and

Taklamakan deserts; I, North Africa and Arabia (Arabian

peninsula and Sahara region) (see Appendix S3). The species

distributions were defined by presence or absence coding for

each area. Species ranges were refined to better fit their pres-

ent-day distributions, as the distributions available on the

IUCN website (IUCN, 2012) or in Mammal Species of the

World (Holden & Musser, 2005) appear to be inaccurate

(G.I. Shenbrot was used as the reference authority; see

Appendix S3). Marginal distributions or human introduction

events were excluded. The number of area subsets was con-

strained by setting the ‘maxareas’ parameter to four, given

the widest dipodoid range (Dipus sagitta). All ranges or com-

bination of ranges were allowed in the analysis.

We added temporal constraints on dispersal rates between

areas according to palaeogeographical reconstructions of the

Earth (Scotese, 2004; Blakey, 2008). Specific constraints on

dispersal rates were set for a series of five time slices (TS):

TS1, Quaternary and Pliocene (0–5.3 Ma); TS2, late and

middle Miocene (5.3–16 Ma); TS3, early Miocene (16–
23 Ma); (TS4) Oligocene (23–34 Ma); and TS5, Eocene (34–
56 Ma). The TS boundaries fit with pulses of species diversi-

fication identified from the maximum clade credibility tree

and assumed to coincide with past key environmental events

(Buerki et al., 2011). We tested three types of matrix to

assess the impact of dispersal rates on the results (Appendix

S3). For each time slice, a Q matrix was defined in which

transition rates were dependent on the geographical connec-

tivity between areas (Buerki et al., 2011). For the null

hypothesis M0, all dispersal rates were set to 1, which implies

no barrier between distinct areas. For the first alternative

hypothesis M1, dispersal rates were set between 0 and 1,

whereas in the second alternative hypothesis M2, dispersal

rates were set between 0 and 0.5. In the absence of barriers

(adjacent areas), the dispersal rate was fixed to 1 for M1 and

to 0.5 for M2 (e.g. the B and C areas, Appendix S3). When a

geographical barrier had to be crossed (e.g. Caucasus Moun-

tains), a dispersal rate of 0.7 was specified for M1 and 0.25

for M2 (e.g. between areas D and F in TS1). Whenever a

substantial barrier had to be overcome (e.g. Bering Strait), a

dispersal rate of 0.5 for M1 and 0.125 for M2 was attributed

(e.g. between areas A and C in TS1). Long-distance dispersal

was set to 0.1 in M1 and 0.01 in M2 (e.g. between areas A

and B, or G and I, in TS1).

All DEC analyses were carried out using the maximum

clade credibility tree that produced the highest likelihood

score compared with the other cross-validation procedure

analyses. Outgroups were removed for biogeographical analy-

ses because of their distant phylogenetic relationships with

the ingroup. To decrease basal node uncertainties, several

range constraints on the root were tested (combination of

one to four areas). Their global likelihood scores were com-

pared to determine the most likely ancestral area. For all

nodes of the chronogram (including the root), a given distri-

bution area was treated as significantly supported when its

score was greater than or equal to two log-likelihood units

compared with the scores of other tested analyses (Ree &

Smith, 2008).

RESULTS

Phylogenies and rare genomic changes

Phylogenetic inference and topological hypotheses

Maximum likelihood and Bayesian inference analyses based

on each gene independently yielded congruent topologies.

Accordingly, all genes were concatenated in a single superm-

atrix. The final supermatrices (4973 nucleotides) consisted of

46 species, 34 of which belong to Dipodoidea. ML and BI

combined analyses recovered a similar well-resolved and sup-

ported topology. Phylogenetic results based on the species-

level matrix are discussed below and presented in Fig. 1,

while those based on the densely sampled matrix are shown

in Appendix S2. All nodes have PP ≥ 0.95, and 82% of

branches have BP values > 95%. Sequences were deposited in

GenBank under accession numbers KM397124 to KM397347

(Appendix S1).

Bayes factors showed significant differences between our

best tree and the alternative topological hypotheses (BF No

constraint tree vs. H(1,2,3) > 10) (Appendix S2). These results

confirm the paraphyly of the Allactaga genus and the sister

grouping between Euchoreutes naso (Euchoreutinae) and the

clade including Allactaginae and Dipodinae (PP/BP = 0.95/

79). The monophyly of Dipodoidea, Sminthidae, Zapodidae,

Dipodidae and all dipodid subfamilies was confirmed with

maximum support (1/100).

Rare genomic changes

We observed 17 rare genomic changes (RGC), corresponding

to indels of three or multiples of three nucleotides (Springer

et al., 2004) in BRCA1, IRBP and GHR sequences (Fig. 1,

Appendix S2). RGC strengthened the obtained topology by

independently confirming: the monophyly of Dipodoidea,

Sminthidae, Zapodidae and Allactaginae; the basal branching

of Paradipus ctenodactylus (Dipodinae) and the monophyly

of the remaining Dipodinae; the monophyly of the American

Zapodidae genera (Napaeozapus and Zapus); and the sister

grouping between Zapus princeps and Z. trinotatus (Zapodi-

dae) and between Sicista napaea, S. strandi and S. subtilis

(Sminthidae), respectively.
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Divergence time estimates

All analyses gave similar results whatever the calibration

strategy used during the cross-validation procedure

(Table 1). Our fossil calibration constraints were thus vali-

dated. None of the 10 dating strategies was significantly

better than the others (see Appendix S2 for BF and likeli-

hood scores). Consequently, we selected the analysis that

Figure 1 Phylogenetic relationships among 34 species of Dipodoidea obtained using the species-level matrix (Bayesian inference tree).
Analyses were performed using the partitioned dataset of the combined cytb, IRBP, GHR, BRCA1 and RAG1 genes. Bayesian inferences

and maximum likelihood analyses gave an identical topology. Numbers above branches reflect node supports obtained using MrBayes

and RAxML: posterior probability (PP)/ bootstrap (BP) values. Black crosses on branches indicate the presence of rare genomic changes

in our alignment, which strengthened the obtained topology and confirmed independently the monophyly of specific groups. Colours
refer to clades. The black shades refer to the three distinct dipodoid morphotypes. Pictures © Wikimedia Commons.
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produced the highest likelihood score, i.e. the chronogram

obtained without the use of the fossil Douglassciurus jeffer-

soni and using the birth–death model of speciation (‘No

FC1’ in Table 1). This chronogram is presented in Fig. 2.

Estimated node ages and the 95% highest posterior density

(95% HPD) for the main nodes are detailed in Table 1

(see Appendix S2 for all node estimations and their 95%

HPD).

Figure 2 Dated phylogeny of Dipodoidea. The figure shows the maximum clade credibility tree with median ages from the Bayesian
uncorrelated lognormal method that is discussed in further details in this study. Black stars indicate fossil calibrations of node. Numbers

at nodes refer to those in Table 1 (see ‘NoFC1’ analysis) and Appendix S2. Coloured rectangles at nodes refer to the 95% highest
posterior density (95% HPD) of estimated divergence times (see Appendix S2 for all detailed values). In the geological time-scale,

‘Quat.’, ‘Plio.’ and ‘Creta.’ refer to the Quaternary, Pliocene and Cretaceous, respectively. Colours refer to those in Fig. 1.
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Historical biogeography

Analyses performed using the M2 hypothesis with no geo-

graphical constraint on the root showed the highest likeli-

hood score (logLno-constraint (M2) = �103.4) compared with

the M0 and M1 analyses (Table 2). Given that the combina-

tion of the geographical area inferred for the root of Dipo-

doidea at the time of their origin was biologically unlikely

(e.g. ‘ABDG’), we constrained the root of Dipodoidea. When

constraining the root with one area, the analysis with Central

Asia (Area ‘D’) as root constraint provided the best likeli-

hood of all analyses constrained with one area (logLD
(M2) = �107.7). We then added a second area to constrain

the root. The analysis with Central Asia and the Himalaya-

Tibetan plateau (areas ‘DG’) as root constraint provided a

better likelihood (logLDG (M2) = �107.4). Increasing the

number of constrained areas at the root (i.e. using three

areas to constrain the root) failed to improve the likelihood.

We thus selected the analyses constrained with the geograph-

ical area ‘DG’ as the most likely biogeographical scenario.

Analyses with the ‘DG’ root constraint obtained using the

M0, M1 and M2 stratified DEC models yielded highly con-

gruent results (Appendix S2). The ancestral areas and bio-

geographical processes (vicariance, dispersal and colonization

routes) reconstructed using the M2 matrix of dispersal rates

and the ‘DG’ constraint on the root are shown in Fig. 3.

DISCUSSION

Inferring the impact of historical events on the evolution of

faunas is particularly difficult. It is especially true when dis-

persals and/or local extinctions occurred between biogeo-

graphical regions, making them difficult to tease apart. It is

also not trivial to connect records that lie within rocks and

fossils with records captured into DNA sequences. One way

to sort the information contained in palaeontological and

molecular data is thus to use biogeographical events as

connectors to infer the biogeographical history of living

organisms.

Origin and evolutionary history of Dipodoidea

By including 34 out of the 51 described Dipodoidea species,

this study investigated the evolutionary history of Dipodoidea

in further detail. The phylogenetic results were congruent with

those of previous dipodoid studies (Fan et al., 2009; Lebedev

et al., 2012) and confirmed the paraphyly of the Allactaga

genus and the phylogenetic position of Euchoreutes naso (Eu-

choreutinae). These systematic results were required to under-

stand their evolutionary history. The dating estimates were

congruent with those of Meredith et al. (2011) and Zhang

Table 2 Results of biogeographical analyses of Dipodoidea. The

table shows likelihood scores of dispersal–extinction–
cladogenesis (DEC) analyses constrained with biogeographical

zones of the stratified model. ‘No constraint on the root’ refers
to null hypotheses assuming no geographical constraint on the

root of Dipodoidea. M0, M1 and M2 refer to stratified DEC
models. The alphabet code refers to the nine areas of the

biogeographical model and is the same as the one in Fig. 3. The
analysis in bold and underlined indicates the biogeographical

scenario that received the highest likelihood score and that is
discussed in further detail in this study.

Likelihood scores for biogeographical analyses using DEC and

stratified models

M0 M1 M2

No constraint

on the root

�109.4 �104.9 �103.4

Root A �120 �117.1 �115.2

Root B �116.2 �113.7 �112.5

Root C �117 �113.3 �111.9

Root D �113 �108.9 �107.7

Root E �117.9 �113.6 �111.7

Root F �117.2 �114.7 �113.3

Root G �114.6 �111 �109.8

Root H �115.9 �112.1 �110.3

Root I �122 �123.1 �122.6

Root DH �113.5 �109.4 �108

Root DE �114.6 110.4 108.8

Root DG �112.8 �108.6 �107.4

Root HG �114 �110.4 �108.9

Root DF �114.7 �110.8 �109.4

Root DGH �112.8 �108.8 �107.4

Root FGH �113.9 110.5 �109.4

Root GHE �115 �110.7 �109.1

Root DEGH �114.1 �110 �108.5

Root DFGH �113.8 �110 �108.7

Figure 3 Temporal and geographical history of Dipodoidea based on results of the dispersal–extinction–cladogenesis (DEC) analysis

for which the root of Dipodoidea was constrained with areas ‘DG’ and inferred using the M2 stratified model. The maximum
clade credibility tree with the highest likelihood was used for biogeographical analyses of dipodoid lineages (outgroups removed).

Names of major clades are indicated in bold above branches. The top left corner rectangular map represents the geographical

model, which was divided into nine biogeographical areas (A–I). Coloured areas on the rectangular map correspond to coloured
squares of nodes, which represent the most likely inferred ancestral area(s). The black and white map is a representation of the

Earth during middle Eocene, and indicates where modern Dipodoidea radiated and where the oldest dipodoid fossils have been
found. Coloured circles at tips represent dipodoid present-day distributions. Red crosses preceded by black arrows represent local

geographical extinctions in the previous area. Grey dotted boxes (‘a’ and ‘b’) refer to clades, on which we particularly focused. The
red curve representing palaeotemperatures and vertical blue and orange bars indicating cooling and warming Cenozoic climatic

events are represented according to Zachos et al. (2008). A 5-Ma geological time-scale is at the bottom of the figure. Major
geological events are indicated inside the coloured rectangle that indicates the transition from C3 to C4 grasses (Cerling et al.,

1997).
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et al. (2012) but differed from those of Wu et al. (2012), who

estimated younger node ages. This incongruence was probably

because of a larger taxonomic sampling (focus on major clades

of Rodentia in Wu et al.), calibration strategies that relied on

distinct calibration constraints (a single calibration point in

common out of the seven selected by Wu et al.), but also on a

different interpretation of the fossil record (i.e. interpretation

of Progonomys, see justification in the ‘Fossil calibrations’ sec-

tion). In addition, fitting the best partitioning schemes and the

best molecular evolution models to nucleotide alignments

allowed us to better estimate the branch lengths of our trees

and thus to better estimate the node ages.

The oldest dipodoid fossil, Elymys complexus (described as

‘?Zapodidae’) found in the early Bridgerian of North Amer-

(b)

(a)
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ica, Nevada (46.2–50.3 Ma) (Emry & Korth, 1989), suggests

an American origin of the early Dipodoidea (i.e. stem line-

age). It consolidates our molecular estimation of the split

between Dipodoidea and Muroidea during the late Palaeo-

cene (c. 57.72 Ma; 95% HPD: 51.11–68.59 Ma). But,

depending on our interpretation of the phylogenetic position

of the fossil Elymys, our findings could conflict with the pal-

aeontological evidence if we consider the American Elymys as

belonging to Zapodidae (i.e. within modern Dipodoidea).

Molecular and palaeontological data provide independent

ways to estimate when and where clades appeared and

evolved, but neither approach can be considered straightfor-

ward. Dating the time of origin of taxa is complicated and is

confounded by both preservation biases of the fossil record

and inaccuracies of molecular clock estimation. On the

contrary, the oldest known fossils of Dipodoidea discovered

in Asia, Heosminthus and Sinosminthus, found from the mid-

dle Eocene of Central Asia (Wang, 1985; Tong, 1997; Dax-

ner-H€ock, 2001) rather support our estimation of the

diversification of modern Dipodoidea during the middle

Eocene (c. 40.62 Ma; 95% HPD: 35.97–48.27 Ma) in the

Himalaya-Tibetan plateau and Central Asia regions (areas

‘DG’, Fig. 3).

Over 50–40 Ma, the Himalaya-Tibetan plateau and Central

Asia regions encountered geological disturbances (i.e. uplift

episodes) as a result of the collision of India with Asia (Guo

et al., 2002; Bouilhol et al., 2013). This geological event

already known to have induced vicariance events in many ver-

tebrate groups [e.g. glyptosternoid fishes (He et al., 2001) and

warblers (Johansson et al., 2007)] could have also favoured

the radiation of modern Dipodoidea (i.e. crown lineage). Our

analyses support an ‘out-of-Himalaya’ origin for the dipod-

oids because most of their early diversifications have occurred

in (or close to) the proto-Himalaya during the Eocene and

Oligocene. In the Miocene, the geographical evolution has

been influenced by climatic and geological events that were

induced by the rise of Himalaya (e.g. aridification). We pro-

pose that Asian climatic and geological disruptions that modi-

fied landscapes and offered new habitats favoured the early

diversification events of many regional clades. Besides, Zapo-

didae together with Ctenodactylidae became the dominant

groups during the Tabenbulukian (i.e. Asian land mammal

ages from late Oligocene) (Wang et al., 2007). Our study sug-

gests that the split between Zapodidae and Dipodidae in Cen-

tral Asia occurred during the Eocene–Oligocene transition (c.

34.52 Ma; 30.56–41.02 Ma), while climatic conditions were

declining (Zachos et al., 2008) and Eocene perissodactyl-

dominant faunas were replaced by rodent/lagomorph-domi-

nant faunas (i.e. members of Dipodoidea, Cricetidae or other

rodent taxa) (Wang et al., 2007; Fabre et al., 2012).

Our sampling was not exhaustive and missing (living or

extinct) species may introduce biases in biogeographical

reconstructions (Mao et al., 2012). The missing species in

our study are distributed in regions inferred as ancestral

areas (Appendix S3), so there was likely to have been little

bias. As the sampling of Zapodinae and Dipodinae was

exhaustive in our study, we preferred to focus on the evolu-

tionary history of these two groups from this point forward.

Colonization of the New World and Zapodidae

diversification

During the early Miocene, the Himalaya-Tibetan plateau

experienced major uplift episodes, promoting the aridifica-

tion of the region (Zhisheng et al., 2001; Guo et al., 2002).

Induced disruptions in climatic and environmental condi-

tions also favour changes in the ecological niches, which

might have affected many clades. Indeed, our biogeographi-

cal reconstructions suggest that modern Zapodidae have

responded to these changes and radiated in Central Asia dur-

ing the early Miocene (c. 20.24 Ma; 17.92–24.06 Ma). There-

after, jumping mice underwent local geographical extinction

in their original ancestral area and expanded their range

towards North America (see Box ‘A’ in Figs 3 & 4a).

Between c. 14 and 3.5 Ma, the Bering land bridge (BLB)

was covered by a continuous boreal coniferous forest belt.

This region extensively used as a trans-Beringian connector

between Asia and North America promoted faunal exchanges

between both continents (Sanmart�ın et al., 2001). In the fos-

sil record, it is shown that the extinct genus Megasminthus

from the middle Miocene of North America constitutes the

first occurrence of Zapodidae in the Nearctic region (Zhang

et al., 2012). It is interesting to note that our biogeographical

reconstructions are in agreement with both the fossil record

and studies concerning the BLB. Indeed, our results suggest

that the ancestors of Zapus and Napaeozapus colonized

North America by the BLB between the early (c. 20.24 Ma,

split with the basal zapodid Eozapus) and middle Miocene

(c. 13.01 Ma, 11.52–15.46 Ma; diversification of the Ameri-

can genera) (Fig. 4b). Zapodidae are now the only dipodoid

representatives still inhabiting North America.

Expansion through Eurasia, the conquest of Africa,

and Dipodinae diversification

During the early–middle Miocene boundary, the Himalayan

Mountains underwent an important and rapid uplift phase,

which, coupled with the period of considerable warming

called the mid-Miocene climatic optimum, induced strong

modifications in climatic and thus, environmental conditions

in Central Asia (Tangelder, 1988; Harrison et al., 1992; Za-

chos et al., 2008). Favourable towards the emergence of new

taxa, our results show that modern Dipodinae took advan-

tage of these changes by diversifying in Central Asia during

this early–middle Miocene boundary (c. 16.11 Ma; 14.26–
19.14 Ma) (see Box ‘B’ in Figs 3 & 4b).

In the late Miocene, the Mediterranean Sea dried up (i.e.

the Messinian Salinity Crisis). It is assumed that this event

promoted faunal exchanges between Africa and adjacent

region. Indeed, thanks to the earliest occurrence of Mus in

Kenya from 4.5 Ma (Winkler, 2002), it is suggested that the

colonization of Africa was already occurring. Besides, based
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on molecular data, Lecompte et al. (2008) demonstrated that

Mus actually colonized North Africa around 6.6 and 4.0 Ma.

Other examples of late Cenozoic murine dispersals between

Asia and Africa are also provided by the fossil record, with

African sites of the latest Miocene–Pliocene age displaying

several ‘Indian’ genera (e.g. Millardia and Golunda) (Wolde-

Gabriel et al., 1994; Benammi et al., 1996; Wynn et al.,

2006). We thus hypothesized that after the radiation of Jacu-

lus species in Central Asia at the end of the late Miocene

(5.97 Ma, 5.29–7.09 Ma; Fig. 4b1), the MRCA of J. jaculus

and J. blanfordi first colonized a wide region from Central

Asia to North Africa (Area ‘DFI’; Fig. 4b1). During the early

Pliocene (5.15 Ma; 4.56–6.12 Ma), it gave rise by vicariance

to J. jaculus in North Africa and to J. blanfordi in the region

encompassing Central Asia and the area that extends from

Turkey to Pakistan (Area ‘DFI’ split into areas ‘DF’ and ‘I’).

In addition, the global cooling of the late Miocene pro-

moted grasslands and arid habitats in Europe and Central

Asia. Woodland-adapted mammals were then replaced by

more open-habitat representatives (Cerling et al., 1997). Our

biogeographical analyses show that Dipodinae, species

adapted to open and arid habitats, would have responded to

these changes by expanding their distribution area (e.g. D.

sagitta is currently found in Mongolia, Gobi-Taklamakan

deserts, Central Asia, or northern Iran; area ‘DEFH’).

CONCLUSIONS

Exhaustive taxonomic sampling for Dipodoidea is labori-

ous. Some dipodoid species are only known from the type

specimens (e.g. Salpingotus thomasi) (Holden & Musser,

2005), while others are hard to trap because of difficulties

in accessing their range (e.g. Taklamakan desert), or

because they are elusive (e.g. Sicista pseudonapaea is listed

as data deficient; IUCN, 2012). In this study, we collected

two-thirds of the dipodoid diversity. Based on this sam-

(a1)  (a2) 

(a) Biogeographical history of Zapodidae  

(b) Biogeographical history of Dipodinae  

(b1)  
(b2)  (b1)  

1- Early Miocene  
(~20.24 Ma):  
Radiation of 

modern Zapodidae 
in Central Asia  

D

2- Between early 
Miocene and present:  
Range expansion for 
ancestors of Eozapus 

setchuanus  
(from East Russia to the 

Himalaya-Tibetan 
CDG

1- Early/middle 
Eocene:  

Colonisation of North 
A

from Central Asia 
D

ancestors of 
Napaeozapus and 

Zapus 

Bering  
land  

bridge 

2- Middle Miocene 
 (~13.01 Ma):  

Radiation of the MRCA of 
Napaeozapus and Zapus in 

A  

2- Late Miocene (~5.97 Ma):  
Colonization of North Africa 

I ancestors of J. 
orientalis 

3- Early Pliocene  
(~5.15 Ma): 

Vicariance of the 
MRCA of J. jaculus 
(North Africa; area 
I J. blanfordi 

(Central Asia and in 
the region extending 

from Turkey to 
DF

1- Middle Miocene 
(~16.11 Ma): Radiation 
of modern Dipodinae in 
Central Asia D

 2-Early Pleistocene 
(~2.39 Ma):  

 Vicariance of the 
MRCA of S. telum 
(Central Asia and 

BD
and S. sungorus 

(Mongolia;  
E

1-Late Miocene (~6.27 Ma):  
Dispersion to Mongolia (Area 

E ancestors of S. 
andrewsi 

3- Present:  
Current range of extant 
E. setchuanus restricted 
to the Himalaya-Tibetan 

G

Figure 4 Biogeographical scenarios for the distribution patterns of (a) Zapodidae and (b) Dipodinae, with specific palaeogeographical

maps. Concerning areas, the colours and the alphabet codes are the same as those in Fig. 3. Dotted lines refer to ancestral areas. Red
splashes refer to the centre of origin of clades. (a1) During the early Miocene occurred the radiation of modern Zapodidae in Central

Asia. Ancestors of the Asian Eozapus setchuanus expanded their range across East Russia and the Himalaya-Tibetan Plateau. Nowadays,

E. setchuanus is exclusively distributed in the Himalaya-Tibetan Plateau. (a2) Between the early and middle Miocene North America was
colonized by the most recent common ancestor (MRCA) of Napaeozapus and Zapus, where they then diversified. (b1) Modern

Dipodinae originated in Central Asia during the middle Miocene. The dispersal to North Africa would first have happened by ancestors
of Jaculus orientalis. The divergence between J. jaculus and J. blanfordi was promoted by a vicariance event in the region separating

North Africa and Asia. (b2) While ancestors of Stylodipus andrewsi dispersed to Mongolia during the late Miocene, the MRCA of S.
telum and S. sungorus diversified by vicariance in the region between Mongolia and Central Asia. Palaeogeographical maps have been

modified from Blakey (2008).
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pling, we have inferred the biogeographical history of the

superfamily, in particular for Zapodidae and Dipodinae.

Since the middle Eocene, the evolutionary history of Dipo-

doidea has been influenced by geological and climatic

upheavals that occurred in Central Asia, especially the

uplift of the Himalayan-Tibetan Mountains, which pro-

moted the development of new habitats, in turn favouring

the diversification of several Dipodoidea clades. Accord-

ingly, this study highlighted the importance of such palae-

ontological and palaeoclimatic events for the diversification

of Palaearctic mammals.

ACKNOWLEDGEMENTS

We thank the editors and the anonymous referees who pro-

vided constructive comments. We are particularly grateful to

F. Catzeflis, G. Dobigny J.-M. Duplantier, W. Fuwen, L.

Granjon, G. Musser, the Burke Museum (Seattle, USA), and

the Mus�eum national d’Histoire naturelle (MNHN; Paris,

France) for donations of dipodoid tissues. Analyses were per-

formed at the CBGP HPC computational platform, main-

tained by A. Dehne-Garcia. J.P. is financed by an ‘aspirant

FNRS’ scholarship also granted by the FRS-FNRS. M.P. and

J.M. are supported by a Belgian research fellowship from the

FRS-FNRS (respectively, ‘mandat charg�e de recherches’ and

‘mandat mâıtre de recherches’). F.L.C. is grateful for support

from the French National Agency for Research (ANR ECO-

EVOBIO-CHEX2011 grant awarded to H. Morlon). The

research of A.B. and V.L. was partly supported by RFBR no.

14-04-00034a. This research was sponsored by financial

grants from the Belgian FNRS.

REFERENCES

Benammi, M., Calvo, M., Prevot, M. & Jaeger, J.J. (1996)

Magnetostratigraphy and paleontology of A€ıt Kandoula

Basin (High Atlas, Morocco) and the African-European

late Miocene terrestrial fauna exchanges. Earth and Plane-

tary Science Letters, 145, 15–29.
Blakey, R.C. (2008) Gondwana paleogeography from assem-

bly to breakup – a 500 million year odyssey. Resolving the

late Paleozoic ice age in time and space (ed. by C.R. Field-

ing, T.D. Frank and J.L. Isbell), pp. 1–28. The Geological

Society of America Special Paper 441, Boulder, CO.

Bouilhol, P., Jagoutz, O., Hanchar, J.M. & Dudas, F.O. (2013)

Dating the India–Eurasia collision through arc magmatic

records. Earth and Planetary Science Letters, 366, 163–175.
Buerki, S., Forest, F., Alvarez, N., Nylander, J.A.A., Arrigo,

N. & Sanmart�ın, I. (2011) An evaluation of new parsi-

mony-based versus parametric inference methods in bioge-

ography: a case study using the globally distributed plant

family Sapindaceae. Journal of Biogeography, 38, 531–550.
Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G.,

Quade, J., Eisenmann, V. & Ehleringer, J.R. (1997) Global

vegetation change through the Miocene/Pliocene bound-

ary. Nature, 389, 153–158.

Daxner-H€ock, G. (2001) New zapodids (Rodentia) from Oli-

gocene-Miocene deposits in Mongolia. Part 1. Sencken-

bergiana lethaea, 81, 359–389.
Douzery, E.J., Blanquart, S., Criscuolo, A., Delsuc, F., Doua-

dy, C., Lartillot, N., Philippe, H. & Ranwez, V. (2010)

Phylog�enie mol�eculaire. Biologie �evolutive (ed. by F. Tho-

mas, T. Lef�evre and M. Raymond), pp. 183–243. De Bo-

eck, Bruxelles.

Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A.

(2006) Relaxed phylogenetics and dating with confidence.

PloS Biology, 4, e88.

Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A.

(2012) Bayesian phylogenetics with BEAUti and the

BEAST 1.7. Molecular Biology and Evolution, 29, 1969–
1973.

Emry, R.J. & Korth, W.W. (1989) Rodents of the Bridgerian

(Middle Eocene) Elderberry Canyon local fauna of Eastern

Nevada. Smithsonian Institution Press, Washigton, DC.

Fabre, P.H., Irestedt, M., Fjelds�a, J., Bristol, R., Groombridge,

J.J., Irham, M. & Jønsson, K.A. (2012) Dynamic coloniza-

tion exchanges between continents and islands drive

diversification in paradise-flycatchers (Terpsiphone,

Monarchidae). Journal of Biogeography, 39, 1900–1918.
Fan, Z., Liu, S., Liu, Y., Zeng, B., Zhang, X., Guo, C. & Yue,

B. (2009) Molecular phylogeny and taxonomic reconsider-

ation of the subfamily Zapodinae (Rodentia: Dipodidae),

with an emphasis on Chinese species. Molecular Phyloge-

netics and Evolution, 51, 447–453.
Galtier, N., Gouy, M. & Gautier, C. (1996) SEAVIEW and

PHYLO_WIN: two graphic tools for sequence alignment

and molecular phylogeny. Cabios, 12, 543–548.
Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hord-

ijk, W. & Gascuel, O. (2010) New algorithms and methods

to estimate maximum-likelihood phylogenies: assessing the

performance of PhyML 3.0. Systematic Biology, 59, 307–
321.

Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao,

Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y. & Liu,

T.S. (2002) Onset of Asian desertification by 22 Myr ago

inferred from loess deposits in China. Nature, 416, 159–
163.

Harrison, T.M., Copeland, P., Kidd, W.S. & Yin, A. (1992)

Raising Tibet. Science, 255, 1663–1670.
He, S., Cao, W. & Chen, Y. (2001) The uplift of Qinghai-

Xizang (Tibet) Plateau and the variance speciation of glyp-

tosternoid fishes (Siluriformes: Sisoridae). Science in

China, 44, 650–651.
Ho, S.Y.W. & Phillips, M.J. (2009) Accounting for calibra-

tion uncertainty in phylogenetic estimation of evolutionary

divergence times. Systematic Biology, 58, 367–380.
Ho, S.Y.W., Phillips, M.J., Cooper, A. & Drummond, A.J.

(2005) Time dependency of molecular rate estimates and

systematic overestimation of recent divergence times.

Molecular Biology and Evolution, 22, 1561–1568.
Holden, M.E. & Musser, G.G. (2005) Superfamily Dipodoi-

dea. Mammal species of the world: a taxonomic and geo-

Journal of Biogeography 42, 856–870
ª 2015 John Wiley & Sons Ltd

868

J. Pisano et al.



graphic reference, 3rd edn (ed. by D.E. Wilson and D.M.

Reeder), pp. 871–893. Johns Hopkins University Press,

Baltimore, MD.

Huchon, D., Catzeflis, F.M. & Douzery, E.J.P. (1999) Molec-

ular evolution of the nuclear von Willebrand factor gene

in mammals and the phylogeny of rodents. Molecular Biol-

ogy and Evolution, 16, 577–589.
IUCN (2012) IUCN Red List of Threatened Species (Version

2012.2). Available at: http://www.iucnredlist.org (accessed

10 January 2014).

Jacobs, L.L. & Flynn, L.J. (2005) Of mice. . . again: the Siwa-

lik rodent record, murine distribution, and molecular

clocks. Interpreting the past: essays on human, primate, and

mammal evolution (ed. by D.E. Lieberman, R.J. Smith and

J. Kelley), pp. 63–80. Brill Academic Publishers, Boston,

MA.

Johansson, U.S., Alstrom, P., Olsson, U., Ericson, P.G.,

Sundberg, P. & Price, T.D. (2007) Build-up of the Himala-

yan avifauna through immigration: a biogeographical

analysis of the Phylloscopus and Seicercus warblers. Evolu-

tion, 61, 324–33.
Kass, R.E. & Raftery, A.E. (1995) Bayes factors. Journal of the

American Statistical Association, 90, 773–795.
Kelly, T.S. (1992) New Uintan and Duchesnean (Middle and

Late Eocene) rodents from the Sespe formation, Simi Val-

ley, California. Bulletin Southern California Academy of Sci-

ences, 91, 97–120.
Kimura, Y. (2011) The earliest record of birch mice from the

Early Miocene Nei Mongol, China. Naturwissenschaften,

98, 87–95.
Lanfear, R., Calcott, B., Ho, S.Y. & Guindon, S. (2012) Parti-

tionfinder: combined selection of partitioning schemes and

substitution models for phylogenetic analyses. Molecular

Biology and Evolution, 29, 1695–701.
Lebedev, V.S., Bannikova, A.A., Pag�es, M., Pisano, J., Mich-

aux, J.R. & Shenbrot, G.I. (2012) Molecular phylogeny

and systematics of Dipodoidea: a test of morphology-based

hypotheses. Zoologica Scripta, 42, 231–249.
Lecompte, E., Aplin, K., Denys, C., Catzeflis, F., Chades, M.

& Chevret, P. (2008) Phylogeny and biogeography of Afri-

can Murinae based on mitochondrial and nuclear gene

sequences, with a new tribal classification of the subfamily.

BMC Evolutionary Biology, 8, 199.

Li, Q. & Meng, J. (2010) Erlianomys combinatus, a primitive

myodont rodent from the Eocene Arshanto Formation,

Nuhetingboerhe, Nei Mongol, China. Vertebrata PalAsiati-

ca, 48, 133–144.
Mao, K., Milne, R.I., Zhang, L., Peng, Y., Liu, J., Thomas,

P., Mill, R.R. & Renner, S.S. (2012) Distribution of liv-

ing Cupressaceae reflects the breakup of Pangea. Pro-

ceedings of the National Academy of Sciences USA, 109,

7793–7798.
McKenna, M.C. & Bell, S.K. (1997) Classification of mammals

above the species level. Columbia University Press, New

York.

Meredith, R.W., Janecka, J.E., Gatesy, J. et al. (2011) Impacts

of the Cretaceous Terrestrial Revolution and KPg extinc-

tion on mammal diversification. Science, 334, 521–524.
Michaux, J., Aguilar, J.P., Montuire, S., Wolff, A. & Legen-

dre, S. (1997) Les Murinae (Rodentia, Mammalia)

n�eog�enes du Sud de la France: �evolution et pal�eoenvironn-

ements. Geobios, 20, 379–385.
Pag�es, M., Chaval, Y., Herbreteau, V., Waengsothorn, S.,

Cosson, J.F., Hugot, J.P., Morand, S. & Michaux, J. (2010)

Revisiting the taxonomy of the Rattini tribe: a phylogeny-

based delimitation of species boundaries. BMC Evolution-

ary Biology, 10, 184.

Poux, C. & Douzery, E.J.P. (2004) Primate phylogeny, evolu-

tionary rate variations, and divergence times: a contribu-

tion from the nuclear gene IRBP. American Journal of

Physical Anthropology, 124, 1–16.
Ree, R.H. & Smith, S.A. (2008) Maximum likelihood inference

of geographic range evolution by dispersal, local extinction,

and cladogenesis. Systematic Biology, 57, 4–14.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L.,

Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A.

& Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian

phylogenetic inference and model choice across a large

model space. Systematic Biology, 61, 539–542.
Sanmart�ın, I., Enghoff, H. & Ronquist, F. (2001) Patterns of

animal dispersal, vicariance and diversification in the Hol-

arctic. Biological Journal of the Linnean Society, 73, 345–
390.

Scotese, C.R. (2004) A continental drift flipbook. The Journal

of Geology, 112, 729–741.
Shenbrot, G.I., Sokolov, V.E., Heptner, V.G. & Koval’skaya,

Y.M. (2008) Jerboas: mammals of Russia and adjacent

regions. Science Publishers Inc, Enfield, NH.

Silvestro, D. & Michalak, I. (2011) raxmlGUI: a graphical

front-end for RAxML. Organisms Diversity & Evolution,

12, 335–337.
Springer, M.S., Stanhope, M.J., Madsen, O. & de Jong, W.W.

(2004) Molecules consolidate the placental mammal tree.

Trends in Ecology and Evolution, 19, 430–8.
Steppan, S.J., Adkins, R.M. & Anderson, J. (2004) Phylogeny

and divergence-date estimates of rapid radiations in mu-

roid rodents based on multiple nuclear genes. Systematic

Biology, 53, 533–553.
Tangelder, I.R.M. (1988) The biogeography of the Holarctic

Nephrotoma dorsalis species-group (Diptera, Tipulidae).

Beaufortia, 38, 1–35.
Tong, Y. (1997) Middle Eocene small mammals from Ligu-

anqiao basin of Henan province and Yuanqu basin of

Shanxi province. Palaeontologica Sinica, 26, 1–256.
Wang, B. (1985) Zapodidae (Rodentia, Mammalia) from the

Lower Oligocene of Qujing, Yunnan, China. Mainzer Geo-

wissenschaftliche Mitteilungen, 14, 345–367.
Wang, Y., Meng, J., Ni, X. & Li, C. (2007) Major events of

Paleogene mammal radiation in China. Geological Journal,

42, 415–430.

Journal of Biogeography 42, 856–870
ª 2015 John Wiley & Sons Ltd

869

Molecular evolutionary history of Dipodoidea

http://www.iucnredlist.org


Winkler, A.J. (2002) Neogene paleobiogeography and East

African paleoenvironments: contributions from the Tugen

Hills rodents and lagomorphs. Journal of Human Evolu-

tion, 42, 237–256.
WoldeGabriel, G., White, T.D., Suwa, G., Renne, P., de

Heinzelin, J., Hart, W.K. & Heiken, G. (1994) Ecological

and temporal placement of early Pliocene hominids at Ar-

amis, Ethiopia. Nature, 371, 330–333.
Wu, S., Wu, W., Zhang, F., Ye, J., Ni, X., Sun, J., Edwards,

S.V., Meng, J. & Organ, C.L. (2012) Molecular and pale-

ontological evidence for a post-Cretaceous origin of

rodents. PLoS ONE, 7, e46445.

Wynn, J.G., Alemseged, Z., Bobe, R., Geraads, D., Reed, D.

& Roman, D.C. (2006) Geological and palaeontological

context of a Pliocene juvenile hominin at Dikika, Ethiopia.

Nature, 443, 332–336.
Zachos, J.C., Dickens, G.R. & Zeebe, R.E. (2008) An early

Cenozoic perspective on greenhouse warming and carbon-

cycle dynamics. Nature, 451, 279–283.
Zhang, P., Chen, Y.Q., Zhou, H., Liu, Y.F., Wang, X.L., Pa-

penfuss, T.J., Wake, D.B. & Qu, L.H. (2006) Phylogeny,

evolution, and biogeography of Asiatic salamanders (Hyn-

obiidae). Proceedings of the National Academy of Sciences

USA, 103, 7360–5.
Zhang, Q., Xia, L., Kimura, Y., Shenbrot, G., Zhang, Z., Ge,

D. & Yang, Q. (2012) Tracing the origin and diversifica-

tion of Dipodoidea (Order: Rodentia): evidence from fossil

record and molecular phylogeny. Evolutionary Biology, 40,

32–44.
Zhisheng, A., Kutzbach, J.E., Prell, W.L. & Porter, S.C.

(2001) Evolution of Asian monsoons and phased uplift of

the Himalaya-Tibetan plateau since Late Miocene times.

Nature, 411, 62–66.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the

online version of this article:

Appendix S1 Taxon sampling for Dipodoidea species and

outgroups used in this study.

Appendix S2 Supplementary information for phylogenetic

and dating analyses.

Appendix S3 Supplementary information for biogeographi-

cal analyses.

BIOSKETCHES

Julie Pisano is a PhD student of the Conservation Genetics

Unit of the University of Li�ege (Belgium) headed by Johan

Michaux, and is conducting her study at the Centre de Biol-

ogie pour la Gestion des Populations (UMR CBGP, Montferri-

er-sur-Lez, France). She is interested in the evolutionary

history of rodents and also investigates the genetic structure

of rodents in hybrid zones.

The research groups of Johan Michaux and Marie Pag�es

focus on documenting biodiversity and understanding the

origin, evolution and conservation of diverse mammal

groups.

Author contributions: J.P., F.L.C., M.P. and J.R.M. conceived

the ideas; J.P., J.R.M., V.L., J.-P.Q., and G.I.S. collected the

data; J.P., M.P., A.B. and V.L. achieved the molecular work;

J.P., F.L.C. and M.P. analysed the data; and J.P. led the writ-

ing with revisions of all co-authors.

Editor: Brett Riddle

Journal of Biogeography 42, 856–870
ª 2015 John Wiley & Sons Ltd

870

J. Pisano et al.


